TailRecursionElimination.cpp revision d64152a70842b2f4186aa912938e69ca09c1434c
1//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file transforms calls of the current function (self recursion) followed
11// by a return instruction with a branch to the entry of the function, creating
12// a loop.  This pass also implements the following extensions to the basic
13// algorithm:
14//
15//  1. Trivial instructions between the call and return do not prevent the
16//     transformation from taking place, though currently the analysis cannot
17//     support moving any really useful instructions (only dead ones).
18//  2. This pass transforms functions that are prevented from being tail
19//     recursive by an associative expression to use an accumulator variable,
20//     thus compiling the typical naive factorial or 'fib' implementation into
21//     efficient code.
22//  3. TRE is performed if the function returns void, if the return
23//     returns the result returned by the call, or if the function returns a
24//     run-time constant on all exits from the function.  It is possible, though
25//     unlikely, that the return returns something else (like constant 0), and
26//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27//     the function return the exact same value.
28//
29// There are several improvements that could be made:
30//
31//  1. If the function has any alloca instructions, these instructions will be
32//     moved out of the entry block of the function, causing them to be
33//     evaluated each time through the tail recursion.  Safely keeping allocas
34//     in the entry block requires analysis to proves that the tail-called
35//     function does not read or write the stack object.
36//  2. Tail recursion is only performed if the call immediately preceeds the
37//     return instruction.  It's possible that there could be a jump between
38//     the call and the return.
39//  3. There can be intervening operations between the call and the return that
40//     prevent the TRE from occurring.  For example, there could be GEP's and
41//     stores to memory that will not be read or written by the call.  This
42//     requires some substantial analysis (such as with DSA) to prove safe to
43//     move ahead of the call, but doing so could allow many more TREs to be
44//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
45//
46//===----------------------------------------------------------------------===//
47
48#include "llvm/Transforms/Scalar.h"
49#include "llvm/DerivedTypes.h"
50#include "llvm/Function.h"
51#include "llvm/Instructions.h"
52#include "llvm/Pass.h"
53#include "llvm/Support/CFG.h"
54#include "Support/Statistic.h"
55using namespace llvm;
56
57namespace {
58  Statistic<> NumEliminated("tailcallelim", "Number of tail calls removed");
59  Statistic<> NumAccumAdded("tailcallelim","Number of accumulators introduced");
60
61  struct TailCallElim : public FunctionPass {
62    virtual bool runOnFunction(Function &F);
63
64  private:
65    bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
66                               std::vector<PHINode*> &ArgumentPHIs);
67    bool CanMoveAboveCall(Instruction *I, CallInst *CI);
68    Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
69  };
70  RegisterOpt<TailCallElim> X("tailcallelim", "Tail Call Elimination");
71}
72
73// Public interface to the TailCallElimination pass
74FunctionPass *llvm::createTailCallEliminationPass() {
75  return new TailCallElim();
76}
77
78
79bool TailCallElim::runOnFunction(Function &F) {
80  // If this function is a varargs function, we won't be able to PHI the args
81  // right, so don't even try to convert it...
82  if (F.getFunctionType()->isVarArg()) return false;
83
84  BasicBlock *OldEntry = 0;
85  std::vector<PHINode*> ArgumentPHIs;
86  bool MadeChange = false;
87
88  // Loop over the function, looking for any returning blocks...
89  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
90    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator()))
91      MadeChange |= ProcessReturningBlock(Ret, OldEntry, ArgumentPHIs);
92
93  // If we eliminated any tail recursions, it's possible that we inserted some
94  // silly PHI nodes which just merge an initial value (the incoming operand)
95  // with themselves.  Check to see if we did and clean up our mess if so.  This
96  // occurs when a function passes an argument straight through to its tail
97  // call.
98  if (!ArgumentPHIs.empty()) {
99    unsigned NumIncoming = ArgumentPHIs[0]->getNumIncomingValues();
100    for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
101      PHINode *PN = ArgumentPHIs[i];
102      Value *V = 0;
103      for (unsigned op = 0, e = NumIncoming; op != e; ++op) {
104        Value *Op = PN->getIncomingValue(op);
105        if (Op != PN) {
106          if (V == 0) {
107            V = Op;     // First value seen?
108          } else if (V != Op) {
109            V = 0;
110            break;
111          }
112        }
113      }
114
115      // If the PHI Node is a dynamic constant, replace it with the value it is.
116      if (V) {
117        PN->replaceAllUsesWith(V);
118        PN->getParent()->getInstList().erase(PN);
119      }
120    }
121  }
122
123  return MadeChange;
124}
125
126
127/// CanMoveAboveCall - Return true if it is safe to move the specified
128/// instruction from after the call to before the call, assuming that all
129/// instructions between the call and this instruction are movable.
130///
131bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
132  // FIXME: We can move load/store/call/free instructions above the call if the
133  // call does not mod/ref the memory location being processed.
134  if (I->mayWriteToMemory() || isa<LoadInst>(I))
135    return false;
136
137  // Otherwise, if this is a side-effect free instruction, check to make sure
138  // that it does not use the return value of the call.  If it doesn't use the
139  // return value of the call, it must only use things that are defined before
140  // the call, or movable instructions between the call and the instruction
141  // itself.
142  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
143    if (I->getOperand(i) == CI)
144      return false;
145  return true;
146}
147
148// isDynamicConstant - Return true if the specified value is the same when the
149// return would exit as it was when the initial iteration of the recursive
150// function was executed.
151//
152// We currently handle static constants and arguments that are not modified as
153// part of the recursion.
154//
155static bool isDynamicConstant(Value *V, CallInst *CI) {
156  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
157
158  // Check to see if this is an immutable argument, if so, the value
159  // will be available to initialize the accumulator.
160  if (Argument *Arg = dyn_cast<Argument>(V)) {
161    // Figure out which argument number this is...
162    unsigned ArgNo = 0;
163    Function *F = CI->getParent()->getParent();
164    for (Function::aiterator AI = F->abegin(); &*AI != Arg; ++AI)
165      ++ArgNo;
166
167    // If we are passing this argument into call as the corresponding
168    // argument operand, then the argument is dynamically constant.
169    // Otherwise, we cannot transform this function safely.
170    if (CI->getOperand(ArgNo+1) == Arg)
171      return true;
172  }
173  // Not a constant or immutable argument, we can't safely transform.
174  return false;
175}
176
177// getCommonReturnValue - Check to see if the function containing the specified
178// return instruction and tail call consistently returns the same
179// runtime-constant value at all exit points.  If so, return the returned value.
180//
181static Value *getCommonReturnValue(ReturnInst *TheRI, CallInst *CI) {
182  Function *F = TheRI->getParent()->getParent();
183  Value *ReturnedValue = 0;
184
185  for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
186    if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
187      if (RI != TheRI) {
188        Value *RetOp = RI->getOperand(0);
189
190        // We can only perform this transformation if the value returned is
191        // evaluatable at the start of the initial invocation of the function,
192        // instead of at the end of the evaluation.
193        //
194        if (!isDynamicConstant(RetOp, CI))
195          return 0;
196
197        if (ReturnedValue && RetOp != ReturnedValue)
198          return 0;     // Cannot transform if differing values are returned.
199        ReturnedValue = RetOp;
200      }
201  return ReturnedValue;
202}
203
204/// CanTransformAccumulatorRecursion - If the specified instruction can be
205/// transformed using accumulator recursion elimination, return the constant
206/// which is the start of the accumulator value.  Otherwise return null.
207///
208Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
209                                                      CallInst *CI) {
210  if (!I->isAssociative()) return 0;
211  assert(I->getNumOperands() == 2 &&
212         "Associative operations should have 2 args!");
213
214  // Exactly one operand should be the result of the call instruction...
215  if (I->getOperand(0) == CI && I->getOperand(1) == CI ||
216      I->getOperand(0) != CI && I->getOperand(1) != CI)
217    return 0;
218
219  // The only user of this instruction we allow is a single return instruction.
220  if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
221    return 0;
222
223  // Ok, now we have to check all of the other return instructions in this
224  // function.  If they return non-constants or differing values, then we cannot
225  // transform the function safely.
226  return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
227}
228
229bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
230                                         std::vector<PHINode*> &ArgumentPHIs) {
231  BasicBlock *BB = Ret->getParent();
232  Function *F = BB->getParent();
233
234  if (&BB->front() == Ret) // Make sure there is something before the ret...
235    return false;
236
237  // Scan backwards from the return, checking to see if there is a tail call in
238  // this block.  If so, set CI to it.
239  CallInst *CI;
240  BasicBlock::iterator BBI = Ret;
241  while (1) {
242    CI = dyn_cast<CallInst>(BBI);
243    if (CI && CI->getCalledFunction() == F)
244      break;
245
246    if (BBI == BB->begin())
247      return false;          // Didn't find a potential tail call.
248    --BBI;
249  }
250
251  // If we are introducing accumulator recursion to eliminate associative
252  // operations after the call instruction, this variable contains the initial
253  // value for the accumulator.  If this value is set, we actually perform
254  // accumulator recursion elimination instead of simple tail recursion
255  // elimination.
256  Value *AccumulatorRecursionEliminationInitVal = 0;
257  Instruction *AccumulatorRecursionInstr = 0;
258
259  // Ok, we found a potential tail call.  We can currently only transform the
260  // tail call if all of the instructions between the call and the return are
261  // movable to above the call itself, leaving the call next to the return.
262  // Check that this is the case now.
263  for (BBI = CI, ++BBI; &*BBI != Ret; ++BBI)
264    if (!CanMoveAboveCall(BBI, CI)) {
265      // If we can't move the instruction above the call, it might be because it
266      // is an associative operation that could be tranformed using accumulator
267      // recursion elimination.  Check to see if this is the case, and if so,
268      // remember the initial accumulator value for later.
269      if ((AccumulatorRecursionEliminationInitVal =
270                             CanTransformAccumulatorRecursion(BBI, CI))) {
271        // Yes, this is accumulator recursion.  Remember which instruction
272        // accumulates.
273        AccumulatorRecursionInstr = BBI;
274      } else {
275        return false;   // Otherwise, we cannot eliminate the tail recursion!
276      }
277    }
278
279  // We can only transform call/return pairs that either ignore the return value
280  // of the call and return void, ignore the value of the call and return a
281  // constant, return the value returned by the tail call, or that are being
282  // accumulator recursion variable eliminated.
283  if (Ret->getNumOperands() != 0 && Ret->getReturnValue() != CI &&
284      AccumulatorRecursionEliminationInitVal == 0 &&
285      !getCommonReturnValue(Ret, CI))
286    return false;
287
288  // OK! We can transform this tail call.  If this is the first one found,
289  // create the new entry block, allowing us to branch back to the old entry.
290  if (OldEntry == 0) {
291    OldEntry = &F->getEntryBlock();
292    std::string OldName = OldEntry->getName(); OldEntry->setName("tailrecurse");
293    BasicBlock *NewEntry = new BasicBlock(OldName, OldEntry);
294    new BranchInst(OldEntry, NewEntry);
295
296    // Now that we have created a new block, which jumps to the entry
297    // block, insert a PHI node for each argument of the function.
298    // For now, we initialize each PHI to only have the real arguments
299    // which are passed in.
300    Instruction *InsertPos = OldEntry->begin();
301    for (Function::aiterator I = F->abegin(), E = F->aend(); I != E; ++I) {
302      PHINode *PN = new PHINode(I->getType(), I->getName()+".tr", InsertPos);
303      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
304      PN->addIncoming(I, NewEntry);
305      ArgumentPHIs.push_back(PN);
306    }
307  }
308
309  // Ok, now that we know we have a pseudo-entry block WITH all of the
310  // required PHI nodes, add entries into the PHI node for the actual
311  // parameters passed into the tail-recursive call.
312  for (unsigned i = 0, e = CI->getNumOperands()-1; i != e; ++i)
313    ArgumentPHIs[i]->addIncoming(CI->getOperand(i+1), BB);
314
315  // If we are introducing an accumulator variable to eliminate the recursion,
316  // do so now.  Note that we _know_ that no subsequent tail recursion
317  // eliminations will happen on this function because of the way the
318  // accumulator recursion predicate is set up.
319  //
320  if (AccumulatorRecursionEliminationInitVal) {
321    Instruction *AccRecInstr = AccumulatorRecursionInstr;
322    // Start by inserting a new PHI node for the accumulator.
323    PHINode *AccPN = new PHINode(AccRecInstr->getType(), "accumulator.tr",
324                                 OldEntry->begin());
325
326    // Loop over all of the predecessors of the tail recursion block.  For the
327    // real entry into the function we seed the PHI with the initial value,
328    // computed earlier.  For any other existing branches to this block (due to
329    // other tail recursions eliminated) the accumulator is not modified.
330    // Because we haven't added the branch in the current block to OldEntry yet,
331    // it will not show up as a predecessor.
332    for (pred_iterator PI = pred_begin(OldEntry), PE = pred_end(OldEntry);
333         PI != PE; ++PI) {
334      if (*PI == &F->getEntryBlock())
335        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, *PI);
336      else
337        AccPN->addIncoming(AccPN, *PI);
338    }
339
340    // Add an incoming argument for the current block, which is computed by our
341    // associative accumulator instruction.
342    AccPN->addIncoming(AccRecInstr, BB);
343
344    // Next, rewrite the accumulator recursion instruction so that it does not
345    // use the result of the call anymore, instead, use the PHI node we just
346    // inserted.
347    AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
348
349    // Finally, rewrite any return instructions in the program to return the PHI
350    // node instead of the "initval" that they do currently.  This loop will
351    // actually rewrite the return value we are destroying, but that's ok.
352    for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
353      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
354        RI->setOperand(0, AccPN);
355    ++NumAccumAdded;
356  }
357
358  // Now that all of the PHI nodes are in place, remove the call and
359  // ret instructions, replacing them with an unconditional branch.
360  new BranchInst(OldEntry, Ret);
361  BB->getInstList().erase(Ret);  // Remove return.
362  BB->getInstList().erase(CI);   // Remove call.
363  ++NumEliminated;
364  return true;
365}
366