TailRecursionElimination.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file transforms calls of the current function (self recursion) followed
11// by a return instruction with a branch to the entry of the function, creating
12// a loop.  This pass also implements the following extensions to the basic
13// algorithm:
14//
15//  1. Trivial instructions between the call and return do not prevent the
16//     transformation from taking place, though currently the analysis cannot
17//     support moving any really useful instructions (only dead ones).
18//  2. This pass transforms functions that are prevented from being tail
19//     recursive by an associative and commutative expression to use an
20//     accumulator variable, thus compiling the typical naive factorial or
21//     'fib' implementation into efficient code.
22//  3. TRE is performed if the function returns void, if the return
23//     returns the result returned by the call, or if the function returns a
24//     run-time constant on all exits from the function.  It is possible, though
25//     unlikely, that the return returns something else (like constant 0), and
26//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
27//     the function return the exact same value.
28//  4. If it can prove that callees do not access their caller stack frame,
29//     they are marked as eligible for tail call elimination (by the code
30//     generator).
31//
32// There are several improvements that could be made:
33//
34//  1. If the function has any alloca instructions, these instructions will be
35//     moved out of the entry block of the function, causing them to be
36//     evaluated each time through the tail recursion.  Safely keeping allocas
37//     in the entry block requires analysis to proves that the tail-called
38//     function does not read or write the stack object.
39//  2. Tail recursion is only performed if the call immediately precedes the
40//     return instruction.  It's possible that there could be a jump between
41//     the call and the return.
42//  3. There can be intervening operations between the call and the return that
43//     prevent the TRE from occurring.  For example, there could be GEP's and
44//     stores to memory that will not be read or written by the call.  This
45//     requires some substantial analysis (such as with DSA) to prove safe to
46//     move ahead of the call, but doing so could allow many more TREs to be
47//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
48//  4. The algorithm we use to detect if callees access their caller stack
49//     frames is very primitive.
50//
51//===----------------------------------------------------------------------===//
52
53#include "llvm/Transforms/Scalar.h"
54#include "llvm/ADT/STLExtras.h"
55#include "llvm/ADT/SmallPtrSet.h"
56#include "llvm/ADT/Statistic.h"
57#include "llvm/Analysis/CaptureTracking.h"
58#include "llvm/Analysis/CFG.h"
59#include "llvm/Analysis/InlineCost.h"
60#include "llvm/Analysis/InstructionSimplify.h"
61#include "llvm/Analysis/Loads.h"
62#include "llvm/Analysis/TargetTransformInfo.h"
63#include "llvm/IR/CFG.h"
64#include "llvm/IR/CallSite.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DerivedTypes.h"
67#include "llvm/IR/DiagnosticInfo.h"
68#include "llvm/IR/Function.h"
69#include "llvm/IR/Instructions.h"
70#include "llvm/IR/IntrinsicInst.h"
71#include "llvm/IR/Module.h"
72#include "llvm/IR/ValueHandle.h"
73#include "llvm/Pass.h"
74#include "llvm/Support/Debug.h"
75#include "llvm/Support/raw_ostream.h"
76#include "llvm/Transforms/Utils/BasicBlockUtils.h"
77#include "llvm/Transforms/Utils/Local.h"
78using namespace llvm;
79
80#define DEBUG_TYPE "tailcallelim"
81
82STATISTIC(NumEliminated, "Number of tail calls removed");
83STATISTIC(NumRetDuped,   "Number of return duplicated");
84STATISTIC(NumAccumAdded, "Number of accumulators introduced");
85
86namespace {
87  struct TailCallElim : public FunctionPass {
88    const TargetTransformInfo *TTI;
89
90    static char ID; // Pass identification, replacement for typeid
91    TailCallElim() : FunctionPass(ID) {
92      initializeTailCallElimPass(*PassRegistry::getPassRegistry());
93    }
94
95    void getAnalysisUsage(AnalysisUsage &AU) const override;
96
97    bool runOnFunction(Function &F) override;
98
99  private:
100    bool runTRE(Function &F);
101    bool markTails(Function &F, bool &AllCallsAreTailCalls);
102
103    CallInst *FindTRECandidate(Instruction *I,
104                               bool CannotTailCallElimCallsMarkedTail);
105    bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
106                                    BasicBlock *&OldEntry,
107                                    bool &TailCallsAreMarkedTail,
108                                    SmallVectorImpl<PHINode *> &ArgumentPHIs,
109                                    bool CannotTailCallElimCallsMarkedTail);
110    bool FoldReturnAndProcessPred(BasicBlock *BB,
111                                  ReturnInst *Ret, BasicBlock *&OldEntry,
112                                  bool &TailCallsAreMarkedTail,
113                                  SmallVectorImpl<PHINode *> &ArgumentPHIs,
114                                  bool CannotTailCallElimCallsMarkedTail);
115    bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
116                               bool &TailCallsAreMarkedTail,
117                               SmallVectorImpl<PHINode *> &ArgumentPHIs,
118                               bool CannotTailCallElimCallsMarkedTail);
119    bool CanMoveAboveCall(Instruction *I, CallInst *CI);
120    Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
121  };
122}
123
124char TailCallElim::ID = 0;
125INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim",
126                      "Tail Call Elimination", false, false)
127INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
128INITIALIZE_PASS_END(TailCallElim, "tailcallelim",
129                    "Tail Call Elimination", false, false)
130
131// Public interface to the TailCallElimination pass
132FunctionPass *llvm::createTailCallEliminationPass() {
133  return new TailCallElim();
134}
135
136void TailCallElim::getAnalysisUsage(AnalysisUsage &AU) const {
137  AU.addRequired<TargetTransformInfo>();
138}
139
140/// \brief Scan the specified function for alloca instructions.
141/// If it contains any dynamic allocas, returns false.
142static bool CanTRE(Function &F) {
143  // Because of PR962, we don't TRE dynamic allocas.
144  for (auto &BB : F) {
145    for (auto &I : BB) {
146      if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
147        if (!AI->isStaticAlloca())
148          return false;
149      }
150    }
151  }
152
153  return true;
154}
155
156bool TailCallElim::runOnFunction(Function &F) {
157  if (skipOptnoneFunction(F))
158    return false;
159
160  bool AllCallsAreTailCalls = false;
161  bool Modified = markTails(F, AllCallsAreTailCalls);
162  if (AllCallsAreTailCalls)
163    Modified |= runTRE(F);
164  return Modified;
165}
166
167namespace {
168struct AllocaDerivedValueTracker {
169  // Start at a root value and walk its use-def chain to mark calls that use the
170  // value or a derived value in AllocaUsers, and places where it may escape in
171  // EscapePoints.
172  void walk(Value *Root) {
173    SmallVector<Use *, 32> Worklist;
174    SmallPtrSet<Use *, 32> Visited;
175
176    auto AddUsesToWorklist = [&](Value *V) {
177      for (auto &U : V->uses()) {
178        if (!Visited.insert(&U))
179          continue;
180        Worklist.push_back(&U);
181      }
182    };
183
184    AddUsesToWorklist(Root);
185
186    while (!Worklist.empty()) {
187      Use *U = Worklist.pop_back_val();
188      Instruction *I = cast<Instruction>(U->getUser());
189
190      switch (I->getOpcode()) {
191      case Instruction::Call:
192      case Instruction::Invoke: {
193        CallSite CS(I);
194        bool IsNocapture = !CS.isCallee(U) &&
195                           CS.doesNotCapture(CS.getArgumentNo(U));
196        callUsesLocalStack(CS, IsNocapture);
197        if (IsNocapture) {
198          // If the alloca-derived argument is passed in as nocapture, then it
199          // can't propagate to the call's return. That would be capturing.
200          continue;
201        }
202        break;
203      }
204      case Instruction::Load: {
205        // The result of a load is not alloca-derived (unless an alloca has
206        // otherwise escaped, but this is a local analysis).
207        continue;
208      }
209      case Instruction::Store: {
210        if (U->getOperandNo() == 0)
211          EscapePoints.insert(I);
212        continue;  // Stores have no users to analyze.
213      }
214      case Instruction::BitCast:
215      case Instruction::GetElementPtr:
216      case Instruction::PHI:
217      case Instruction::Select:
218      case Instruction::AddrSpaceCast:
219        break;
220      default:
221        EscapePoints.insert(I);
222        break;
223      }
224
225      AddUsesToWorklist(I);
226    }
227  }
228
229  void callUsesLocalStack(CallSite CS, bool IsNocapture) {
230    // Add it to the list of alloca users. If it's already there, skip further
231    // processing.
232    if (!AllocaUsers.insert(CS.getInstruction()))
233      return;
234
235    // If it's nocapture then it can't capture the alloca.
236    if (IsNocapture)
237      return;
238
239    // If it can write to memory, it can leak the alloca value.
240    if (!CS.onlyReadsMemory())
241      EscapePoints.insert(CS.getInstruction());
242  }
243
244  SmallPtrSet<Instruction *, 32> AllocaUsers;
245  SmallPtrSet<Instruction *, 32> EscapePoints;
246};
247}
248
249bool TailCallElim::markTails(Function &F, bool &AllCallsAreTailCalls) {
250  if (F.callsFunctionThatReturnsTwice())
251    return false;
252  AllCallsAreTailCalls = true;
253
254  // The local stack holds all alloca instructions and all byval arguments.
255  AllocaDerivedValueTracker Tracker;
256  for (Argument &Arg : F.args()) {
257    if (Arg.hasByValAttr())
258      Tracker.walk(&Arg);
259  }
260  for (auto &BB : F) {
261    for (auto &I : BB)
262      if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
263        Tracker.walk(AI);
264  }
265
266  bool Modified = false;
267
268  // Track whether a block is reachable after an alloca has escaped. Blocks that
269  // contain the escaping instruction will be marked as being visited without an
270  // escaped alloca, since that is how the block began.
271  enum VisitType {
272    UNVISITED,
273    UNESCAPED,
274    ESCAPED
275  };
276  DenseMap<BasicBlock *, VisitType> Visited;
277
278  // We propagate the fact that an alloca has escaped from block to successor.
279  // Visit the blocks that are propagating the escapedness first. To do this, we
280  // maintain two worklists.
281  SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
282
283  // We may enter a block and visit it thinking that no alloca has escaped yet,
284  // then see an escape point and go back around a loop edge and come back to
285  // the same block twice. Because of this, we defer setting tail on calls when
286  // we first encounter them in a block. Every entry in this list does not
287  // statically use an alloca via use-def chain analysis, but may find an alloca
288  // through other means if the block turns out to be reachable after an escape
289  // point.
290  SmallVector<CallInst *, 32> DeferredTails;
291
292  BasicBlock *BB = &F.getEntryBlock();
293  VisitType Escaped = UNESCAPED;
294  do {
295    for (auto &I : *BB) {
296      if (Tracker.EscapePoints.count(&I))
297        Escaped = ESCAPED;
298
299      CallInst *CI = dyn_cast<CallInst>(&I);
300      if (!CI || CI->isTailCall())
301        continue;
302
303      if (CI->doesNotAccessMemory()) {
304        // A call to a readnone function whose arguments are all things computed
305        // outside this function can be marked tail. Even if you stored the
306        // alloca address into a global, a readnone function can't load the
307        // global anyhow.
308        //
309        // Note that this runs whether we know an alloca has escaped or not. If
310        // it has, then we can't trust Tracker.AllocaUsers to be accurate.
311        bool SafeToTail = true;
312        for (auto &Arg : CI->arg_operands()) {
313          if (isa<Constant>(Arg.getUser()))
314            continue;
315          if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
316            if (!A->hasByValAttr())
317              continue;
318          SafeToTail = false;
319          break;
320        }
321        if (SafeToTail) {
322          emitOptimizationRemark(
323              F.getContext(), "tailcallelim", F, CI->getDebugLoc(),
324              "marked this readnone call a tail call candidate");
325          CI->setTailCall();
326          Modified = true;
327          continue;
328        }
329      }
330
331      if (Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
332        DeferredTails.push_back(CI);
333      } else {
334        AllCallsAreTailCalls = false;
335      }
336    }
337
338    for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
339      auto &State = Visited[SuccBB];
340      if (State < Escaped) {
341        State = Escaped;
342        if (State == ESCAPED)
343          WorklistEscaped.push_back(SuccBB);
344        else
345          WorklistUnescaped.push_back(SuccBB);
346      }
347    }
348
349    if (!WorklistEscaped.empty()) {
350      BB = WorklistEscaped.pop_back_val();
351      Escaped = ESCAPED;
352    } else {
353      BB = nullptr;
354      while (!WorklistUnescaped.empty()) {
355        auto *NextBB = WorklistUnescaped.pop_back_val();
356        if (Visited[NextBB] == UNESCAPED) {
357          BB = NextBB;
358          Escaped = UNESCAPED;
359          break;
360        }
361      }
362    }
363  } while (BB);
364
365  for (CallInst *CI : DeferredTails) {
366    if (Visited[CI->getParent()] != ESCAPED) {
367      // If the escape point was part way through the block, calls after the
368      // escape point wouldn't have been put into DeferredTails.
369      emitOptimizationRemark(F.getContext(), "tailcallelim", F,
370                             CI->getDebugLoc(),
371                             "marked this call a tail call candidate");
372      CI->setTailCall();
373      Modified = true;
374    } else {
375      AllCallsAreTailCalls = false;
376    }
377  }
378
379  return Modified;
380}
381
382bool TailCallElim::runTRE(Function &F) {
383  // If this function is a varargs function, we won't be able to PHI the args
384  // right, so don't even try to convert it...
385  if (F.getFunctionType()->isVarArg()) return false;
386
387  TTI = &getAnalysis<TargetTransformInfo>();
388  BasicBlock *OldEntry = nullptr;
389  bool TailCallsAreMarkedTail = false;
390  SmallVector<PHINode*, 8> ArgumentPHIs;
391  bool MadeChange = false;
392
393  // CanTRETailMarkedCall - If false, we cannot perform TRE on tail calls
394  // marked with the 'tail' attribute, because doing so would cause the stack
395  // size to increase (real TRE would deallocate variable sized allocas, TRE
396  // doesn't).
397  bool CanTRETailMarkedCall = CanTRE(F);
398
399  // Change any tail recursive calls to loops.
400  //
401  // FIXME: The code generator produces really bad code when an 'escaping
402  // alloca' is changed from being a static alloca to being a dynamic alloca.
403  // Until this is resolved, disable this transformation if that would ever
404  // happen.  This bug is PR962.
405  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
406    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
407      bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
408                                          ArgumentPHIs, !CanTRETailMarkedCall);
409      if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
410        Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
411                                          TailCallsAreMarkedTail, ArgumentPHIs,
412                                          !CanTRETailMarkedCall);
413      MadeChange |= Change;
414    }
415  }
416
417  // If we eliminated any tail recursions, it's possible that we inserted some
418  // silly PHI nodes which just merge an initial value (the incoming operand)
419  // with themselves.  Check to see if we did and clean up our mess if so.  This
420  // occurs when a function passes an argument straight through to its tail
421  // call.
422  for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
423    PHINode *PN = ArgumentPHIs[i];
424
425    // If the PHI Node is a dynamic constant, replace it with the value it is.
426    if (Value *PNV = SimplifyInstruction(PN)) {
427      PN->replaceAllUsesWith(PNV);
428      PN->eraseFromParent();
429    }
430  }
431
432  return MadeChange;
433}
434
435
436/// CanMoveAboveCall - Return true if it is safe to move the specified
437/// instruction from after the call to before the call, assuming that all
438/// instructions between the call and this instruction are movable.
439///
440bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
441  // FIXME: We can move load/store/call/free instructions above the call if the
442  // call does not mod/ref the memory location being processed.
443  if (I->mayHaveSideEffects())  // This also handles volatile loads.
444    return false;
445
446  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
447    // Loads may always be moved above calls without side effects.
448    if (CI->mayHaveSideEffects()) {
449      // Non-volatile loads may be moved above a call with side effects if it
450      // does not write to memory and the load provably won't trap.
451      // FIXME: Writes to memory only matter if they may alias the pointer
452      // being loaded from.
453      if (CI->mayWriteToMemory() ||
454          !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
455                                       L->getAlignment()))
456        return false;
457    }
458  }
459
460  // Otherwise, if this is a side-effect free instruction, check to make sure
461  // that it does not use the return value of the call.  If it doesn't use the
462  // return value of the call, it must only use things that are defined before
463  // the call, or movable instructions between the call and the instruction
464  // itself.
465  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
466    if (I->getOperand(i) == CI)
467      return false;
468  return true;
469}
470
471// isDynamicConstant - Return true if the specified value is the same when the
472// return would exit as it was when the initial iteration of the recursive
473// function was executed.
474//
475// We currently handle static constants and arguments that are not modified as
476// part of the recursion.
477//
478static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
479  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
480
481  // Check to see if this is an immutable argument, if so, the value
482  // will be available to initialize the accumulator.
483  if (Argument *Arg = dyn_cast<Argument>(V)) {
484    // Figure out which argument number this is...
485    unsigned ArgNo = 0;
486    Function *F = CI->getParent()->getParent();
487    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
488      ++ArgNo;
489
490    // If we are passing this argument into call as the corresponding
491    // argument operand, then the argument is dynamically constant.
492    // Otherwise, we cannot transform this function safely.
493    if (CI->getArgOperand(ArgNo) == Arg)
494      return true;
495  }
496
497  // Switch cases are always constant integers. If the value is being switched
498  // on and the return is only reachable from one of its cases, it's
499  // effectively constant.
500  if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
501    if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
502      if (SI->getCondition() == V)
503        return SI->getDefaultDest() != RI->getParent();
504
505  // Not a constant or immutable argument, we can't safely transform.
506  return false;
507}
508
509// getCommonReturnValue - Check to see if the function containing the specified
510// tail call consistently returns the same runtime-constant value at all exit
511// points except for IgnoreRI.  If so, return the returned value.
512//
513static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
514  Function *F = CI->getParent()->getParent();
515  Value *ReturnedValue = nullptr;
516
517  for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
518    ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
519    if (RI == nullptr || RI == IgnoreRI) continue;
520
521    // We can only perform this transformation if the value returned is
522    // evaluatable at the start of the initial invocation of the function,
523    // instead of at the end of the evaluation.
524    //
525    Value *RetOp = RI->getOperand(0);
526    if (!isDynamicConstant(RetOp, CI, RI))
527      return nullptr;
528
529    if (ReturnedValue && RetOp != ReturnedValue)
530      return nullptr;     // Cannot transform if differing values are returned.
531    ReturnedValue = RetOp;
532  }
533  return ReturnedValue;
534}
535
536/// CanTransformAccumulatorRecursion - If the specified instruction can be
537/// transformed using accumulator recursion elimination, return the constant
538/// which is the start of the accumulator value.  Otherwise return null.
539///
540Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
541                                                      CallInst *CI) {
542  if (!I->isAssociative() || !I->isCommutative()) return nullptr;
543  assert(I->getNumOperands() == 2 &&
544         "Associative/commutative operations should have 2 args!");
545
546  // Exactly one operand should be the result of the call instruction.
547  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
548      (I->getOperand(0) != CI && I->getOperand(1) != CI))
549    return nullptr;
550
551  // The only user of this instruction we allow is a single return instruction.
552  if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
553    return nullptr;
554
555  // Ok, now we have to check all of the other return instructions in this
556  // function.  If they return non-constants or differing values, then we cannot
557  // transform the function safely.
558  return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
559}
560
561static Instruction *FirstNonDbg(BasicBlock::iterator I) {
562  while (isa<DbgInfoIntrinsic>(I))
563    ++I;
564  return &*I;
565}
566
567CallInst*
568TailCallElim::FindTRECandidate(Instruction *TI,
569                               bool CannotTailCallElimCallsMarkedTail) {
570  BasicBlock *BB = TI->getParent();
571  Function *F = BB->getParent();
572
573  if (&BB->front() == TI) // Make sure there is something before the terminator.
574    return nullptr;
575
576  // Scan backwards from the return, checking to see if there is a tail call in
577  // this block.  If so, set CI to it.
578  CallInst *CI = nullptr;
579  BasicBlock::iterator BBI = TI;
580  while (true) {
581    CI = dyn_cast<CallInst>(BBI);
582    if (CI && CI->getCalledFunction() == F)
583      break;
584
585    if (BBI == BB->begin())
586      return nullptr;          // Didn't find a potential tail call.
587    --BBI;
588  }
589
590  // If this call is marked as a tail call, and if there are dynamic allocas in
591  // the function, we cannot perform this optimization.
592  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
593    return nullptr;
594
595  // As a special case, detect code like this:
596  //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
597  // and disable this xform in this case, because the code generator will
598  // lower the call to fabs into inline code.
599  if (BB == &F->getEntryBlock() &&
600      FirstNonDbg(BB->front()) == CI &&
601      FirstNonDbg(std::next(BB->begin())) == TI &&
602      CI->getCalledFunction() &&
603      !TTI->isLoweredToCall(CI->getCalledFunction())) {
604    // A single-block function with just a call and a return. Check that
605    // the arguments match.
606    CallSite::arg_iterator I = CallSite(CI).arg_begin(),
607                           E = CallSite(CI).arg_end();
608    Function::arg_iterator FI = F->arg_begin(),
609                           FE = F->arg_end();
610    for (; I != E && FI != FE; ++I, ++FI)
611      if (*I != &*FI) break;
612    if (I == E && FI == FE)
613      return nullptr;
614  }
615
616  return CI;
617}
618
619bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
620                                       BasicBlock *&OldEntry,
621                                       bool &TailCallsAreMarkedTail,
622                                       SmallVectorImpl<PHINode *> &ArgumentPHIs,
623                                       bool CannotTailCallElimCallsMarkedTail) {
624  // If we are introducing accumulator recursion to eliminate operations after
625  // the call instruction that are both associative and commutative, the initial
626  // value for the accumulator is placed in this variable.  If this value is set
627  // then we actually perform accumulator recursion elimination instead of
628  // simple tail recursion elimination.  If the operation is an LLVM instruction
629  // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
630  // we are handling the case when the return instruction returns a constant C
631  // which is different to the constant returned by other return instructions
632  // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
633  // special case of accumulator recursion, the operation being "return C".
634  Value *AccumulatorRecursionEliminationInitVal = nullptr;
635  Instruction *AccumulatorRecursionInstr = nullptr;
636
637  // Ok, we found a potential tail call.  We can currently only transform the
638  // tail call if all of the instructions between the call and the return are
639  // movable to above the call itself, leaving the call next to the return.
640  // Check that this is the case now.
641  BasicBlock::iterator BBI = CI;
642  for (++BBI; &*BBI != Ret; ++BBI) {
643    if (CanMoveAboveCall(BBI, CI)) continue;
644
645    // If we can't move the instruction above the call, it might be because it
646    // is an associative and commutative operation that could be transformed
647    // using accumulator recursion elimination.  Check to see if this is the
648    // case, and if so, remember the initial accumulator value for later.
649    if ((AccumulatorRecursionEliminationInitVal =
650                           CanTransformAccumulatorRecursion(BBI, CI))) {
651      // Yes, this is accumulator recursion.  Remember which instruction
652      // accumulates.
653      AccumulatorRecursionInstr = BBI;
654    } else {
655      return false;   // Otherwise, we cannot eliminate the tail recursion!
656    }
657  }
658
659  // We can only transform call/return pairs that either ignore the return value
660  // of the call and return void, ignore the value of the call and return a
661  // constant, return the value returned by the tail call, or that are being
662  // accumulator recursion variable eliminated.
663  if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
664      !isa<UndefValue>(Ret->getReturnValue()) &&
665      AccumulatorRecursionEliminationInitVal == nullptr &&
666      !getCommonReturnValue(nullptr, CI)) {
667    // One case remains that we are able to handle: the current return
668    // instruction returns a constant, and all other return instructions
669    // return a different constant.
670    if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
671      return false; // Current return instruction does not return a constant.
672    // Check that all other return instructions return a common constant.  If
673    // so, record it in AccumulatorRecursionEliminationInitVal.
674    AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
675    if (!AccumulatorRecursionEliminationInitVal)
676      return false;
677  }
678
679  BasicBlock *BB = Ret->getParent();
680  Function *F = BB->getParent();
681
682  emitOptimizationRemark(F->getContext(), "tailcallelim", *F, CI->getDebugLoc(),
683                         "transforming tail recursion to loop");
684
685  // OK! We can transform this tail call.  If this is the first one found,
686  // create the new entry block, allowing us to branch back to the old entry.
687  if (!OldEntry) {
688    OldEntry = &F->getEntryBlock();
689    BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
690    NewEntry->takeName(OldEntry);
691    OldEntry->setName("tailrecurse");
692    BranchInst::Create(OldEntry, NewEntry);
693
694    // If this tail call is marked 'tail' and if there are any allocas in the
695    // entry block, move them up to the new entry block.
696    TailCallsAreMarkedTail = CI->isTailCall();
697    if (TailCallsAreMarkedTail)
698      // Move all fixed sized allocas from OldEntry to NewEntry.
699      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
700             NEBI = NewEntry->begin(); OEBI != E; )
701        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
702          if (isa<ConstantInt>(AI->getArraySize()))
703            AI->moveBefore(NEBI);
704
705    // Now that we have created a new block, which jumps to the entry
706    // block, insert a PHI node for each argument of the function.
707    // For now, we initialize each PHI to only have the real arguments
708    // which are passed in.
709    Instruction *InsertPos = OldEntry->begin();
710    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
711         I != E; ++I) {
712      PHINode *PN = PHINode::Create(I->getType(), 2,
713                                    I->getName() + ".tr", InsertPos);
714      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
715      PN->addIncoming(I, NewEntry);
716      ArgumentPHIs.push_back(PN);
717    }
718  }
719
720  // If this function has self recursive calls in the tail position where some
721  // are marked tail and some are not, only transform one flavor or another.  We
722  // have to choose whether we move allocas in the entry block to the new entry
723  // block or not, so we can't make a good choice for both.  NOTE: We could do
724  // slightly better here in the case that the function has no entry block
725  // allocas.
726  if (TailCallsAreMarkedTail && !CI->isTailCall())
727    return false;
728
729  // Ok, now that we know we have a pseudo-entry block WITH all of the
730  // required PHI nodes, add entries into the PHI node for the actual
731  // parameters passed into the tail-recursive call.
732  for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
733    ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
734
735  // If we are introducing an accumulator variable to eliminate the recursion,
736  // do so now.  Note that we _know_ that no subsequent tail recursion
737  // eliminations will happen on this function because of the way the
738  // accumulator recursion predicate is set up.
739  //
740  if (AccumulatorRecursionEliminationInitVal) {
741    Instruction *AccRecInstr = AccumulatorRecursionInstr;
742    // Start by inserting a new PHI node for the accumulator.
743    pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
744    PHINode *AccPN =
745      PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(),
746                      std::distance(PB, PE) + 1,
747                      "accumulator.tr", OldEntry->begin());
748
749    // Loop over all of the predecessors of the tail recursion block.  For the
750    // real entry into the function we seed the PHI with the initial value,
751    // computed earlier.  For any other existing branches to this block (due to
752    // other tail recursions eliminated) the accumulator is not modified.
753    // Because we haven't added the branch in the current block to OldEntry yet,
754    // it will not show up as a predecessor.
755    for (pred_iterator PI = PB; PI != PE; ++PI) {
756      BasicBlock *P = *PI;
757      if (P == &F->getEntryBlock())
758        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
759      else
760        AccPN->addIncoming(AccPN, P);
761    }
762
763    if (AccRecInstr) {
764      // Add an incoming argument for the current block, which is computed by
765      // our associative and commutative accumulator instruction.
766      AccPN->addIncoming(AccRecInstr, BB);
767
768      // Next, rewrite the accumulator recursion instruction so that it does not
769      // use the result of the call anymore, instead, use the PHI node we just
770      // inserted.
771      AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
772    } else {
773      // Add an incoming argument for the current block, which is just the
774      // constant returned by the current return instruction.
775      AccPN->addIncoming(Ret->getReturnValue(), BB);
776    }
777
778    // Finally, rewrite any return instructions in the program to return the PHI
779    // node instead of the "initval" that they do currently.  This loop will
780    // actually rewrite the return value we are destroying, but that's ok.
781    for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
782      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
783        RI->setOperand(0, AccPN);
784    ++NumAccumAdded;
785  }
786
787  // Now that all of the PHI nodes are in place, remove the call and
788  // ret instructions, replacing them with an unconditional branch.
789  BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
790  NewBI->setDebugLoc(CI->getDebugLoc());
791
792  BB->getInstList().erase(Ret);  // Remove return.
793  BB->getInstList().erase(CI);   // Remove call.
794  ++NumEliminated;
795  return true;
796}
797
798bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
799                                       ReturnInst *Ret, BasicBlock *&OldEntry,
800                                       bool &TailCallsAreMarkedTail,
801                                       SmallVectorImpl<PHINode *> &ArgumentPHIs,
802                                       bool CannotTailCallElimCallsMarkedTail) {
803  bool Change = false;
804
805  // If the return block contains nothing but the return and PHI's,
806  // there might be an opportunity to duplicate the return in its
807  // predecessors and perform TRC there. Look for predecessors that end
808  // in unconditional branch and recursive call(s).
809  SmallVector<BranchInst*, 8> UncondBranchPreds;
810  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
811    BasicBlock *Pred = *PI;
812    TerminatorInst *PTI = Pred->getTerminator();
813    if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
814      if (BI->isUnconditional())
815        UncondBranchPreds.push_back(BI);
816  }
817
818  while (!UncondBranchPreds.empty()) {
819    BranchInst *BI = UncondBranchPreds.pop_back_val();
820    BasicBlock *Pred = BI->getParent();
821    if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
822      DEBUG(dbgs() << "FOLDING: " << *BB
823            << "INTO UNCOND BRANCH PRED: " << *Pred);
824      EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred),
825                                 OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
826                                 CannotTailCallElimCallsMarkedTail);
827      ++NumRetDuped;
828      Change = true;
829    }
830  }
831
832  return Change;
833}
834
835bool
836TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
837                                    bool &TailCallsAreMarkedTail,
838                                    SmallVectorImpl<PHINode *> &ArgumentPHIs,
839                                    bool CannotTailCallElimCallsMarkedTail) {
840  CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
841  if (!CI)
842    return false;
843
844  return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
845                                    ArgumentPHIs,
846                                    CannotTailCallElimCallsMarkedTail);
847}
848