BasicBlockUtils.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This family of functions perform manipulations on basic blocks, and
11// instructions contained within basic blocks.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/BasicBlockUtils.h"
16#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/CFG.h"
18#include "llvm/Analysis/LoopInfo.h"
19#include "llvm/Analysis/MemoryDependenceAnalysis.h"
20#include "llvm/IR/Constant.h"
21#include "llvm/IR/DataLayout.h"
22#include "llvm/IR/Dominators.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/IntrinsicInst.h"
26#include "llvm/IR/Type.h"
27#include "llvm/IR/ValueHandle.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Transforms/Scalar.h"
30#include "llvm/Transforms/Utils/Local.h"
31#include <algorithm>
32using namespace llvm;
33
34/// DeleteDeadBlock - Delete the specified block, which must have no
35/// predecessors.
36void llvm::DeleteDeadBlock(BasicBlock *BB) {
37  assert((pred_begin(BB) == pred_end(BB) ||
38         // Can delete self loop.
39         BB->getSinglePredecessor() == BB) && "Block is not dead!");
40  TerminatorInst *BBTerm = BB->getTerminator();
41
42  // Loop through all of our successors and make sure they know that one
43  // of their predecessors is going away.
44  for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i)
45    BBTerm->getSuccessor(i)->removePredecessor(BB);
46
47  // Zap all the instructions in the block.
48  while (!BB->empty()) {
49    Instruction &I = BB->back();
50    // If this instruction is used, replace uses with an arbitrary value.
51    // Because control flow can't get here, we don't care what we replace the
52    // value with.  Note that since this block is unreachable, and all values
53    // contained within it must dominate their uses, that all uses will
54    // eventually be removed (they are themselves dead).
55    if (!I.use_empty())
56      I.replaceAllUsesWith(UndefValue::get(I.getType()));
57    BB->getInstList().pop_back();
58  }
59
60  // Zap the block!
61  BB->eraseFromParent();
62}
63
64/// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
65/// any single-entry PHI nodes in it, fold them away.  This handles the case
66/// when all entries to the PHI nodes in a block are guaranteed equal, such as
67/// when the block has exactly one predecessor.
68void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) {
69  if (!isa<PHINode>(BB->begin())) return;
70
71  AliasAnalysis *AA = 0;
72  MemoryDependenceAnalysis *MemDep = 0;
73  if (P) {
74    AA = P->getAnalysisIfAvailable<AliasAnalysis>();
75    MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>();
76  }
77
78  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
79    if (PN->getIncomingValue(0) != PN)
80      PN->replaceAllUsesWith(PN->getIncomingValue(0));
81    else
82      PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
83
84    if (MemDep)
85      MemDep->removeInstruction(PN);  // Memdep updates AA itself.
86    else if (AA && isa<PointerType>(PN->getType()))
87      AA->deleteValue(PN);
88
89    PN->eraseFromParent();
90  }
91}
92
93
94/// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
95/// is dead. Also recursively delete any operands that become dead as
96/// a result. This includes tracing the def-use list from the PHI to see if
97/// it is ultimately unused or if it reaches an unused cycle.
98bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
99  // Recursively deleting a PHI may cause multiple PHIs to be deleted
100  // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
101  SmallVector<WeakVH, 8> PHIs;
102  for (BasicBlock::iterator I = BB->begin();
103       PHINode *PN = dyn_cast<PHINode>(I); ++I)
104    PHIs.push_back(PN);
105
106  bool Changed = false;
107  for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
108    if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
109      Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
110
111  return Changed;
112}
113
114/// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
115/// if possible.  The return value indicates success or failure.
116bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) {
117  // Don't merge away blocks who have their address taken.
118  if (BB->hasAddressTaken()) return false;
119
120  // Can't merge if there are multiple predecessors, or no predecessors.
121  BasicBlock *PredBB = BB->getUniquePredecessor();
122  if (!PredBB) return false;
123
124  // Don't break self-loops.
125  if (PredBB == BB) return false;
126  // Don't break invokes.
127  if (isa<InvokeInst>(PredBB->getTerminator())) return false;
128
129  succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
130  BasicBlock *OnlySucc = BB;
131  for (; SI != SE; ++SI)
132    if (*SI != OnlySucc) {
133      OnlySucc = 0;     // There are multiple distinct successors!
134      break;
135    }
136
137  // Can't merge if there are multiple successors.
138  if (!OnlySucc) return false;
139
140  // Can't merge if there is PHI loop.
141  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
142    if (PHINode *PN = dyn_cast<PHINode>(BI)) {
143      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
144        if (PN->getIncomingValue(i) == PN)
145          return false;
146    } else
147      break;
148  }
149
150  // Begin by getting rid of unneeded PHIs.
151  if (isa<PHINode>(BB->front()))
152    FoldSingleEntryPHINodes(BB, P);
153
154  // Delete the unconditional branch from the predecessor...
155  PredBB->getInstList().pop_back();
156
157  // Make all PHI nodes that referred to BB now refer to Pred as their
158  // source...
159  BB->replaceAllUsesWith(PredBB);
160
161  // Move all definitions in the successor to the predecessor...
162  PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
163
164  // Inherit predecessors name if it exists.
165  if (!PredBB->hasName())
166    PredBB->takeName(BB);
167
168  // Finally, erase the old block and update dominator info.
169  if (P) {
170    if (DominatorTreeWrapperPass *DTWP =
171            P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
172      DominatorTree &DT = DTWP->getDomTree();
173      if (DomTreeNode *DTN = DT.getNode(BB)) {
174        DomTreeNode *PredDTN = DT.getNode(PredBB);
175        SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end());
176        for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(),
177             DE = Children.end(); DI != DE; ++DI)
178          DT.changeImmediateDominator(*DI, PredDTN);
179
180        DT.eraseNode(BB);
181      }
182
183      if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
184        LI->removeBlock(BB);
185
186      if (MemoryDependenceAnalysis *MD =
187            P->getAnalysisIfAvailable<MemoryDependenceAnalysis>())
188        MD->invalidateCachedPredecessors();
189    }
190  }
191
192  BB->eraseFromParent();
193  return true;
194}
195
196/// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
197/// with a value, then remove and delete the original instruction.
198///
199void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
200                                BasicBlock::iterator &BI, Value *V) {
201  Instruction &I = *BI;
202  // Replaces all of the uses of the instruction with uses of the value
203  I.replaceAllUsesWith(V);
204
205  // Make sure to propagate a name if there is one already.
206  if (I.hasName() && !V->hasName())
207    V->takeName(&I);
208
209  // Delete the unnecessary instruction now...
210  BI = BIL.erase(BI);
211}
212
213
214/// ReplaceInstWithInst - Replace the instruction specified by BI with the
215/// instruction specified by I.  The original instruction is deleted and BI is
216/// updated to point to the new instruction.
217///
218void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
219                               BasicBlock::iterator &BI, Instruction *I) {
220  assert(I->getParent() == 0 &&
221         "ReplaceInstWithInst: Instruction already inserted into basic block!");
222
223  // Insert the new instruction into the basic block...
224  BasicBlock::iterator New = BIL.insert(BI, I);
225
226  // Replace all uses of the old instruction, and delete it.
227  ReplaceInstWithValue(BIL, BI, I);
228
229  // Move BI back to point to the newly inserted instruction
230  BI = New;
231}
232
233/// ReplaceInstWithInst - Replace the instruction specified by From with the
234/// instruction specified by To.
235///
236void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
237  BasicBlock::iterator BI(From);
238  ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
239}
240
241/// SplitEdge -  Split the edge connecting specified block. Pass P must
242/// not be NULL.
243BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) {
244  unsigned SuccNum = GetSuccessorNumber(BB, Succ);
245
246  // If this is a critical edge, let SplitCriticalEdge do it.
247  TerminatorInst *LatchTerm = BB->getTerminator();
248  if (SplitCriticalEdge(LatchTerm, SuccNum, P))
249    return LatchTerm->getSuccessor(SuccNum);
250
251  // If the edge isn't critical, then BB has a single successor or Succ has a
252  // single pred.  Split the block.
253  if (BasicBlock *SP = Succ->getSinglePredecessor()) {
254    // If the successor only has a single pred, split the top of the successor
255    // block.
256    assert(SP == BB && "CFG broken");
257    SP = NULL;
258    return SplitBlock(Succ, Succ->begin(), P);
259  }
260
261  // Otherwise, if BB has a single successor, split it at the bottom of the
262  // block.
263  assert(BB->getTerminator()->getNumSuccessors() == 1 &&
264         "Should have a single succ!");
265  return SplitBlock(BB, BB->getTerminator(), P);
266}
267
268/// SplitBlock - Split the specified block at the specified instruction - every
269/// thing before SplitPt stays in Old and everything starting with SplitPt moves
270/// to a new block.  The two blocks are joined by an unconditional branch and
271/// the loop info is updated.
272///
273BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
274  BasicBlock::iterator SplitIt = SplitPt;
275  while (isa<PHINode>(SplitIt) || isa<LandingPadInst>(SplitIt))
276    ++SplitIt;
277  BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
278
279  // The new block lives in whichever loop the old one did. This preserves
280  // LCSSA as well, because we force the split point to be after any PHI nodes.
281  if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>())
282    if (Loop *L = LI->getLoopFor(Old))
283      L->addBasicBlockToLoop(New, LI->getBase());
284
285  if (DominatorTreeWrapperPass *DTWP =
286          P->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
287    DominatorTree &DT = DTWP->getDomTree();
288    // Old dominates New. New node dominates all other nodes dominated by Old.
289    if (DomTreeNode *OldNode = DT.getNode(Old)) {
290      std::vector<DomTreeNode *> Children;
291      for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
292           I != E; ++I)
293        Children.push_back(*I);
294
295      DomTreeNode *NewNode = DT.addNewBlock(New, Old);
296      for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
297             E = Children.end(); I != E; ++I)
298        DT.changeImmediateDominator(*I, NewNode);
299    }
300  }
301
302  return New;
303}
304
305/// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA
306/// analysis information.
307static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
308                                      ArrayRef<BasicBlock *> Preds,
309                                      Pass *P, bool &HasLoopExit) {
310  if (!P) return;
311
312  LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
313  Loop *L = LI ? LI->getLoopFor(OldBB) : 0;
314
315  // If we need to preserve loop analyses, collect some information about how
316  // this split will affect loops.
317  bool IsLoopEntry = !!L;
318  bool SplitMakesNewLoopHeader = false;
319  if (LI) {
320    bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
321    for (ArrayRef<BasicBlock*>::iterator
322           i = Preds.begin(), e = Preds.end(); i != e; ++i) {
323      BasicBlock *Pred = *i;
324
325      // If we need to preserve LCSSA, determine if any of the preds is a loop
326      // exit.
327      if (PreserveLCSSA)
328        if (Loop *PL = LI->getLoopFor(Pred))
329          if (!PL->contains(OldBB))
330            HasLoopExit = true;
331
332      // If we need to preserve LoopInfo, note whether any of the preds crosses
333      // an interesting loop boundary.
334      if (!L) continue;
335      if (L->contains(Pred))
336        IsLoopEntry = false;
337      else
338        SplitMakesNewLoopHeader = true;
339    }
340  }
341
342  // Update dominator tree if available.
343  if (DominatorTreeWrapperPass *DTWP =
344          P->getAnalysisIfAvailable<DominatorTreeWrapperPass>())
345    DTWP->getDomTree().splitBlock(NewBB);
346
347  if (!L) return;
348
349  if (IsLoopEntry) {
350    // Add the new block to the nearest enclosing loop (and not an adjacent
351    // loop). To find this, examine each of the predecessors and determine which
352    // loops enclose them, and select the most-nested loop which contains the
353    // loop containing the block being split.
354    Loop *InnermostPredLoop = 0;
355    for (ArrayRef<BasicBlock*>::iterator
356           i = Preds.begin(), e = Preds.end(); i != e; ++i) {
357      BasicBlock *Pred = *i;
358      if (Loop *PredLoop = LI->getLoopFor(Pred)) {
359        // Seek a loop which actually contains the block being split (to avoid
360        // adjacent loops).
361        while (PredLoop && !PredLoop->contains(OldBB))
362          PredLoop = PredLoop->getParentLoop();
363
364        // Select the most-nested of these loops which contains the block.
365        if (PredLoop && PredLoop->contains(OldBB) &&
366            (!InnermostPredLoop ||
367             InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
368          InnermostPredLoop = PredLoop;
369      }
370    }
371
372    if (InnermostPredLoop)
373      InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
374  } else {
375    L->addBasicBlockToLoop(NewBB, LI->getBase());
376    if (SplitMakesNewLoopHeader)
377      L->moveToHeader(NewBB);
378  }
379}
380
381/// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming
382/// from NewBB. This also updates AliasAnalysis, if available.
383static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
384                           ArrayRef<BasicBlock*> Preds, BranchInst *BI,
385                           Pass *P, bool HasLoopExit) {
386  // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
387  AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
388  for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
389    PHINode *PN = cast<PHINode>(I++);
390
391    // Check to see if all of the values coming in are the same.  If so, we
392    // don't need to create a new PHI node, unless it's needed for LCSSA.
393    Value *InVal = 0;
394    if (!HasLoopExit) {
395      InVal = PN->getIncomingValueForBlock(Preds[0]);
396      for (unsigned i = 1, e = Preds.size(); i != e; ++i)
397        if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
398          InVal = 0;
399          break;
400        }
401    }
402
403    if (InVal) {
404      // If all incoming values for the new PHI would be the same, just don't
405      // make a new PHI.  Instead, just remove the incoming values from the old
406      // PHI.
407      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
408        // Explicitly check the BB index here to handle duplicates in Preds.
409        int Idx = PN->getBasicBlockIndex(Preds[i]);
410        if (Idx >= 0)
411          PN->removeIncomingValue(Idx, false);
412      }
413    } else {
414      // If the values coming into the block are not the same, we need a PHI.
415      // Create the new PHI node, insert it into NewBB at the end of the block
416      PHINode *NewPHI =
417        PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
418      if (AA) AA->copyValue(PN, NewPHI);
419
420      // Move all of the PHI values for 'Preds' to the new PHI.
421      for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
422        Value *V = PN->removeIncomingValue(Preds[i], false);
423        NewPHI->addIncoming(V, Preds[i]);
424      }
425
426      InVal = NewPHI;
427    }
428
429    // Add an incoming value to the PHI node in the loop for the preheader
430    // edge.
431    PN->addIncoming(InVal, NewBB);
432  }
433}
434
435/// SplitBlockPredecessors - This method transforms BB by introducing a new
436/// basic block into the function, and moving some of the predecessors of BB to
437/// be predecessors of the new block.  The new predecessors are indicated by the
438/// Preds array, which has NumPreds elements in it.  The new block is given a
439/// suffix of 'Suffix'.
440///
441/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
442/// LoopInfo, and LCCSA but no other analyses. In particular, it does not
443/// preserve LoopSimplify (because it's complicated to handle the case where one
444/// of the edges being split is an exit of a loop with other exits).
445///
446BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
447                                         ArrayRef<BasicBlock*> Preds,
448                                         const char *Suffix, Pass *P) {
449  // Create new basic block, insert right before the original block.
450  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix,
451                                         BB->getParent(), BB);
452
453  // The new block unconditionally branches to the old block.
454  BranchInst *BI = BranchInst::Create(BB, NewBB);
455
456  // Move the edges from Preds to point to NewBB instead of BB.
457  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
458    // This is slightly more strict than necessary; the minimum requirement
459    // is that there be no more than one indirectbr branching to BB. And
460    // all BlockAddress uses would need to be updated.
461    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
462           "Cannot split an edge from an IndirectBrInst");
463    Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
464  }
465
466  // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
467  // node becomes an incoming value for BB's phi node.  However, if the Preds
468  // list is empty, we need to insert dummy entries into the PHI nodes in BB to
469  // account for the newly created predecessor.
470  if (Preds.size() == 0) {
471    // Insert dummy values as the incoming value.
472    for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
473      cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
474    return NewBB;
475  }
476
477  // Update DominatorTree, LoopInfo, and LCCSA analysis information.
478  bool HasLoopExit = false;
479  UpdateAnalysisInformation(BB, NewBB, Preds, P, HasLoopExit);
480
481  // Update the PHI nodes in BB with the values coming from NewBB.
482  UpdatePHINodes(BB, NewBB, Preds, BI, P, HasLoopExit);
483  return NewBB;
484}
485
486/// SplitLandingPadPredecessors - This method transforms the landing pad,
487/// OrigBB, by introducing two new basic blocks into the function. One of those
488/// new basic blocks gets the predecessors listed in Preds. The other basic
489/// block gets the remaining predecessors of OrigBB. The landingpad instruction
490/// OrigBB is clone into both of the new basic blocks. The new blocks are given
491/// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
492///
493/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
494/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular,
495/// it does not preserve LoopSimplify (because it's complicated to handle the
496/// case where one of the edges being split is an exit of a loop with other
497/// exits).
498///
499void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
500                                       ArrayRef<BasicBlock*> Preds,
501                                       const char *Suffix1, const char *Suffix2,
502                                       Pass *P,
503                                       SmallVectorImpl<BasicBlock*> &NewBBs) {
504  assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
505
506  // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
507  // it right before the original block.
508  BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
509                                          OrigBB->getName() + Suffix1,
510                                          OrigBB->getParent(), OrigBB);
511  NewBBs.push_back(NewBB1);
512
513  // The new block unconditionally branches to the old block.
514  BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
515
516  // Move the edges from Preds to point to NewBB1 instead of OrigBB.
517  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
518    // This is slightly more strict than necessary; the minimum requirement
519    // is that there be no more than one indirectbr branching to BB. And
520    // all BlockAddress uses would need to be updated.
521    assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
522           "Cannot split an edge from an IndirectBrInst");
523    Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
524  }
525
526  // Update DominatorTree, LoopInfo, and LCCSA analysis information.
527  bool HasLoopExit = false;
528  UpdateAnalysisInformation(OrigBB, NewBB1, Preds, P, HasLoopExit);
529
530  // Update the PHI nodes in OrigBB with the values coming from NewBB1.
531  UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, P, HasLoopExit);
532
533  // Move the remaining edges from OrigBB to point to NewBB2.
534  SmallVector<BasicBlock*, 8> NewBB2Preds;
535  for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
536       i != e; ) {
537    BasicBlock *Pred = *i++;
538    if (Pred == NewBB1) continue;
539    assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
540           "Cannot split an edge from an IndirectBrInst");
541    NewBB2Preds.push_back(Pred);
542    e = pred_end(OrigBB);
543  }
544
545  BasicBlock *NewBB2 = 0;
546  if (!NewBB2Preds.empty()) {
547    // Create another basic block for the rest of OrigBB's predecessors.
548    NewBB2 = BasicBlock::Create(OrigBB->getContext(),
549                                OrigBB->getName() + Suffix2,
550                                OrigBB->getParent(), OrigBB);
551    NewBBs.push_back(NewBB2);
552
553    // The new block unconditionally branches to the old block.
554    BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
555
556    // Move the remaining edges from OrigBB to point to NewBB2.
557    for (SmallVectorImpl<BasicBlock*>::iterator
558           i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i)
559      (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
560
561    // Update DominatorTree, LoopInfo, and LCCSA analysis information.
562    HasLoopExit = false;
563    UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, P, HasLoopExit);
564
565    // Update the PHI nodes in OrigBB with the values coming from NewBB2.
566    UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, P, HasLoopExit);
567  }
568
569  LandingPadInst *LPad = OrigBB->getLandingPadInst();
570  Instruction *Clone1 = LPad->clone();
571  Clone1->setName(Twine("lpad") + Suffix1);
572  NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
573
574  if (NewBB2) {
575    Instruction *Clone2 = LPad->clone();
576    Clone2->setName(Twine("lpad") + Suffix2);
577    NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
578
579    // Create a PHI node for the two cloned landingpad instructions.
580    PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
581    PN->addIncoming(Clone1, NewBB1);
582    PN->addIncoming(Clone2, NewBB2);
583    LPad->replaceAllUsesWith(PN);
584    LPad->eraseFromParent();
585  } else {
586    // There is no second clone. Just replace the landing pad with the first
587    // clone.
588    LPad->replaceAllUsesWith(Clone1);
589    LPad->eraseFromParent();
590  }
591}
592
593/// FoldReturnIntoUncondBranch - This method duplicates the specified return
594/// instruction into a predecessor which ends in an unconditional branch. If
595/// the return instruction returns a value defined by a PHI, propagate the
596/// right value into the return. It returns the new return instruction in the
597/// predecessor.
598ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
599                                             BasicBlock *Pred) {
600  Instruction *UncondBranch = Pred->getTerminator();
601  // Clone the return and add it to the end of the predecessor.
602  Instruction *NewRet = RI->clone();
603  Pred->getInstList().push_back(NewRet);
604
605  // If the return instruction returns a value, and if the value was a
606  // PHI node in "BB", propagate the right value into the return.
607  for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
608       i != e; ++i) {
609    Value *V = *i;
610    Instruction *NewBC = 0;
611    if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
612      // Return value might be bitcasted. Clone and insert it before the
613      // return instruction.
614      V = BCI->getOperand(0);
615      NewBC = BCI->clone();
616      Pred->getInstList().insert(NewRet, NewBC);
617      *i = NewBC;
618    }
619    if (PHINode *PN = dyn_cast<PHINode>(V)) {
620      if (PN->getParent() == BB) {
621        if (NewBC)
622          NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
623        else
624          *i = PN->getIncomingValueForBlock(Pred);
625      }
626    }
627  }
628
629  // Update any PHI nodes in the returning block to realize that we no
630  // longer branch to them.
631  BB->removePredecessor(Pred);
632  UncondBranch->eraseFromParent();
633  return cast<ReturnInst>(NewRet);
634}
635
636/// SplitBlockAndInsertIfThen - Split the containing block at the
637/// specified instruction - everything before and including SplitBefore stays
638/// in the old basic block, and everything after SplitBefore is moved to a
639/// new block. The two blocks are connected by a conditional branch
640/// (with value of Cmp being the condition).
641/// Before:
642///   Head
643///   SplitBefore
644///   Tail
645/// After:
646///   Head
647///   if (Cond)
648///     ThenBlock
649///   SplitBefore
650///   Tail
651///
652/// If Unreachable is true, then ThenBlock ends with
653/// UnreachableInst, otherwise it branches to Tail.
654/// Returns the NewBasicBlock's terminator.
655
656TerminatorInst *llvm::SplitBlockAndInsertIfThen(Value *Cond,
657                                                Instruction *SplitBefore,
658                                                bool Unreachable,
659                                                MDNode *BranchWeights) {
660  BasicBlock *Head = SplitBefore->getParent();
661  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
662  TerminatorInst *HeadOldTerm = Head->getTerminator();
663  LLVMContext &C = Head->getContext();
664  BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
665  TerminatorInst *CheckTerm;
666  if (Unreachable)
667    CheckTerm = new UnreachableInst(C, ThenBlock);
668  else
669    CheckTerm = BranchInst::Create(Tail, ThenBlock);
670  CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
671  BranchInst *HeadNewTerm =
672    BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
673  HeadNewTerm->setDebugLoc(SplitBefore->getDebugLoc());
674  HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
675  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
676  return CheckTerm;
677}
678
679/// SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen,
680/// but also creates the ElseBlock.
681/// Before:
682///   Head
683///   SplitBefore
684///   Tail
685/// After:
686///   Head
687///   if (Cond)
688///     ThenBlock
689///   else
690///     ElseBlock
691///   SplitBefore
692///   Tail
693void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
694                                         TerminatorInst **ThenTerm,
695                                         TerminatorInst **ElseTerm,
696                                         MDNode *BranchWeights) {
697  BasicBlock *Head = SplitBefore->getParent();
698  BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
699  TerminatorInst *HeadOldTerm = Head->getTerminator();
700  LLVMContext &C = Head->getContext();
701  BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
702  BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
703  *ThenTerm = BranchInst::Create(Tail, ThenBlock);
704  (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
705  *ElseTerm = BranchInst::Create(Tail, ElseBlock);
706  (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
707  BranchInst *HeadNewTerm =
708    BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
709  HeadNewTerm->setDebugLoc(SplitBefore->getDebugLoc());
710  HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
711  ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
712}
713
714
715/// GetIfCondition - Given a basic block (BB) with two predecessors,
716/// check to see if the merge at this block is due
717/// to an "if condition".  If so, return the boolean condition that determines
718/// which entry into BB will be taken.  Also, return by references the block
719/// that will be entered from if the condition is true, and the block that will
720/// be entered if the condition is false.
721///
722/// This does no checking to see if the true/false blocks have large or unsavory
723/// instructions in them.
724Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
725                             BasicBlock *&IfFalse) {
726  PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
727  BasicBlock *Pred1 = NULL;
728  BasicBlock *Pred2 = NULL;
729
730  if (SomePHI) {
731    if (SomePHI->getNumIncomingValues() != 2)
732      return NULL;
733    Pred1 = SomePHI->getIncomingBlock(0);
734    Pred2 = SomePHI->getIncomingBlock(1);
735  } else {
736    pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
737    if (PI == PE) // No predecessor
738      return NULL;
739    Pred1 = *PI++;
740    if (PI == PE) // Only one predecessor
741      return NULL;
742    Pred2 = *PI++;
743    if (PI != PE) // More than two predecessors
744      return NULL;
745  }
746
747  // We can only handle branches.  Other control flow will be lowered to
748  // branches if possible anyway.
749  BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
750  BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
751  if (Pred1Br == 0 || Pred2Br == 0)
752    return 0;
753
754  // Eliminate code duplication by ensuring that Pred1Br is conditional if
755  // either are.
756  if (Pred2Br->isConditional()) {
757    // If both branches are conditional, we don't have an "if statement".  In
758    // reality, we could transform this case, but since the condition will be
759    // required anyway, we stand no chance of eliminating it, so the xform is
760    // probably not profitable.
761    if (Pred1Br->isConditional())
762      return 0;
763
764    std::swap(Pred1, Pred2);
765    std::swap(Pred1Br, Pred2Br);
766  }
767
768  if (Pred1Br->isConditional()) {
769    // The only thing we have to watch out for here is to make sure that Pred2
770    // doesn't have incoming edges from other blocks.  If it does, the condition
771    // doesn't dominate BB.
772    if (Pred2->getSinglePredecessor() == 0)
773      return 0;
774
775    // If we found a conditional branch predecessor, make sure that it branches
776    // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
777    if (Pred1Br->getSuccessor(0) == BB &&
778        Pred1Br->getSuccessor(1) == Pred2) {
779      IfTrue = Pred1;
780      IfFalse = Pred2;
781    } else if (Pred1Br->getSuccessor(0) == Pred2 &&
782               Pred1Br->getSuccessor(1) == BB) {
783      IfTrue = Pred2;
784      IfFalse = Pred1;
785    } else {
786      // We know that one arm of the conditional goes to BB, so the other must
787      // go somewhere unrelated, and this must not be an "if statement".
788      return 0;
789    }
790
791    return Pred1Br->getCondition();
792  }
793
794  // Ok, if we got here, both predecessors end with an unconditional branch to
795  // BB.  Don't panic!  If both blocks only have a single (identical)
796  // predecessor, and THAT is a conditional branch, then we're all ok!
797  BasicBlock *CommonPred = Pred1->getSinglePredecessor();
798  if (CommonPred == 0 || CommonPred != Pred2->getSinglePredecessor())
799    return 0;
800
801  // Otherwise, if this is a conditional branch, then we can use it!
802  BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
803  if (BI == 0) return 0;
804
805  assert(BI->isConditional() && "Two successors but not conditional?");
806  if (BI->getSuccessor(0) == Pred1) {
807    IfTrue = Pred1;
808    IfFalse = Pred2;
809  } else {
810    IfTrue = Pred2;
811    IfFalse = Pred1;
812  }
813  return BI->getCondition();
814}
815