BreakCriticalEdges.cpp revision 490606e613566d1c7d49d2544c76c207a2555915
1//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11// inserting a dummy basic block.  This pass may be "required" by passes that
12// cannot deal with critical edges.  For this usage, the structure type is
13// forward declared.  This pass obviously invalidates the CFG, but can update
14// dominator trees.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "break-crit-edges"
19#include "llvm/Transforms/Scalar.h"
20#include "llvm/Transforms/Utils/BasicBlockUtils.h"
21#include "llvm/Analysis/Dominators.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/Analysis/ProfileInfo.h"
24#include "llvm/Function.h"
25#include "llvm/Instructions.h"
26#include "llvm/Type.h"
27#include "llvm/Support/CFG.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/ADT/SmallVector.h"
30#include "llvm/ADT/Statistic.h"
31using namespace llvm;
32
33STATISTIC(NumBroken, "Number of blocks inserted");
34
35namespace {
36  struct BreakCriticalEdges : public FunctionPass {
37    static char ID; // Pass identification, replacement for typeid
38    BreakCriticalEdges() : FunctionPass(ID) {
39      initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
40    }
41
42    virtual bool runOnFunction(Function &F);
43
44    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
45      AU.addPreserved<DominatorTree>();
46      AU.addPreserved<LoopInfo>();
47      AU.addPreserved<ProfileInfo>();
48
49      // No loop canonicalization guarantees are broken by this pass.
50      AU.addPreservedID(LoopSimplifyID);
51    }
52  };
53}
54
55char BreakCriticalEdges::ID = 0;
56INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
57                "Break critical edges in CFG", false, false)
58
59// Publicly exposed interface to pass...
60char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
61FunctionPass *llvm::createBreakCriticalEdgesPass() {
62  return new BreakCriticalEdges();
63}
64
65// runOnFunction - Loop over all of the edges in the CFG, breaking critical
66// edges as they are found.
67//
68bool BreakCriticalEdges::runOnFunction(Function &F) {
69  bool Changed = false;
70  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
71    TerminatorInst *TI = I->getTerminator();
72    if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
73      for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
74        if (SplitCriticalEdge(TI, i, this)) {
75          ++NumBroken;
76          Changed = true;
77        }
78  }
79
80  return Changed;
81}
82
83//===----------------------------------------------------------------------===//
84//    Implementation of the external critical edge manipulation functions
85//===----------------------------------------------------------------------===//
86
87// isCriticalEdge - Return true if the specified edge is a critical edge.
88// Critical edges are edges from a block with multiple successors to a block
89// with multiple predecessors.
90//
91bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
92                          bool AllowIdenticalEdges) {
93  assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
94  if (TI->getNumSuccessors() == 1) return false;
95
96  const BasicBlock *Dest = TI->getSuccessor(SuccNum);
97  const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
98
99  // If there is more than one predecessor, this is a critical edge...
100  assert(I != E && "No preds, but we have an edge to the block?");
101  const BasicBlock *FirstPred = *I;
102  ++I;        // Skip one edge due to the incoming arc from TI.
103  if (!AllowIdenticalEdges)
104    return I != E;
105
106  // If AllowIdenticalEdges is true, then we allow this edge to be considered
107  // non-critical iff all preds come from TI's block.
108  while (I != E) {
109    const BasicBlock *P = *I;
110    if (P != FirstPred)
111      return true;
112    // Note: leave this as is until no one ever compiles with either gcc 4.0.1
113    // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
114    E = pred_end(P);
115    ++I;
116  }
117  return false;
118}
119
120/// CreatePHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
121/// may require new PHIs in the new exit block. This function inserts the
122/// new PHIs, as needed.  Preds is a list of preds inside the loop, SplitBB
123/// is the new loop exit block, and DestBB is the old loop exit, now the
124/// successor of SplitBB.
125static void CreatePHIsForSplitLoopExit(SmallVectorImpl<BasicBlock *> &Preds,
126                                       BasicBlock *SplitBB,
127                                       BasicBlock *DestBB) {
128  // SplitBB shouldn't have anything non-trivial in it yet.
129  assert(SplitBB->getFirstNonPHI() == SplitBB->getTerminator() &&
130         "SplitBB has non-PHI nodes!");
131
132  // For each PHI in the destination block...
133  for (BasicBlock::iterator I = DestBB->begin();
134       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
135    unsigned Idx = PN->getBasicBlockIndex(SplitBB);
136    Value *V = PN->getIncomingValue(Idx);
137    // If the input is a PHI which already satisfies LCSSA, don't create
138    // a new one.
139    if (const PHINode *VP = dyn_cast<PHINode>(V))
140      if (VP->getParent() == SplitBB)
141        continue;
142    // Otherwise a new PHI is needed. Create one and populate it.
143    PHINode *NewPN = PHINode::Create(PN->getType(), Preds.size(), "split",
144                                     SplitBB->getTerminator());
145    for (unsigned i = 0, e = Preds.size(); i != e; ++i)
146      NewPN->addIncoming(V, Preds[i]);
147    // Update the original PHI.
148    PN->setIncomingValue(Idx, NewPN);
149  }
150}
151
152/// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
153/// split the critical edge.  This will update DominatorTree information if it
154/// is available, thus calling this pass will not invalidate either of them.
155/// This returns the new block if the edge was split, null otherwise.
156///
157/// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
158/// specified successor will be merged into the same critical edge block.
159/// This is most commonly interesting with switch instructions, which may
160/// have many edges to any one destination.  This ensures that all edges to that
161/// dest go to one block instead of each going to a different block, but isn't
162/// the standard definition of a "critical edge".
163///
164/// It is invalid to call this function on a critical edge that starts at an
165/// IndirectBrInst.  Splitting these edges will almost always create an invalid
166/// program because the address of the new block won't be the one that is jumped
167/// to.
168///
169BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
170                                    Pass *P, bool MergeIdenticalEdges) {
171  if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0;
172
173  assert(!isa<IndirectBrInst>(TI) &&
174         "Cannot split critical edge from IndirectBrInst");
175
176  BasicBlock *TIBB = TI->getParent();
177  BasicBlock *DestBB = TI->getSuccessor(SuccNum);
178
179  // Splitting the critical edge to a landing pad block is non-trivial. Don't do
180  // it in this generic function.
181  assert(!DestBB->isLandingPad() &&
182         "Cannot split critical edge to a landing pad block!");
183
184  // Create a new basic block, linking it into the CFG.
185  BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
186                      TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
187  // Create our unconditional branch.
188  BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
189  NewBI->setDebugLoc(TI->getDebugLoc());
190
191  // Branch to the new block, breaking the edge.
192  TI->setSuccessor(SuccNum, NewBB);
193
194  // Insert the block into the function... right after the block TI lives in.
195  Function &F = *TIBB->getParent();
196  Function::iterator FBBI = TIBB;
197  F.getBasicBlockList().insert(++FBBI, NewBB);
198
199  // If there are any PHI nodes in DestBB, we need to update them so that they
200  // merge incoming values from NewBB instead of from TIBB.
201  {
202    unsigned BBIdx = 0;
203    for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
204      // We no longer enter through TIBB, now we come in through NewBB.
205      // Revector exactly one entry in the PHI node that used to come from
206      // TIBB to come from NewBB.
207      PHINode *PN = cast<PHINode>(I);
208
209      // Reuse the previous value of BBIdx if it lines up.  In cases where we
210      // have multiple phi nodes with *lots* of predecessors, this is a speed
211      // win because we don't have to scan the PHI looking for TIBB.  This
212      // happens because the BB list of PHI nodes are usually in the same
213      // order.
214      if (PN->getIncomingBlock(BBIdx) != TIBB)
215	BBIdx = PN->getBasicBlockIndex(TIBB);
216      PN->setIncomingBlock(BBIdx, NewBB);
217    }
218  }
219
220  // If there are any other edges from TIBB to DestBB, update those to go
221  // through the split block, making those edges non-critical as well (and
222  // reducing the number of phi entries in the DestBB if relevant).
223  if (MergeIdenticalEdges) {
224    for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
225      if (TI->getSuccessor(i) != DestBB) continue;
226
227      // Remove an entry for TIBB from DestBB phi nodes.
228      DestBB->removePredecessor(TIBB);
229
230      // We found another edge to DestBB, go to NewBB instead.
231      TI->setSuccessor(i, NewBB);
232    }
233  }
234
235
236
237  // If we don't have a pass object, we can't update anything...
238  if (P == 0) return NewBB;
239
240  DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
241  LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
242  ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
243
244  // If we have nothing to update, just return.
245  if (DT == 0 && LI == 0 && PI == 0)
246    return NewBB;
247
248  // Now update analysis information.  Since the only predecessor of NewBB is
249  // the TIBB, TIBB clearly dominates NewBB.  TIBB usually doesn't dominate
250  // anything, as there are other successors of DestBB.  However, if all other
251  // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
252  // loop header) then NewBB dominates DestBB.
253  SmallVector<BasicBlock*, 8> OtherPreds;
254
255  // If there is a PHI in the block, loop over predecessors with it, which is
256  // faster than iterating pred_begin/end.
257  if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
258    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
259      if (PN->getIncomingBlock(i) != NewBB)
260        OtherPreds.push_back(PN->getIncomingBlock(i));
261  } else {
262    for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
263         I != E; ++I) {
264      BasicBlock *P = *I;
265      if (P != NewBB)
266        OtherPreds.push_back(P);
267    }
268  }
269
270  bool NewBBDominatesDestBB = true;
271
272  // Should we update DominatorTree information?
273  if (DT) {
274    DomTreeNode *TINode = DT->getNode(TIBB);
275
276    // The new block is not the immediate dominator for any other nodes, but
277    // TINode is the immediate dominator for the new node.
278    //
279    if (TINode) {       // Don't break unreachable code!
280      DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
281      DomTreeNode *DestBBNode = 0;
282
283      // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
284      if (!OtherPreds.empty()) {
285        DestBBNode = DT->getNode(DestBB);
286        while (!OtherPreds.empty() && NewBBDominatesDestBB) {
287          if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
288            NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
289          OtherPreds.pop_back();
290        }
291        OtherPreds.clear();
292      }
293
294      // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
295      // doesn't dominate anything.
296      if (NewBBDominatesDestBB) {
297        if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
298        DT->changeImmediateDominator(DestBBNode, NewBBNode);
299      }
300    }
301  }
302
303  // Update LoopInfo if it is around.
304  if (LI) {
305    if (Loop *TIL = LI->getLoopFor(TIBB)) {
306      // If one or the other blocks were not in a loop, the new block is not
307      // either, and thus LI doesn't need to be updated.
308      if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
309        if (TIL == DestLoop) {
310          // Both in the same loop, the NewBB joins loop.
311          DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
312        } else if (TIL->contains(DestLoop)) {
313          // Edge from an outer loop to an inner loop.  Add to the outer loop.
314          TIL->addBasicBlockToLoop(NewBB, LI->getBase());
315        } else if (DestLoop->contains(TIL)) {
316          // Edge from an inner loop to an outer loop.  Add to the outer loop.
317          DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
318        } else {
319          // Edge from two loops with no containment relation.  Because these
320          // are natural loops, we know that the destination block must be the
321          // header of its loop (adding a branch into a loop elsewhere would
322          // create an irreducible loop).
323          assert(DestLoop->getHeader() == DestBB &&
324                 "Should not create irreducible loops!");
325          if (Loop *P = DestLoop->getParentLoop())
326            P->addBasicBlockToLoop(NewBB, LI->getBase());
327        }
328      }
329      // If TIBB is in a loop and DestBB is outside of that loop, split the
330      // other exit blocks of the loop that also have predecessors outside
331      // the loop, to maintain a LoopSimplify guarantee.
332      if (!TIL->contains(DestBB) &&
333          P->mustPreserveAnalysisID(LoopSimplifyID)) {
334        assert(!TIL->contains(NewBB) &&
335               "Split point for loop exit is contained in loop!");
336
337        // Update LCSSA form in the newly created exit block.
338        if (P->mustPreserveAnalysisID(LCSSAID)) {
339          SmallVector<BasicBlock *, 1> OrigPred;
340          OrigPred.push_back(TIBB);
341          CreatePHIsForSplitLoopExit(OrigPred, NewBB, DestBB);
342        }
343
344        // For each unique exit block...
345        // FIXME: This code is functionally equivalent to the corresponding
346        // loop in LoopSimplify.
347        SmallVector<BasicBlock *, 4> ExitBlocks;
348        TIL->getExitBlocks(ExitBlocks);
349        for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
350          // Collect all the preds that are inside the loop, and note
351          // whether there are any preds outside the loop.
352          SmallVector<BasicBlock *, 4> Preds;
353          bool HasPredOutsideOfLoop = false;
354          BasicBlock *Exit = ExitBlocks[i];
355          for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit);
356               I != E; ++I) {
357            BasicBlock *P = *I;
358            if (TIL->contains(P)) {
359              if (isa<IndirectBrInst>(P->getTerminator())) {
360                Preds.clear();
361                break;
362              }
363              Preds.push_back(P);
364            } else {
365              HasPredOutsideOfLoop = true;
366            }
367          }
368          // If there are any preds not in the loop, we'll need to split
369          // the edges. The Preds.empty() check is needed because a block
370          // may appear multiple times in the list. We can't use
371          // getUniqueExitBlocks above because that depends on LoopSimplify
372          // form, which we're in the process of restoring!
373          if (!Preds.empty() && HasPredOutsideOfLoop) {
374            BasicBlock *NewExitBB =
375              SplitBlockPredecessors(Exit, Preds.data(), Preds.size(),
376                                     "split", P);
377            if (P->mustPreserveAnalysisID(LCSSAID))
378              CreatePHIsForSplitLoopExit(Preds, NewExitBB, Exit);
379          }
380        }
381      }
382      // LCSSA form was updated above for the case where LoopSimplify is
383      // available, which means that all predecessors of loop exit blocks
384      // are within the loop. Without LoopSimplify form, it would be
385      // necessary to insert a new phi.
386      assert((!P->mustPreserveAnalysisID(LCSSAID) ||
387              P->mustPreserveAnalysisID(LoopSimplifyID)) &&
388             "SplitCriticalEdge doesn't know how to update LCCSA form "
389             "without LoopSimplify!");
390    }
391  }
392
393  // Update ProfileInfo if it is around.
394  if (PI)
395    PI->splitEdge(TIBB, DestBB, NewBB, MergeIdenticalEdges);
396
397  return NewBB;
398}
399