BreakCriticalEdges.cpp revision 9085fcab8276a8aaba33dc78bec2cdb0845351ba
1//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11// inserting a dummy basic block.  This pass may be "required" by passes that
12// cannot deal with critical edges.  For this usage, the structure type is
13// forward declared.  This pass obviously invalidates the CFG, but can update
14// forward dominator (set, immediate dominators, tree, and frontier)
15// information.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "break-crit-edges"
20#include "llvm/Transforms/Scalar.h"
21#include "llvm/Transforms/Utils/BasicBlockUtils.h"
22#include "llvm/Analysis/Dominators.h"
23#include "llvm/Analysis/LoopInfo.h"
24#include "llvm/Analysis/ProfileInfo.h"
25#include "llvm/Function.h"
26#include "llvm/Instructions.h"
27#include "llvm/Type.h"
28#include "llvm/Support/CFG.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32using namespace llvm;
33
34STATISTIC(NumBroken, "Number of blocks inserted");
35
36namespace {
37  struct BreakCriticalEdges : public FunctionPass {
38    static char ID; // Pass identification, replacement for typeid
39    BreakCriticalEdges() : FunctionPass(&ID) {}
40
41    virtual bool runOnFunction(Function &F);
42
43    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
44      AU.addPreserved<DominatorTree>();
45      AU.addPreserved<DominanceFrontier>();
46      AU.addPreserved<LoopInfo>();
47      AU.addPreserved<ProfileInfo>();
48
49      // No loop canonicalization guarantees are broken by this pass.
50      AU.addPreservedID(LoopSimplifyID);
51    }
52  };
53}
54
55char BreakCriticalEdges::ID = 0;
56static RegisterPass<BreakCriticalEdges>
57X("break-crit-edges", "Break critical edges in CFG");
58
59// Publically exposed interface to pass...
60const PassInfo *const llvm::BreakCriticalEdgesID = &X;
61FunctionPass *llvm::createBreakCriticalEdgesPass() {
62  return new BreakCriticalEdges();
63}
64
65// runOnFunction - Loop over all of the edges in the CFG, breaking critical
66// edges as they are found.
67//
68bool BreakCriticalEdges::runOnFunction(Function &F) {
69  bool Changed = false;
70  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
71    TerminatorInst *TI = I->getTerminator();
72    if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
73      for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
74        if (SplitCriticalEdge(TI, i, this)) {
75          ++NumBroken;
76          Changed = true;
77        }
78  }
79
80  return Changed;
81}
82
83//===----------------------------------------------------------------------===//
84//    Implementation of the external critical edge manipulation functions
85//===----------------------------------------------------------------------===//
86
87// isCriticalEdge - Return true if the specified edge is a critical edge.
88// Critical edges are edges from a block with multiple successors to a block
89// with multiple predecessors.
90//
91bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
92                          bool AllowIdenticalEdges) {
93  assert(SuccNum < TI->getNumSuccessors() && "Illegal edge specification!");
94  if (TI->getNumSuccessors() == 1) return false;
95
96  const BasicBlock *Dest = TI->getSuccessor(SuccNum);
97  const_pred_iterator I = pred_begin(Dest), E = pred_end(Dest);
98
99  // If there is more than one predecessor, this is a critical edge...
100  assert(I != E && "No preds, but we have an edge to the block?");
101  const BasicBlock *FirstPred = *I;
102  ++I;        // Skip one edge due to the incoming arc from TI.
103  if (!AllowIdenticalEdges)
104    return I != E;
105
106  // If AllowIdenticalEdges is true, then we allow this edge to be considered
107  // non-critical iff all preds come from TI's block.
108  while (I != E) {
109    const BasicBlock *P = *I;
110    if (P != FirstPred)
111      return true;
112    // Note: leave this as is until no one ever compiles with either gcc 4.0.1
113    // or Xcode 2. This seems to work around the pred_iterator assert in PR 2207
114    E = pred_end(P);
115    ++I;
116  }
117  return false;
118}
119
120/// CreatePHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
121/// may require new PHIs in the new exit block. This function inserts the
122/// new PHIs, as needed.  Preds is a list of preds inside the loop, SplitBB
123/// is the new loop exit block, and DestBB is the old loop exit, now the
124/// successor of SplitBB.
125static void CreatePHIsForSplitLoopExit(SmallVectorImpl<BasicBlock *> &Preds,
126                                       BasicBlock *SplitBB,
127                                       BasicBlock *DestBB) {
128  // SplitBB shouldn't have anything non-trivial in it yet.
129  assert(SplitBB->getFirstNonPHI() == SplitBB->getTerminator() &&
130         "SplitBB has non-PHI nodes!");
131
132  // For each PHI in the destination block...
133  for (BasicBlock::iterator I = DestBB->begin();
134       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
135    unsigned Idx = PN->getBasicBlockIndex(SplitBB);
136    Value *V = PN->getIncomingValue(Idx);
137    // If the input is a PHI which already satisfies LCSSA, don't create
138    // a new one.
139    if (const PHINode *VP = dyn_cast<PHINode>(V))
140      if (VP->getParent() == SplitBB)
141        continue;
142    // Otherwise a new PHI is needed. Create one and populate it.
143    PHINode *NewPN = PHINode::Create(PN->getType(), "split",
144                                     SplitBB->getTerminator());
145    for (unsigned i = 0, e = Preds.size(); i != e; ++i)
146      NewPN->addIncoming(V, Preds[i]);
147    // Update the original PHI.
148    PN->setIncomingValue(Idx, NewPN);
149  }
150}
151
152/// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
153/// split the critical edge.  This will update DominatorTree and
154/// DominatorFrontier information if it is available, thus calling this pass
155/// will not invalidate either of them. This returns the new block if the edge
156/// was split, null otherwise.
157///
158/// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
159/// specified successor will be merged into the same critical edge block.
160/// This is most commonly interesting with switch instructions, which may
161/// have many edges to any one destination.  This ensures that all edges to that
162/// dest go to one block instead of each going to a different block, but isn't
163/// the standard definition of a "critical edge".
164///
165/// It is invalid to call this function on a critical edge that starts at an
166/// IndirectBrInst.  Splitting these edges will almost always create an invalid
167/// program because the address of the new block won't be the one that is jumped
168/// to.
169///
170BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
171                                    Pass *P, bool MergeIdenticalEdges) {
172  if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0;
173
174  assert(!isa<IndirectBrInst>(TI) &&
175         "Cannot split critical edge from IndirectBrInst");
176
177  BasicBlock *TIBB = TI->getParent();
178  BasicBlock *DestBB = TI->getSuccessor(SuccNum);
179
180  // Create a new basic block, linking it into the CFG.
181  BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
182                      TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
183  // Create our unconditional branch.
184  BranchInst::Create(DestBB, NewBB);
185
186  // Branch to the new block, breaking the edge.
187  TI->setSuccessor(SuccNum, NewBB);
188
189  // Insert the block into the function... right after the block TI lives in.
190  Function &F = *TIBB->getParent();
191  Function::iterator FBBI = TIBB;
192  F.getBasicBlockList().insert(++FBBI, NewBB);
193
194  // If there are any PHI nodes in DestBB, we need to update them so that they
195  // merge incoming values from NewBB instead of from TIBB.
196  if (PHINode *APHI = dyn_cast<PHINode>(DestBB->begin())) {
197    // This conceptually does:
198    //  foreach (PHINode *PN in DestBB)
199    //    PN->setIncomingBlock(PN->getIncomingBlock(TIBB), NewBB);
200    // but is optimized for two cases.
201
202    if (APHI->getNumIncomingValues() <= 8) {  // Small # preds case.
203      unsigned BBIdx = 0;
204      for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
205        // We no longer enter through TIBB, now we come in through NewBB.
206        // Revector exactly one entry in the PHI node that used to come from
207        // TIBB to come from NewBB.
208        PHINode *PN = cast<PHINode>(I);
209
210        // Reuse the previous value of BBIdx if it lines up.  In cases where we
211        // have multiple phi nodes with *lots* of predecessors, this is a speed
212        // win because we don't have to scan the PHI looking for TIBB.  This
213        // happens because the BB list of PHI nodes are usually in the same
214        // order.
215        if (PN->getIncomingBlock(BBIdx) != TIBB)
216          BBIdx = PN->getBasicBlockIndex(TIBB);
217        PN->setIncomingBlock(BBIdx, NewBB);
218      }
219    } else {
220      // However, the foreach loop is slow for blocks with lots of predecessors
221      // because PHINode::getIncomingBlock is O(n) in # preds.  Instead, walk
222      // the user list of TIBB to find the PHI nodes.
223      SmallPtrSet<PHINode*, 16> UpdatedPHIs;
224
225      for (Value::use_iterator UI = TIBB->use_begin(), E = TIBB->use_end();
226           UI != E; ) {
227        Value::use_iterator Use = UI++;
228        if (PHINode *PN = dyn_cast<PHINode>(Use)) {
229          // Remove one entry from each PHI.
230          if (PN->getParent() == DestBB && UpdatedPHIs.insert(PN))
231            PN->setOperand(Use.getOperandNo(), NewBB);
232        }
233      }
234    }
235  }
236
237  // If there are any other edges from TIBB to DestBB, update those to go
238  // through the split block, making those edges non-critical as well (and
239  // reducing the number of phi entries in the DestBB if relevant).
240  if (MergeIdenticalEdges) {
241    for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
242      if (TI->getSuccessor(i) != DestBB) continue;
243
244      // Remove an entry for TIBB from DestBB phi nodes.
245      DestBB->removePredecessor(TIBB);
246
247      // We found another edge to DestBB, go to NewBB instead.
248      TI->setSuccessor(i, NewBB);
249    }
250  }
251
252
253
254  // If we don't have a pass object, we can't update anything...
255  if (P == 0) return NewBB;
256
257  DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>();
258  DominanceFrontier *DF = P->getAnalysisIfAvailable<DominanceFrontier>();
259  LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
260  ProfileInfo *PI = P->getAnalysisIfAvailable<ProfileInfo>();
261
262  // If we have nothing to update, just return.
263  if (DT == 0 && DF == 0 && LI == 0 && PI == 0)
264    return NewBB;
265
266  // Now update analysis information.  Since the only predecessor of NewBB is
267  // the TIBB, TIBB clearly dominates NewBB.  TIBB usually doesn't dominate
268  // anything, as there are other successors of DestBB.  However, if all other
269  // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
270  // loop header) then NewBB dominates DestBB.
271  SmallVector<BasicBlock*, 8> OtherPreds;
272
273  // If there is a PHI in the block, loop over predecessors with it, which is
274  // faster than iterating pred_begin/end.
275  if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
276    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
277      if (PN->getIncomingBlock(i) != NewBB)
278        OtherPreds.push_back(PN->getIncomingBlock(i));
279  } else {
280    for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
281         I != E; ++I) {
282      BasicBlock *P = *I;
283      if (P != NewBB)
284          OtherPreds.push_back(P);
285    }
286  }
287
288  bool NewBBDominatesDestBB = true;
289
290  // Should we update DominatorTree information?
291  if (DT) {
292    DomTreeNode *TINode = DT->getNode(TIBB);
293
294    // The new block is not the immediate dominator for any other nodes, but
295    // TINode is the immediate dominator for the new node.
296    //
297    if (TINode) {       // Don't break unreachable code!
298      DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
299      DomTreeNode *DestBBNode = 0;
300
301      // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
302      if (!OtherPreds.empty()) {
303        DestBBNode = DT->getNode(DestBB);
304        while (!OtherPreds.empty() && NewBBDominatesDestBB) {
305          if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
306            NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
307          OtherPreds.pop_back();
308        }
309        OtherPreds.clear();
310      }
311
312      // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
313      // doesn't dominate anything.
314      if (NewBBDominatesDestBB) {
315        if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
316        DT->changeImmediateDominator(DestBBNode, NewBBNode);
317      }
318    }
319  }
320
321  // Should we update DominanceFrontier information?
322  if (DF) {
323    // If NewBBDominatesDestBB hasn't been computed yet, do so with DF.
324    if (!OtherPreds.empty()) {
325      // FIXME: IMPLEMENT THIS!
326      llvm_unreachable("Requiring domfrontiers but not idom/domtree/domset."
327                       " not implemented yet!");
328    }
329
330    // Since the new block is dominated by its only predecessor TIBB,
331    // it cannot be in any block's dominance frontier.  If NewBB dominates
332    // DestBB, its dominance frontier is the same as DestBB's, otherwise it is
333    // just {DestBB}.
334    DominanceFrontier::DomSetType NewDFSet;
335    if (NewBBDominatesDestBB) {
336      DominanceFrontier::iterator I = DF->find(DestBB);
337      if (I != DF->end()) {
338        DF->addBasicBlock(NewBB, I->second);
339
340        if (I->second.count(DestBB)) {
341          // However NewBB's frontier does not include DestBB.
342          DominanceFrontier::iterator NF = DF->find(NewBB);
343          DF->removeFromFrontier(NF, DestBB);
344        }
345      }
346      else
347        DF->addBasicBlock(NewBB, DominanceFrontier::DomSetType());
348    } else {
349      DominanceFrontier::DomSetType NewDFSet;
350      NewDFSet.insert(DestBB);
351      DF->addBasicBlock(NewBB, NewDFSet);
352    }
353  }
354
355  // Update LoopInfo if it is around.
356  if (LI) {
357    if (Loop *TIL = LI->getLoopFor(TIBB)) {
358      // If one or the other blocks were not in a loop, the new block is not
359      // either, and thus LI doesn't need to be updated.
360      if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
361        if (TIL == DestLoop) {
362          // Both in the same loop, the NewBB joins loop.
363          DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
364        } else if (TIL->contains(DestLoop)) {
365          // Edge from an outer loop to an inner loop.  Add to the outer loop.
366          TIL->addBasicBlockToLoop(NewBB, LI->getBase());
367        } else if (DestLoop->contains(TIL)) {
368          // Edge from an inner loop to an outer loop.  Add to the outer loop.
369          DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
370        } else {
371          // Edge from two loops with no containment relation.  Because these
372          // are natural loops, we know that the destination block must be the
373          // header of its loop (adding a branch into a loop elsewhere would
374          // create an irreducible loop).
375          assert(DestLoop->getHeader() == DestBB &&
376                 "Should not create irreducible loops!");
377          if (Loop *P = DestLoop->getParentLoop())
378            P->addBasicBlockToLoop(NewBB, LI->getBase());
379        }
380      }
381      // If TIBB is in a loop and DestBB is outside of that loop, split the
382      // other exit blocks of the loop that also have predecessors outside
383      // the loop, to maintain a LoopSimplify guarantee.
384      if (!TIL->contains(DestBB) &&
385          P->mustPreserveAnalysisID(LoopSimplifyID)) {
386        assert(!TIL->contains(NewBB) &&
387               "Split point for loop exit is contained in loop!");
388
389        // Update LCSSA form in the newly created exit block.
390        if (P->mustPreserveAnalysisID(LCSSAID)) {
391          SmallVector<BasicBlock *, 1> OrigPred;
392          OrigPred.push_back(TIBB);
393          CreatePHIsForSplitLoopExit(OrigPred, NewBB, DestBB);
394        }
395
396        // For each unique exit block...
397        SmallVector<BasicBlock *, 4> ExitBlocks;
398        TIL->getExitBlocks(ExitBlocks);
399        for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
400          // Collect all the preds that are inside the loop, and note
401          // whether there are any preds outside the loop.
402          SmallVector<BasicBlock *, 4> Preds;
403          bool HasPredOutsideOfLoop = false;
404          BasicBlock *Exit = ExitBlocks[i];
405          for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit);
406               I != E; ++I) {
407            BasicBlock *P = *I;
408            if (TIL->contains(P))
409              Preds.push_back(P);
410            else
411              HasPredOutsideOfLoop = true;
412          }
413          // If there are any preds not in the loop, we'll need to split
414          // the edges. The Preds.empty() check is needed because a block
415          // may appear multiple times in the list. We can't use
416          // getUniqueExitBlocks above because that depends on LoopSimplify
417          // form, which we're in the process of restoring!
418          if (!Preds.empty() && HasPredOutsideOfLoop) {
419            BasicBlock *NewExitBB =
420              SplitBlockPredecessors(Exit, Preds.data(), Preds.size(),
421                                     "split", P);
422            if (P->mustPreserveAnalysisID(LCSSAID))
423              CreatePHIsForSplitLoopExit(Preds, NewExitBB, Exit);
424          }
425        }
426      }
427      // LCSSA form was updated above for the case where LoopSimplify is
428      // available, which means that all predecessors of loop exit blocks
429      // are within the loop. Without LoopSimplify form, it would be
430      // necessary to insert a new phi.
431      assert((!P->mustPreserveAnalysisID(LCSSAID) ||
432              P->mustPreserveAnalysisID(LoopSimplifyID)) &&
433             "SplitCriticalEdge doesn't know how to update LCCSA form "
434             "without LoopSimplify!");
435    }
436  }
437
438  // Update ProfileInfo if it is around.
439  if (PI)
440    PI->splitEdge(TIBB, DestBB, NewBB, MergeIdenticalEdges);
441
442  return NewBB;
443}
444