BreakCriticalEdges.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11// inserting a dummy basic block.  This pass may be "required" by passes that
12// cannot deal with critical edges.  For this usage, the structure type is
13// forward declared.  This pass obviously invalidates the CFG, but can update
14// dominator trees.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/Transforms/Scalar.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/CFG.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/IR/CFG.h"
24#include "llvm/IR/Dominators.h"
25#include "llvm/IR/Function.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/Type.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Transforms/Utils/BasicBlockUtils.h"
30using namespace llvm;
31
32#define DEBUG_TYPE "break-crit-edges"
33
34STATISTIC(NumBroken, "Number of blocks inserted");
35
36namespace {
37  struct BreakCriticalEdges : public FunctionPass {
38    static char ID; // Pass identification, replacement for typeid
39    BreakCriticalEdges() : FunctionPass(ID) {
40      initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
41    }
42
43    bool runOnFunction(Function &F) override;
44
45    void getAnalysisUsage(AnalysisUsage &AU) const override {
46      AU.addPreserved<DominatorTreeWrapperPass>();
47      AU.addPreserved<LoopInfo>();
48
49      // No loop canonicalization guarantees are broken by this pass.
50      AU.addPreservedID(LoopSimplifyID);
51    }
52  };
53}
54
55char BreakCriticalEdges::ID = 0;
56INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
57                "Break critical edges in CFG", false, false)
58
59// Publicly exposed interface to pass...
60char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
61FunctionPass *llvm::createBreakCriticalEdgesPass() {
62  return new BreakCriticalEdges();
63}
64
65// runOnFunction - Loop over all of the edges in the CFG, breaking critical
66// edges as they are found.
67//
68bool BreakCriticalEdges::runOnFunction(Function &F) {
69  bool Changed = false;
70  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
71    TerminatorInst *TI = I->getTerminator();
72    if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
73      for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
74        if (SplitCriticalEdge(TI, i, this)) {
75          ++NumBroken;
76          Changed = true;
77        }
78  }
79
80  return Changed;
81}
82
83//===----------------------------------------------------------------------===//
84//    Implementation of the external critical edge manipulation functions
85//===----------------------------------------------------------------------===//
86
87/// createPHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form
88/// may require new PHIs in the new exit block. This function inserts the
89/// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB
90/// is the new loop exit block, and DestBB is the old loop exit, now the
91/// successor of SplitBB.
92static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
93                                       BasicBlock *SplitBB,
94                                       BasicBlock *DestBB) {
95  // SplitBB shouldn't have anything non-trivial in it yet.
96  assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
97          SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
98
99  // For each PHI in the destination block.
100  for (BasicBlock::iterator I = DestBB->begin();
101       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
102    unsigned Idx = PN->getBasicBlockIndex(SplitBB);
103    Value *V = PN->getIncomingValue(Idx);
104
105    // If the input is a PHI which already satisfies LCSSA, don't create
106    // a new one.
107    if (const PHINode *VP = dyn_cast<PHINode>(V))
108      if (VP->getParent() == SplitBB)
109        continue;
110
111    // Otherwise a new PHI is needed. Create one and populate it.
112    PHINode *NewPN =
113      PHINode::Create(PN->getType(), Preds.size(), "split",
114                      SplitBB->isLandingPad() ?
115                      SplitBB->begin() : SplitBB->getTerminator());
116    for (unsigned i = 0, e = Preds.size(); i != e; ++i)
117      NewPN->addIncoming(V, Preds[i]);
118
119    // Update the original PHI.
120    PN->setIncomingValue(Idx, NewPN);
121  }
122}
123
124/// SplitCriticalEdge - If this edge is a critical edge, insert a new node to
125/// split the critical edge.  This will update DominatorTree information if it
126/// is available, thus calling this pass will not invalidate either of them.
127/// This returns the new block if the edge was split, null otherwise.
128///
129/// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the
130/// specified successor will be merged into the same critical edge block.
131/// This is most commonly interesting with switch instructions, which may
132/// have many edges to any one destination.  This ensures that all edges to that
133/// dest go to one block instead of each going to a different block, but isn't
134/// the standard definition of a "critical edge".
135///
136/// It is invalid to call this function on a critical edge that starts at an
137/// IndirectBrInst.  Splitting these edges will almost always create an invalid
138/// program because the address of the new block won't be the one that is jumped
139/// to.
140///
141BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
142                                    Pass *P, bool MergeIdenticalEdges,
143                                    bool DontDeleteUselessPhis,
144                                    bool SplitLandingPads) {
145  if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return nullptr;
146
147  assert(!isa<IndirectBrInst>(TI) &&
148         "Cannot split critical edge from IndirectBrInst");
149
150  BasicBlock *TIBB = TI->getParent();
151  BasicBlock *DestBB = TI->getSuccessor(SuccNum);
152
153  // Splitting the critical edge to a landing pad block is non-trivial. Don't do
154  // it in this generic function.
155  if (DestBB->isLandingPad()) return nullptr;
156
157  // Create a new basic block, linking it into the CFG.
158  BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
159                      TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
160  // Create our unconditional branch.
161  BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
162  NewBI->setDebugLoc(TI->getDebugLoc());
163
164  // Branch to the new block, breaking the edge.
165  TI->setSuccessor(SuccNum, NewBB);
166
167  // Insert the block into the function... right after the block TI lives in.
168  Function &F = *TIBB->getParent();
169  Function::iterator FBBI = TIBB;
170  F.getBasicBlockList().insert(++FBBI, NewBB);
171
172  // If there are any PHI nodes in DestBB, we need to update them so that they
173  // merge incoming values from NewBB instead of from TIBB.
174  {
175    unsigned BBIdx = 0;
176    for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
177      // We no longer enter through TIBB, now we come in through NewBB.
178      // Revector exactly one entry in the PHI node that used to come from
179      // TIBB to come from NewBB.
180      PHINode *PN = cast<PHINode>(I);
181
182      // Reuse the previous value of BBIdx if it lines up.  In cases where we
183      // have multiple phi nodes with *lots* of predecessors, this is a speed
184      // win because we don't have to scan the PHI looking for TIBB.  This
185      // happens because the BB list of PHI nodes are usually in the same
186      // order.
187      if (PN->getIncomingBlock(BBIdx) != TIBB)
188        BBIdx = PN->getBasicBlockIndex(TIBB);
189      PN->setIncomingBlock(BBIdx, NewBB);
190    }
191  }
192
193  // If there are any other edges from TIBB to DestBB, update those to go
194  // through the split block, making those edges non-critical as well (and
195  // reducing the number of phi entries in the DestBB if relevant).
196  if (MergeIdenticalEdges) {
197    for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
198      if (TI->getSuccessor(i) != DestBB) continue;
199
200      // Remove an entry for TIBB from DestBB phi nodes.
201      DestBB->removePredecessor(TIBB, DontDeleteUselessPhis);
202
203      // We found another edge to DestBB, go to NewBB instead.
204      TI->setSuccessor(i, NewBB);
205    }
206  }
207
208
209
210  // If we don't have a pass object, we can't update anything...
211  if (!P) return NewBB;
212
213  DominatorTreeWrapperPass *DTWP =
214      P->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
215  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
216  LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>();
217
218  // If we have nothing to update, just return.
219  if (!DT && !LI)
220    return NewBB;
221
222  // Now update analysis information.  Since the only predecessor of NewBB is
223  // the TIBB, TIBB clearly dominates NewBB.  TIBB usually doesn't dominate
224  // anything, as there are other successors of DestBB.  However, if all other
225  // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
226  // loop header) then NewBB dominates DestBB.
227  SmallVector<BasicBlock*, 8> OtherPreds;
228
229  // If there is a PHI in the block, loop over predecessors with it, which is
230  // faster than iterating pred_begin/end.
231  if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
232    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
233      if (PN->getIncomingBlock(i) != NewBB)
234        OtherPreds.push_back(PN->getIncomingBlock(i));
235  } else {
236    for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
237         I != E; ++I) {
238      BasicBlock *P = *I;
239      if (P != NewBB)
240        OtherPreds.push_back(P);
241    }
242  }
243
244  bool NewBBDominatesDestBB = true;
245
246  // Should we update DominatorTree information?
247  if (DT) {
248    DomTreeNode *TINode = DT->getNode(TIBB);
249
250    // The new block is not the immediate dominator for any other nodes, but
251    // TINode is the immediate dominator for the new node.
252    //
253    if (TINode) {       // Don't break unreachable code!
254      DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
255      DomTreeNode *DestBBNode = nullptr;
256
257      // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
258      if (!OtherPreds.empty()) {
259        DestBBNode = DT->getNode(DestBB);
260        while (!OtherPreds.empty() && NewBBDominatesDestBB) {
261          if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
262            NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
263          OtherPreds.pop_back();
264        }
265        OtherPreds.clear();
266      }
267
268      // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
269      // doesn't dominate anything.
270      if (NewBBDominatesDestBB) {
271        if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
272        DT->changeImmediateDominator(DestBBNode, NewBBNode);
273      }
274    }
275  }
276
277  // Update LoopInfo if it is around.
278  if (LI) {
279    if (Loop *TIL = LI->getLoopFor(TIBB)) {
280      // If one or the other blocks were not in a loop, the new block is not
281      // either, and thus LI doesn't need to be updated.
282      if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
283        if (TIL == DestLoop) {
284          // Both in the same loop, the NewBB joins loop.
285          DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
286        } else if (TIL->contains(DestLoop)) {
287          // Edge from an outer loop to an inner loop.  Add to the outer loop.
288          TIL->addBasicBlockToLoop(NewBB, LI->getBase());
289        } else if (DestLoop->contains(TIL)) {
290          // Edge from an inner loop to an outer loop.  Add to the outer loop.
291          DestLoop->addBasicBlockToLoop(NewBB, LI->getBase());
292        } else {
293          // Edge from two loops with no containment relation.  Because these
294          // are natural loops, we know that the destination block must be the
295          // header of its loop (adding a branch into a loop elsewhere would
296          // create an irreducible loop).
297          assert(DestLoop->getHeader() == DestBB &&
298                 "Should not create irreducible loops!");
299          if (Loop *P = DestLoop->getParentLoop())
300            P->addBasicBlockToLoop(NewBB, LI->getBase());
301        }
302      }
303      // If TIBB is in a loop and DestBB is outside of that loop, we may need
304      // to update LoopSimplify form and LCSSA form.
305      if (!TIL->contains(DestBB) &&
306          P->mustPreserveAnalysisID(LoopSimplifyID)) {
307        assert(!TIL->contains(NewBB) &&
308               "Split point for loop exit is contained in loop!");
309
310        // Update LCSSA form in the newly created exit block.
311        if (P->mustPreserveAnalysisID(LCSSAID))
312          createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
313
314        // The only that we can break LoopSimplify form by splitting a critical
315        // edge is if after the split there exists some edge from TIL to DestBB
316        // *and* the only edge into DestBB from outside of TIL is that of
317        // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
318        // is the new exit block and it has no non-loop predecessors. If the
319        // second isn't true, then DestBB was not in LoopSimplify form prior to
320        // the split as it had a non-loop predecessor. In both of these cases,
321        // the predecessor must be directly in TIL, not in a subloop, or again
322        // LoopSimplify doesn't hold.
323        SmallVector<BasicBlock *, 4> LoopPreds;
324        for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
325             ++I) {
326          BasicBlock *P = *I;
327          if (P == NewBB)
328            continue; // The new block is known.
329          if (LI->getLoopFor(P) != TIL) {
330            // No need to re-simplify, it wasn't to start with.
331            LoopPreds.clear();
332            break;
333          }
334          LoopPreds.push_back(P);
335        }
336        if (!LoopPreds.empty()) {
337          assert(!DestBB->isLandingPad() &&
338                 "We don't split edges to landing pads!");
339          BasicBlock *NewExitBB =
340              SplitBlockPredecessors(DestBB, LoopPreds, "split", P);
341          if (P->mustPreserveAnalysisID(LCSSAID))
342            createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
343        }
344      }
345      // LCSSA form was updated above for the case where LoopSimplify is
346      // available, which means that all predecessors of loop exit blocks
347      // are within the loop. Without LoopSimplify form, it would be
348      // necessary to insert a new phi.
349      assert((!P->mustPreserveAnalysisID(LCSSAID) ||
350              P->mustPreserveAnalysisID(LoopSimplifyID)) &&
351             "SplitCriticalEdge doesn't know how to update LCCSA form "
352             "without LoopSimplify!");
353    }
354  }
355
356  return NewBB;
357}
358