CloneFunction.cpp revision 79066fa6acce02c97c714a5a6e151ed8a249721c
1//===- CloneFunction.cpp - Clone a function into another function ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CloneFunctionInto interface, which is used as the
11// low-level function cloner.  This is used by the CloneFunction and function
12// inliner to do the dirty work of copying the body of a function around.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/Cloning.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Function.h"
21#include "llvm/Support/CFG.h"
22#include "ValueMapper.h"
23#include "llvm/Analysis/ConstantFolding.h"
24#include "llvm/ADT/SmallVector.h"
25using namespace llvm;
26
27// CloneBasicBlock - See comments in Cloning.h
28BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
29                                  std::map<const Value*, Value*> &ValueMap,
30                                  const char *NameSuffix, Function *F,
31                                  ClonedCodeInfo *CodeInfo) {
32  BasicBlock *NewBB = new BasicBlock("", F);
33  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
34
35  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
36
37  // Loop over all instructions, and copy them over.
38  for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
39       II != IE; ++II) {
40    Instruction *NewInst = II->clone();
41    if (II->hasName())
42      NewInst->setName(II->getName()+NameSuffix);
43    NewBB->getInstList().push_back(NewInst);
44    ValueMap[II] = NewInst;                // Add instruction map to value.
45
46    hasCalls |= isa<CallInst>(II);
47    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
48      if (isa<ConstantInt>(AI->getArraySize()))
49        hasStaticAllocas = true;
50      else
51        hasDynamicAllocas = true;
52    }
53  }
54
55  if (CodeInfo) {
56    CodeInfo->ContainsCalls          |= hasCalls;
57    CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(BB->getTerminator());
58    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
59    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
60                                        BB != &BB->getParent()->front();
61  }
62  return NewBB;
63}
64
65// Clone OldFunc into NewFunc, transforming the old arguments into references to
66// ArgMap values.
67//
68void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
69                             std::map<const Value*, Value*> &ValueMap,
70                             std::vector<ReturnInst*> &Returns,
71                             const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
72  assert(NameSuffix && "NameSuffix cannot be null!");
73
74#ifndef NDEBUG
75  for (Function::const_arg_iterator I = OldFunc->arg_begin(),
76       E = OldFunc->arg_end(); I != E; ++I)
77    assert(ValueMap.count(I) && "No mapping from source argument specified!");
78#endif
79
80  // Loop over all of the basic blocks in the function, cloning them as
81  // appropriate.  Note that we save BE this way in order to handle cloning of
82  // recursive functions into themselves.
83  //
84  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
85       BI != BE; ++BI) {
86    const BasicBlock &BB = *BI;
87
88    // Create a new basic block and copy instructions into it!
89    BasicBlock *CBB = CloneBasicBlock(&BB, ValueMap, NameSuffix, NewFunc,
90                                      CodeInfo);
91    ValueMap[&BB] = CBB;                       // Add basic block mapping.
92
93    if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
94      Returns.push_back(RI);
95  }
96
97  // Loop over all of the instructions in the function, fixing up operand
98  // references as we go.  This uses ValueMap to do all the hard work.
99  //
100  for (Function::iterator BB = cast<BasicBlock>(ValueMap[OldFunc->begin()]),
101         BE = NewFunc->end(); BB != BE; ++BB)
102    // Loop over all instructions, fixing each one as we find it...
103    for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
104      RemapInstruction(II, ValueMap);
105}
106
107/// CloneFunction - Return a copy of the specified function, but without
108/// embedding the function into another module.  Also, any references specified
109/// in the ValueMap are changed to refer to their mapped value instead of the
110/// original one.  If any of the arguments to the function are in the ValueMap,
111/// the arguments are deleted from the resultant function.  The ValueMap is
112/// updated to include mappings from all of the instructions and basicblocks in
113/// the function from their old to new values.
114///
115Function *llvm::CloneFunction(const Function *F,
116                              std::map<const Value*, Value*> &ValueMap,
117                              ClonedCodeInfo *CodeInfo) {
118  std::vector<const Type*> ArgTypes;
119
120  // The user might be deleting arguments to the function by specifying them in
121  // the ValueMap.  If so, we need to not add the arguments to the arg ty vector
122  //
123  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
124       I != E; ++I)
125    if (ValueMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
126      ArgTypes.push_back(I->getType());
127
128  // Create a new function type...
129  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
130                                    ArgTypes, F->getFunctionType()->isVarArg());
131
132  // Create the new function...
133  Function *NewF = new Function(FTy, F->getLinkage(), F->getName());
134
135  // Loop over the arguments, copying the names of the mapped arguments over...
136  Function::arg_iterator DestI = NewF->arg_begin();
137  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
138       I != E; ++I)
139    if (ValueMap.count(I) == 0) {   // Is this argument preserved?
140      DestI->setName(I->getName()); // Copy the name over...
141      ValueMap[I] = DestI++;        // Add mapping to ValueMap
142    }
143
144  std::vector<ReturnInst*> Returns;  // Ignore returns cloned...
145  CloneFunctionInto(NewF, F, ValueMap, Returns, "", CodeInfo);
146  return NewF;
147}
148
149
150
151namespace {
152  /// PruningFunctionCloner - This class is a private class used to implement
153  /// the CloneAndPruneFunctionInto method.
154  struct PruningFunctionCloner {
155    Function *NewFunc;
156    const Function *OldFunc;
157    std::map<const Value*, Value*> &ValueMap;
158    std::vector<ReturnInst*> &Returns;
159    const char *NameSuffix;
160    ClonedCodeInfo *CodeInfo;
161    const TargetData *TD;
162
163  public:
164    PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
165                          std::map<const Value*, Value*> &valueMap,
166                          std::vector<ReturnInst*> &returns,
167                          const char *nameSuffix,
168                          ClonedCodeInfo *codeInfo,
169                          const TargetData *td)
170    : NewFunc(newFunc), OldFunc(oldFunc), ValueMap(valueMap), Returns(returns),
171      NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
172    }
173
174    /// CloneBlock - The specified block is found to be reachable, clone it and
175    /// anything that it can reach.
176    void CloneBlock(const BasicBlock *BB);
177
178  public:
179    /// ConstantFoldMappedInstruction - Constant fold the specified instruction,
180    /// mapping its operands through ValueMap if they are available.
181    Constant *ConstantFoldMappedInstruction(const Instruction *I);
182  };
183}
184
185/// CloneBlock - The specified block is found to be reachable, clone it and
186/// anything that it can reach.
187void PruningFunctionCloner::CloneBlock(const BasicBlock *BB) {
188  Value *&BBEntry = ValueMap[BB];
189
190  // Have we already cloned this block?
191  if (BBEntry) return;
192
193  // Nope, clone it now.
194  BasicBlock *NewBB;
195  BBEntry = NewBB = new BasicBlock();
196  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
197
198  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
199
200  // Loop over all instructions, and copy them over, DCE'ing as we go.  This
201  // loop doesn't include the terminator.
202  for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
203       II != IE; ++II) {
204    // If this instruction constant folds, don't bother cloning the instruction,
205    // instead, just add the constant to the value map.
206    if (Constant *C = ConstantFoldMappedInstruction(II)) {
207      ValueMap[II] = C;
208      continue;
209    }
210
211    Instruction *NewInst = II->clone();
212    if (II->hasName())
213      NewInst->setName(II->getName()+NameSuffix);
214    NewBB->getInstList().push_back(NewInst);
215    ValueMap[II] = NewInst;                // Add instruction map to value.
216
217    hasCalls |= isa<CallInst>(II);
218    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
219      if (isa<ConstantInt>(AI->getArraySize()))
220        hasStaticAllocas = true;
221      else
222        hasDynamicAllocas = true;
223    }
224  }
225
226  // Finally, clone over the terminator.
227  const TerminatorInst *OldTI = BB->getTerminator();
228  bool TerminatorDone = false;
229  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
230    if (BI->isConditional()) {
231      // If the condition was a known constant in the callee...
232      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
233      // Or is a known constant in the caller...
234      if (Cond == 0)
235        Cond = dyn_cast_or_null<ConstantInt>(ValueMap[BI->getCondition()]);
236
237      // Constant fold to uncond branch!
238      if (Cond) {
239        BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
240        ValueMap[OldTI] = new BranchInst(Dest, NewBB);
241        CloneBlock(Dest);
242        TerminatorDone = true;
243      }
244    }
245  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
246    // If switching on a value known constant in the caller.
247    ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
248    if (Cond == 0)  // Or known constant after constant prop in the callee...
249      Cond = dyn_cast_or_null<ConstantInt>(ValueMap[SI->getCondition()]);
250    if (Cond) {     // Constant fold to uncond branch!
251      BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond));
252      ValueMap[OldTI] = new BranchInst(Dest, NewBB);
253      CloneBlock(Dest);
254      TerminatorDone = true;
255    }
256  }
257
258  if (!TerminatorDone) {
259    Instruction *NewInst = OldTI->clone();
260    if (OldTI->hasName())
261      NewInst->setName(OldTI->getName()+NameSuffix);
262    NewBB->getInstList().push_back(NewInst);
263    ValueMap[OldTI] = NewInst;             // Add instruction map to value.
264
265    // Recursively clone any reachable successor blocks.
266    const TerminatorInst *TI = BB->getTerminator();
267    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
268      CloneBlock(TI->getSuccessor(i));
269  }
270
271  if (CodeInfo) {
272    CodeInfo->ContainsCalls          |= hasCalls;
273    CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(OldTI);
274    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
275    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
276      BB != &BB->getParent()->front();
277  }
278
279  if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator()))
280    Returns.push_back(RI);
281}
282
283/// ConstantFoldMappedInstruction - Constant fold the specified instruction,
284/// mapping its operands through ValueMap if they are available.
285Constant *PruningFunctionCloner::
286ConstantFoldMappedInstruction(const Instruction *I) {
287  SmallVector<Constant*, 8> Ops;
288  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
289    if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i),
290                                                           ValueMap)))
291      Ops.push_back(Op);
292    else
293      return 0;  // All operands not constant!
294
295  return ConstantFoldInstOperands(I, &Ops[0], Ops.size(), TD);
296}
297
298/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
299/// except that it does some simple constant prop and DCE on the fly.  The
300/// effect of this is to copy significantly less code in cases where (for
301/// example) a function call with constant arguments is inlined, and those
302/// constant arguments cause a significant amount of code in the callee to be
303/// dead.  Since this doesn't produce an exactly copy of the input, it can't be
304/// used for things like CloneFunction or CloneModule.
305void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
306                                     std::map<const Value*, Value*> &ValueMap,
307                                     std::vector<ReturnInst*> &Returns,
308                                     const char *NameSuffix,
309                                     ClonedCodeInfo *CodeInfo,
310                                     const TargetData *TD) {
311  assert(NameSuffix && "NameSuffix cannot be null!");
312
313#ifndef NDEBUG
314  for (Function::const_arg_iterator II = OldFunc->arg_begin(),
315       E = OldFunc->arg_end(); II != E; ++II)
316    assert(ValueMap.count(II) && "No mapping from source argument specified!");
317#endif
318
319  PruningFunctionCloner PFC(NewFunc, OldFunc, ValueMap, Returns,
320                            NameSuffix, CodeInfo, TD);
321
322  // Clone the entry block, and anything recursively reachable from it.
323  PFC.CloneBlock(&OldFunc->getEntryBlock());
324
325  // Loop over all of the basic blocks in the old function.  If the block was
326  // reachable, we have cloned it and the old block is now in the value map:
327  // insert it into the new function in the right order.  If not, ignore it.
328  //
329  // Defer PHI resolution until rest of function is resolved.
330  std::vector<const PHINode*> PHIToResolve;
331  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
332       BI != BE; ++BI) {
333    BasicBlock *NewBB = cast_or_null<BasicBlock>(ValueMap[BI]);
334    if (NewBB == 0) continue;  // Dead block.
335
336    // Add the new block to the new function.
337    NewFunc->getBasicBlockList().push_back(NewBB);
338
339    // Loop over all of the instructions in the block, fixing up operand
340    // references as we go.  This uses ValueMap to do all the hard work.
341    //
342    BasicBlock::iterator I = NewBB->begin();
343
344    // Handle PHI nodes specially, as we have to remove references to dead
345    // blocks.
346    if (PHINode *PN = dyn_cast<PHINode>(I)) {
347      // Skip over all PHI nodes, remembering them for later.
348      BasicBlock::const_iterator OldI = BI->begin();
349      for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI)
350        PHIToResolve.push_back(cast<PHINode>(OldI));
351    }
352
353    // Otherwise, remap the rest of the instructions normally.
354    for (; I != NewBB->end(); ++I)
355      RemapInstruction(I, ValueMap);
356  }
357
358  // Defer PHI resolution until rest of function is resolved, PHI resolution
359  // requires the CFG to be up-to-date.
360  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
361    const PHINode *OPN = PHIToResolve[phino];
362    unsigned NumPreds = OPN->getNumIncomingValues();
363    const BasicBlock *OldBB = OPN->getParent();
364    BasicBlock *NewBB = cast<BasicBlock>(ValueMap[OldBB]);
365
366    // Map operands for blocks that are live and remove operands for blocks
367    // that are dead.
368    for (; phino != PHIToResolve.size() &&
369         PHIToResolve[phino]->getParent() == OldBB; ++phino) {
370      OPN = PHIToResolve[phino];
371      PHINode *PN = cast<PHINode>(ValueMap[OPN]);
372      for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
373        if (BasicBlock *MappedBlock =
374            cast_or_null<BasicBlock>(ValueMap[PN->getIncomingBlock(pred)])) {
375          Value *InVal = MapValue(PN->getIncomingValue(pred), ValueMap);
376          assert(InVal && "Unknown input value?");
377          PN->setIncomingValue(pred, InVal);
378          PN->setIncomingBlock(pred, MappedBlock);
379        } else {
380          PN->removeIncomingValue(pred, false);
381          --pred, --e;  // Revisit the next entry.
382        }
383      }
384    }
385
386    // The loop above has removed PHI entries for those blocks that are dead
387    // and has updated others.  However, if a block is live (i.e. copied over)
388    // but its terminator has been changed to not go to this block, then our
389    // phi nodes will have invalid entries.  Update the PHI nodes in this
390    // case.
391    PHINode *PN = cast<PHINode>(NewBB->begin());
392    NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
393    if (NumPreds != PN->getNumIncomingValues()) {
394      assert(NumPreds < PN->getNumIncomingValues());
395      // Count how many times each predecessor comes to this block.
396      std::map<BasicBlock*, unsigned> PredCount;
397      for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
398           PI != E; ++PI)
399        --PredCount[*PI];
400
401      // Figure out how many entries to remove from each PHI.
402      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
403        ++PredCount[PN->getIncomingBlock(i)];
404
405      // At this point, the excess predecessor entries are positive in the
406      // map.  Loop over all of the PHIs and remove excess predecessor
407      // entries.
408      BasicBlock::iterator I = NewBB->begin();
409      for (; (PN = dyn_cast<PHINode>(I)); ++I) {
410        for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
411             E = PredCount.end(); PCI != E; ++PCI) {
412          BasicBlock *Pred     = PCI->first;
413          for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
414            PN->removeIncomingValue(Pred, false);
415        }
416      }
417    }
418
419    // If the loops above have made these phi nodes have 0 or 1 operand,
420    // replace them with undef or the input value.  We must do this for
421    // correctness, because 0-operand phis are not valid.
422    PN = cast<PHINode>(NewBB->begin());
423    if (PN->getNumIncomingValues() == 0) {
424      BasicBlock::iterator I = NewBB->begin();
425      BasicBlock::const_iterator OldI = OldBB->begin();
426      while ((PN = dyn_cast<PHINode>(I++))) {
427        Value *NV = UndefValue::get(PN->getType());
428        PN->replaceAllUsesWith(NV);
429        assert(ValueMap[OldI] == PN && "ValueMap mismatch");
430        ValueMap[OldI] = NV;
431        PN->eraseFromParent();
432        ++OldI;
433      }
434    } else if (PN->getNumIncomingValues() == 1) {
435      BasicBlock::iterator I = NewBB->begin();
436      BasicBlock::const_iterator OldI = OldBB->begin();
437      while ((PN = dyn_cast<PHINode>(I++))) {
438        Value *NV = PN->getIncomingValue(0);
439        PN->replaceAllUsesWith(NV);
440        assert(ValueMap[OldI] == PN && "ValueMap mismatch");
441        ValueMap[OldI] = NV;
442        PN->eraseFromParent();
443        ++OldI;
444      }
445    }
446  }
447
448  // Now that the inlined function body has been fully constructed, go through
449  // and zap unconditional fall-through branches.  This happen all the time when
450  // specializing code: code specialization turns conditional branches into
451  // uncond branches, and this code folds them.
452  Function::iterator I = cast<BasicBlock>(ValueMap[&OldFunc->getEntryBlock()]);
453  while (I != NewFunc->end()) {
454    BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
455    if (!BI || BI->isConditional()) { ++I; continue; }
456
457    BasicBlock *Dest = BI->getSuccessor(0);
458    if (!Dest->getSinglePredecessor()) { ++I; continue; }
459
460    // We know all single-entry PHI nodes in the inlined function have been
461    // removed, so we just need to splice the blocks.
462    BI->eraseFromParent();
463
464    // Move all the instructions in the succ to the pred.
465    I->getInstList().splice(I->end(), Dest->getInstList());
466
467    // Make all PHI nodes that referred to Dest now refer to I as their source.
468    Dest->replaceAllUsesWith(I);
469
470    // Remove the dest block.
471    Dest->eraseFromParent();
472
473    // Do not increment I, iteratively merge all things this block branches to.
474  }
475}
476