CloneFunction.cpp revision 9e9a0d5fc26878e51a58a8b57900fcbf952c2691
1//===- CloneFunction.cpp - Clone a function into another function ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CloneFunctionInto interface, which is used as the
11// low-level function cloner.  This is used by the CloneFunction and function
12// inliner to do the dirty work of copying the body of a function around.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/Cloning.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Function.h"
23#include "llvm/LLVMContext.h"
24#include "llvm/Support/CFG.h"
25#include "llvm/Support/Compiler.h"
26#include "llvm/Transforms/Utils/ValueMapper.h"
27#include "llvm/Analysis/ConstantFolding.h"
28#include "llvm/Analysis/DebugInfo.h"
29#include "llvm/ADT/SmallVector.h"
30#include <map>
31using namespace llvm;
32
33// CloneBasicBlock - See comments in Cloning.h
34BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
35                                  DenseMap<const Value*, Value*> &ValueMap,
36                                  const char *NameSuffix, Function *F,
37                                  ClonedCodeInfo *CodeInfo) {
38  BasicBlock *NewBB = BasicBlock::Create("", F);
39  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
40
41  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
42
43  // Loop over all instructions, and copy them over.
44  for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
45       II != IE; ++II) {
46    Instruction *NewInst = II->clone(BB->getContext());
47    if (II->hasName())
48      NewInst->setName(II->getName()+NameSuffix);
49    NewBB->getInstList().push_back(NewInst);
50    ValueMap[II] = NewInst;                // Add instruction map to value.
51
52    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
53    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
54      if (isa<ConstantInt>(AI->getArraySize()))
55        hasStaticAllocas = true;
56      else
57        hasDynamicAllocas = true;
58    }
59  }
60
61  if (CodeInfo) {
62    CodeInfo->ContainsCalls          |= hasCalls;
63    CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(BB->getTerminator());
64    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
65    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
66                                        BB != &BB->getParent()->getEntryBlock();
67  }
68  return NewBB;
69}
70
71// Clone OldFunc into NewFunc, transforming the old arguments into references to
72// ArgMap values.
73//
74void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
75                             DenseMap<const Value*, Value*> &ValueMap,
76                             std::vector<ReturnInst*> &Returns,
77                             const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
78  assert(NameSuffix && "NameSuffix cannot be null!");
79
80#ifndef NDEBUG
81  for (Function::const_arg_iterator I = OldFunc->arg_begin(),
82       E = OldFunc->arg_end(); I != E; ++I)
83    assert(ValueMap.count(I) && "No mapping from source argument specified!");
84#endif
85
86  // Clone any attributes.
87  if (NewFunc->arg_size() == OldFunc->arg_size())
88    NewFunc->copyAttributesFrom(OldFunc);
89  else {
90    //Some arguments were deleted with the ValueMap. Copy arguments one by one
91    for (Function::const_arg_iterator I = OldFunc->arg_begin(),
92           E = OldFunc->arg_end(); I != E; ++I)
93      if (Argument* Anew = dyn_cast<Argument>(ValueMap[I]))
94        Anew->addAttr( OldFunc->getAttributes()
95                       .getParamAttributes(I->getArgNo() + 1));
96    NewFunc->setAttributes(NewFunc->getAttributes()
97                           .addAttr(0, OldFunc->getAttributes()
98                                     .getRetAttributes()));
99    NewFunc->setAttributes(NewFunc->getAttributes()
100                           .addAttr(~0, OldFunc->getAttributes()
101                                     .getFnAttributes()));
102
103  }
104
105  // Loop over all of the basic blocks in the function, cloning them as
106  // appropriate.  Note that we save BE this way in order to handle cloning of
107  // recursive functions into themselves.
108  //
109  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
110       BI != BE; ++BI) {
111    const BasicBlock &BB = *BI;
112
113    // Create a new basic block and copy instructions into it!
114    BasicBlock *CBB = CloneBasicBlock(&BB, ValueMap, NameSuffix, NewFunc,
115                                      CodeInfo);
116    ValueMap[&BB] = CBB;                       // Add basic block mapping.
117
118    if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
119      Returns.push_back(RI);
120  }
121
122  // Loop over all of the instructions in the function, fixing up operand
123  // references as we go.  This uses ValueMap to do all the hard work.
124  //
125  for (Function::iterator BB = cast<BasicBlock>(ValueMap[OldFunc->begin()]),
126         BE = NewFunc->end(); BB != BE; ++BB)
127    // Loop over all instructions, fixing each one as we find it...
128    for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
129      RemapInstruction(II, ValueMap);
130}
131
132/// CloneFunction - Return a copy of the specified function, but without
133/// embedding the function into another module.  Also, any references specified
134/// in the ValueMap are changed to refer to their mapped value instead of the
135/// original one.  If any of the arguments to the function are in the ValueMap,
136/// the arguments are deleted from the resultant function.  The ValueMap is
137/// updated to include mappings from all of the instructions and basicblocks in
138/// the function from their old to new values.
139///
140Function *llvm::CloneFunction(const Function *F,
141                              DenseMap<const Value*, Value*> &ValueMap,
142                              ClonedCodeInfo *CodeInfo) {
143  std::vector<const Type*> ArgTypes;
144
145  // The user might be deleting arguments to the function by specifying them in
146  // the ValueMap.  If so, we need to not add the arguments to the arg ty vector
147  //
148  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
149       I != E; ++I)
150    if (ValueMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
151      ArgTypes.push_back(I->getType());
152
153  // Create a new function type...
154  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
155                                    ArgTypes, F->getFunctionType()->isVarArg());
156
157  // Create the new function...
158  Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
159
160  // Loop over the arguments, copying the names of the mapped arguments over...
161  Function::arg_iterator DestI = NewF->arg_begin();
162  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
163       I != E; ++I)
164    if (ValueMap.count(I) == 0) {   // Is this argument preserved?
165      DestI->setName(I->getName()); // Copy the name over...
166      ValueMap[I] = DestI++;        // Add mapping to ValueMap
167    }
168
169  std::vector<ReturnInst*> Returns;  // Ignore returns cloned...
170  CloneFunctionInto(NewF, F, ValueMap, Returns, "", CodeInfo);
171  return NewF;
172}
173
174
175
176namespace {
177  /// PruningFunctionCloner - This class is a private class used to implement
178  /// the CloneAndPruneFunctionInto method.
179  struct VISIBILITY_HIDDEN PruningFunctionCloner {
180    Function *NewFunc;
181    const Function *OldFunc;
182    DenseMap<const Value*, Value*> &ValueMap;
183    std::vector<ReturnInst*> &Returns;
184    const char *NameSuffix;
185    ClonedCodeInfo *CodeInfo;
186    const TargetData *TD;
187    Value *DbgFnStart;
188  public:
189    PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
190                          DenseMap<const Value*, Value*> &valueMap,
191                          std::vector<ReturnInst*> &returns,
192                          const char *nameSuffix,
193                          ClonedCodeInfo *codeInfo,
194                          const TargetData *td)
195    : NewFunc(newFunc), OldFunc(oldFunc), ValueMap(valueMap), Returns(returns),
196      NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td), DbgFnStart(NULL) {
197    }
198
199    /// CloneBlock - The specified block is found to be reachable, clone it and
200    /// anything that it can reach.
201    void CloneBlock(const BasicBlock *BB,
202                    std::vector<const BasicBlock*> &ToClone);
203
204  public:
205    /// ConstantFoldMappedInstruction - Constant fold the specified instruction,
206    /// mapping its operands through ValueMap if they are available.
207    Constant *ConstantFoldMappedInstruction(const Instruction *I);
208  };
209}
210
211/// CloneBlock - The specified block is found to be reachable, clone it and
212/// anything that it can reach.
213void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
214                                       std::vector<const BasicBlock*> &ToClone){
215  Value *&BBEntry = ValueMap[BB];
216
217  // Have we already cloned this block?
218  if (BBEntry) return;
219
220  // Nope, clone it now.
221  BasicBlock *NewBB;
222  BBEntry = NewBB = BasicBlock::Create();
223  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
224
225  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
226
227  // Loop over all instructions, and copy them over, DCE'ing as we go.  This
228  // loop doesn't include the terminator.
229  for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
230       II != IE; ++II) {
231    // If this instruction constant folds, don't bother cloning the instruction,
232    // instead, just add the constant to the value map.
233    if (Constant *C = ConstantFoldMappedInstruction(II)) {
234      ValueMap[II] = C;
235      continue;
236    }
237
238    // Do not clone llvm.dbg.region.end. It will be adjusted by the inliner.
239    if (const DbgFuncStartInst *DFSI = dyn_cast<DbgFuncStartInst>(II)) {
240      if (DbgFnStart == NULL) {
241        DISubprogram SP(cast<GlobalVariable>(DFSI->getSubprogram()));
242        if (SP.describes(BB->getParent()))
243          DbgFnStart = DFSI->getSubprogram();
244      }
245    }
246    if (const DbgRegionEndInst *DREIS = dyn_cast<DbgRegionEndInst>(II)) {
247      if (DREIS->getContext() == DbgFnStart)
248        continue;
249    }
250
251    Instruction *NewInst = II->clone(BB->getContext());
252    if (II->hasName())
253      NewInst->setName(II->getName()+NameSuffix);
254    NewBB->getInstList().push_back(NewInst);
255    ValueMap[II] = NewInst;                // Add instruction map to value.
256
257    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
258    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
259      if (isa<ConstantInt>(AI->getArraySize()))
260        hasStaticAllocas = true;
261      else
262        hasDynamicAllocas = true;
263    }
264  }
265
266  // Finally, clone over the terminator.
267  const TerminatorInst *OldTI = BB->getTerminator();
268  bool TerminatorDone = false;
269  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
270    if (BI->isConditional()) {
271      // If the condition was a known constant in the callee...
272      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
273      // Or is a known constant in the caller...
274      if (Cond == 0)
275        Cond = dyn_cast_or_null<ConstantInt>(ValueMap[BI->getCondition()]);
276
277      // Constant fold to uncond branch!
278      if (Cond) {
279        BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
280        ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
281        ToClone.push_back(Dest);
282        TerminatorDone = true;
283      }
284    }
285  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
286    // If switching on a value known constant in the caller.
287    ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
288    if (Cond == 0)  // Or known constant after constant prop in the callee...
289      Cond = dyn_cast_or_null<ConstantInt>(ValueMap[SI->getCondition()]);
290    if (Cond) {     // Constant fold to uncond branch!
291      BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond));
292      ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
293      ToClone.push_back(Dest);
294      TerminatorDone = true;
295    }
296  }
297
298  if (!TerminatorDone) {
299    Instruction *NewInst = OldTI->clone(BB->getContext());
300    if (OldTI->hasName())
301      NewInst->setName(OldTI->getName()+NameSuffix);
302    NewBB->getInstList().push_back(NewInst);
303    ValueMap[OldTI] = NewInst;             // Add instruction map to value.
304
305    // Recursively clone any reachable successor blocks.
306    const TerminatorInst *TI = BB->getTerminator();
307    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
308      ToClone.push_back(TI->getSuccessor(i));
309  }
310
311  if (CodeInfo) {
312    CodeInfo->ContainsCalls          |= hasCalls;
313    CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(OldTI);
314    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
315    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
316      BB != &BB->getParent()->front();
317  }
318
319  if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator()))
320    Returns.push_back(RI);
321}
322
323/// ConstantFoldMappedInstruction - Constant fold the specified instruction,
324/// mapping its operands through ValueMap if they are available.
325Constant *PruningFunctionCloner::
326ConstantFoldMappedInstruction(const Instruction *I) {
327  LLVMContext &Context = I->getContext();
328
329  SmallVector<Constant*, 8> Ops;
330  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
331    if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i),
332                                                           ValueMap,
333                                                           Context)))
334      Ops.push_back(Op);
335    else
336      return 0;  // All operands not constant!
337
338  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
339    return ConstantFoldCompareInstOperands(CI->getPredicate(),
340                                           &Ops[0], Ops.size(),
341                                           Context, TD);
342
343  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
344    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
345      if (!LI->isVolatile() && CE->getOpcode() == Instruction::GetElementPtr)
346        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
347          if (GV->isConstant() && GV->hasDefinitiveInitializer())
348            return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(),
349                                                          CE, Context);
350
351  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), &Ops[0],
352                                  Ops.size(), Context, TD);
353}
354
355/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
356/// except that it does some simple constant prop and DCE on the fly.  The
357/// effect of this is to copy significantly less code in cases where (for
358/// example) a function call with constant arguments is inlined, and those
359/// constant arguments cause a significant amount of code in the callee to be
360/// dead.  Since this doesn't produce an exact copy of the input, it can't be
361/// used for things like CloneFunction or CloneModule.
362void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
363                                     DenseMap<const Value*, Value*> &ValueMap,
364                                     std::vector<ReturnInst*> &Returns,
365                                     const char *NameSuffix,
366                                     ClonedCodeInfo *CodeInfo,
367                                     const TargetData *TD) {
368  assert(NameSuffix && "NameSuffix cannot be null!");
369  LLVMContext &Context = OldFunc->getContext();
370
371#ifndef NDEBUG
372  for (Function::const_arg_iterator II = OldFunc->arg_begin(),
373       E = OldFunc->arg_end(); II != E; ++II)
374    assert(ValueMap.count(II) && "No mapping from source argument specified!");
375#endif
376
377  PruningFunctionCloner PFC(NewFunc, OldFunc, ValueMap, Returns,
378                            NameSuffix, CodeInfo, TD);
379
380  // Clone the entry block, and anything recursively reachable from it.
381  std::vector<const BasicBlock*> CloneWorklist;
382  CloneWorklist.push_back(&OldFunc->getEntryBlock());
383  while (!CloneWorklist.empty()) {
384    const BasicBlock *BB = CloneWorklist.back();
385    CloneWorklist.pop_back();
386    PFC.CloneBlock(BB, CloneWorklist);
387  }
388
389  // Loop over all of the basic blocks in the old function.  If the block was
390  // reachable, we have cloned it and the old block is now in the value map:
391  // insert it into the new function in the right order.  If not, ignore it.
392  //
393  // Defer PHI resolution until rest of function is resolved.
394  std::vector<const PHINode*> PHIToResolve;
395  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
396       BI != BE; ++BI) {
397    BasicBlock *NewBB = cast_or_null<BasicBlock>(ValueMap[BI]);
398    if (NewBB == 0) continue;  // Dead block.
399
400    // Add the new block to the new function.
401    NewFunc->getBasicBlockList().push_back(NewBB);
402
403    // Loop over all of the instructions in the block, fixing up operand
404    // references as we go.  This uses ValueMap to do all the hard work.
405    //
406    BasicBlock::iterator I = NewBB->begin();
407
408    // Handle PHI nodes specially, as we have to remove references to dead
409    // blocks.
410    if (PHINode *PN = dyn_cast<PHINode>(I)) {
411      // Skip over all PHI nodes, remembering them for later.
412      BasicBlock::const_iterator OldI = BI->begin();
413      for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI)
414        PHIToResolve.push_back(cast<PHINode>(OldI));
415    }
416
417    // Otherwise, remap the rest of the instructions normally.
418    for (; I != NewBB->end(); ++I)
419      RemapInstruction(I, ValueMap);
420  }
421
422  // Defer PHI resolution until rest of function is resolved, PHI resolution
423  // requires the CFG to be up-to-date.
424  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
425    const PHINode *OPN = PHIToResolve[phino];
426    unsigned NumPreds = OPN->getNumIncomingValues();
427    const BasicBlock *OldBB = OPN->getParent();
428    BasicBlock *NewBB = cast<BasicBlock>(ValueMap[OldBB]);
429
430    // Map operands for blocks that are live and remove operands for blocks
431    // that are dead.
432    for (; phino != PHIToResolve.size() &&
433         PHIToResolve[phino]->getParent() == OldBB; ++phino) {
434      OPN = PHIToResolve[phino];
435      PHINode *PN = cast<PHINode>(ValueMap[OPN]);
436      for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
437        if (BasicBlock *MappedBlock =
438            cast_or_null<BasicBlock>(ValueMap[PN->getIncomingBlock(pred)])) {
439          Value *InVal = MapValue(PN->getIncomingValue(pred),
440                                  ValueMap, Context);
441          assert(InVal && "Unknown input value?");
442          PN->setIncomingValue(pred, InVal);
443          PN->setIncomingBlock(pred, MappedBlock);
444        } else {
445          PN->removeIncomingValue(pred, false);
446          --pred, --e;  // Revisit the next entry.
447        }
448      }
449    }
450
451    // The loop above has removed PHI entries for those blocks that are dead
452    // and has updated others.  However, if a block is live (i.e. copied over)
453    // but its terminator has been changed to not go to this block, then our
454    // phi nodes will have invalid entries.  Update the PHI nodes in this
455    // case.
456    PHINode *PN = cast<PHINode>(NewBB->begin());
457    NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
458    if (NumPreds != PN->getNumIncomingValues()) {
459      assert(NumPreds < PN->getNumIncomingValues());
460      // Count how many times each predecessor comes to this block.
461      std::map<BasicBlock*, unsigned> PredCount;
462      for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
463           PI != E; ++PI)
464        --PredCount[*PI];
465
466      // Figure out how many entries to remove from each PHI.
467      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
468        ++PredCount[PN->getIncomingBlock(i)];
469
470      // At this point, the excess predecessor entries are positive in the
471      // map.  Loop over all of the PHIs and remove excess predecessor
472      // entries.
473      BasicBlock::iterator I = NewBB->begin();
474      for (; (PN = dyn_cast<PHINode>(I)); ++I) {
475        for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
476             E = PredCount.end(); PCI != E; ++PCI) {
477          BasicBlock *Pred     = PCI->first;
478          for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
479            PN->removeIncomingValue(Pred, false);
480        }
481      }
482    }
483
484    // If the loops above have made these phi nodes have 0 or 1 operand,
485    // replace them with undef or the input value.  We must do this for
486    // correctness, because 0-operand phis are not valid.
487    PN = cast<PHINode>(NewBB->begin());
488    if (PN->getNumIncomingValues() == 0) {
489      BasicBlock::iterator I = NewBB->begin();
490      BasicBlock::const_iterator OldI = OldBB->begin();
491      while ((PN = dyn_cast<PHINode>(I++))) {
492        Value *NV = UndefValue::get(PN->getType());
493        PN->replaceAllUsesWith(NV);
494        assert(ValueMap[OldI] == PN && "ValueMap mismatch");
495        ValueMap[OldI] = NV;
496        PN->eraseFromParent();
497        ++OldI;
498      }
499    }
500    // NOTE: We cannot eliminate single entry phi nodes here, because of
501    // ValueMap.  Single entry phi nodes can have multiple ValueMap entries
502    // pointing at them.  Thus, deleting one would require scanning the ValueMap
503    // to update any entries in it that would require that.  This would be
504    // really slow.
505  }
506
507  // Now that the inlined function body has been fully constructed, go through
508  // and zap unconditional fall-through branches.  This happen all the time when
509  // specializing code: code specialization turns conditional branches into
510  // uncond branches, and this code folds them.
511  Function::iterator I = cast<BasicBlock>(ValueMap[&OldFunc->getEntryBlock()]);
512  while (I != NewFunc->end()) {
513    BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
514    if (!BI || BI->isConditional()) { ++I; continue; }
515
516    // Note that we can't eliminate uncond branches if the destination has
517    // single-entry PHI nodes.  Eliminating the single-entry phi nodes would
518    // require scanning the ValueMap to update any entries that point to the phi
519    // node.
520    BasicBlock *Dest = BI->getSuccessor(0);
521    if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) {
522      ++I; continue;
523    }
524
525    // We know all single-entry PHI nodes in the inlined function have been
526    // removed, so we just need to splice the blocks.
527    BI->eraseFromParent();
528
529    // Move all the instructions in the succ to the pred.
530    I->getInstList().splice(I->end(), Dest->getInstList());
531
532    // Make all PHI nodes that referred to Dest now refer to I as their source.
533    Dest->replaceAllUsesWith(I);
534
535    // Remove the dest block.
536    Dest->eraseFromParent();
537
538    // Do not increment I, iteratively merge all things this block branches to.
539  }
540}
541