CloneFunction.cpp revision ab6b226978644c438a3a7768a06dcd48509d000c
1//===- CloneFunction.cpp - Clone a function into another function ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CloneFunctionInto interface, which is used as the
11// low-level function cloner.  This is used by the CloneFunction and function
12// inliner to do the dirty work of copying the body of a function around.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/Cloning.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/IntrinsicInst.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Function.h"
23#include "llvm/Support/CFG.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Transforms/Utils/ValueMapper.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/ADT/SmallVector.h"
28#include <map>
29using namespace llvm;
30
31// CloneBasicBlock - See comments in Cloning.h
32BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
33                                  DenseMap<const Value*, Value*> &ValueMap,
34                                  const char *NameSuffix, Function *F,
35                                  ClonedCodeInfo *CodeInfo) {
36  BasicBlock *NewBB = BasicBlock::Create("", F);
37  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
38
39  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
40
41  // Loop over all instructions, and copy them over.
42  for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
43       II != IE; ++II) {
44    Instruction *NewInst = II->clone();
45    if (II->hasName())
46      NewInst->setName(II->getName()+NameSuffix);
47    NewBB->getInstList().push_back(NewInst);
48    ValueMap[II] = NewInst;                // Add instruction map to value.
49
50    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
51    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
52      if (isa<ConstantInt>(AI->getArraySize()))
53        hasStaticAllocas = true;
54      else
55        hasDynamicAllocas = true;
56    }
57  }
58
59  if (CodeInfo) {
60    CodeInfo->ContainsCalls          |= hasCalls;
61    CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(BB->getTerminator());
62    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
63    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
64                                        BB != &BB->getParent()->getEntryBlock();
65  }
66  return NewBB;
67}
68
69// Clone OldFunc into NewFunc, transforming the old arguments into references to
70// ArgMap values.
71//
72void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
73                             DenseMap<const Value*, Value*> &ValueMap,
74                             std::vector<ReturnInst*> &Returns,
75                             const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
76  assert(NameSuffix && "NameSuffix cannot be null!");
77
78#ifndef NDEBUG
79  for (Function::const_arg_iterator I = OldFunc->arg_begin(),
80       E = OldFunc->arg_end(); I != E; ++I)
81    assert(ValueMap.count(I) && "No mapping from source argument specified!");
82#endif
83
84  // Clone any attributes.
85  if (NewFunc->arg_size() == OldFunc->arg_size())
86    NewFunc->copyAttributesFrom(OldFunc);
87  else {
88    //Some arguments were deleted with the ValueMap. Copy arguments one by one
89    for (Function::const_arg_iterator I = OldFunc->arg_begin(),
90           E = OldFunc->arg_end(); I != E; ++I)
91      if (Argument* Anew = dyn_cast<Argument>(ValueMap[I]))
92        Anew->addAttr( OldFunc->getAttributes()
93                       .getParamAttributes(I->getArgNo() + 1));
94    NewFunc->setAttributes(NewFunc->getAttributes()
95                           .addAttr(0, OldFunc->getAttributes()
96                                     .getRetAttributes()));
97    NewFunc->setAttributes(NewFunc->getAttributes()
98                           .addAttr(~0, OldFunc->getAttributes()
99                                     .getFnAttributes()));
100
101  }
102
103  // Loop over all of the basic blocks in the function, cloning them as
104  // appropriate.  Note that we save BE this way in order to handle cloning of
105  // recursive functions into themselves.
106  //
107  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
108       BI != BE; ++BI) {
109    const BasicBlock &BB = *BI;
110
111    // Create a new basic block and copy instructions into it!
112    BasicBlock *CBB = CloneBasicBlock(&BB, ValueMap, NameSuffix, NewFunc,
113                                      CodeInfo);
114    ValueMap[&BB] = CBB;                       // Add basic block mapping.
115
116    if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
117      Returns.push_back(RI);
118  }
119
120  // Loop over all of the instructions in the function, fixing up operand
121  // references as we go.  This uses ValueMap to do all the hard work.
122  //
123  for (Function::iterator BB = cast<BasicBlock>(ValueMap[OldFunc->begin()]),
124         BE = NewFunc->end(); BB != BE; ++BB)
125    // Loop over all instructions, fixing each one as we find it...
126    for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
127      RemapInstruction(II, ValueMap);
128}
129
130/// CloneFunction - Return a copy of the specified function, but without
131/// embedding the function into another module.  Also, any references specified
132/// in the ValueMap are changed to refer to their mapped value instead of the
133/// original one.  If any of the arguments to the function are in the ValueMap,
134/// the arguments are deleted from the resultant function.  The ValueMap is
135/// updated to include mappings from all of the instructions and basicblocks in
136/// the function from their old to new values.
137///
138Function *llvm::CloneFunction(const Function *F,
139                              DenseMap<const Value*, Value*> &ValueMap,
140                              ClonedCodeInfo *CodeInfo) {
141  std::vector<const Type*> ArgTypes;
142
143  // The user might be deleting arguments to the function by specifying them in
144  // the ValueMap.  If so, we need to not add the arguments to the arg ty vector
145  //
146  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
147       I != E; ++I)
148    if (ValueMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
149      ArgTypes.push_back(I->getType());
150
151  // Create a new function type...
152  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
153                                    ArgTypes, F->getFunctionType()->isVarArg());
154
155  // Create the new function...
156  Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
157
158  // Loop over the arguments, copying the names of the mapped arguments over...
159  Function::arg_iterator DestI = NewF->arg_begin();
160  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
161       I != E; ++I)
162    if (ValueMap.count(I) == 0) {   // Is this argument preserved?
163      DestI->setName(I->getName()); // Copy the name over...
164      ValueMap[I] = DestI++;        // Add mapping to ValueMap
165    }
166
167  std::vector<ReturnInst*> Returns;  // Ignore returns cloned...
168  CloneFunctionInto(NewF, F, ValueMap, Returns, "", CodeInfo);
169  return NewF;
170}
171
172
173
174namespace {
175  /// PruningFunctionCloner - This class is a private class used to implement
176  /// the CloneAndPruneFunctionInto method.
177  struct VISIBILITY_HIDDEN PruningFunctionCloner {
178    Function *NewFunc;
179    const Function *OldFunc;
180    DenseMap<const Value*, Value*> &ValueMap;
181    std::vector<ReturnInst*> &Returns;
182    const char *NameSuffix;
183    ClonedCodeInfo *CodeInfo;
184    const TargetData *TD;
185    Value *DbgFnStart;
186  public:
187    PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
188                          DenseMap<const Value*, Value*> &valueMap,
189                          std::vector<ReturnInst*> &returns,
190                          const char *nameSuffix,
191                          ClonedCodeInfo *codeInfo,
192                          const TargetData *td)
193    : NewFunc(newFunc), OldFunc(oldFunc), ValueMap(valueMap), Returns(returns),
194      NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td), DbgFnStart(NULL) {
195    }
196
197    /// CloneBlock - The specified block is found to be reachable, clone it and
198    /// anything that it can reach.
199    void CloneBlock(const BasicBlock *BB,
200                    std::vector<const BasicBlock*> &ToClone);
201
202  public:
203    /// ConstantFoldMappedInstruction - Constant fold the specified instruction,
204    /// mapping its operands through ValueMap if they are available.
205    Constant *ConstantFoldMappedInstruction(const Instruction *I);
206  };
207}
208
209/// CloneBlock - The specified block is found to be reachable, clone it and
210/// anything that it can reach.
211void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
212                                       std::vector<const BasicBlock*> &ToClone){
213  Value *&BBEntry = ValueMap[BB];
214
215  // Have we already cloned this block?
216  if (BBEntry) return;
217
218  // Nope, clone it now.
219  BasicBlock *NewBB;
220  BBEntry = NewBB = BasicBlock::Create();
221  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
222
223  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
224
225  // Loop over all instructions, and copy them over, DCE'ing as we go.  This
226  // loop doesn't include the terminator.
227  for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
228       II != IE; ++II) {
229    // If this instruction constant folds, don't bother cloning the instruction,
230    // instead, just add the constant to the value map.
231    if (Constant *C = ConstantFoldMappedInstruction(II)) {
232      ValueMap[II] = C;
233      continue;
234    }
235
236    // Do not clone llvm.dbg.func.start and corresponding llvm.dbg.region.end.
237    if (const DbgFuncStartInst *DFSI = dyn_cast<DbgFuncStartInst>(II)) {
238      DbgFnStart = DFSI->getSubprogram();
239      continue;
240    }
241    if (const DbgRegionEndInst *DREIS = dyn_cast<DbgRegionEndInst>(II)) {
242      if (DREIS->getContext() == DbgFnStart)
243        continue;
244    }
245
246    Instruction *NewInst = II->clone();
247    if (II->hasName())
248      NewInst->setName(II->getName()+NameSuffix);
249    NewBB->getInstList().push_back(NewInst);
250    ValueMap[II] = NewInst;                // Add instruction map to value.
251
252    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
253    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
254      if (isa<ConstantInt>(AI->getArraySize()))
255        hasStaticAllocas = true;
256      else
257        hasDynamicAllocas = true;
258    }
259  }
260
261  // Finally, clone over the terminator.
262  const TerminatorInst *OldTI = BB->getTerminator();
263  bool TerminatorDone = false;
264  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
265    if (BI->isConditional()) {
266      // If the condition was a known constant in the callee...
267      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
268      // Or is a known constant in the caller...
269      if (Cond == 0)
270        Cond = dyn_cast_or_null<ConstantInt>(ValueMap[BI->getCondition()]);
271
272      // Constant fold to uncond branch!
273      if (Cond) {
274        BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
275        ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
276        ToClone.push_back(Dest);
277        TerminatorDone = true;
278      }
279    }
280  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
281    // If switching on a value known constant in the caller.
282    ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
283    if (Cond == 0)  // Or known constant after constant prop in the callee...
284      Cond = dyn_cast_or_null<ConstantInt>(ValueMap[SI->getCondition()]);
285    if (Cond) {     // Constant fold to uncond branch!
286      BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond));
287      ValueMap[OldTI] = BranchInst::Create(Dest, NewBB);
288      ToClone.push_back(Dest);
289      TerminatorDone = true;
290    }
291  }
292
293  if (!TerminatorDone) {
294    Instruction *NewInst = OldTI->clone();
295    if (OldTI->hasName())
296      NewInst->setName(OldTI->getName()+NameSuffix);
297    NewBB->getInstList().push_back(NewInst);
298    ValueMap[OldTI] = NewInst;             // Add instruction map to value.
299
300    // Recursively clone any reachable successor blocks.
301    const TerminatorInst *TI = BB->getTerminator();
302    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
303      ToClone.push_back(TI->getSuccessor(i));
304  }
305
306  if (CodeInfo) {
307    CodeInfo->ContainsCalls          |= hasCalls;
308    CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(OldTI);
309    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
310    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
311      BB != &BB->getParent()->front();
312  }
313
314  if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator()))
315    Returns.push_back(RI);
316}
317
318/// ConstantFoldMappedInstruction - Constant fold the specified instruction,
319/// mapping its operands through ValueMap if they are available.
320Constant *PruningFunctionCloner::
321ConstantFoldMappedInstruction(const Instruction *I) {
322  SmallVector<Constant*, 8> Ops;
323  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
324    if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i),
325                                                           ValueMap)))
326      Ops.push_back(Op);
327    else
328      return 0;  // All operands not constant!
329
330  if (const CmpInst *CI = dyn_cast<CmpInst>(I))
331    return ConstantFoldCompareInstOperands(CI->getPredicate(),
332                                           &Ops[0], Ops.size(), TD);
333
334  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
335    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
336      if (!LI->isVolatile() && CE->getOpcode() == Instruction::GetElementPtr)
337        if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
338          if (GV->isConstant() && !GV->isDeclaration() &&
339              !GV->mayBeOverridden())
340            return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(),
341                                                          CE);
342
343  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), &Ops[0],
344                                  Ops.size(), TD);
345}
346
347/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
348/// except that it does some simple constant prop and DCE on the fly.  The
349/// effect of this is to copy significantly less code in cases where (for
350/// example) a function call with constant arguments is inlined, and those
351/// constant arguments cause a significant amount of code in the callee to be
352/// dead.  Since this doesn't produce an exact copy of the input, it can't be
353/// used for things like CloneFunction or CloneModule.
354void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
355                                     DenseMap<const Value*, Value*> &ValueMap,
356                                     std::vector<ReturnInst*> &Returns,
357                                     const char *NameSuffix,
358                                     ClonedCodeInfo *CodeInfo,
359                                     const TargetData *TD) {
360  assert(NameSuffix && "NameSuffix cannot be null!");
361
362#ifndef NDEBUG
363  for (Function::const_arg_iterator II = OldFunc->arg_begin(),
364       E = OldFunc->arg_end(); II != E; ++II)
365    assert(ValueMap.count(II) && "No mapping from source argument specified!");
366#endif
367
368  PruningFunctionCloner PFC(NewFunc, OldFunc, ValueMap, Returns,
369                            NameSuffix, CodeInfo, TD);
370
371  // Clone the entry block, and anything recursively reachable from it.
372  std::vector<const BasicBlock*> CloneWorklist;
373  CloneWorklist.push_back(&OldFunc->getEntryBlock());
374  while (!CloneWorklist.empty()) {
375    const BasicBlock *BB = CloneWorklist.back();
376    CloneWorklist.pop_back();
377    PFC.CloneBlock(BB, CloneWorklist);
378  }
379
380  // Loop over all of the basic blocks in the old function.  If the block was
381  // reachable, we have cloned it and the old block is now in the value map:
382  // insert it into the new function in the right order.  If not, ignore it.
383  //
384  // Defer PHI resolution until rest of function is resolved.
385  std::vector<const PHINode*> PHIToResolve;
386  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
387       BI != BE; ++BI) {
388    BasicBlock *NewBB = cast_or_null<BasicBlock>(ValueMap[BI]);
389    if (NewBB == 0) continue;  // Dead block.
390
391    // Add the new block to the new function.
392    NewFunc->getBasicBlockList().push_back(NewBB);
393
394    // Loop over all of the instructions in the block, fixing up operand
395    // references as we go.  This uses ValueMap to do all the hard work.
396    //
397    BasicBlock::iterator I = NewBB->begin();
398
399    // Handle PHI nodes specially, as we have to remove references to dead
400    // blocks.
401    if (PHINode *PN = dyn_cast<PHINode>(I)) {
402      // Skip over all PHI nodes, remembering them for later.
403      BasicBlock::const_iterator OldI = BI->begin();
404      for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI)
405        PHIToResolve.push_back(cast<PHINode>(OldI));
406    }
407
408    // Otherwise, remap the rest of the instructions normally.
409    for (; I != NewBB->end(); ++I)
410      RemapInstruction(I, ValueMap);
411  }
412
413  // Defer PHI resolution until rest of function is resolved, PHI resolution
414  // requires the CFG to be up-to-date.
415  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
416    const PHINode *OPN = PHIToResolve[phino];
417    unsigned NumPreds = OPN->getNumIncomingValues();
418    const BasicBlock *OldBB = OPN->getParent();
419    BasicBlock *NewBB = cast<BasicBlock>(ValueMap[OldBB]);
420
421    // Map operands for blocks that are live and remove operands for blocks
422    // that are dead.
423    for (; phino != PHIToResolve.size() &&
424         PHIToResolve[phino]->getParent() == OldBB; ++phino) {
425      OPN = PHIToResolve[phino];
426      PHINode *PN = cast<PHINode>(ValueMap[OPN]);
427      for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
428        if (BasicBlock *MappedBlock =
429            cast_or_null<BasicBlock>(ValueMap[PN->getIncomingBlock(pred)])) {
430          Value *InVal = MapValue(PN->getIncomingValue(pred), ValueMap);
431          assert(InVal && "Unknown input value?");
432          PN->setIncomingValue(pred, InVal);
433          PN->setIncomingBlock(pred, MappedBlock);
434        } else {
435          PN->removeIncomingValue(pred, false);
436          --pred, --e;  // Revisit the next entry.
437        }
438      }
439    }
440
441    // The loop above has removed PHI entries for those blocks that are dead
442    // and has updated others.  However, if a block is live (i.e. copied over)
443    // but its terminator has been changed to not go to this block, then our
444    // phi nodes will have invalid entries.  Update the PHI nodes in this
445    // case.
446    PHINode *PN = cast<PHINode>(NewBB->begin());
447    NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
448    if (NumPreds != PN->getNumIncomingValues()) {
449      assert(NumPreds < PN->getNumIncomingValues());
450      // Count how many times each predecessor comes to this block.
451      std::map<BasicBlock*, unsigned> PredCount;
452      for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
453           PI != E; ++PI)
454        --PredCount[*PI];
455
456      // Figure out how many entries to remove from each PHI.
457      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
458        ++PredCount[PN->getIncomingBlock(i)];
459
460      // At this point, the excess predecessor entries are positive in the
461      // map.  Loop over all of the PHIs and remove excess predecessor
462      // entries.
463      BasicBlock::iterator I = NewBB->begin();
464      for (; (PN = dyn_cast<PHINode>(I)); ++I) {
465        for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
466             E = PredCount.end(); PCI != E; ++PCI) {
467          BasicBlock *Pred     = PCI->first;
468          for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
469            PN->removeIncomingValue(Pred, false);
470        }
471      }
472    }
473
474    // If the loops above have made these phi nodes have 0 or 1 operand,
475    // replace them with undef or the input value.  We must do this for
476    // correctness, because 0-operand phis are not valid.
477    PN = cast<PHINode>(NewBB->begin());
478    if (PN->getNumIncomingValues() == 0) {
479      BasicBlock::iterator I = NewBB->begin();
480      BasicBlock::const_iterator OldI = OldBB->begin();
481      while ((PN = dyn_cast<PHINode>(I++))) {
482        Value *NV = UndefValue::get(PN->getType());
483        PN->replaceAllUsesWith(NV);
484        assert(ValueMap[OldI] == PN && "ValueMap mismatch");
485        ValueMap[OldI] = NV;
486        PN->eraseFromParent();
487        ++OldI;
488      }
489    }
490    // NOTE: We cannot eliminate single entry phi nodes here, because of
491    // ValueMap.  Single entry phi nodes can have multiple ValueMap entries
492    // pointing at them.  Thus, deleting one would require scanning the ValueMap
493    // to update any entries in it that would require that.  This would be
494    // really slow.
495  }
496
497  // Now that the inlined function body has been fully constructed, go through
498  // and zap unconditional fall-through branches.  This happen all the time when
499  // specializing code: code specialization turns conditional branches into
500  // uncond branches, and this code folds them.
501  Function::iterator I = cast<BasicBlock>(ValueMap[&OldFunc->getEntryBlock()]);
502  while (I != NewFunc->end()) {
503    BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
504    if (!BI || BI->isConditional()) { ++I; continue; }
505
506    // Note that we can't eliminate uncond branches if the destination has
507    // single-entry PHI nodes.  Eliminating the single-entry phi nodes would
508    // require scanning the ValueMap to update any entries that point to the phi
509    // node.
510    BasicBlock *Dest = BI->getSuccessor(0);
511    if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) {
512      ++I; continue;
513    }
514
515    // We know all single-entry PHI nodes in the inlined function have been
516    // removed, so we just need to splice the blocks.
517    BI->eraseFromParent();
518
519    // Move all the instructions in the succ to the pred.
520    I->getInstList().splice(I->end(), Dest->getInstList());
521
522    // Make all PHI nodes that referred to Dest now refer to I as their source.
523    Dest->replaceAllUsesWith(I);
524
525    // Remove the dest block.
526    Dest->eraseFromParent();
527
528    // Do not increment I, iteratively merge all things this block branches to.
529  }
530}
531