CloneFunction.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- CloneFunction.cpp - Clone a function into another function ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CloneFunctionInto interface, which is used as the
11// low-level function cloner.  This is used by the CloneFunction and function
12// inliner to do the dirty work of copying the body of a function around.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/Cloning.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Analysis/ConstantFolding.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/IR/CFG.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/DebugInfo.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/Function.h"
25#include "llvm/IR/GlobalVariable.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/Metadata.h"
30#include "llvm/IR/Module.h"
31#include "llvm/Transforms/Utils/BasicBlockUtils.h"
32#include "llvm/Transforms/Utils/Local.h"
33#include "llvm/Transforms/Utils/ValueMapper.h"
34#include <map>
35using namespace llvm;
36
37// CloneBasicBlock - See comments in Cloning.h
38BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
39                                  ValueToValueMapTy &VMap,
40                                  const Twine &NameSuffix, Function *F,
41                                  ClonedCodeInfo *CodeInfo) {
42  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
43  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
44
45  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
46
47  // Loop over all instructions, and copy them over.
48  for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
49       II != IE; ++II) {
50    Instruction *NewInst = II->clone();
51    if (II->hasName())
52      NewInst->setName(II->getName()+NameSuffix);
53    NewBB->getInstList().push_back(NewInst);
54    VMap[II] = NewInst;                // Add instruction map to value.
55
56    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
57    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
58      if (isa<ConstantInt>(AI->getArraySize()))
59        hasStaticAllocas = true;
60      else
61        hasDynamicAllocas = true;
62    }
63  }
64
65  if (CodeInfo) {
66    CodeInfo->ContainsCalls          |= hasCalls;
67    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
68    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
69                                        BB != &BB->getParent()->getEntryBlock();
70  }
71  return NewBB;
72}
73
74// Clone OldFunc into NewFunc, transforming the old arguments into references to
75// VMap values.
76//
77void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
78                             ValueToValueMapTy &VMap,
79                             bool ModuleLevelChanges,
80                             SmallVectorImpl<ReturnInst*> &Returns,
81                             const char *NameSuffix, ClonedCodeInfo *CodeInfo,
82                             ValueMapTypeRemapper *TypeMapper,
83                             ValueMaterializer *Materializer) {
84  assert(NameSuffix && "NameSuffix cannot be null!");
85
86#ifndef NDEBUG
87  for (Function::const_arg_iterator I = OldFunc->arg_begin(),
88       E = OldFunc->arg_end(); I != E; ++I)
89    assert(VMap.count(I) && "No mapping from source argument specified!");
90#endif
91
92  // Copy all attributes other than those stored in the AttributeSet.  We need
93  // to remap the parameter indices of the AttributeSet.
94  AttributeSet NewAttrs = NewFunc->getAttributes();
95  NewFunc->copyAttributesFrom(OldFunc);
96  NewFunc->setAttributes(NewAttrs);
97
98  AttributeSet OldAttrs = OldFunc->getAttributes();
99  // Clone any argument attributes that are present in the VMap.
100  for (const Argument &OldArg : OldFunc->args())
101    if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
102      AttributeSet attrs =
103          OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
104      if (attrs.getNumSlots() > 0)
105        NewArg->addAttr(attrs);
106    }
107
108  NewFunc->setAttributes(
109      NewFunc->getAttributes()
110          .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex,
111                         OldAttrs.getRetAttributes())
112          .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex,
113                         OldAttrs.getFnAttributes()));
114
115  // Loop over all of the basic blocks in the function, cloning them as
116  // appropriate.  Note that we save BE this way in order to handle cloning of
117  // recursive functions into themselves.
118  //
119  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
120       BI != BE; ++BI) {
121    const BasicBlock &BB = *BI;
122
123    // Create a new basic block and copy instructions into it!
124    BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
125
126    // Add basic block mapping.
127    VMap[&BB] = CBB;
128
129    // It is only legal to clone a function if a block address within that
130    // function is never referenced outside of the function.  Given that, we
131    // want to map block addresses from the old function to block addresses in
132    // the clone. (This is different from the generic ValueMapper
133    // implementation, which generates an invalid blockaddress when
134    // cloning a function.)
135    if (BB.hasAddressTaken()) {
136      Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
137                                              const_cast<BasicBlock*>(&BB));
138      VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
139    }
140
141    // Note return instructions for the caller.
142    if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
143      Returns.push_back(RI);
144  }
145
146  // Loop over all of the instructions in the function, fixing up operand
147  // references as we go.  This uses VMap to do all the hard work.
148  for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
149         BE = NewFunc->end(); BB != BE; ++BB)
150    // Loop over all instructions, fixing each one as we find it...
151    for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
152      RemapInstruction(II, VMap,
153                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
154                       TypeMapper, Materializer);
155}
156
157// Find the MDNode which corresponds to the DISubprogram data that described F.
158static MDNode* FindSubprogram(const Function *F, DebugInfoFinder &Finder) {
159  for (DISubprogram Subprogram : Finder.subprograms()) {
160    if (Subprogram.describes(F)) return Subprogram;
161  }
162  return nullptr;
163}
164
165// Add an operand to an existing MDNode. The new operand will be added at the
166// back of the operand list.
167static void AddOperand(MDNode *Node, Value *Operand) {
168  SmallVector<Value*, 16> Operands;
169  for (unsigned i = 0; i < Node->getNumOperands(); i++) {
170    Operands.push_back(Node->getOperand(i));
171  }
172  Operands.push_back(Operand);
173  MDNode *NewNode = MDNode::get(Node->getContext(), Operands);
174  Node->replaceAllUsesWith(NewNode);
175}
176
177// Clone the module-level debug info associated with OldFunc. The cloned data
178// will point to NewFunc instead.
179static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc,
180                            ValueToValueMapTy &VMap) {
181  DebugInfoFinder Finder;
182  Finder.processModule(*OldFunc->getParent());
183
184  const MDNode *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder);
185  if (!OldSubprogramMDNode) return;
186
187  // Ensure that OldFunc appears in the map.
188  // (if it's already there it must point to NewFunc anyway)
189  VMap[OldFunc] = NewFunc;
190  DISubprogram NewSubprogram(MapValue(OldSubprogramMDNode, VMap));
191
192  for (DICompileUnit CU : Finder.compile_units()) {
193    DIArray Subprograms(CU.getSubprograms());
194
195    // If the compile unit's function list contains the old function, it should
196    // also contain the new one.
197    for (unsigned i = 0; i < Subprograms.getNumElements(); i++) {
198      if ((MDNode*)Subprograms.getElement(i) == OldSubprogramMDNode) {
199        AddOperand(Subprograms, NewSubprogram);
200      }
201    }
202  }
203}
204
205/// CloneFunction - Return a copy of the specified function, but without
206/// embedding the function into another module.  Also, any references specified
207/// in the VMap are changed to refer to their mapped value instead of the
208/// original one.  If any of the arguments to the function are in the VMap,
209/// the arguments are deleted from the resultant function.  The VMap is
210/// updated to include mappings from all of the instructions and basicblocks in
211/// the function from their old to new values.
212///
213Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
214                              bool ModuleLevelChanges,
215                              ClonedCodeInfo *CodeInfo) {
216  std::vector<Type*> ArgTypes;
217
218  // The user might be deleting arguments to the function by specifying them in
219  // the VMap.  If so, we need to not add the arguments to the arg ty vector
220  //
221  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
222       I != E; ++I)
223    if (VMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
224      ArgTypes.push_back(I->getType());
225
226  // Create a new function type...
227  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
228                                    ArgTypes, F->getFunctionType()->isVarArg());
229
230  // Create the new function...
231  Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
232
233  // Loop over the arguments, copying the names of the mapped arguments over...
234  Function::arg_iterator DestI = NewF->arg_begin();
235  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
236       I != E; ++I)
237    if (VMap.count(I) == 0) {   // Is this argument preserved?
238      DestI->setName(I->getName()); // Copy the name over...
239      VMap[I] = DestI++;        // Add mapping to VMap
240    }
241
242  if (ModuleLevelChanges)
243    CloneDebugInfoMetadata(NewF, F, VMap);
244
245  SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
246  CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
247  return NewF;
248}
249
250
251
252namespace {
253  /// PruningFunctionCloner - This class is a private class used to implement
254  /// the CloneAndPruneFunctionInto method.
255  struct PruningFunctionCloner {
256    Function *NewFunc;
257    const Function *OldFunc;
258    ValueToValueMapTy &VMap;
259    bool ModuleLevelChanges;
260    const char *NameSuffix;
261    ClonedCodeInfo *CodeInfo;
262    const DataLayout *DL;
263  public:
264    PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
265                          ValueToValueMapTy &valueMap,
266                          bool moduleLevelChanges,
267                          const char *nameSuffix,
268                          ClonedCodeInfo *codeInfo,
269                          const DataLayout *DL)
270    : NewFunc(newFunc), OldFunc(oldFunc),
271      VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
272      NameSuffix(nameSuffix), CodeInfo(codeInfo), DL(DL) {
273    }
274
275    /// CloneBlock - The specified block is found to be reachable, clone it and
276    /// anything that it can reach.
277    void CloneBlock(const BasicBlock *BB,
278                    std::vector<const BasicBlock*> &ToClone);
279  };
280}
281
282/// CloneBlock - The specified block is found to be reachable, clone it and
283/// anything that it can reach.
284void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
285                                       std::vector<const BasicBlock*> &ToClone){
286  WeakVH &BBEntry = VMap[BB];
287
288  // Have we already cloned this block?
289  if (BBEntry) return;
290
291  // Nope, clone it now.
292  BasicBlock *NewBB;
293  BBEntry = NewBB = BasicBlock::Create(BB->getContext());
294  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
295
296  // It is only legal to clone a function if a block address within that
297  // function is never referenced outside of the function.  Given that, we
298  // want to map block addresses from the old function to block addresses in
299  // the clone. (This is different from the generic ValueMapper
300  // implementation, which generates an invalid blockaddress when
301  // cloning a function.)
302  //
303  // Note that we don't need to fix the mapping for unreachable blocks;
304  // the default mapping there is safe.
305  if (BB->hasAddressTaken()) {
306    Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
307                                            const_cast<BasicBlock*>(BB));
308    VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
309  }
310
311
312  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
313
314  // Loop over all instructions, and copy them over, DCE'ing as we go.  This
315  // loop doesn't include the terminator.
316  for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
317       II != IE; ++II) {
318    Instruction *NewInst = II->clone();
319
320    // Eagerly remap operands to the newly cloned instruction, except for PHI
321    // nodes for which we defer processing until we update the CFG.
322    if (!isa<PHINode>(NewInst)) {
323      RemapInstruction(NewInst, VMap,
324                       ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
325
326      // If we can simplify this instruction to some other value, simply add
327      // a mapping to that value rather than inserting a new instruction into
328      // the basic block.
329      if (Value *V = SimplifyInstruction(NewInst, DL)) {
330        // On the off-chance that this simplifies to an instruction in the old
331        // function, map it back into the new function.
332        if (Value *MappedV = VMap.lookup(V))
333          V = MappedV;
334
335        VMap[II] = V;
336        delete NewInst;
337        continue;
338      }
339    }
340
341    if (II->hasName())
342      NewInst->setName(II->getName()+NameSuffix);
343    VMap[II] = NewInst;                // Add instruction map to value.
344    NewBB->getInstList().push_back(NewInst);
345    hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
346    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
347      if (isa<ConstantInt>(AI->getArraySize()))
348        hasStaticAllocas = true;
349      else
350        hasDynamicAllocas = true;
351    }
352  }
353
354  // Finally, clone over the terminator.
355  const TerminatorInst *OldTI = BB->getTerminator();
356  bool TerminatorDone = false;
357  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
358    if (BI->isConditional()) {
359      // If the condition was a known constant in the callee...
360      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
361      // Or is a known constant in the caller...
362      if (!Cond) {
363        Value *V = VMap[BI->getCondition()];
364        Cond = dyn_cast_or_null<ConstantInt>(V);
365      }
366
367      // Constant fold to uncond branch!
368      if (Cond) {
369        BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
370        VMap[OldTI] = BranchInst::Create(Dest, NewBB);
371        ToClone.push_back(Dest);
372        TerminatorDone = true;
373      }
374    }
375  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
376    // If switching on a value known constant in the caller.
377    ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
378    if (!Cond) { // Or known constant after constant prop in the callee...
379      Value *V = VMap[SI->getCondition()];
380      Cond = dyn_cast_or_null<ConstantInt>(V);
381    }
382    if (Cond) {     // Constant fold to uncond branch!
383      SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
384      BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
385      VMap[OldTI] = BranchInst::Create(Dest, NewBB);
386      ToClone.push_back(Dest);
387      TerminatorDone = true;
388    }
389  }
390
391  if (!TerminatorDone) {
392    Instruction *NewInst = OldTI->clone();
393    if (OldTI->hasName())
394      NewInst->setName(OldTI->getName()+NameSuffix);
395    NewBB->getInstList().push_back(NewInst);
396    VMap[OldTI] = NewInst;             // Add instruction map to value.
397
398    // Recursively clone any reachable successor blocks.
399    const TerminatorInst *TI = BB->getTerminator();
400    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
401      ToClone.push_back(TI->getSuccessor(i));
402  }
403
404  if (CodeInfo) {
405    CodeInfo->ContainsCalls          |= hasCalls;
406    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
407    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
408      BB != &BB->getParent()->front();
409  }
410}
411
412/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
413/// except that it does some simple constant prop and DCE on the fly.  The
414/// effect of this is to copy significantly less code in cases where (for
415/// example) a function call with constant arguments is inlined, and those
416/// constant arguments cause a significant amount of code in the callee to be
417/// dead.  Since this doesn't produce an exact copy of the input, it can't be
418/// used for things like CloneFunction or CloneModule.
419void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
420                                     ValueToValueMapTy &VMap,
421                                     bool ModuleLevelChanges,
422                                     SmallVectorImpl<ReturnInst*> &Returns,
423                                     const char *NameSuffix,
424                                     ClonedCodeInfo *CodeInfo,
425                                     const DataLayout *DL,
426                                     Instruction *TheCall) {
427  assert(NameSuffix && "NameSuffix cannot be null!");
428
429#ifndef NDEBUG
430  for (Function::const_arg_iterator II = OldFunc->arg_begin(),
431       E = OldFunc->arg_end(); II != E; ++II)
432    assert(VMap.count(II) && "No mapping from source argument specified!");
433#endif
434
435  PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
436                            NameSuffix, CodeInfo, DL);
437
438  // Clone the entry block, and anything recursively reachable from it.
439  std::vector<const BasicBlock*> CloneWorklist;
440  CloneWorklist.push_back(&OldFunc->getEntryBlock());
441  while (!CloneWorklist.empty()) {
442    const BasicBlock *BB = CloneWorklist.back();
443    CloneWorklist.pop_back();
444    PFC.CloneBlock(BB, CloneWorklist);
445  }
446
447  // Loop over all of the basic blocks in the old function.  If the block was
448  // reachable, we have cloned it and the old block is now in the value map:
449  // insert it into the new function in the right order.  If not, ignore it.
450  //
451  // Defer PHI resolution until rest of function is resolved.
452  SmallVector<const PHINode*, 16> PHIToResolve;
453  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
454       BI != BE; ++BI) {
455    Value *V = VMap[BI];
456    BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
457    if (!NewBB) continue;  // Dead block.
458
459    // Add the new block to the new function.
460    NewFunc->getBasicBlockList().push_back(NewBB);
461
462    // Handle PHI nodes specially, as we have to remove references to dead
463    // blocks.
464    for (BasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I)
465      if (const PHINode *PN = dyn_cast<PHINode>(I))
466        PHIToResolve.push_back(PN);
467      else
468        break;
469
470    // Finally, remap the terminator instructions, as those can't be remapped
471    // until all BBs are mapped.
472    RemapInstruction(NewBB->getTerminator(), VMap,
473                     ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
474  }
475
476  // Defer PHI resolution until rest of function is resolved, PHI resolution
477  // requires the CFG to be up-to-date.
478  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
479    const PHINode *OPN = PHIToResolve[phino];
480    unsigned NumPreds = OPN->getNumIncomingValues();
481    const BasicBlock *OldBB = OPN->getParent();
482    BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
483
484    // Map operands for blocks that are live and remove operands for blocks
485    // that are dead.
486    for (; phino != PHIToResolve.size() &&
487         PHIToResolve[phino]->getParent() == OldBB; ++phino) {
488      OPN = PHIToResolve[phino];
489      PHINode *PN = cast<PHINode>(VMap[OPN]);
490      for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
491        Value *V = VMap[PN->getIncomingBlock(pred)];
492        if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
493          Value *InVal = MapValue(PN->getIncomingValue(pred),
494                                  VMap,
495                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
496          assert(InVal && "Unknown input value?");
497          PN->setIncomingValue(pred, InVal);
498          PN->setIncomingBlock(pred, MappedBlock);
499        } else {
500          PN->removeIncomingValue(pred, false);
501          --pred, --e;  // Revisit the next entry.
502        }
503      }
504    }
505
506    // The loop above has removed PHI entries for those blocks that are dead
507    // and has updated others.  However, if a block is live (i.e. copied over)
508    // but its terminator has been changed to not go to this block, then our
509    // phi nodes will have invalid entries.  Update the PHI nodes in this
510    // case.
511    PHINode *PN = cast<PHINode>(NewBB->begin());
512    NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
513    if (NumPreds != PN->getNumIncomingValues()) {
514      assert(NumPreds < PN->getNumIncomingValues());
515      // Count how many times each predecessor comes to this block.
516      std::map<BasicBlock*, unsigned> PredCount;
517      for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
518           PI != E; ++PI)
519        --PredCount[*PI];
520
521      // Figure out how many entries to remove from each PHI.
522      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
523        ++PredCount[PN->getIncomingBlock(i)];
524
525      // At this point, the excess predecessor entries are positive in the
526      // map.  Loop over all of the PHIs and remove excess predecessor
527      // entries.
528      BasicBlock::iterator I = NewBB->begin();
529      for (; (PN = dyn_cast<PHINode>(I)); ++I) {
530        for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
531             E = PredCount.end(); PCI != E; ++PCI) {
532          BasicBlock *Pred     = PCI->first;
533          for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
534            PN->removeIncomingValue(Pred, false);
535        }
536      }
537    }
538
539    // If the loops above have made these phi nodes have 0 or 1 operand,
540    // replace them with undef or the input value.  We must do this for
541    // correctness, because 0-operand phis are not valid.
542    PN = cast<PHINode>(NewBB->begin());
543    if (PN->getNumIncomingValues() == 0) {
544      BasicBlock::iterator I = NewBB->begin();
545      BasicBlock::const_iterator OldI = OldBB->begin();
546      while ((PN = dyn_cast<PHINode>(I++))) {
547        Value *NV = UndefValue::get(PN->getType());
548        PN->replaceAllUsesWith(NV);
549        assert(VMap[OldI] == PN && "VMap mismatch");
550        VMap[OldI] = NV;
551        PN->eraseFromParent();
552        ++OldI;
553      }
554    }
555  }
556
557  // Make a second pass over the PHINodes now that all of them have been
558  // remapped into the new function, simplifying the PHINode and performing any
559  // recursive simplifications exposed. This will transparently update the
560  // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
561  // two PHINodes, the iteration over the old PHIs remains valid, and the
562  // mapping will just map us to the new node (which may not even be a PHI
563  // node).
564  for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
565    if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
566      recursivelySimplifyInstruction(PN, DL);
567
568  // Now that the inlined function body has been fully constructed, go through
569  // and zap unconditional fall-through branches.  This happen all the time when
570  // specializing code: code specialization turns conditional branches into
571  // uncond branches, and this code folds them.
572  Function::iterator Begin = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]);
573  Function::iterator I = Begin;
574  while (I != NewFunc->end()) {
575    // Check if this block has become dead during inlining or other
576    // simplifications. Note that the first block will appear dead, as it has
577    // not yet been wired up properly.
578    if (I != Begin && (pred_begin(I) == pred_end(I) ||
579                       I->getSinglePredecessor() == I)) {
580      BasicBlock *DeadBB = I++;
581      DeleteDeadBlock(DeadBB);
582      continue;
583    }
584
585    // We need to simplify conditional branches and switches with a constant
586    // operand. We try to prune these out when cloning, but if the
587    // simplification required looking through PHI nodes, those are only
588    // available after forming the full basic block. That may leave some here,
589    // and we still want to prune the dead code as early as possible.
590    ConstantFoldTerminator(I);
591
592    BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
593    if (!BI || BI->isConditional()) { ++I; continue; }
594
595    BasicBlock *Dest = BI->getSuccessor(0);
596    if (!Dest->getSinglePredecessor()) {
597      ++I; continue;
598    }
599
600    // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
601    // above should have zapped all of them..
602    assert(!isa<PHINode>(Dest->begin()));
603
604    // We know all single-entry PHI nodes in the inlined function have been
605    // removed, so we just need to splice the blocks.
606    BI->eraseFromParent();
607
608    // Make all PHI nodes that referred to Dest now refer to I as their source.
609    Dest->replaceAllUsesWith(I);
610
611    // Move all the instructions in the succ to the pred.
612    I->getInstList().splice(I->end(), Dest->getInstList());
613
614    // Remove the dest block.
615    Dest->eraseFromParent();
616
617    // Do not increment I, iteratively merge all things this block branches to.
618  }
619
620  // Make a final pass over the basic blocks from theh old function to gather
621  // any return instructions which survived folding. We have to do this here
622  // because we can iteratively remove and merge returns above.
623  for (Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]),
624                          E = NewFunc->end();
625       I != E; ++I)
626    if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
627      Returns.push_back(RI);
628}
629