CloneFunction.cpp revision ecb7a77885b174cf4d001a9b48533b3979e7810d
1//===- CloneFunction.cpp - Clone a function into another function ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CloneFunctionInto interface, which is used as the
11// low-level function cloner.  This is used by the CloneFunction and function
12// inliner to do the dirty work of copying the body of a function around.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/Utils/Cloning.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Instructions.h"
20#include "llvm/Function.h"
21#include "llvm/Support/CFG.h"
22#include "llvm/Support/Compiler.h"
23#include "ValueMapper.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/ADT/SmallVector.h"
26#include <map>
27using namespace llvm;
28
29// CloneBasicBlock - See comments in Cloning.h
30BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
31                                  DenseMap<const Value*, Value*> &ValueMap,
32                                  const char *NameSuffix, Function *F,
33                                  ClonedCodeInfo *CodeInfo) {
34  BasicBlock *NewBB = new BasicBlock("", F);
35  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
36
37  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
38
39  // Loop over all instructions, and copy them over.
40  for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
41       II != IE; ++II) {
42    Instruction *NewInst = II->clone();
43    if (II->hasName())
44      NewInst->setName(II->getName()+NameSuffix);
45    NewBB->getInstList().push_back(NewInst);
46    ValueMap[II] = NewInst;                // Add instruction map to value.
47
48    hasCalls |= isa<CallInst>(II);
49    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
50      if (isa<ConstantInt>(AI->getArraySize()))
51        hasStaticAllocas = true;
52      else
53        hasDynamicAllocas = true;
54    }
55  }
56
57  if (CodeInfo) {
58    CodeInfo->ContainsCalls          |= hasCalls;
59    CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(BB->getTerminator());
60    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
61    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
62                                        BB != &BB->getParent()->getEntryBlock();
63  }
64  return NewBB;
65}
66
67// Clone OldFunc into NewFunc, transforming the old arguments into references to
68// ArgMap values.
69//
70void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
71                             DenseMap<const Value*, Value*> &ValueMap,
72                             std::vector<ReturnInst*> &Returns,
73                             const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
74  assert(NameSuffix && "NameSuffix cannot be null!");
75
76#ifndef NDEBUG
77  for (Function::const_arg_iterator I = OldFunc->arg_begin(),
78       E = OldFunc->arg_end(); I != E; ++I)
79    assert(ValueMap.count(I) && "No mapping from source argument specified!");
80#endif
81
82  // Loop over all of the basic blocks in the function, cloning them as
83  // appropriate.  Note that we save BE this way in order to handle cloning of
84  // recursive functions into themselves.
85  //
86  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
87       BI != BE; ++BI) {
88    const BasicBlock &BB = *BI;
89
90    // Create a new basic block and copy instructions into it!
91    BasicBlock *CBB = CloneBasicBlock(&BB, ValueMap, NameSuffix, NewFunc,
92                                      CodeInfo);
93    ValueMap[&BB] = CBB;                       // Add basic block mapping.
94
95    if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
96      Returns.push_back(RI);
97  }
98
99  // Loop over all of the instructions in the function, fixing up operand
100  // references as we go.  This uses ValueMap to do all the hard work.
101  //
102  for (Function::iterator BB = cast<BasicBlock>(ValueMap[OldFunc->begin()]),
103         BE = NewFunc->end(); BB != BE; ++BB)
104    // Loop over all instructions, fixing each one as we find it...
105    for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
106      RemapInstruction(II, ValueMap);
107}
108
109/// CloneFunction - Return a copy of the specified function, but without
110/// embedding the function into another module.  Also, any references specified
111/// in the ValueMap are changed to refer to their mapped value instead of the
112/// original one.  If any of the arguments to the function are in the ValueMap,
113/// the arguments are deleted from the resultant function.  The ValueMap is
114/// updated to include mappings from all of the instructions and basicblocks in
115/// the function from their old to new values.
116///
117Function *llvm::CloneFunction(const Function *F,
118                              DenseMap<const Value*, Value*> &ValueMap,
119                              ClonedCodeInfo *CodeInfo) {
120  std::vector<const Type*> ArgTypes;
121
122  // The user might be deleting arguments to the function by specifying them in
123  // the ValueMap.  If so, we need to not add the arguments to the arg ty vector
124  //
125  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
126       I != E; ++I)
127    if (ValueMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
128      ArgTypes.push_back(I->getType());
129
130  // Create a new function type...
131  FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
132                                    ArgTypes, F->getFunctionType()->isVarArg());
133
134  // Create the new function...
135  Function *NewF = new Function(FTy, F->getLinkage(), F->getName());
136
137  // Loop over the arguments, copying the names of the mapped arguments over...
138  Function::arg_iterator DestI = NewF->arg_begin();
139  for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
140       I != E; ++I)
141    if (ValueMap.count(I) == 0) {   // Is this argument preserved?
142      DestI->setName(I->getName()); // Copy the name over...
143      ValueMap[I] = DestI++;        // Add mapping to ValueMap
144    }
145
146  std::vector<ReturnInst*> Returns;  // Ignore returns cloned...
147  CloneFunctionInto(NewF, F, ValueMap, Returns, "", CodeInfo);
148  return NewF;
149}
150
151
152
153namespace {
154  /// PruningFunctionCloner - This class is a private class used to implement
155  /// the CloneAndPruneFunctionInto method.
156  struct VISIBILITY_HIDDEN PruningFunctionCloner {
157    Function *NewFunc;
158    const Function *OldFunc;
159    DenseMap<const Value*, Value*> &ValueMap;
160    std::vector<ReturnInst*> &Returns;
161    const char *NameSuffix;
162    ClonedCodeInfo *CodeInfo;
163    const TargetData *TD;
164
165  public:
166    PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
167                          DenseMap<const Value*, Value*> &valueMap,
168                          std::vector<ReturnInst*> &returns,
169                          const char *nameSuffix,
170                          ClonedCodeInfo *codeInfo,
171                          const TargetData *td)
172    : NewFunc(newFunc), OldFunc(oldFunc), ValueMap(valueMap), Returns(returns),
173      NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
174    }
175
176    /// CloneBlock - The specified block is found to be reachable, clone it and
177    /// anything that it can reach.
178    void CloneBlock(const BasicBlock *BB,
179                    std::vector<const BasicBlock*> &ToClone);
180
181  public:
182    /// ConstantFoldMappedInstruction - Constant fold the specified instruction,
183    /// mapping its operands through ValueMap if they are available.
184    Constant *ConstantFoldMappedInstruction(const Instruction *I);
185  };
186}
187
188/// CloneBlock - The specified block is found to be reachable, clone it and
189/// anything that it can reach.
190void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
191                                       std::vector<const BasicBlock*> &ToClone){
192  Value *&BBEntry = ValueMap[BB];
193
194  // Have we already cloned this block?
195  if (BBEntry) return;
196
197  // Nope, clone it now.
198  BasicBlock *NewBB;
199  BBEntry = NewBB = new BasicBlock();
200  if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
201
202  bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
203
204  // Loop over all instructions, and copy them over, DCE'ing as we go.  This
205  // loop doesn't include the terminator.
206  for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
207       II != IE; ++II) {
208    // If this instruction constant folds, don't bother cloning the instruction,
209    // instead, just add the constant to the value map.
210    if (Constant *C = ConstantFoldMappedInstruction(II)) {
211      ValueMap[II] = C;
212      continue;
213    }
214
215    Instruction *NewInst = II->clone();
216    if (II->hasName())
217      NewInst->setName(II->getName()+NameSuffix);
218    NewBB->getInstList().push_back(NewInst);
219    ValueMap[II] = NewInst;                // Add instruction map to value.
220
221    hasCalls |= isa<CallInst>(II);
222    if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
223      if (isa<ConstantInt>(AI->getArraySize()))
224        hasStaticAllocas = true;
225      else
226        hasDynamicAllocas = true;
227    }
228  }
229
230  // Finally, clone over the terminator.
231  const TerminatorInst *OldTI = BB->getTerminator();
232  bool TerminatorDone = false;
233  if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
234    if (BI->isConditional()) {
235      // If the condition was a known constant in the callee...
236      ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
237      // Or is a known constant in the caller...
238      if (Cond == 0)
239        Cond = dyn_cast_or_null<ConstantInt>(ValueMap[BI->getCondition()]);
240
241      // Constant fold to uncond branch!
242      if (Cond) {
243        BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
244        ValueMap[OldTI] = new BranchInst(Dest, NewBB);
245        ToClone.push_back(Dest);
246        TerminatorDone = true;
247      }
248    }
249  } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
250    // If switching on a value known constant in the caller.
251    ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
252    if (Cond == 0)  // Or known constant after constant prop in the callee...
253      Cond = dyn_cast_or_null<ConstantInt>(ValueMap[SI->getCondition()]);
254    if (Cond) {     // Constant fold to uncond branch!
255      BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond));
256      ValueMap[OldTI] = new BranchInst(Dest, NewBB);
257      ToClone.push_back(Dest);
258      TerminatorDone = true;
259    }
260  }
261
262  if (!TerminatorDone) {
263    Instruction *NewInst = OldTI->clone();
264    if (OldTI->hasName())
265      NewInst->setName(OldTI->getName()+NameSuffix);
266    NewBB->getInstList().push_back(NewInst);
267    ValueMap[OldTI] = NewInst;             // Add instruction map to value.
268
269    // Recursively clone any reachable successor blocks.
270    const TerminatorInst *TI = BB->getTerminator();
271    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
272      ToClone.push_back(TI->getSuccessor(i));
273  }
274
275  if (CodeInfo) {
276    CodeInfo->ContainsCalls          |= hasCalls;
277    CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(OldTI);
278    CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
279    CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
280      BB != &BB->getParent()->front();
281  }
282
283  if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator()))
284    Returns.push_back(RI);
285}
286
287/// ConstantFoldMappedInstruction - Constant fold the specified instruction,
288/// mapping its operands through ValueMap if they are available.
289Constant *PruningFunctionCloner::
290ConstantFoldMappedInstruction(const Instruction *I) {
291  SmallVector<Constant*, 8> Ops;
292  for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
293    if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i),
294                                                           ValueMap)))
295      Ops.push_back(Op);
296    else
297      return 0;  // All operands not constant!
298
299  return ConstantFoldInstOperands(I, &Ops[0], Ops.size(), TD);
300}
301
302/// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
303/// except that it does some simple constant prop and DCE on the fly.  The
304/// effect of this is to copy significantly less code in cases where (for
305/// example) a function call with constant arguments is inlined, and those
306/// constant arguments cause a significant amount of code in the callee to be
307/// dead.  Since this doesn't produce an exactly copy of the input, it can't be
308/// used for things like CloneFunction or CloneModule.
309void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
310                                     DenseMap<const Value*, Value*> &ValueMap,
311                                     std::vector<ReturnInst*> &Returns,
312                                     const char *NameSuffix,
313                                     ClonedCodeInfo *CodeInfo,
314                                     const TargetData *TD) {
315  assert(NameSuffix && "NameSuffix cannot be null!");
316
317#ifndef NDEBUG
318  for (Function::const_arg_iterator II = OldFunc->arg_begin(),
319       E = OldFunc->arg_end(); II != E; ++II)
320    assert(ValueMap.count(II) && "No mapping from source argument specified!");
321#endif
322
323  PruningFunctionCloner PFC(NewFunc, OldFunc, ValueMap, Returns,
324                            NameSuffix, CodeInfo, TD);
325
326  // Clone the entry block, and anything recursively reachable from it.
327  std::vector<const BasicBlock*> CloneWorklist;
328  CloneWorklist.push_back(&OldFunc->getEntryBlock());
329  while (!CloneWorklist.empty()) {
330    const BasicBlock *BB = CloneWorklist.back();
331    CloneWorklist.pop_back();
332    PFC.CloneBlock(BB, CloneWorklist);
333  }
334
335  // Loop over all of the basic blocks in the old function.  If the block was
336  // reachable, we have cloned it and the old block is now in the value map:
337  // insert it into the new function in the right order.  If not, ignore it.
338  //
339  // Defer PHI resolution until rest of function is resolved.
340  std::vector<const PHINode*> PHIToResolve;
341  for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
342       BI != BE; ++BI) {
343    BasicBlock *NewBB = cast_or_null<BasicBlock>(ValueMap[BI]);
344    if (NewBB == 0) continue;  // Dead block.
345
346    // Add the new block to the new function.
347    NewFunc->getBasicBlockList().push_back(NewBB);
348
349    // Loop over all of the instructions in the block, fixing up operand
350    // references as we go.  This uses ValueMap to do all the hard work.
351    //
352    BasicBlock::iterator I = NewBB->begin();
353
354    // Handle PHI nodes specially, as we have to remove references to dead
355    // blocks.
356    if (PHINode *PN = dyn_cast<PHINode>(I)) {
357      // Skip over all PHI nodes, remembering them for later.
358      BasicBlock::const_iterator OldI = BI->begin();
359      for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI)
360        PHIToResolve.push_back(cast<PHINode>(OldI));
361    }
362
363    // Otherwise, remap the rest of the instructions normally.
364    for (; I != NewBB->end(); ++I)
365      RemapInstruction(I, ValueMap);
366  }
367
368  // Defer PHI resolution until rest of function is resolved, PHI resolution
369  // requires the CFG to be up-to-date.
370  for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
371    const PHINode *OPN = PHIToResolve[phino];
372    unsigned NumPreds = OPN->getNumIncomingValues();
373    const BasicBlock *OldBB = OPN->getParent();
374    BasicBlock *NewBB = cast<BasicBlock>(ValueMap[OldBB]);
375
376    // Map operands for blocks that are live and remove operands for blocks
377    // that are dead.
378    for (; phino != PHIToResolve.size() &&
379         PHIToResolve[phino]->getParent() == OldBB; ++phino) {
380      OPN = PHIToResolve[phino];
381      PHINode *PN = cast<PHINode>(ValueMap[OPN]);
382      for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
383        if (BasicBlock *MappedBlock =
384            cast_or_null<BasicBlock>(ValueMap[PN->getIncomingBlock(pred)])) {
385          Value *InVal = MapValue(PN->getIncomingValue(pred), ValueMap);
386          assert(InVal && "Unknown input value?");
387          PN->setIncomingValue(pred, InVal);
388          PN->setIncomingBlock(pred, MappedBlock);
389        } else {
390          PN->removeIncomingValue(pred, false);
391          --pred, --e;  // Revisit the next entry.
392        }
393      }
394    }
395
396    // The loop above has removed PHI entries for those blocks that are dead
397    // and has updated others.  However, if a block is live (i.e. copied over)
398    // but its terminator has been changed to not go to this block, then our
399    // phi nodes will have invalid entries.  Update the PHI nodes in this
400    // case.
401    PHINode *PN = cast<PHINode>(NewBB->begin());
402    NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
403    if (NumPreds != PN->getNumIncomingValues()) {
404      assert(NumPreds < PN->getNumIncomingValues());
405      // Count how many times each predecessor comes to this block.
406      std::map<BasicBlock*, unsigned> PredCount;
407      for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
408           PI != E; ++PI)
409        --PredCount[*PI];
410
411      // Figure out how many entries to remove from each PHI.
412      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
413        ++PredCount[PN->getIncomingBlock(i)];
414
415      // At this point, the excess predecessor entries are positive in the
416      // map.  Loop over all of the PHIs and remove excess predecessor
417      // entries.
418      BasicBlock::iterator I = NewBB->begin();
419      for (; (PN = dyn_cast<PHINode>(I)); ++I) {
420        for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
421             E = PredCount.end(); PCI != E; ++PCI) {
422          BasicBlock *Pred     = PCI->first;
423          for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
424            PN->removeIncomingValue(Pred, false);
425        }
426      }
427    }
428
429    // If the loops above have made these phi nodes have 0 or 1 operand,
430    // replace them with undef or the input value.  We must do this for
431    // correctness, because 0-operand phis are not valid.
432    PN = cast<PHINode>(NewBB->begin());
433    if (PN->getNumIncomingValues() == 0) {
434      BasicBlock::iterator I = NewBB->begin();
435      BasicBlock::const_iterator OldI = OldBB->begin();
436      while ((PN = dyn_cast<PHINode>(I++))) {
437        Value *NV = UndefValue::get(PN->getType());
438        PN->replaceAllUsesWith(NV);
439        assert(ValueMap[OldI] == PN && "ValueMap mismatch");
440        ValueMap[OldI] = NV;
441        PN->eraseFromParent();
442        ++OldI;
443      }
444    }
445    // NOTE: We cannot eliminate single entry phi nodes here, because of
446    // ValueMap.  Single entry phi nodes can have multiple ValueMap entries
447    // pointing at them.  Thus, deleting one would require scanning the ValueMap
448    // to update any entries in it that would require that.  This would be
449    // really slow.
450  }
451
452  // Now that the inlined function body has been fully constructed, go through
453  // and zap unconditional fall-through branches.  This happen all the time when
454  // specializing code: code specialization turns conditional branches into
455  // uncond branches, and this code folds them.
456  Function::iterator I = cast<BasicBlock>(ValueMap[&OldFunc->getEntryBlock()]);
457  while (I != NewFunc->end()) {
458    BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
459    if (!BI || BI->isConditional()) { ++I; continue; }
460
461    // Note that we can't eliminate uncond branches if the destination has
462    // single-entry PHI nodes.  Eliminating the single-entry phi nodes would
463    // require scanning the ValueMap to update any entries that point to the phi
464    // node.
465    BasicBlock *Dest = BI->getSuccessor(0);
466    if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) {
467      ++I; continue;
468    }
469
470    // We know all single-entry PHI nodes in the inlined function have been
471    // removed, so we just need to splice the blocks.
472    BI->eraseFromParent();
473
474    // Move all the instructions in the succ to the pred.
475    I->getInstList().splice(I->end(), Dest->getInstList());
476
477    // Make all PHI nodes that referred to Dest now refer to I as their source.
478    Dest->replaceAllUsesWith(I);
479
480    // Remove the dest block.
481    Dest->eraseFromParent();
482
483    // Do not increment I, iteratively merge all things this block branches to.
484  }
485}
486