InlineFunction.cpp revision cd81d94322a39503e4a3e87b6ee03d4fcb3465fb
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/Analysis/CallGraph.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/IR/Attributes.h"
21#include "llvm/IR/CallSite.h"
22#include "llvm/IR/CFG.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/IR/DebugInfo.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/IntrinsicInst.h"
30#include "llvm/IR/Intrinsics.h"
31#include "llvm/IR/Module.h"
32#include "llvm/Transforms/Utils/Local.h"
33using namespace llvm;
34
35bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
36                          bool InsertLifetime) {
37  return InlineFunction(CallSite(CI), IFI, InsertLifetime);
38}
39bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
40                          bool InsertLifetime) {
41  return InlineFunction(CallSite(II), IFI, InsertLifetime);
42}
43
44namespace {
45  /// A class for recording information about inlining through an invoke.
46  class InvokeInliningInfo {
47    BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
48    BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
49    LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
50    PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
51    SmallVector<Value*, 8> UnwindDestPHIValues;
52
53  public:
54    InvokeInliningInfo(InvokeInst *II)
55      : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
56        CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
57      // If there are PHI nodes in the unwind destination block, we need to keep
58      // track of which values came into them from the invoke before removing
59      // the edge from this block.
60      llvm::BasicBlock *InvokeBB = II->getParent();
61      BasicBlock::iterator I = OuterResumeDest->begin();
62      for (; isa<PHINode>(I); ++I) {
63        // Save the value to use for this edge.
64        PHINode *PHI = cast<PHINode>(I);
65        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
66      }
67
68      CallerLPad = cast<LandingPadInst>(I);
69    }
70
71    /// getOuterResumeDest - The outer unwind destination is the target of
72    /// unwind edges introduced for calls within the inlined function.
73    BasicBlock *getOuterResumeDest() const {
74      return OuterResumeDest;
75    }
76
77    BasicBlock *getInnerResumeDest();
78
79    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
80
81    /// forwardResume - Forward the 'resume' instruction to the caller's landing
82    /// pad block. When the landing pad block has only one predecessor, this is
83    /// a simple branch. When there is more than one predecessor, we need to
84    /// split the landing pad block after the landingpad instruction and jump
85    /// to there.
86    void forwardResume(ResumeInst *RI,
87                       SmallPtrSet<LandingPadInst*, 16> &InlinedLPads);
88
89    /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
90    /// destination block for the given basic block, using the values for the
91    /// original invoke's source block.
92    void addIncomingPHIValuesFor(BasicBlock *BB) const {
93      addIncomingPHIValuesForInto(BB, OuterResumeDest);
94    }
95
96    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
97      BasicBlock::iterator I = dest->begin();
98      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
99        PHINode *phi = cast<PHINode>(I);
100        phi->addIncoming(UnwindDestPHIValues[i], src);
101      }
102    }
103  };
104}
105
106/// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
107BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
108  if (InnerResumeDest) return InnerResumeDest;
109
110  // Split the landing pad.
111  BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
112  InnerResumeDest =
113    OuterResumeDest->splitBasicBlock(SplitPoint,
114                                     OuterResumeDest->getName() + ".body");
115
116  // The number of incoming edges we expect to the inner landing pad.
117  const unsigned PHICapacity = 2;
118
119  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
120  BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
121  BasicBlock::iterator I = OuterResumeDest->begin();
122  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
123    PHINode *OuterPHI = cast<PHINode>(I);
124    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
125                                        OuterPHI->getName() + ".lpad-body",
126                                        InsertPoint);
127    OuterPHI->replaceAllUsesWith(InnerPHI);
128    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
129  }
130
131  // Create a PHI for the exception values.
132  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
133                                     "eh.lpad-body", InsertPoint);
134  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
135  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
136
137  // All done.
138  return InnerResumeDest;
139}
140
141/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
142/// block. When the landing pad block has only one predecessor, this is a simple
143/// branch. When there is more than one predecessor, we need to split the
144/// landing pad block after the landingpad instruction and jump to there.
145void InvokeInliningInfo::forwardResume(ResumeInst *RI,
146                               SmallPtrSet<LandingPadInst*, 16> &InlinedLPads) {
147  BasicBlock *Dest = getInnerResumeDest();
148  BasicBlock *Src = RI->getParent();
149
150  BranchInst::Create(Dest, Src);
151
152  // Update the PHIs in the destination. They were inserted in an order which
153  // makes this work.
154  addIncomingPHIValuesForInto(Src, Dest);
155
156  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
157  RI->eraseFromParent();
158}
159
160/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
161/// an invoke, we have to turn all of the calls that can throw into
162/// invokes.  This function analyze BB to see if there are any calls, and if so,
163/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
164/// nodes in that block with the values specified in InvokeDestPHIValues.
165static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
166                                                   InvokeInliningInfo &Invoke) {
167  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
168    Instruction *I = BBI++;
169
170    // We only need to check for function calls: inlined invoke
171    // instructions require no special handling.
172    CallInst *CI = dyn_cast<CallInst>(I);
173
174    // If this call cannot unwind, don't convert it to an invoke.
175    // Inline asm calls cannot throw.
176    if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
177      continue;
178
179    // Convert this function call into an invoke instruction.  First, split the
180    // basic block.
181    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
182
183    // Delete the unconditional branch inserted by splitBasicBlock
184    BB->getInstList().pop_back();
185
186    // Create the new invoke instruction.
187    ImmutableCallSite CS(CI);
188    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
189    InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
190                                        Invoke.getOuterResumeDest(),
191                                        InvokeArgs, CI->getName(), BB);
192    II->setDebugLoc(CI->getDebugLoc());
193    II->setCallingConv(CI->getCallingConv());
194    II->setAttributes(CI->getAttributes());
195
196    // Make sure that anything using the call now uses the invoke!  This also
197    // updates the CallGraph if present, because it uses a WeakVH.
198    CI->replaceAllUsesWith(II);
199
200    // Delete the original call
201    Split->getInstList().pop_front();
202
203    // Update any PHI nodes in the exceptional block to indicate that there is
204    // now a new entry in them.
205    Invoke.addIncomingPHIValuesFor(BB);
206    return;
207  }
208}
209
210/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
211/// in the body of the inlined function into invokes.
212///
213/// II is the invoke instruction being inlined.  FirstNewBlock is the first
214/// block of the inlined code (the last block is the end of the function),
215/// and InlineCodeInfo is information about the code that got inlined.
216static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
217                                ClonedCodeInfo &InlinedCodeInfo) {
218  BasicBlock *InvokeDest = II->getUnwindDest();
219
220  Function *Caller = FirstNewBlock->getParent();
221
222  // The inlined code is currently at the end of the function, scan from the
223  // start of the inlined code to its end, checking for stuff we need to
224  // rewrite.
225  InvokeInliningInfo Invoke(II);
226
227  // Get all of the inlined landing pad instructions.
228  SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
229  for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I)
230    if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
231      InlinedLPads.insert(II->getLandingPadInst());
232
233  // Append the clauses from the outer landing pad instruction into the inlined
234  // landing pad instructions.
235  LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
236  for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(),
237         E = InlinedLPads.end(); I != E; ++I) {
238    LandingPadInst *InlinedLPad = *I;
239    unsigned OuterNum = OuterLPad->getNumClauses();
240    InlinedLPad->reserveClauses(OuterNum);
241    for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
242      InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
243    if (OuterLPad->isCleanup())
244      InlinedLPad->setCleanup(true);
245  }
246
247  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
248    if (InlinedCodeInfo.ContainsCalls)
249      HandleCallsInBlockInlinedThroughInvoke(BB, Invoke);
250
251    // Forward any resumes that are remaining here.
252    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
253      Invoke.forwardResume(RI, InlinedLPads);
254  }
255
256  // Now that everything is happy, we have one final detail.  The PHI nodes in
257  // the exception destination block still have entries due to the original
258  // invoke instruction. Eliminate these entries (which might even delete the
259  // PHI node) now.
260  InvokeDest->removePredecessor(II->getParent());
261}
262
263/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
264/// into the caller, update the specified callgraph to reflect the changes we
265/// made.  Note that it's possible that not all code was copied over, so only
266/// some edges of the callgraph may remain.
267static void UpdateCallGraphAfterInlining(CallSite CS,
268                                         Function::iterator FirstNewBlock,
269                                         ValueToValueMapTy &VMap,
270                                         InlineFunctionInfo &IFI) {
271  CallGraph &CG = *IFI.CG;
272  const Function *Caller = CS.getInstruction()->getParent()->getParent();
273  const Function *Callee = CS.getCalledFunction();
274  CallGraphNode *CalleeNode = CG[Callee];
275  CallGraphNode *CallerNode = CG[Caller];
276
277  // Since we inlined some uninlined call sites in the callee into the caller,
278  // add edges from the caller to all of the callees of the callee.
279  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
280
281  // Consider the case where CalleeNode == CallerNode.
282  CallGraphNode::CalledFunctionsVector CallCache;
283  if (CalleeNode == CallerNode) {
284    CallCache.assign(I, E);
285    I = CallCache.begin();
286    E = CallCache.end();
287  }
288
289  for (; I != E; ++I) {
290    const Value *OrigCall = I->first;
291
292    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
293    // Only copy the edge if the call was inlined!
294    if (VMI == VMap.end() || VMI->second == nullptr)
295      continue;
296
297    // If the call was inlined, but then constant folded, there is no edge to
298    // add.  Check for this case.
299    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
300    if (!NewCall) continue;
301
302    // Remember that this call site got inlined for the client of
303    // InlineFunction.
304    IFI.InlinedCalls.push_back(NewCall);
305
306    // It's possible that inlining the callsite will cause it to go from an
307    // indirect to a direct call by resolving a function pointer.  If this
308    // happens, set the callee of the new call site to a more precise
309    // destination.  This can also happen if the call graph node of the caller
310    // was just unnecessarily imprecise.
311    if (!I->second->getFunction())
312      if (Function *F = CallSite(NewCall).getCalledFunction()) {
313        // Indirect call site resolved to direct call.
314        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
315
316        continue;
317      }
318
319    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
320  }
321
322  // Update the call graph by deleting the edge from Callee to Caller.  We must
323  // do this after the loop above in case Caller and Callee are the same.
324  CallerNode->removeCallEdgeFor(CS);
325}
326
327static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
328                                    BasicBlock *InsertBlock,
329                                    InlineFunctionInfo &IFI) {
330  LLVMContext &Context = Src->getContext();
331  Type *VoidPtrTy = Type::getInt8PtrTy(Context);
332  Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
333  Type *Tys[3] = { VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context) };
334  Function *MemCpyFn = Intrinsic::getDeclaration(M, Intrinsic::memcpy, Tys);
335  IRBuilder<> builder(InsertBlock->begin());
336  Value *DstCast = builder.CreateBitCast(Dst, VoidPtrTy, "tmp");
337  Value *SrcCast = builder.CreateBitCast(Src, VoidPtrTy, "tmp");
338
339  Value *Size;
340  if (IFI.DL == nullptr)
341    Size = ConstantExpr::getSizeOf(AggTy);
342  else
343    Size = ConstantInt::get(Type::getInt64Ty(Context),
344                            IFI.DL->getTypeStoreSize(AggTy));
345
346  // Always generate a memcpy of alignment 1 here because we don't know
347  // the alignment of the src pointer.  Other optimizations can infer
348  // better alignment.
349  Value *CallArgs[] = {
350    DstCast, SrcCast, Size,
351    ConstantInt::get(Type::getInt32Ty(Context), 1),
352    ConstantInt::getFalse(Context) // isVolatile
353  };
354  builder.CreateCall(MemCpyFn, CallArgs);
355}
356
357/// HandleByValArgument - When inlining a call site that has a byval argument,
358/// we have to make the implicit memcpy explicit by adding it.
359static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
360                                  const Function *CalledFunc,
361                                  InlineFunctionInfo &IFI,
362                                  unsigned ByValAlignment) {
363  PointerType *ArgTy = cast<PointerType>(Arg->getType());
364  Type *AggTy = ArgTy->getElementType();
365
366  // If the called function is readonly, then it could not mutate the caller's
367  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
368  // temporary.
369  if (CalledFunc->onlyReadsMemory()) {
370    // If the byval argument has a specified alignment that is greater than the
371    // passed in pointer, then we either have to round up the input pointer or
372    // give up on this transformation.
373    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
374      return Arg;
375
376    // If the pointer is already known to be sufficiently aligned, or if we can
377    // round it up to a larger alignment, then we don't need a temporary.
378    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
379                                   IFI.DL) >= ByValAlignment)
380      return Arg;
381
382    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
383    // for code quality, but rarely happens and is required for correctness.
384  }
385
386  // Create the alloca.  If we have DataLayout, use nice alignment.
387  unsigned Align = 1;
388  if (IFI.DL)
389    Align = IFI.DL->getPrefTypeAlignment(AggTy);
390
391  // If the byval had an alignment specified, we *must* use at least that
392  // alignment, as it is required by the byval argument (and uses of the
393  // pointer inside the callee).
394  Align = std::max(Align, ByValAlignment);
395
396  Function *Caller = TheCall->getParent()->getParent();
397
398  Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(),
399                                    &*Caller->begin()->begin());
400  IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
401
402  // Uses of the argument in the function should use our new alloca
403  // instead.
404  return NewAlloca;
405}
406
407// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
408// intrinsic.
409static bool isUsedByLifetimeMarker(Value *V) {
410  for (User *U : V->users()) {
411    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
412      switch (II->getIntrinsicID()) {
413      default: break;
414      case Intrinsic::lifetime_start:
415      case Intrinsic::lifetime_end:
416        return true;
417      }
418    }
419  }
420  return false;
421}
422
423// hasLifetimeMarkers - Check whether the given alloca already has
424// lifetime.start or lifetime.end intrinsics.
425static bool hasLifetimeMarkers(AllocaInst *AI) {
426  Type *Ty = AI->getType();
427  Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
428                                       Ty->getPointerAddressSpace());
429  if (Ty == Int8PtrTy)
430    return isUsedByLifetimeMarker(AI);
431
432  // Do a scan to find all the casts to i8*.
433  for (User *U : AI->users()) {
434    if (U->getType() != Int8PtrTy) continue;
435    if (U->stripPointerCasts() != AI) continue;
436    if (isUsedByLifetimeMarker(U))
437      return true;
438  }
439  return false;
440}
441
442/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to
443/// recursively update InlinedAtEntry of a DebugLoc.
444static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
445                                    const DebugLoc &InlinedAtDL,
446                                    LLVMContext &Ctx) {
447  if (MDNode *IA = DL.getInlinedAt(Ctx)) {
448    DebugLoc NewInlinedAtDL
449      = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
450    return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
451                         NewInlinedAtDL.getAsMDNode(Ctx));
452  }
453
454  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
455                       InlinedAtDL.getAsMDNode(Ctx));
456}
457
458/// fixupLineNumbers - Update inlined instructions' line numbers to
459/// to encode location where these instructions are inlined.
460static void fixupLineNumbers(Function *Fn, Function::iterator FI,
461                             Instruction *TheCall) {
462  DebugLoc TheCallDL = TheCall->getDebugLoc();
463  if (TheCallDL.isUnknown())
464    return;
465
466  for (; FI != Fn->end(); ++FI) {
467    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
468         BI != BE; ++BI) {
469      DebugLoc DL = BI->getDebugLoc();
470      if (DL.isUnknown()) {
471        // If the inlined instruction has no line number, make it look as if it
472        // originates from the call location. This is important for
473        // ((__always_inline__, __nodebug__)) functions which must use caller
474        // location for all instructions in their function body.
475        BI->setDebugLoc(TheCallDL);
476      } else {
477        BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
478        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
479          LLVMContext &Ctx = BI->getContext();
480          MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
481          DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
482                                                   InlinedAt, Ctx));
483        }
484      }
485    }
486  }
487}
488
489/// Returns a musttail call instruction if one immediately precedes the given
490/// return instruction with an optional bitcast instruction between them.
491static CallInst *getPrecedingMustTailCall(ReturnInst *RI) {
492  Instruction *Prev = RI->getPrevNode();
493  if (!Prev)
494    return nullptr;
495
496  if (Value *RV = RI->getReturnValue()) {
497    if (RV != Prev)
498      return nullptr;
499
500    // Look through the optional bitcast.
501    if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
502      RV = BI->getOperand(0);
503      Prev = BI->getPrevNode();
504      if (!Prev || RV != Prev)
505        return nullptr;
506    }
507  }
508
509  if (auto *CI = dyn_cast<CallInst>(Prev)) {
510    if (CI->isMustTailCall())
511      return CI;
512  }
513  return nullptr;
514}
515
516/// InlineFunction - This function inlines the called function into the basic
517/// block of the caller.  This returns false if it is not possible to inline
518/// this call.  The program is still in a well defined state if this occurs
519/// though.
520///
521/// Note that this only does one level of inlining.  For example, if the
522/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
523/// exists in the instruction stream.  Similarly this will inline a recursive
524/// function by one level.
525bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
526                          bool InsertLifetime) {
527  Instruction *TheCall = CS.getInstruction();
528  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
529         "Instruction not in function!");
530
531  // If IFI has any state in it, zap it before we fill it in.
532  IFI.reset();
533
534  const Function *CalledFunc = CS.getCalledFunction();
535  if (!CalledFunc ||              // Can't inline external function or indirect
536      CalledFunc->isDeclaration() || // call, or call to a vararg function!
537      CalledFunc->getFunctionType()->isVarArg()) return false;
538
539  // If the call to the callee cannot throw, set the 'nounwind' flag on any
540  // calls that we inline.
541  bool MarkNoUnwind = CS.doesNotThrow();
542
543  BasicBlock *OrigBB = TheCall->getParent();
544  Function *Caller = OrigBB->getParent();
545
546  // GC poses two hazards to inlining, which only occur when the callee has GC:
547  //  1. If the caller has no GC, then the callee's GC must be propagated to the
548  //     caller.
549  //  2. If the caller has a differing GC, it is invalid to inline.
550  if (CalledFunc->hasGC()) {
551    if (!Caller->hasGC())
552      Caller->setGC(CalledFunc->getGC());
553    else if (CalledFunc->getGC() != Caller->getGC())
554      return false;
555  }
556
557  // Get the personality function from the callee if it contains a landing pad.
558  Value *CalleePersonality = nullptr;
559  for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
560       I != E; ++I)
561    if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
562      const BasicBlock *BB = II->getUnwindDest();
563      const LandingPadInst *LP = BB->getLandingPadInst();
564      CalleePersonality = LP->getPersonalityFn();
565      break;
566    }
567
568  // Find the personality function used by the landing pads of the caller. If it
569  // exists, then check to see that it matches the personality function used in
570  // the callee.
571  if (CalleePersonality) {
572    for (Function::const_iterator I = Caller->begin(), E = Caller->end();
573         I != E; ++I)
574      if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
575        const BasicBlock *BB = II->getUnwindDest();
576        const LandingPadInst *LP = BB->getLandingPadInst();
577
578        // If the personality functions match, then we can perform the
579        // inlining. Otherwise, we can't inline.
580        // TODO: This isn't 100% true. Some personality functions are proper
581        //       supersets of others and can be used in place of the other.
582        if (LP->getPersonalityFn() != CalleePersonality)
583          return false;
584
585        break;
586      }
587  }
588
589  // Get an iterator to the last basic block in the function, which will have
590  // the new function inlined after it.
591  Function::iterator LastBlock = &Caller->back();
592
593  // Make sure to capture all of the return instructions from the cloned
594  // function.
595  SmallVector<ReturnInst*, 8> Returns;
596  ClonedCodeInfo InlinedFunctionInfo;
597  Function::iterator FirstNewBlock;
598
599  { // Scope to destroy VMap after cloning.
600    ValueToValueMapTy VMap;
601    // Keep a list of pair (dst, src) to emit byval initializations.
602    SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
603
604    assert(CalledFunc->arg_size() == CS.arg_size() &&
605           "No varargs calls can be inlined!");
606
607    // Calculate the vector of arguments to pass into the function cloner, which
608    // matches up the formal to the actual argument values.
609    CallSite::arg_iterator AI = CS.arg_begin();
610    unsigned ArgNo = 0;
611    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
612         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
613      Value *ActualArg = *AI;
614
615      // When byval arguments actually inlined, we need to make the copy implied
616      // by them explicit.  However, we don't do this if the callee is readonly
617      // or readnone, because the copy would be unneeded: the callee doesn't
618      // modify the struct.
619      if (CS.isByValArgument(ArgNo)) {
620        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
621                                        CalledFunc->getParamAlignment(ArgNo+1));
622        if (ActualArg != *AI)
623          ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
624      }
625
626      VMap[I] = ActualArg;
627    }
628
629    // We want the inliner to prune the code as it copies.  We would LOVE to
630    // have no dead or constant instructions leftover after inlining occurs
631    // (which can happen, e.g., because an argument was constant), but we'll be
632    // happy with whatever the cloner can do.
633    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
634                              /*ModuleLevelChanges=*/false, Returns, ".i",
635                              &InlinedFunctionInfo, IFI.DL, TheCall);
636
637    // Remember the first block that is newly cloned over.
638    FirstNewBlock = LastBlock; ++FirstNewBlock;
639
640    // Inject byval arguments initialization.
641    for (std::pair<Value*, Value*> &Init : ByValInit)
642      HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
643                              FirstNewBlock, IFI);
644
645    // Update the callgraph if requested.
646    if (IFI.CG)
647      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
648
649    // Update inlined instructions' line number information.
650    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
651  }
652
653  // If there are any alloca instructions in the block that used to be the entry
654  // block for the callee, move them to the entry block of the caller.  First
655  // calculate which instruction they should be inserted before.  We insert the
656  // instructions at the end of the current alloca list.
657  {
658    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
659    for (BasicBlock::iterator I = FirstNewBlock->begin(),
660         E = FirstNewBlock->end(); I != E; ) {
661      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
662      if (!AI) continue;
663
664      // If the alloca is now dead, remove it.  This often occurs due to code
665      // specialization.
666      if (AI->use_empty()) {
667        AI->eraseFromParent();
668        continue;
669      }
670
671      if (!isa<Constant>(AI->getArraySize()))
672        continue;
673
674      // Keep track of the static allocas that we inline into the caller.
675      IFI.StaticAllocas.push_back(AI);
676
677      // Scan for the block of allocas that we can move over, and move them
678      // all at once.
679      while (isa<AllocaInst>(I) &&
680             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
681        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
682        ++I;
683      }
684
685      // Transfer all of the allocas over in a block.  Using splice means
686      // that the instructions aren't removed from the symbol table, then
687      // reinserted.
688      Caller->getEntryBlock().getInstList().splice(InsertPoint,
689                                                   FirstNewBlock->getInstList(),
690                                                   AI, I);
691    }
692  }
693
694  bool InlinedMustTailCalls = false;
695  if (InlinedFunctionInfo.ContainsCalls) {
696    CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
697    if (CallInst *CI = dyn_cast<CallInst>(TheCall))
698      CallSiteTailKind = CI->getTailCallKind();
699
700    for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
701         ++BB) {
702      for (Instruction &I : *BB) {
703        CallInst *CI = dyn_cast<CallInst>(&I);
704        if (!CI)
705          continue;
706
707        // We need to reduce the strength of any inlined tail calls.  For
708        // musttail, we have to avoid introducing potential unbounded stack
709        // growth.  For example, if functions 'f' and 'g' are mutually recursive
710        // with musttail, we can inline 'g' into 'f' so long as we preserve
711        // musttail on the cloned call to 'f'.  If either the inlined call site
712        // or the cloned call site is *not* musttail, the program already has
713        // one frame of stack growth, so it's safe to remove musttail.  Here is
714        // a table of example transformations:
715        //
716        //    f -> musttail g -> musttail f  ==>  f -> musttail f
717        //    f -> musttail g ->     tail f  ==>  f ->     tail f
718        //    f ->          g -> musttail f  ==>  f ->          f
719        //    f ->          g ->     tail f  ==>  f ->          f
720        CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
721        ChildTCK = std::min(CallSiteTailKind, ChildTCK);
722        CI->setTailCallKind(ChildTCK);
723        InlinedMustTailCalls |= CI->isMustTailCall();
724
725        // Calls inlined through a 'nounwind' call site should be marked
726        // 'nounwind'.
727        if (MarkNoUnwind)
728          CI->setDoesNotThrow();
729      }
730    }
731  }
732
733  // Leave lifetime markers for the static alloca's, scoping them to the
734  // function we just inlined.
735  if (InsertLifetime && !IFI.StaticAllocas.empty()) {
736    IRBuilder<> builder(FirstNewBlock->begin());
737    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
738      AllocaInst *AI = IFI.StaticAllocas[ai];
739
740      // If the alloca is already scoped to something smaller than the whole
741      // function then there's no need to add redundant, less accurate markers.
742      if (hasLifetimeMarkers(AI))
743        continue;
744
745      // Try to determine the size of the allocation.
746      ConstantInt *AllocaSize = nullptr;
747      if (ConstantInt *AIArraySize =
748          dyn_cast<ConstantInt>(AI->getArraySize())) {
749        if (IFI.DL) {
750          Type *AllocaType = AI->getAllocatedType();
751          uint64_t AllocaTypeSize = IFI.DL->getTypeAllocSize(AllocaType);
752          uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
753          assert(AllocaArraySize > 0 && "array size of AllocaInst is zero");
754          // Check that array size doesn't saturate uint64_t and doesn't
755          // overflow when it's multiplied by type size.
756          if (AllocaArraySize != ~0ULL &&
757              UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
758            AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
759                                          AllocaArraySize * AllocaTypeSize);
760          }
761        }
762      }
763
764      builder.CreateLifetimeStart(AI, AllocaSize);
765      for (ReturnInst *RI : Returns) {
766        // Don't insert llvm.lifetime.end calls between a musttail call and a
767        // return.  The return kills all local allocas.
768        if (InlinedMustTailCalls && getPrecedingMustTailCall(RI))
769          continue;
770        IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
771      }
772    }
773  }
774
775  // If the inlined code contained dynamic alloca instructions, wrap the inlined
776  // code with llvm.stacksave/llvm.stackrestore intrinsics.
777  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
778    Module *M = Caller->getParent();
779    // Get the two intrinsics we care about.
780    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
781    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
782
783    // Insert the llvm.stacksave.
784    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
785      .CreateCall(StackSave, "savedstack");
786
787    // Insert a call to llvm.stackrestore before any return instructions in the
788    // inlined function.
789    for (ReturnInst *RI : Returns) {
790      // Don't insert llvm.stackrestore calls between a musttail call and a
791      // return.  The return will restore the stack pointer.
792      if (InlinedMustTailCalls && getPrecedingMustTailCall(RI))
793        continue;
794      IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
795    }
796  }
797
798  // If we are inlining for an invoke instruction, we must make sure to rewrite
799  // any call instructions into invoke instructions.
800  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
801    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
802
803  // Handle any inlined musttail call sites.  In order for a new call site to be
804  // musttail, the source of the clone and the inlined call site must have been
805  // musttail.  Therefore it's safe to return without merging control into the
806  // phi below.
807  if (InlinedMustTailCalls) {
808    // Check if we need to bitcast the result of any musttail calls.
809    Type *NewRetTy = Caller->getReturnType();
810    bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
811
812    // Handle the returns preceded by musttail calls separately.
813    SmallVector<ReturnInst *, 8> NormalReturns;
814    for (ReturnInst *RI : Returns) {
815      CallInst *ReturnedMustTail = getPrecedingMustTailCall(RI);
816      if (!ReturnedMustTail) {
817        NormalReturns.push_back(RI);
818        continue;
819      }
820      if (!NeedBitCast)
821        continue;
822
823      // Delete the old return and any preceding bitcast.
824      BasicBlock *CurBB = RI->getParent();
825      auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
826      RI->eraseFromParent();
827      if (OldCast)
828        OldCast->eraseFromParent();
829
830      // Insert a new bitcast and return with the right type.
831      IRBuilder<> Builder(CurBB);
832      Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
833    }
834
835    // Leave behind the normal returns so we can merge control flow.
836    std::swap(Returns, NormalReturns);
837  }
838
839  // If we cloned in _exactly one_ basic block, and if that block ends in a
840  // return instruction, we splice the body of the inlined callee directly into
841  // the calling basic block.
842  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
843    // Move all of the instructions right before the call.
844    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
845                                 FirstNewBlock->begin(), FirstNewBlock->end());
846    // Remove the cloned basic block.
847    Caller->getBasicBlockList().pop_back();
848
849    // If the call site was an invoke instruction, add a branch to the normal
850    // destination.
851    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
852      BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
853      NewBr->setDebugLoc(Returns[0]->getDebugLoc());
854    }
855
856    // If the return instruction returned a value, replace uses of the call with
857    // uses of the returned value.
858    if (!TheCall->use_empty()) {
859      ReturnInst *R = Returns[0];
860      if (TheCall == R->getReturnValue())
861        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
862      else
863        TheCall->replaceAllUsesWith(R->getReturnValue());
864    }
865    // Since we are now done with the Call/Invoke, we can delete it.
866    TheCall->eraseFromParent();
867
868    // Since we are now done with the return instruction, delete it also.
869    Returns[0]->eraseFromParent();
870
871    // We are now done with the inlining.
872    return true;
873  }
874
875  // Otherwise, we have the normal case, of more than one block to inline or
876  // multiple return sites.
877
878  // We want to clone the entire callee function into the hole between the
879  // "starter" and "ender" blocks.  How we accomplish this depends on whether
880  // this is an invoke instruction or a call instruction.
881  BasicBlock *AfterCallBB;
882  BranchInst *CreatedBranchToNormalDest = nullptr;
883  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
884
885    // Add an unconditional branch to make this look like the CallInst case...
886    CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
887
888    // Split the basic block.  This guarantees that no PHI nodes will have to be
889    // updated due to new incoming edges, and make the invoke case more
890    // symmetric to the call case.
891    AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest,
892                                          CalledFunc->getName()+".exit");
893
894  } else {  // It's a call
895    // If this is a call instruction, we need to split the basic block that
896    // the call lives in.
897    //
898    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
899                                          CalledFunc->getName()+".exit");
900  }
901
902  // Change the branch that used to go to AfterCallBB to branch to the first
903  // basic block of the inlined function.
904  //
905  TerminatorInst *Br = OrigBB->getTerminator();
906  assert(Br && Br->getOpcode() == Instruction::Br &&
907         "splitBasicBlock broken!");
908  Br->setOperand(0, FirstNewBlock);
909
910
911  // Now that the function is correct, make it a little bit nicer.  In
912  // particular, move the basic blocks inserted from the end of the function
913  // into the space made by splitting the source basic block.
914  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
915                                     FirstNewBlock, Caller->end());
916
917  // Handle all of the return instructions that we just cloned in, and eliminate
918  // any users of the original call/invoke instruction.
919  Type *RTy = CalledFunc->getReturnType();
920
921  PHINode *PHI = nullptr;
922  if (Returns.size() > 1) {
923    // The PHI node should go at the front of the new basic block to merge all
924    // possible incoming values.
925    if (!TheCall->use_empty()) {
926      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
927                            AfterCallBB->begin());
928      // Anything that used the result of the function call should now use the
929      // PHI node as their operand.
930      TheCall->replaceAllUsesWith(PHI);
931    }
932
933    // Loop over all of the return instructions adding entries to the PHI node
934    // as appropriate.
935    if (PHI) {
936      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
937        ReturnInst *RI = Returns[i];
938        assert(RI->getReturnValue()->getType() == PHI->getType() &&
939               "Ret value not consistent in function!");
940        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
941      }
942    }
943
944
945    // Add a branch to the merge points and remove return instructions.
946    DebugLoc Loc;
947    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
948      ReturnInst *RI = Returns[i];
949      BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
950      Loc = RI->getDebugLoc();
951      BI->setDebugLoc(Loc);
952      RI->eraseFromParent();
953    }
954    // We need to set the debug location to *somewhere* inside the
955    // inlined function. The line number may be nonsensical, but the
956    // instruction will at least be associated with the right
957    // function.
958    if (CreatedBranchToNormalDest)
959      CreatedBranchToNormalDest->setDebugLoc(Loc);
960  } else if (!Returns.empty()) {
961    // Otherwise, if there is exactly one return value, just replace anything
962    // using the return value of the call with the computed value.
963    if (!TheCall->use_empty()) {
964      if (TheCall == Returns[0]->getReturnValue())
965        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
966      else
967        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
968    }
969
970    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
971    BasicBlock *ReturnBB = Returns[0]->getParent();
972    ReturnBB->replaceAllUsesWith(AfterCallBB);
973
974    // Splice the code from the return block into the block that it will return
975    // to, which contains the code that was after the call.
976    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
977                                      ReturnBB->getInstList());
978
979    if (CreatedBranchToNormalDest)
980      CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
981
982    // Delete the return instruction now and empty ReturnBB now.
983    Returns[0]->eraseFromParent();
984    ReturnBB->eraseFromParent();
985  } else if (!TheCall->use_empty()) {
986    // No returns, but something is using the return value of the call.  Just
987    // nuke the result.
988    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
989  }
990
991  // Since we are now done with the Call/Invoke, we can delete it.
992  TheCall->eraseFromParent();
993
994  // If we inlined any musttail calls and the original return is now
995  // unreachable, delete it.  It can only contain a bitcast and ret.
996  if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
997    AfterCallBB->eraseFromParent();
998
999  // We should always be able to fold the entry block of the function into the
1000  // single predecessor of the block...
1001  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
1002  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
1003
1004  // Splice the code entry block into calling block, right before the
1005  // unconditional branch.
1006  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
1007  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
1008
1009  // Remove the unconditional branch.
1010  OrigBB->getInstList().erase(Br);
1011
1012  // Now we can remove the CalleeEntry block, which is now empty.
1013  Caller->getBasicBlockList().erase(CalleeEntry);
1014
1015  // If we inserted a phi node, check to see if it has a single value (e.g. all
1016  // the entries are the same or undef).  If so, remove the PHI so it doesn't
1017  // block other optimizations.
1018  if (PHI) {
1019    if (Value *V = SimplifyInstruction(PHI, IFI.DL)) {
1020      PHI->replaceAllUsesWith(V);
1021      PHI->eraseFromParent();
1022    }
1023  }
1024
1025  return true;
1026}
1027