InlineFunction.cpp revision db125cfaf57cc83e7dd7453de2d509bc8efd0e5e
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13// The code in this file for handling inlines through invoke
14// instructions preserves semantics only under some assumptions about
15// the behavior of unwinders which correspond to gcc-style libUnwind
16// exception personality functions.  Eventually the IR will be
17// improved to make this unnecessary, but until then, this code is
18// marked [LIBUNWIND].
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Transforms/Utils/Cloning.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Module.h"
26#include "llvm/Instructions.h"
27#include "llvm/IntrinsicInst.h"
28#include "llvm/Intrinsics.h"
29#include "llvm/Attributes.h"
30#include "llvm/Analysis/CallGraph.h"
31#include "llvm/Analysis/DebugInfo.h"
32#include "llvm/Analysis/InstructionSimplify.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/Local.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/IRBuilder.h"
39using namespace llvm;
40
41bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
42  return InlineFunction(CallSite(CI), IFI);
43}
44bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
45  return InlineFunction(CallSite(II), IFI);
46}
47
48/// [LIBUNWIND] Look for an llvm.eh.exception call in the given block.
49static EHExceptionInst *findExceptionInBlock(BasicBlock *bb) {
50  for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e; i++) {
51    EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i);
52    if (exn) return exn;
53  }
54
55  return 0;
56}
57
58/// [LIBUNWIND] Look for the 'best' llvm.eh.selector instruction for
59/// the given llvm.eh.exception call.
60static EHSelectorInst *findSelectorForException(EHExceptionInst *exn) {
61  BasicBlock *exnBlock = exn->getParent();
62
63  EHSelectorInst *outOfBlockSelector = 0;
64  for (Instruction::use_iterator
65         ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) {
66    EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui);
67    if (!sel) continue;
68
69    // Immediately accept an eh.selector in the same block as the
70    // excepton call.
71    if (sel->getParent() == exnBlock) return sel;
72
73    // Otherwise, use the first selector we see.
74    if (!outOfBlockSelector) outOfBlockSelector = sel;
75  }
76
77  return outOfBlockSelector;
78}
79
80/// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector
81/// in the given landing pad.  In principle, llvm.eh.exception is
82/// required to be in the landing pad; in practice, SplitCriticalEdge
83/// can break that invariant, and then inlining can break it further.
84/// There's a real need for a reliable solution here, but until that
85/// happens, we have some fragile workarounds here.
86static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) {
87  // Look for an exception call in the actual landing pad.
88  EHExceptionInst *exn = findExceptionInBlock(lpad);
89  if (exn) return findSelectorForException(exn);
90
91  // Okay, if that failed, look for one in an obvious successor.  If
92  // we find one, we'll fix the IR by moving things back to the
93  // landing pad.
94
95  bool dominates = true; // does the lpad dominate the exn call
96  BasicBlock *nonDominated = 0; // if not, the first non-dominated block
97  BasicBlock *lastDominated = 0; // and the block which branched to it
98
99  BasicBlock *exnBlock = lpad;
100
101  // We need to protect against lpads that lead into infinite loops.
102  SmallPtrSet<BasicBlock*,4> visited;
103  visited.insert(exnBlock);
104
105  do {
106    // We're not going to apply this hack to anything more complicated
107    // than a series of unconditional branches, so if the block
108    // doesn't terminate in an unconditional branch, just fail.  More
109    // complicated cases can arise when, say, sinking a call into a
110    // split unwind edge and then inlining it; but that can do almost
111    // *anything* to the CFG, including leaving the selector
112    // completely unreachable.  The only way to fix that properly is
113    // to (1) prohibit transforms which move the exception or selector
114    // values away from the landing pad, e.g. by producing them with
115    // instructions that are pinned to an edge like a phi, or
116    // producing them with not-really-instructions, and (2) making
117    // transforms which split edges deal with that.
118    BranchInst *branch = dyn_cast<BranchInst>(&exnBlock->back());
119    if (!branch || branch->isConditional()) return 0;
120
121    BasicBlock *successor = branch->getSuccessor(0);
122
123    // Fail if we found an infinite loop.
124    if (!visited.insert(successor)) return 0;
125
126    // If the successor isn't dominated by exnBlock:
127    if (!successor->getSinglePredecessor()) {
128      // We don't want to have to deal with threading the exception
129      // through multiple levels of phi, so give up if we've already
130      // followed a non-dominating edge.
131      if (!dominates) return 0;
132
133      // Otherwise, remember this as a non-dominating edge.
134      dominates = false;
135      nonDominated = successor;
136      lastDominated = exnBlock;
137    }
138
139    exnBlock = successor;
140
141    // Can we stop here?
142    exn = findExceptionInBlock(exnBlock);
143  } while (!exn);
144
145  // Look for a selector call for the exception we found.
146  EHSelectorInst *selector = findSelectorForException(exn);
147  if (!selector) return 0;
148
149  // The easy case is when the landing pad still dominates the
150  // exception call, in which case we can just move both calls back to
151  // the landing pad.
152  if (dominates) {
153    selector->moveBefore(lpad->getFirstNonPHI());
154    exn->moveBefore(selector);
155    return selector;
156  }
157
158  // Otherwise, we have to split at the first non-dominating block.
159  // The CFG looks basically like this:
160  //    lpad:
161  //      phis_0
162  //      insnsAndBranches_1
163  //      br label %nonDominated
164  //    nonDominated:
165  //      phis_2
166  //      insns_3
167  //      %exn = call i8* @llvm.eh.exception()
168  //      insnsAndBranches_4
169  //      %selector = call @llvm.eh.selector(i8* %exn, ...
170  // We need to turn this into:
171  //    lpad:
172  //      phis_0
173  //      %exn0 = call i8* @llvm.eh.exception()
174  //      %selector0 = call @llvm.eh.selector(i8* %exn0, ...
175  //      insnsAndBranches_1
176  //      br label %split // from lastDominated
177  //    nonDominated:
178  //      phis_2 (without edge from lastDominated)
179  //      %exn1 = call i8* @llvm.eh.exception()
180  //      %selector1 = call i8* @llvm.eh.selector(i8* %exn1, ...
181  //      br label %split
182  //    split:
183  //      phis_2 (edge from lastDominated, edge from split)
184  //      %exn = phi ...
185  //      %selector = phi ...
186  //      insns_3
187  //      insnsAndBranches_4
188
189  assert(nonDominated);
190  assert(lastDominated);
191
192  // First, make clones of the intrinsics to go in lpad.
193  EHExceptionInst *lpadExn = cast<EHExceptionInst>(exn->clone());
194  EHSelectorInst *lpadSelector = cast<EHSelectorInst>(selector->clone());
195  lpadSelector->setArgOperand(0, lpadExn);
196  lpadSelector->insertBefore(lpad->getFirstNonPHI());
197  lpadExn->insertBefore(lpadSelector);
198
199  // Split the non-dominated block.
200  BasicBlock *split =
201    nonDominated->splitBasicBlock(nonDominated->getFirstNonPHI(),
202                                  nonDominated->getName() + ".lpad-fix");
203
204  // Redirect the last dominated branch there.
205  cast<BranchInst>(lastDominated->back()).setSuccessor(0, split);
206
207  // Move the existing intrinsics to the end of the old block.
208  selector->moveBefore(&nonDominated->back());
209  exn->moveBefore(selector);
210
211  Instruction *splitIP = &split->front();
212
213  // For all the phis in nonDominated, make a new phi in split to join
214  // that phi with the edge from lastDominated.
215  for (BasicBlock::iterator
216         i = nonDominated->begin(), e = nonDominated->end(); i != e; ++i) {
217    PHINode *phi = dyn_cast<PHINode>(i);
218    if (!phi) break;
219
220    PHINode *splitPhi = PHINode::Create(phi->getType(), 2, phi->getName(),
221                                        splitIP);
222    phi->replaceAllUsesWith(splitPhi);
223    splitPhi->addIncoming(phi, nonDominated);
224    splitPhi->addIncoming(phi->removeIncomingValue(lastDominated),
225                          lastDominated);
226  }
227
228  // Make new phis for the exception and selector.
229  PHINode *exnPhi = PHINode::Create(exn->getType(), 2, "", splitIP);
230  exn->replaceAllUsesWith(exnPhi);
231  selector->setArgOperand(0, exn); // except for this use
232  exnPhi->addIncoming(exn, nonDominated);
233  exnPhi->addIncoming(lpadExn, lastDominated);
234
235  PHINode *selectorPhi = PHINode::Create(selector->getType(), 2, "", splitIP);
236  selector->replaceAllUsesWith(selectorPhi);
237  selectorPhi->addIncoming(selector, nonDominated);
238  selectorPhi->addIncoming(lpadSelector, lastDominated);
239
240  return lpadSelector;
241}
242
243namespace {
244  /// A class for recording information about inlining through an invoke.
245  class InvokeInliningInfo {
246    BasicBlock *OuterUnwindDest;
247    EHSelectorInst *OuterSelector;
248    BasicBlock *InnerUnwindDest;
249    PHINode *InnerExceptionPHI;
250    PHINode *InnerSelectorPHI;
251    SmallVector<Value*, 8> UnwindDestPHIValues;
252
253  public:
254    InvokeInliningInfo(InvokeInst *II) :
255      OuterUnwindDest(II->getUnwindDest()), OuterSelector(0),
256      InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0) {
257
258      // If there are PHI nodes in the unwind destination block, we
259      // need to keep track of which values came into them from the
260      // invoke before removing the edge from this block.
261      llvm::BasicBlock *invokeBB = II->getParent();
262      for (BasicBlock::iterator I = OuterUnwindDest->begin();
263             isa<PHINode>(I); ++I) {
264        // Save the value to use for this edge.
265        PHINode *phi = cast<PHINode>(I);
266        UnwindDestPHIValues.push_back(phi->getIncomingValueForBlock(invokeBB));
267      }
268    }
269
270    /// The outer unwind destination is the target of unwind edges
271    /// introduced for calls within the inlined function.
272    BasicBlock *getOuterUnwindDest() const {
273      return OuterUnwindDest;
274    }
275
276    EHSelectorInst *getOuterSelector() {
277      if (!OuterSelector)
278        OuterSelector = findSelectorForLandingPad(OuterUnwindDest);
279      return OuterSelector;
280    }
281
282    BasicBlock *getInnerUnwindDest();
283
284    bool forwardEHResume(CallInst *call, BasicBlock *src);
285
286    /// Add incoming-PHI values to the unwind destination block for
287    /// the given basic block, using the values for the original
288    /// invoke's source block.
289    void addIncomingPHIValuesFor(BasicBlock *BB) const {
290      addIncomingPHIValuesForInto(BB, OuterUnwindDest);
291    }
292
293    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
294      BasicBlock::iterator I = dest->begin();
295      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
296        PHINode *phi = cast<PHINode>(I);
297        phi->addIncoming(UnwindDestPHIValues[i], src);
298      }
299    }
300  };
301}
302
303/// Get or create a target for the branch out of rewritten calls to
304/// llvm.eh.resume.
305BasicBlock *InvokeInliningInfo::getInnerUnwindDest() {
306  if (InnerUnwindDest) return InnerUnwindDest;
307
308  // Find and hoist the llvm.eh.exception and llvm.eh.selector calls
309  // in the outer landing pad to immediately following the phis.
310  EHSelectorInst *selector = getOuterSelector();
311  if (!selector) return 0;
312
313  // The call to llvm.eh.exception *must* be in the landing pad.
314  Instruction *exn = cast<Instruction>(selector->getArgOperand(0));
315  assert(exn->getParent() == OuterUnwindDest);
316
317  // TODO: recognize when we've already done this, so that we don't
318  // get a linear number of these when inlining calls into lots of
319  // invokes with the same landing pad.
320
321  // Do the hoisting.
322  Instruction *splitPoint = exn->getParent()->getFirstNonPHI();
323  assert(splitPoint != selector && "selector-on-exception dominance broken!");
324  if (splitPoint == exn) {
325    selector->removeFromParent();
326    selector->insertAfter(exn);
327    splitPoint = selector->getNextNode();
328  } else {
329    exn->moveBefore(splitPoint);
330    selector->moveBefore(splitPoint);
331  }
332
333  // Split the landing pad.
334  InnerUnwindDest = OuterUnwindDest->splitBasicBlock(splitPoint,
335                                        OuterUnwindDest->getName() + ".body");
336
337  // The number of incoming edges we expect to the inner landing pad.
338  const unsigned phiCapacity = 2;
339
340  // Create corresponding new phis for all the phis in the outer landing pad.
341  BasicBlock::iterator insertPoint = InnerUnwindDest->begin();
342  BasicBlock::iterator I = OuterUnwindDest->begin();
343  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
344    PHINode *outerPhi = cast<PHINode>(I);
345    PHINode *innerPhi = PHINode::Create(outerPhi->getType(), phiCapacity,
346                                        outerPhi->getName() + ".lpad-body",
347                                        insertPoint);
348    outerPhi->replaceAllUsesWith(innerPhi);
349    innerPhi->addIncoming(outerPhi, OuterUnwindDest);
350  }
351
352  // Create a phi for the exception value...
353  InnerExceptionPHI = PHINode::Create(exn->getType(), phiCapacity,
354                                      "exn.lpad-body", insertPoint);
355  exn->replaceAllUsesWith(InnerExceptionPHI);
356  selector->setArgOperand(0, exn); // restore this use
357  InnerExceptionPHI->addIncoming(exn, OuterUnwindDest);
358
359  // ...and the selector.
360  InnerSelectorPHI = PHINode::Create(selector->getType(), phiCapacity,
361                                     "selector.lpad-body", insertPoint);
362  selector->replaceAllUsesWith(InnerSelectorPHI);
363  InnerSelectorPHI->addIncoming(selector, OuterUnwindDest);
364
365  // All done.
366  return InnerUnwindDest;
367}
368
369/// [LIBUNWIND] Try to forward the given call, which logically occurs
370/// at the end of the given block, as a branch to the inner unwind
371/// block.  Returns true if the call was forwarded.
372bool InvokeInliningInfo::forwardEHResume(CallInst *call, BasicBlock *src) {
373  // First, check whether this is a call to the intrinsic.
374  Function *fn = dyn_cast<Function>(call->getCalledValue());
375  if (!fn || fn->getName() != "llvm.eh.resume")
376    return false;
377
378  // At this point, we need to return true on all paths, because
379  // otherwise we'll construct an invoke of the intrinsic, which is
380  // not well-formed.
381
382  // Try to find or make an inner unwind dest, which will fail if we
383  // can't find a selector call for the outer unwind dest.
384  BasicBlock *dest = getInnerUnwindDest();
385  bool hasSelector = (dest != 0);
386
387  // If we failed, just use the outer unwind dest, dropping the
388  // exception and selector on the floor.
389  if (!hasSelector)
390    dest = OuterUnwindDest;
391
392  // Make a branch.
393  BranchInst::Create(dest, src);
394
395  // Update the phis in the destination.  They were inserted in an
396  // order which makes this work.
397  addIncomingPHIValuesForInto(src, dest);
398
399  if (hasSelector) {
400    InnerExceptionPHI->addIncoming(call->getArgOperand(0), src);
401    InnerSelectorPHI->addIncoming(call->getArgOperand(1), src);
402  }
403
404  return true;
405}
406
407/// [LIBUNWIND] Check whether this selector is "only cleanups":
408///   call i32 @llvm.eh.selector(blah, blah, i32 0)
409static bool isCleanupOnlySelector(EHSelectorInst *selector) {
410  if (selector->getNumArgOperands() != 3) return false;
411  ConstantInt *val = dyn_cast<ConstantInt>(selector->getArgOperand(2));
412  return (val && val->isZero());
413}
414
415/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
416/// an invoke, we have to turn all of the calls that can throw into
417/// invokes.  This function analyze BB to see if there are any calls, and if so,
418/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
419/// nodes in that block with the values specified in InvokeDestPHIValues.
420///
421/// Returns true to indicate that the next block should be skipped.
422static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
423                                                   InvokeInliningInfo &Invoke) {
424  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
425    Instruction *I = BBI++;
426
427    // We only need to check for function calls: inlined invoke
428    // instructions require no special handling.
429    CallInst *CI = dyn_cast<CallInst>(I);
430    if (CI == 0) continue;
431
432    // LIBUNWIND: merge selector instructions.
433    if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) {
434      EHSelectorInst *Outer = Invoke.getOuterSelector();
435      if (!Outer) continue;
436
437      bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner);
438      bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer);
439
440      // If both selectors contain only cleanups, we don't need to do
441      // anything.  TODO: this is really just a very specific instance
442      // of a much more general optimization.
443      if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue;
444
445      // Otherwise, we just append the outer selector to the inner selector.
446      SmallVector<Value*, 16> NewSelector;
447      for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i)
448        NewSelector.push_back(Inner->getArgOperand(i));
449      for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i)
450        NewSelector.push_back(Outer->getArgOperand(i));
451
452      CallInst *NewInner =
453        IRBuilder<>(Inner).CreateCall(Inner->getCalledValue(), NewSelector);
454      // No need to copy attributes, calling convention, etc.
455      NewInner->takeName(Inner);
456      Inner->replaceAllUsesWith(NewInner);
457      Inner->eraseFromParent();
458      continue;
459    }
460
461    // If this call cannot unwind, don't convert it to an invoke.
462    if (CI->doesNotThrow())
463      continue;
464
465    // Convert this function call into an invoke instruction.
466    // First, split the basic block.
467    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
468
469    // Delete the unconditional branch inserted by splitBasicBlock
470    BB->getInstList().pop_back();
471
472    // LIBUNWIND: If this is a call to @llvm.eh.resume, just branch
473    // directly to the new landing pad.
474    if (Invoke.forwardEHResume(CI, BB)) {
475      // TODO: 'Split' is now unreachable; clean it up.
476
477      // We want to leave the original call intact so that the call
478      // graph and other structures won't get misled.  We also have to
479      // avoid processing the next block, or we'll iterate here forever.
480      return true;
481    }
482
483    // Otherwise, create the new invoke instruction.
484    ImmutableCallSite CS(CI);
485    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
486    InvokeInst *II =
487      InvokeInst::Create(CI->getCalledValue(), Split,
488                         Invoke.getOuterUnwindDest(),
489                         InvokeArgs, CI->getName(), BB);
490    II->setCallingConv(CI->getCallingConv());
491    II->setAttributes(CI->getAttributes());
492
493    // Make sure that anything using the call now uses the invoke!  This also
494    // updates the CallGraph if present, because it uses a WeakVH.
495    CI->replaceAllUsesWith(II);
496
497    Split->getInstList().pop_front();  // Delete the original call
498
499    // Update any PHI nodes in the exceptional block to indicate that
500    // there is now a new entry in them.
501    Invoke.addIncomingPHIValuesFor(BB);
502    return false;
503  }
504
505  return false;
506}
507
508
509/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
510/// in the body of the inlined function into invokes and turn unwind
511/// instructions into branches to the invoke unwind dest.
512///
513/// II is the invoke instruction being inlined.  FirstNewBlock is the first
514/// block of the inlined code (the last block is the end of the function),
515/// and InlineCodeInfo is information about the code that got inlined.
516static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
517                                ClonedCodeInfo &InlinedCodeInfo) {
518  BasicBlock *InvokeDest = II->getUnwindDest();
519
520  Function *Caller = FirstNewBlock->getParent();
521
522  // The inlined code is currently at the end of the function, scan from the
523  // start of the inlined code to its end, checking for stuff we need to
524  // rewrite.  If the code doesn't have calls or unwinds, we know there is
525  // nothing to rewrite.
526  if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
527    // Now that everything is happy, we have one final detail.  The PHI nodes in
528    // the exception destination block still have entries due to the original
529    // invoke instruction.  Eliminate these entries (which might even delete the
530    // PHI node) now.
531    InvokeDest->removePredecessor(II->getParent());
532    return;
533  }
534
535  InvokeInliningInfo Invoke(II);
536
537  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
538    if (InlinedCodeInfo.ContainsCalls)
539      if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
540        // Honor a request to skip the next block.  We don't need to
541        // consider UnwindInsts in this case either.
542        ++BB;
543        continue;
544      }
545
546    if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
547      // An UnwindInst requires special handling when it gets inlined into an
548      // invoke site.  Once this happens, we know that the unwind would cause
549      // a control transfer to the invoke exception destination, so we can
550      // transform it into a direct branch to the exception destination.
551      BranchInst::Create(InvokeDest, UI);
552
553      // Delete the unwind instruction!
554      UI->eraseFromParent();
555
556      // Update any PHI nodes in the exceptional block to indicate that
557      // there is now a new entry in them.
558      Invoke.addIncomingPHIValuesFor(BB);
559    }
560  }
561
562  // Now that everything is happy, we have one final detail.  The PHI nodes in
563  // the exception destination block still have entries due to the original
564  // invoke instruction.  Eliminate these entries (which might even delete the
565  // PHI node) now.
566  InvokeDest->removePredecessor(II->getParent());
567}
568
569/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
570/// into the caller, update the specified callgraph to reflect the changes we
571/// made.  Note that it's possible that not all code was copied over, so only
572/// some edges of the callgraph may remain.
573static void UpdateCallGraphAfterInlining(CallSite CS,
574                                         Function::iterator FirstNewBlock,
575                                         ValueToValueMapTy &VMap,
576                                         InlineFunctionInfo &IFI) {
577  CallGraph &CG = *IFI.CG;
578  const Function *Caller = CS.getInstruction()->getParent()->getParent();
579  const Function *Callee = CS.getCalledFunction();
580  CallGraphNode *CalleeNode = CG[Callee];
581  CallGraphNode *CallerNode = CG[Caller];
582
583  // Since we inlined some uninlined call sites in the callee into the caller,
584  // add edges from the caller to all of the callees of the callee.
585  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
586
587  // Consider the case where CalleeNode == CallerNode.
588  CallGraphNode::CalledFunctionsVector CallCache;
589  if (CalleeNode == CallerNode) {
590    CallCache.assign(I, E);
591    I = CallCache.begin();
592    E = CallCache.end();
593  }
594
595  for (; I != E; ++I) {
596    const Value *OrigCall = I->first;
597
598    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
599    // Only copy the edge if the call was inlined!
600    if (VMI == VMap.end() || VMI->second == 0)
601      continue;
602
603    // If the call was inlined, but then constant folded, there is no edge to
604    // add.  Check for this case.
605    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
606    if (NewCall == 0) continue;
607
608    // Remember that this call site got inlined for the client of
609    // InlineFunction.
610    IFI.InlinedCalls.push_back(NewCall);
611
612    // It's possible that inlining the callsite will cause it to go from an
613    // indirect to a direct call by resolving a function pointer.  If this
614    // happens, set the callee of the new call site to a more precise
615    // destination.  This can also happen if the call graph node of the caller
616    // was just unnecessarily imprecise.
617    if (I->second->getFunction() == 0)
618      if (Function *F = CallSite(NewCall).getCalledFunction()) {
619        // Indirect call site resolved to direct call.
620        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
621
622        continue;
623      }
624
625    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
626  }
627
628  // Update the call graph by deleting the edge from Callee to Caller.  We must
629  // do this after the loop above in case Caller and Callee are the same.
630  CallerNode->removeCallEdgeFor(CS);
631}
632
633/// HandleByValArgument - When inlining a call site that has a byval argument,
634/// we have to make the implicit memcpy explicit by adding it.
635static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
636                                  const Function *CalledFunc,
637                                  InlineFunctionInfo &IFI,
638                                  unsigned ByValAlignment) {
639  Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
640
641  // If the called function is readonly, then it could not mutate the caller's
642  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
643  // temporary.
644  if (CalledFunc->onlyReadsMemory()) {
645    // If the byval argument has a specified alignment that is greater than the
646    // passed in pointer, then we either have to round up the input pointer or
647    // give up on this transformation.
648    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
649      return Arg;
650
651    // If the pointer is already known to be sufficiently aligned, or if we can
652    // round it up to a larger alignment, then we don't need a temporary.
653    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
654                                   IFI.TD) >= ByValAlignment)
655      return Arg;
656
657    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
658    // for code quality, but rarely happens and is required for correctness.
659  }
660
661  LLVMContext &Context = Arg->getContext();
662
663  Type *VoidPtrTy = Type::getInt8PtrTy(Context);
664
665  // Create the alloca.  If we have TargetData, use nice alignment.
666  unsigned Align = 1;
667  if (IFI.TD)
668    Align = IFI.TD->getPrefTypeAlignment(AggTy);
669
670  // If the byval had an alignment specified, we *must* use at least that
671  // alignment, as it is required by the byval argument (and uses of the
672  // pointer inside the callee).
673  Align = std::max(Align, ByValAlignment);
674
675  Function *Caller = TheCall->getParent()->getParent();
676
677  Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
678                                    &*Caller->begin()->begin());
679  // Emit a memcpy.
680  Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
681  Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
682                                                 Intrinsic::memcpy,
683                                                 Tys);
684  Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
685  Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
686
687  Value *Size;
688  if (IFI.TD == 0)
689    Size = ConstantExpr::getSizeOf(AggTy);
690  else
691    Size = ConstantInt::get(Type::getInt64Ty(Context),
692                            IFI.TD->getTypeStoreSize(AggTy));
693
694  // Always generate a memcpy of alignment 1 here because we don't know
695  // the alignment of the src pointer.  Other optimizations can infer
696  // better alignment.
697  Value *CallArgs[] = {
698    DestCast, SrcCast, Size,
699    ConstantInt::get(Type::getInt32Ty(Context), 1),
700    ConstantInt::getFalse(Context) // isVolatile
701  };
702  IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
703
704  // Uses of the argument in the function should use our new alloca
705  // instead.
706  return NewAlloca;
707}
708
709// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
710// intrinsic.
711static bool isUsedByLifetimeMarker(Value *V) {
712  for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
713       ++UI) {
714    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
715      switch (II->getIntrinsicID()) {
716      default: break;
717      case Intrinsic::lifetime_start:
718      case Intrinsic::lifetime_end:
719        return true;
720      }
721    }
722  }
723  return false;
724}
725
726// hasLifetimeMarkers - Check whether the given alloca already has
727// lifetime.start or lifetime.end intrinsics.
728static bool hasLifetimeMarkers(AllocaInst *AI) {
729  Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
730  if (AI->getType() == Int8PtrTy)
731    return isUsedByLifetimeMarker(AI);
732
733  // Do a scan to find all the casts to i8*.
734  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
735       ++I) {
736    if (I->getType() != Int8PtrTy) continue;
737    if (I->stripPointerCasts() != AI) continue;
738    if (isUsedByLifetimeMarker(*I))
739      return true;
740  }
741  return false;
742}
743
744/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively
745/// update InlinedAtEntry of a DebugLoc.
746static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
747                                    const DebugLoc &InlinedAtDL,
748                                    LLVMContext &Ctx) {
749  if (MDNode *IA = DL.getInlinedAt(Ctx)) {
750    DebugLoc NewInlinedAtDL
751      = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
752    return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
753                         NewInlinedAtDL.getAsMDNode(Ctx));
754  }
755
756  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
757                       InlinedAtDL.getAsMDNode(Ctx));
758}
759
760
761/// fixupLineNumbers - Update inlined instructions' line numbers to
762/// to encode location where these instructions are inlined.
763static void fixupLineNumbers(Function *Fn, Function::iterator FI,
764                              Instruction *TheCall) {
765  DebugLoc TheCallDL = TheCall->getDebugLoc();
766  if (TheCallDL.isUnknown())
767    return;
768
769  for (; FI != Fn->end(); ++FI) {
770    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
771         BI != BE; ++BI) {
772      DebugLoc DL = BI->getDebugLoc();
773      if (!DL.isUnknown())
774        BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
775    }
776  }
777}
778
779// InlineFunction - This function inlines the called function into the basic
780// block of the caller.  This returns false if it is not possible to inline this
781// call.  The program is still in a well defined state if this occurs though.
782//
783// Note that this only does one level of inlining.  For example, if the
784// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
785// exists in the instruction stream.  Similarly this will inline a recursive
786// function by one level.
787//
788bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
789  Instruction *TheCall = CS.getInstruction();
790  LLVMContext &Context = TheCall->getContext();
791  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
792         "Instruction not in function!");
793
794  // If IFI has any state in it, zap it before we fill it in.
795  IFI.reset();
796
797  const Function *CalledFunc = CS.getCalledFunction();
798  if (CalledFunc == 0 ||          // Can't inline external function or indirect
799      CalledFunc->isDeclaration() || // call, or call to a vararg function!
800      CalledFunc->getFunctionType()->isVarArg()) return false;
801
802  // If the call to the callee is not a tail call, we must clear the 'tail'
803  // flags on any calls that we inline.
804  bool MustClearTailCallFlags =
805    !(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
806
807  // If the call to the callee cannot throw, set the 'nounwind' flag on any
808  // calls that we inline.
809  bool MarkNoUnwind = CS.doesNotThrow();
810
811  BasicBlock *OrigBB = TheCall->getParent();
812  Function *Caller = OrigBB->getParent();
813
814  // GC poses two hazards to inlining, which only occur when the callee has GC:
815  //  1. If the caller has no GC, then the callee's GC must be propagated to the
816  //     caller.
817  //  2. If the caller has a differing GC, it is invalid to inline.
818  if (CalledFunc->hasGC()) {
819    if (!Caller->hasGC())
820      Caller->setGC(CalledFunc->getGC());
821    else if (CalledFunc->getGC() != Caller->getGC())
822      return false;
823  }
824
825  // Get an iterator to the last basic block in the function, which will have
826  // the new function inlined after it.
827  //
828  Function::iterator LastBlock = &Caller->back();
829
830  // Make sure to capture all of the return instructions from the cloned
831  // function.
832  SmallVector<ReturnInst*, 8> Returns;
833  ClonedCodeInfo InlinedFunctionInfo;
834  Function::iterator FirstNewBlock;
835
836  { // Scope to destroy VMap after cloning.
837    ValueToValueMapTy VMap;
838
839    assert(CalledFunc->arg_size() == CS.arg_size() &&
840           "No varargs calls can be inlined!");
841
842    // Calculate the vector of arguments to pass into the function cloner, which
843    // matches up the formal to the actual argument values.
844    CallSite::arg_iterator AI = CS.arg_begin();
845    unsigned ArgNo = 0;
846    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
847         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
848      Value *ActualArg = *AI;
849
850      // When byval arguments actually inlined, we need to make the copy implied
851      // by them explicit.  However, we don't do this if the callee is readonly
852      // or readnone, because the copy would be unneeded: the callee doesn't
853      // modify the struct.
854      if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) {
855        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
856                                        CalledFunc->getParamAlignment(ArgNo+1));
857
858        // Calls that we inline may use the new alloca, so we need to clear
859        // their 'tail' flags if HandleByValArgument introduced a new alloca and
860        // the callee has calls.
861        MustClearTailCallFlags |= ActualArg != *AI;
862      }
863
864      VMap[I] = ActualArg;
865    }
866
867    // We want the inliner to prune the code as it copies.  We would LOVE to
868    // have no dead or constant instructions leftover after inlining occurs
869    // (which can happen, e.g., because an argument was constant), but we'll be
870    // happy with whatever the cloner can do.
871    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
872                              /*ModuleLevelChanges=*/false, Returns, ".i",
873                              &InlinedFunctionInfo, IFI.TD, TheCall);
874
875    // Remember the first block that is newly cloned over.
876    FirstNewBlock = LastBlock; ++FirstNewBlock;
877
878    // Update the callgraph if requested.
879    if (IFI.CG)
880      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
881
882    // Update inlined instructions' line number information.
883    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
884  }
885
886  // If there are any alloca instructions in the block that used to be the entry
887  // block for the callee, move them to the entry block of the caller.  First
888  // calculate which instruction they should be inserted before.  We insert the
889  // instructions at the end of the current alloca list.
890  //
891  {
892    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
893    for (BasicBlock::iterator I = FirstNewBlock->begin(),
894         E = FirstNewBlock->end(); I != E; ) {
895      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
896      if (AI == 0) continue;
897
898      // If the alloca is now dead, remove it.  This often occurs due to code
899      // specialization.
900      if (AI->use_empty()) {
901        AI->eraseFromParent();
902        continue;
903      }
904
905      if (!isa<Constant>(AI->getArraySize()))
906        continue;
907
908      // Keep track of the static allocas that we inline into the caller.
909      IFI.StaticAllocas.push_back(AI);
910
911      // Scan for the block of allocas that we can move over, and move them
912      // all at once.
913      while (isa<AllocaInst>(I) &&
914             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
915        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
916        ++I;
917      }
918
919      // Transfer all of the allocas over in a block.  Using splice means
920      // that the instructions aren't removed from the symbol table, then
921      // reinserted.
922      Caller->getEntryBlock().getInstList().splice(InsertPoint,
923                                                   FirstNewBlock->getInstList(),
924                                                   AI, I);
925    }
926  }
927
928  // Leave lifetime markers for the static alloca's, scoping them to the
929  // function we just inlined.
930  if (!IFI.StaticAllocas.empty()) {
931    IRBuilder<> builder(FirstNewBlock->begin());
932    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
933      AllocaInst *AI = IFI.StaticAllocas[ai];
934
935      // If the alloca is already scoped to something smaller than the whole
936      // function then there's no need to add redundant, less accurate markers.
937      if (hasLifetimeMarkers(AI))
938        continue;
939
940      builder.CreateLifetimeStart(AI);
941      for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
942        IRBuilder<> builder(Returns[ri]);
943        builder.CreateLifetimeEnd(AI);
944      }
945    }
946  }
947
948  // If the inlined code contained dynamic alloca instructions, wrap the inlined
949  // code with llvm.stacksave/llvm.stackrestore intrinsics.
950  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
951    Module *M = Caller->getParent();
952    // Get the two intrinsics we care about.
953    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
954    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
955
956    // Insert the llvm.stacksave.
957    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
958      .CreateCall(StackSave, "savedstack");
959
960    // Insert a call to llvm.stackrestore before any return instructions in the
961    // inlined function.
962    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
963      IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
964    }
965
966    // Count the number of StackRestore calls we insert.
967    unsigned NumStackRestores = Returns.size();
968
969    // If we are inlining an invoke instruction, insert restores before each
970    // unwind.  These unwinds will be rewritten into branches later.
971    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
972      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
973           BB != E; ++BB)
974        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
975          IRBuilder<>(UI).CreateCall(StackRestore, SavedPtr);
976          ++NumStackRestores;
977        }
978    }
979  }
980
981  // If we are inlining tail call instruction through a call site that isn't
982  // marked 'tail', we must remove the tail marker for any calls in the inlined
983  // code.  Also, calls inlined through a 'nounwind' call site should be marked
984  // 'nounwind'.
985  if (InlinedFunctionInfo.ContainsCalls &&
986      (MustClearTailCallFlags || MarkNoUnwind)) {
987    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
988         BB != E; ++BB)
989      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
990        if (CallInst *CI = dyn_cast<CallInst>(I)) {
991          if (MustClearTailCallFlags)
992            CI->setTailCall(false);
993          if (MarkNoUnwind)
994            CI->setDoesNotThrow();
995        }
996  }
997
998  // If we are inlining through a 'nounwind' call site then any inlined 'unwind'
999  // instructions are unreachable.
1000  if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
1001    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
1002         BB != E; ++BB) {
1003      TerminatorInst *Term = BB->getTerminator();
1004      if (isa<UnwindInst>(Term)) {
1005        new UnreachableInst(Context, Term);
1006        BB->getInstList().erase(Term);
1007      }
1008    }
1009
1010  // If we are inlining for an invoke instruction, we must make sure to rewrite
1011  // any inlined 'unwind' instructions into branches to the invoke exception
1012  // destination, and call instructions into invoke instructions.
1013  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
1014    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
1015
1016  // If we cloned in _exactly one_ basic block, and if that block ends in a
1017  // return instruction, we splice the body of the inlined callee directly into
1018  // the calling basic block.
1019  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
1020    // Move all of the instructions right before the call.
1021    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
1022                                 FirstNewBlock->begin(), FirstNewBlock->end());
1023    // Remove the cloned basic block.
1024    Caller->getBasicBlockList().pop_back();
1025
1026    // If the call site was an invoke instruction, add a branch to the normal
1027    // destination.
1028    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
1029      BranchInst::Create(II->getNormalDest(), TheCall);
1030
1031    // If the return instruction returned a value, replace uses of the call with
1032    // uses of the returned value.
1033    if (!TheCall->use_empty()) {
1034      ReturnInst *R = Returns[0];
1035      if (TheCall == R->getReturnValue())
1036        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1037      else
1038        TheCall->replaceAllUsesWith(R->getReturnValue());
1039    }
1040    // Since we are now done with the Call/Invoke, we can delete it.
1041    TheCall->eraseFromParent();
1042
1043    // Since we are now done with the return instruction, delete it also.
1044    Returns[0]->eraseFromParent();
1045
1046    // We are now done with the inlining.
1047    return true;
1048  }
1049
1050  // Otherwise, we have the normal case, of more than one block to inline or
1051  // multiple return sites.
1052
1053  // We want to clone the entire callee function into the hole between the
1054  // "starter" and "ender" blocks.  How we accomplish this depends on whether
1055  // this is an invoke instruction or a call instruction.
1056  BasicBlock *AfterCallBB;
1057  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
1058
1059    // Add an unconditional branch to make this look like the CallInst case...
1060    BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
1061
1062    // Split the basic block.  This guarantees that no PHI nodes will have to be
1063    // updated due to new incoming edges, and make the invoke case more
1064    // symmetric to the call case.
1065    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
1066                                          CalledFunc->getName()+".exit");
1067
1068  } else {  // It's a call
1069    // If this is a call instruction, we need to split the basic block that
1070    // the call lives in.
1071    //
1072    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
1073                                          CalledFunc->getName()+".exit");
1074  }
1075
1076  // Change the branch that used to go to AfterCallBB to branch to the first
1077  // basic block of the inlined function.
1078  //
1079  TerminatorInst *Br = OrigBB->getTerminator();
1080  assert(Br && Br->getOpcode() == Instruction::Br &&
1081         "splitBasicBlock broken!");
1082  Br->setOperand(0, FirstNewBlock);
1083
1084
1085  // Now that the function is correct, make it a little bit nicer.  In
1086  // particular, move the basic blocks inserted from the end of the function
1087  // into the space made by splitting the source basic block.
1088  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
1089                                     FirstNewBlock, Caller->end());
1090
1091  // Handle all of the return instructions that we just cloned in, and eliminate
1092  // any users of the original call/invoke instruction.
1093  Type *RTy = CalledFunc->getReturnType();
1094
1095  PHINode *PHI = 0;
1096  if (Returns.size() > 1) {
1097    // The PHI node should go at the front of the new basic block to merge all
1098    // possible incoming values.
1099    if (!TheCall->use_empty()) {
1100      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
1101                            AfterCallBB->begin());
1102      // Anything that used the result of the function call should now use the
1103      // PHI node as their operand.
1104      TheCall->replaceAllUsesWith(PHI);
1105    }
1106
1107    // Loop over all of the return instructions adding entries to the PHI node
1108    // as appropriate.
1109    if (PHI) {
1110      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1111        ReturnInst *RI = Returns[i];
1112        assert(RI->getReturnValue()->getType() == PHI->getType() &&
1113               "Ret value not consistent in function!");
1114        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
1115      }
1116    }
1117
1118
1119    // Add a branch to the merge points and remove return instructions.
1120    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
1121      ReturnInst *RI = Returns[i];
1122      BranchInst::Create(AfterCallBB, RI);
1123      RI->eraseFromParent();
1124    }
1125  } else if (!Returns.empty()) {
1126    // Otherwise, if there is exactly one return value, just replace anything
1127    // using the return value of the call with the computed value.
1128    if (!TheCall->use_empty()) {
1129      if (TheCall == Returns[0]->getReturnValue())
1130        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1131      else
1132        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
1133    }
1134
1135    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
1136    BasicBlock *ReturnBB = Returns[0]->getParent();
1137    ReturnBB->replaceAllUsesWith(AfterCallBB);
1138
1139    // Splice the code from the return block into the block that it will return
1140    // to, which contains the code that was after the call.
1141    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
1142                                      ReturnBB->getInstList());
1143
1144    // Delete the return instruction now and empty ReturnBB now.
1145    Returns[0]->eraseFromParent();
1146    ReturnBB->eraseFromParent();
1147  } else if (!TheCall->use_empty()) {
1148    // No returns, but something is using the return value of the call.  Just
1149    // nuke the result.
1150    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
1151  }
1152
1153  // Since we are now done with the Call/Invoke, we can delete it.
1154  TheCall->eraseFromParent();
1155
1156  // We should always be able to fold the entry block of the function into the
1157  // single predecessor of the block...
1158  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
1159  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
1160
1161  // Splice the code entry block into calling block, right before the
1162  // unconditional branch.
1163  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
1164  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
1165
1166  // Remove the unconditional branch.
1167  OrigBB->getInstList().erase(Br);
1168
1169  // Now we can remove the CalleeEntry block, which is now empty.
1170  Caller->getBasicBlockList().erase(CalleeEntry);
1171
1172  // If we inserted a phi node, check to see if it has a single value (e.g. all
1173  // the entries are the same or undef).  If so, remove the PHI so it doesn't
1174  // block other optimizations.
1175  if (PHI)
1176    if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
1177      PHI->replaceAllUsesWith(V);
1178      PHI->eraseFromParent();
1179    }
1180
1181  return true;
1182}
1183