InlineFunction.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/Analysis/CallGraph.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/IR/Attributes.h"
21#include "llvm/IR/CallSite.h"
22#include "llvm/IR/CFG.h"
23#include "llvm/IR/Constants.h"
24#include "llvm/IR/DataLayout.h"
25#include "llvm/IR/DebugInfo.h"
26#include "llvm/IR/DerivedTypes.h"
27#include "llvm/IR/IRBuilder.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/IntrinsicInst.h"
30#include "llvm/IR/Intrinsics.h"
31#include "llvm/IR/Module.h"
32#include "llvm/Transforms/Utils/Local.h"
33using namespace llvm;
34
35bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI,
36                          bool InsertLifetime) {
37  return InlineFunction(CallSite(CI), IFI, InsertLifetime);
38}
39bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI,
40                          bool InsertLifetime) {
41  return InlineFunction(CallSite(II), IFI, InsertLifetime);
42}
43
44namespace {
45  /// A class for recording information about inlining through an invoke.
46  class InvokeInliningInfo {
47    BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind.
48    BasicBlock *InnerResumeDest; ///< Destination for the callee's resume.
49    LandingPadInst *CallerLPad;  ///< LandingPadInst associated with the invoke.
50    PHINode *InnerEHValuesPHI;   ///< PHI for EH values from landingpad insts.
51    SmallVector<Value*, 8> UnwindDestPHIValues;
52
53  public:
54    InvokeInliningInfo(InvokeInst *II)
55      : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr),
56        CallerLPad(nullptr), InnerEHValuesPHI(nullptr) {
57      // If there are PHI nodes in the unwind destination block, we need to keep
58      // track of which values came into them from the invoke before removing
59      // the edge from this block.
60      llvm::BasicBlock *InvokeBB = II->getParent();
61      BasicBlock::iterator I = OuterResumeDest->begin();
62      for (; isa<PHINode>(I); ++I) {
63        // Save the value to use for this edge.
64        PHINode *PHI = cast<PHINode>(I);
65        UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
66      }
67
68      CallerLPad = cast<LandingPadInst>(I);
69    }
70
71    /// getOuterResumeDest - The outer unwind destination is the target of
72    /// unwind edges introduced for calls within the inlined function.
73    BasicBlock *getOuterResumeDest() const {
74      return OuterResumeDest;
75    }
76
77    BasicBlock *getInnerResumeDest();
78
79    LandingPadInst *getLandingPadInst() const { return CallerLPad; }
80
81    /// forwardResume - Forward the 'resume' instruction to the caller's landing
82    /// pad block. When the landing pad block has only one predecessor, this is
83    /// a simple branch. When there is more than one predecessor, we need to
84    /// split the landing pad block after the landingpad instruction and jump
85    /// to there.
86    void forwardResume(ResumeInst *RI,
87                       SmallPtrSet<LandingPadInst*, 16> &InlinedLPads);
88
89    /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
90    /// destination block for the given basic block, using the values for the
91    /// original invoke's source block.
92    void addIncomingPHIValuesFor(BasicBlock *BB) const {
93      addIncomingPHIValuesForInto(BB, OuterResumeDest);
94    }
95
96    void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
97      BasicBlock::iterator I = dest->begin();
98      for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
99        PHINode *phi = cast<PHINode>(I);
100        phi->addIncoming(UnwindDestPHIValues[i], src);
101      }
102    }
103  };
104}
105
106/// getInnerResumeDest - Get or create a target for the branch from ResumeInsts.
107BasicBlock *InvokeInliningInfo::getInnerResumeDest() {
108  if (InnerResumeDest) return InnerResumeDest;
109
110  // Split the landing pad.
111  BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
112  InnerResumeDest =
113    OuterResumeDest->splitBasicBlock(SplitPoint,
114                                     OuterResumeDest->getName() + ".body");
115
116  // The number of incoming edges we expect to the inner landing pad.
117  const unsigned PHICapacity = 2;
118
119  // Create corresponding new PHIs for all the PHIs in the outer landing pad.
120  BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
121  BasicBlock::iterator I = OuterResumeDest->begin();
122  for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
123    PHINode *OuterPHI = cast<PHINode>(I);
124    PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
125                                        OuterPHI->getName() + ".lpad-body",
126                                        InsertPoint);
127    OuterPHI->replaceAllUsesWith(InnerPHI);
128    InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
129  }
130
131  // Create a PHI for the exception values.
132  InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
133                                     "eh.lpad-body", InsertPoint);
134  CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
135  InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
136
137  // All done.
138  return InnerResumeDest;
139}
140
141/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
142/// block. When the landing pad block has only one predecessor, this is a simple
143/// branch. When there is more than one predecessor, we need to split the
144/// landing pad block after the landingpad instruction and jump to there.
145void InvokeInliningInfo::forwardResume(ResumeInst *RI,
146                               SmallPtrSet<LandingPadInst*, 16> &InlinedLPads) {
147  BasicBlock *Dest = getInnerResumeDest();
148  BasicBlock *Src = RI->getParent();
149
150  BranchInst::Create(Dest, Src);
151
152  // Update the PHIs in the destination. They were inserted in an order which
153  // makes this work.
154  addIncomingPHIValuesForInto(Src, Dest);
155
156  InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
157  RI->eraseFromParent();
158}
159
160/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
161/// an invoke, we have to turn all of the calls that can throw into
162/// invokes.  This function analyze BB to see if there are any calls, and if so,
163/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
164/// nodes in that block with the values specified in InvokeDestPHIValues.
165static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
166                                                   InvokeInliningInfo &Invoke) {
167  for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
168    Instruction *I = BBI++;
169
170    // We only need to check for function calls: inlined invoke
171    // instructions require no special handling.
172    CallInst *CI = dyn_cast<CallInst>(I);
173
174    // If this call cannot unwind, don't convert it to an invoke.
175    // Inline asm calls cannot throw.
176    if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue()))
177      continue;
178
179    // Convert this function call into an invoke instruction.  First, split the
180    // basic block.
181    BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
182
183    // Delete the unconditional branch inserted by splitBasicBlock
184    BB->getInstList().pop_back();
185
186    // Create the new invoke instruction.
187    ImmutableCallSite CS(CI);
188    SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
189    InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split,
190                                        Invoke.getOuterResumeDest(),
191                                        InvokeArgs, CI->getName(), BB);
192    II->setCallingConv(CI->getCallingConv());
193    II->setAttributes(CI->getAttributes());
194
195    // Make sure that anything using the call now uses the invoke!  This also
196    // updates the CallGraph if present, because it uses a WeakVH.
197    CI->replaceAllUsesWith(II);
198
199    // Delete the original call
200    Split->getInstList().pop_front();
201
202    // Update any PHI nodes in the exceptional block to indicate that there is
203    // now a new entry in them.
204    Invoke.addIncomingPHIValuesFor(BB);
205    return;
206  }
207}
208
209/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
210/// in the body of the inlined function into invokes.
211///
212/// II is the invoke instruction being inlined.  FirstNewBlock is the first
213/// block of the inlined code (the last block is the end of the function),
214/// and InlineCodeInfo is information about the code that got inlined.
215static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
216                                ClonedCodeInfo &InlinedCodeInfo) {
217  BasicBlock *InvokeDest = II->getUnwindDest();
218
219  Function *Caller = FirstNewBlock->getParent();
220
221  // The inlined code is currently at the end of the function, scan from the
222  // start of the inlined code to its end, checking for stuff we need to
223  // rewrite.
224  InvokeInliningInfo Invoke(II);
225
226  // Get all of the inlined landing pad instructions.
227  SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
228  for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I)
229    if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
230      InlinedLPads.insert(II->getLandingPadInst());
231
232  // Append the clauses from the outer landing pad instruction into the inlined
233  // landing pad instructions.
234  LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
235  for (SmallPtrSet<LandingPadInst*, 16>::iterator I = InlinedLPads.begin(),
236         E = InlinedLPads.end(); I != E; ++I) {
237    LandingPadInst *InlinedLPad = *I;
238    unsigned OuterNum = OuterLPad->getNumClauses();
239    InlinedLPad->reserveClauses(OuterNum);
240    for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
241      InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
242    if (OuterLPad->isCleanup())
243      InlinedLPad->setCleanup(true);
244  }
245
246  for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
247    if (InlinedCodeInfo.ContainsCalls)
248      HandleCallsInBlockInlinedThroughInvoke(BB, Invoke);
249
250    // Forward any resumes that are remaining here.
251    if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
252      Invoke.forwardResume(RI, InlinedLPads);
253  }
254
255  // Now that everything is happy, we have one final detail.  The PHI nodes in
256  // the exception destination block still have entries due to the original
257  // invoke instruction. Eliminate these entries (which might even delete the
258  // PHI node) now.
259  InvokeDest->removePredecessor(II->getParent());
260}
261
262/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
263/// into the caller, update the specified callgraph to reflect the changes we
264/// made.  Note that it's possible that not all code was copied over, so only
265/// some edges of the callgraph may remain.
266static void UpdateCallGraphAfterInlining(CallSite CS,
267                                         Function::iterator FirstNewBlock,
268                                         ValueToValueMapTy &VMap,
269                                         InlineFunctionInfo &IFI) {
270  CallGraph &CG = *IFI.CG;
271  const Function *Caller = CS.getInstruction()->getParent()->getParent();
272  const Function *Callee = CS.getCalledFunction();
273  CallGraphNode *CalleeNode = CG[Callee];
274  CallGraphNode *CallerNode = CG[Caller];
275
276  // Since we inlined some uninlined call sites in the callee into the caller,
277  // add edges from the caller to all of the callees of the callee.
278  CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
279
280  // Consider the case where CalleeNode == CallerNode.
281  CallGraphNode::CalledFunctionsVector CallCache;
282  if (CalleeNode == CallerNode) {
283    CallCache.assign(I, E);
284    I = CallCache.begin();
285    E = CallCache.end();
286  }
287
288  for (; I != E; ++I) {
289    const Value *OrigCall = I->first;
290
291    ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
292    // Only copy the edge if the call was inlined!
293    if (VMI == VMap.end() || VMI->second == nullptr)
294      continue;
295
296    // If the call was inlined, but then constant folded, there is no edge to
297    // add.  Check for this case.
298    Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
299    if (!NewCall) continue;
300
301    // Remember that this call site got inlined for the client of
302    // InlineFunction.
303    IFI.InlinedCalls.push_back(NewCall);
304
305    // It's possible that inlining the callsite will cause it to go from an
306    // indirect to a direct call by resolving a function pointer.  If this
307    // happens, set the callee of the new call site to a more precise
308    // destination.  This can also happen if the call graph node of the caller
309    // was just unnecessarily imprecise.
310    if (!I->second->getFunction())
311      if (Function *F = CallSite(NewCall).getCalledFunction()) {
312        // Indirect call site resolved to direct call.
313        CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
314
315        continue;
316      }
317
318    CallerNode->addCalledFunction(CallSite(NewCall), I->second);
319  }
320
321  // Update the call graph by deleting the edge from Callee to Caller.  We must
322  // do this after the loop above in case Caller and Callee are the same.
323  CallerNode->removeCallEdgeFor(CS);
324}
325
326static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
327                                    BasicBlock *InsertBlock,
328                                    InlineFunctionInfo &IFI) {
329  LLVMContext &Context = Src->getContext();
330  Type *VoidPtrTy = Type::getInt8PtrTy(Context);
331  Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
332  Type *Tys[3] = { VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context) };
333  Function *MemCpyFn = Intrinsic::getDeclaration(M, Intrinsic::memcpy, Tys);
334  IRBuilder<> builder(InsertBlock->begin());
335  Value *DstCast = builder.CreateBitCast(Dst, VoidPtrTy, "tmp");
336  Value *SrcCast = builder.CreateBitCast(Src, VoidPtrTy, "tmp");
337
338  Value *Size;
339  if (IFI.DL == nullptr)
340    Size = ConstantExpr::getSizeOf(AggTy);
341  else
342    Size = ConstantInt::get(Type::getInt64Ty(Context),
343                            IFI.DL->getTypeStoreSize(AggTy));
344
345  // Always generate a memcpy of alignment 1 here because we don't know
346  // the alignment of the src pointer.  Other optimizations can infer
347  // better alignment.
348  Value *CallArgs[] = {
349    DstCast, SrcCast, Size,
350    ConstantInt::get(Type::getInt32Ty(Context), 1),
351    ConstantInt::getFalse(Context) // isVolatile
352  };
353  builder.CreateCall(MemCpyFn, CallArgs);
354}
355
356/// HandleByValArgument - When inlining a call site that has a byval argument,
357/// we have to make the implicit memcpy explicit by adding it.
358static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
359                                  const Function *CalledFunc,
360                                  InlineFunctionInfo &IFI,
361                                  unsigned ByValAlignment) {
362  PointerType *ArgTy = cast<PointerType>(Arg->getType());
363  Type *AggTy = ArgTy->getElementType();
364
365  // If the called function is readonly, then it could not mutate the caller's
366  // copy of the byval'd memory.  In this case, it is safe to elide the copy and
367  // temporary.
368  if (CalledFunc->onlyReadsMemory()) {
369    // If the byval argument has a specified alignment that is greater than the
370    // passed in pointer, then we either have to round up the input pointer or
371    // give up on this transformation.
372    if (ByValAlignment <= 1)  // 0 = unspecified, 1 = no particular alignment.
373      return Arg;
374
375    // If the pointer is already known to be sufficiently aligned, or if we can
376    // round it up to a larger alignment, then we don't need a temporary.
377    if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
378                                   IFI.DL) >= ByValAlignment)
379      return Arg;
380
381    // Otherwise, we have to make a memcpy to get a safe alignment.  This is bad
382    // for code quality, but rarely happens and is required for correctness.
383  }
384
385  // Create the alloca.  If we have DataLayout, use nice alignment.
386  unsigned Align = 1;
387  if (IFI.DL)
388    Align = IFI.DL->getPrefTypeAlignment(AggTy);
389
390  // If the byval had an alignment specified, we *must* use at least that
391  // alignment, as it is required by the byval argument (and uses of the
392  // pointer inside the callee).
393  Align = std::max(Align, ByValAlignment);
394
395  Function *Caller = TheCall->getParent()->getParent();
396
397  Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(),
398                                    &*Caller->begin()->begin());
399  IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
400
401  // Uses of the argument in the function should use our new alloca
402  // instead.
403  return NewAlloca;
404}
405
406// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
407// intrinsic.
408static bool isUsedByLifetimeMarker(Value *V) {
409  for (User *U : V->users()) {
410    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
411      switch (II->getIntrinsicID()) {
412      default: break;
413      case Intrinsic::lifetime_start:
414      case Intrinsic::lifetime_end:
415        return true;
416      }
417    }
418  }
419  return false;
420}
421
422// hasLifetimeMarkers - Check whether the given alloca already has
423// lifetime.start or lifetime.end intrinsics.
424static bool hasLifetimeMarkers(AllocaInst *AI) {
425  Type *Ty = AI->getType();
426  Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
427                                       Ty->getPointerAddressSpace());
428  if (Ty == Int8PtrTy)
429    return isUsedByLifetimeMarker(AI);
430
431  // Do a scan to find all the casts to i8*.
432  for (User *U : AI->users()) {
433    if (U->getType() != Int8PtrTy) continue;
434    if (U->stripPointerCasts() != AI) continue;
435    if (isUsedByLifetimeMarker(U))
436      return true;
437  }
438  return false;
439}
440
441/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to
442/// recursively update InlinedAtEntry of a DebugLoc.
443static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
444                                    const DebugLoc &InlinedAtDL,
445                                    LLVMContext &Ctx) {
446  if (MDNode *IA = DL.getInlinedAt(Ctx)) {
447    DebugLoc NewInlinedAtDL
448      = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
449    return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
450                         NewInlinedAtDL.getAsMDNode(Ctx));
451  }
452
453  return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
454                       InlinedAtDL.getAsMDNode(Ctx));
455}
456
457/// fixupLineNumbers - Update inlined instructions' line numbers to
458/// to encode location where these instructions are inlined.
459static void fixupLineNumbers(Function *Fn, Function::iterator FI,
460                             Instruction *TheCall) {
461  DebugLoc TheCallDL = TheCall->getDebugLoc();
462  if (TheCallDL.isUnknown())
463    return;
464
465  for (; FI != Fn->end(); ++FI) {
466    for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
467         BI != BE; ++BI) {
468      DebugLoc DL = BI->getDebugLoc();
469      if (!DL.isUnknown()) {
470        BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
471        if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
472          LLVMContext &Ctx = BI->getContext();
473          MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
474          DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
475                                                   InlinedAt, Ctx));
476        }
477      }
478    }
479  }
480}
481
482/// Returns a musttail call instruction if one immediately precedes the given
483/// return instruction with an optional bitcast instruction between them.
484static CallInst *getPrecedingMustTailCall(ReturnInst *RI) {
485  Instruction *Prev = RI->getPrevNode();
486  if (!Prev)
487    return nullptr;
488
489  if (Value *RV = RI->getReturnValue()) {
490    if (RV != Prev)
491      return nullptr;
492
493    // Look through the optional bitcast.
494    if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
495      RV = BI->getOperand(0);
496      Prev = BI->getPrevNode();
497      if (!Prev || RV != Prev)
498        return nullptr;
499    }
500  }
501
502  if (auto *CI = dyn_cast<CallInst>(Prev)) {
503    if (CI->isMustTailCall())
504      return CI;
505  }
506  return nullptr;
507}
508
509/// InlineFunction - This function inlines the called function into the basic
510/// block of the caller.  This returns false if it is not possible to inline
511/// this call.  The program is still in a well defined state if this occurs
512/// though.
513///
514/// Note that this only does one level of inlining.  For example, if the
515/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
516/// exists in the instruction stream.  Similarly this will inline a recursive
517/// function by one level.
518bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI,
519                          bool InsertLifetime) {
520  Instruction *TheCall = CS.getInstruction();
521  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
522         "Instruction not in function!");
523
524  // If IFI has any state in it, zap it before we fill it in.
525  IFI.reset();
526
527  const Function *CalledFunc = CS.getCalledFunction();
528  if (!CalledFunc ||              // Can't inline external function or indirect
529      CalledFunc->isDeclaration() || // call, or call to a vararg function!
530      CalledFunc->getFunctionType()->isVarArg()) return false;
531
532  // If the call to the callee cannot throw, set the 'nounwind' flag on any
533  // calls that we inline.
534  bool MarkNoUnwind = CS.doesNotThrow();
535
536  BasicBlock *OrigBB = TheCall->getParent();
537  Function *Caller = OrigBB->getParent();
538
539  // GC poses two hazards to inlining, which only occur when the callee has GC:
540  //  1. If the caller has no GC, then the callee's GC must be propagated to the
541  //     caller.
542  //  2. If the caller has a differing GC, it is invalid to inline.
543  if (CalledFunc->hasGC()) {
544    if (!Caller->hasGC())
545      Caller->setGC(CalledFunc->getGC());
546    else if (CalledFunc->getGC() != Caller->getGC())
547      return false;
548  }
549
550  // Get the personality function from the callee if it contains a landing pad.
551  Value *CalleePersonality = nullptr;
552  for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end();
553       I != E; ++I)
554    if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
555      const BasicBlock *BB = II->getUnwindDest();
556      const LandingPadInst *LP = BB->getLandingPadInst();
557      CalleePersonality = LP->getPersonalityFn();
558      break;
559    }
560
561  // Find the personality function used by the landing pads of the caller. If it
562  // exists, then check to see that it matches the personality function used in
563  // the callee.
564  if (CalleePersonality) {
565    for (Function::const_iterator I = Caller->begin(), E = Caller->end();
566         I != E; ++I)
567      if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
568        const BasicBlock *BB = II->getUnwindDest();
569        const LandingPadInst *LP = BB->getLandingPadInst();
570
571        // If the personality functions match, then we can perform the
572        // inlining. Otherwise, we can't inline.
573        // TODO: This isn't 100% true. Some personality functions are proper
574        //       supersets of others and can be used in place of the other.
575        if (LP->getPersonalityFn() != CalleePersonality)
576          return false;
577
578        break;
579      }
580  }
581
582  // Get an iterator to the last basic block in the function, which will have
583  // the new function inlined after it.
584  Function::iterator LastBlock = &Caller->back();
585
586  // Make sure to capture all of the return instructions from the cloned
587  // function.
588  SmallVector<ReturnInst*, 8> Returns;
589  ClonedCodeInfo InlinedFunctionInfo;
590  Function::iterator FirstNewBlock;
591
592  { // Scope to destroy VMap after cloning.
593    ValueToValueMapTy VMap;
594    // Keep a list of pair (dst, src) to emit byval initializations.
595    SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
596
597    assert(CalledFunc->arg_size() == CS.arg_size() &&
598           "No varargs calls can be inlined!");
599
600    // Calculate the vector of arguments to pass into the function cloner, which
601    // matches up the formal to the actual argument values.
602    CallSite::arg_iterator AI = CS.arg_begin();
603    unsigned ArgNo = 0;
604    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
605         E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
606      Value *ActualArg = *AI;
607
608      // When byval arguments actually inlined, we need to make the copy implied
609      // by them explicit.  However, we don't do this if the callee is readonly
610      // or readnone, because the copy would be unneeded: the callee doesn't
611      // modify the struct.
612      if (CS.isByValArgument(ArgNo)) {
613        ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
614                                        CalledFunc->getParamAlignment(ArgNo+1));
615        if (ActualArg != *AI)
616          ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
617      }
618
619      VMap[I] = ActualArg;
620    }
621
622    // We want the inliner to prune the code as it copies.  We would LOVE to
623    // have no dead or constant instructions leftover after inlining occurs
624    // (which can happen, e.g., because an argument was constant), but we'll be
625    // happy with whatever the cloner can do.
626    CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
627                              /*ModuleLevelChanges=*/false, Returns, ".i",
628                              &InlinedFunctionInfo, IFI.DL, TheCall);
629
630    // Remember the first block that is newly cloned over.
631    FirstNewBlock = LastBlock; ++FirstNewBlock;
632
633    // Inject byval arguments initialization.
634    for (std::pair<Value*, Value*> &Init : ByValInit)
635      HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
636                              FirstNewBlock, IFI);
637
638    // Update the callgraph if requested.
639    if (IFI.CG)
640      UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
641
642    // Update inlined instructions' line number information.
643    fixupLineNumbers(Caller, FirstNewBlock, TheCall);
644  }
645
646  // If there are any alloca instructions in the block that used to be the entry
647  // block for the callee, move them to the entry block of the caller.  First
648  // calculate which instruction they should be inserted before.  We insert the
649  // instructions at the end of the current alloca list.
650  {
651    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
652    for (BasicBlock::iterator I = FirstNewBlock->begin(),
653         E = FirstNewBlock->end(); I != E; ) {
654      AllocaInst *AI = dyn_cast<AllocaInst>(I++);
655      if (!AI) continue;
656
657      // If the alloca is now dead, remove it.  This often occurs due to code
658      // specialization.
659      if (AI->use_empty()) {
660        AI->eraseFromParent();
661        continue;
662      }
663
664      if (!isa<Constant>(AI->getArraySize()))
665        continue;
666
667      // Keep track of the static allocas that we inline into the caller.
668      IFI.StaticAllocas.push_back(AI);
669
670      // Scan for the block of allocas that we can move over, and move them
671      // all at once.
672      while (isa<AllocaInst>(I) &&
673             isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
674        IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
675        ++I;
676      }
677
678      // Transfer all of the allocas over in a block.  Using splice means
679      // that the instructions aren't removed from the symbol table, then
680      // reinserted.
681      Caller->getEntryBlock().getInstList().splice(InsertPoint,
682                                                   FirstNewBlock->getInstList(),
683                                                   AI, I);
684    }
685  }
686
687  bool InlinedMustTailCalls = false;
688  if (InlinedFunctionInfo.ContainsCalls) {
689    CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
690    if (CallInst *CI = dyn_cast<CallInst>(TheCall))
691      CallSiteTailKind = CI->getTailCallKind();
692
693    for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
694         ++BB) {
695      for (Instruction &I : *BB) {
696        CallInst *CI = dyn_cast<CallInst>(&I);
697        if (!CI)
698          continue;
699
700        // We need to reduce the strength of any inlined tail calls.  For
701        // musttail, we have to avoid introducing potential unbounded stack
702        // growth.  For example, if functions 'f' and 'g' are mutually recursive
703        // with musttail, we can inline 'g' into 'f' so long as we preserve
704        // musttail on the cloned call to 'f'.  If either the inlined call site
705        // or the cloned call site is *not* musttail, the program already has
706        // one frame of stack growth, so it's safe to remove musttail.  Here is
707        // a table of example transformations:
708        //
709        //    f -> musttail g -> musttail f  ==>  f -> musttail f
710        //    f -> musttail g ->     tail f  ==>  f ->     tail f
711        //    f ->          g -> musttail f  ==>  f ->          f
712        //    f ->          g ->     tail f  ==>  f ->          f
713        CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
714        ChildTCK = std::min(CallSiteTailKind, ChildTCK);
715        CI->setTailCallKind(ChildTCK);
716        InlinedMustTailCalls |= CI->isMustTailCall();
717
718        // Calls inlined through a 'nounwind' call site should be marked
719        // 'nounwind'.
720        if (MarkNoUnwind)
721          CI->setDoesNotThrow();
722      }
723    }
724  }
725
726  // Leave lifetime markers for the static alloca's, scoping them to the
727  // function we just inlined.
728  if (InsertLifetime && !IFI.StaticAllocas.empty()) {
729    IRBuilder<> builder(FirstNewBlock->begin());
730    for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
731      AllocaInst *AI = IFI.StaticAllocas[ai];
732
733      // If the alloca is already scoped to something smaller than the whole
734      // function then there's no need to add redundant, less accurate markers.
735      if (hasLifetimeMarkers(AI))
736        continue;
737
738      // Try to determine the size of the allocation.
739      ConstantInt *AllocaSize = nullptr;
740      if (ConstantInt *AIArraySize =
741          dyn_cast<ConstantInt>(AI->getArraySize())) {
742        if (IFI.DL) {
743          Type *AllocaType = AI->getAllocatedType();
744          uint64_t AllocaTypeSize = IFI.DL->getTypeAllocSize(AllocaType);
745          uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
746          assert(AllocaArraySize > 0 && "array size of AllocaInst is zero");
747          // Check that array size doesn't saturate uint64_t and doesn't
748          // overflow when it's multiplied by type size.
749          if (AllocaArraySize != ~0ULL &&
750              UINT64_MAX / AllocaArraySize >= AllocaTypeSize) {
751            AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
752                                          AllocaArraySize * AllocaTypeSize);
753          }
754        }
755      }
756
757      builder.CreateLifetimeStart(AI, AllocaSize);
758      for (ReturnInst *RI : Returns) {
759        // Don't insert llvm.lifetime.end calls between a musttail call and a
760        // return.  The return kills all local allocas.
761        if (InlinedMustTailCalls && getPrecedingMustTailCall(RI))
762          continue;
763        IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
764      }
765    }
766  }
767
768  // If the inlined code contained dynamic alloca instructions, wrap the inlined
769  // code with llvm.stacksave/llvm.stackrestore intrinsics.
770  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
771    Module *M = Caller->getParent();
772    // Get the two intrinsics we care about.
773    Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
774    Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
775
776    // Insert the llvm.stacksave.
777    CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
778      .CreateCall(StackSave, "savedstack");
779
780    // Insert a call to llvm.stackrestore before any return instructions in the
781    // inlined function.
782    for (ReturnInst *RI : Returns) {
783      // Don't insert llvm.stackrestore calls between a musttail call and a
784      // return.  The return will restore the stack pointer.
785      if (InlinedMustTailCalls && getPrecedingMustTailCall(RI))
786        continue;
787      IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
788    }
789  }
790
791  // If we are inlining for an invoke instruction, we must make sure to rewrite
792  // any call instructions into invoke instructions.
793  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
794    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
795
796  // Handle any inlined musttail call sites.  In order for a new call site to be
797  // musttail, the source of the clone and the inlined call site must have been
798  // musttail.  Therefore it's safe to return without merging control into the
799  // phi below.
800  if (InlinedMustTailCalls) {
801    // Check if we need to bitcast the result of any musttail calls.
802    Type *NewRetTy = Caller->getReturnType();
803    bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy;
804
805    // Handle the returns preceded by musttail calls separately.
806    SmallVector<ReturnInst *, 8> NormalReturns;
807    for (ReturnInst *RI : Returns) {
808      CallInst *ReturnedMustTail = getPrecedingMustTailCall(RI);
809      if (!ReturnedMustTail) {
810        NormalReturns.push_back(RI);
811        continue;
812      }
813      if (!NeedBitCast)
814        continue;
815
816      // Delete the old return and any preceding bitcast.
817      BasicBlock *CurBB = RI->getParent();
818      auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
819      RI->eraseFromParent();
820      if (OldCast)
821        OldCast->eraseFromParent();
822
823      // Insert a new bitcast and return with the right type.
824      IRBuilder<> Builder(CurBB);
825      Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
826    }
827
828    // Leave behind the normal returns so we can merge control flow.
829    std::swap(Returns, NormalReturns);
830  }
831
832  // If we cloned in _exactly one_ basic block, and if that block ends in a
833  // return instruction, we splice the body of the inlined callee directly into
834  // the calling basic block.
835  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
836    // Move all of the instructions right before the call.
837    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
838                                 FirstNewBlock->begin(), FirstNewBlock->end());
839    // Remove the cloned basic block.
840    Caller->getBasicBlockList().pop_back();
841
842    // If the call site was an invoke instruction, add a branch to the normal
843    // destination.
844    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
845      BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
846      NewBr->setDebugLoc(Returns[0]->getDebugLoc());
847    }
848
849    // If the return instruction returned a value, replace uses of the call with
850    // uses of the returned value.
851    if (!TheCall->use_empty()) {
852      ReturnInst *R = Returns[0];
853      if (TheCall == R->getReturnValue())
854        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
855      else
856        TheCall->replaceAllUsesWith(R->getReturnValue());
857    }
858    // Since we are now done with the Call/Invoke, we can delete it.
859    TheCall->eraseFromParent();
860
861    // Since we are now done with the return instruction, delete it also.
862    Returns[0]->eraseFromParent();
863
864    // We are now done with the inlining.
865    return true;
866  }
867
868  // Otherwise, we have the normal case, of more than one block to inline or
869  // multiple return sites.
870
871  // We want to clone the entire callee function into the hole between the
872  // "starter" and "ender" blocks.  How we accomplish this depends on whether
873  // this is an invoke instruction or a call instruction.
874  BasicBlock *AfterCallBB;
875  BranchInst *CreatedBranchToNormalDest = nullptr;
876  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
877
878    // Add an unconditional branch to make this look like the CallInst case...
879    CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall);
880
881    // Split the basic block.  This guarantees that no PHI nodes will have to be
882    // updated due to new incoming edges, and make the invoke case more
883    // symmetric to the call case.
884    AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest,
885                                          CalledFunc->getName()+".exit");
886
887  } else {  // It's a call
888    // If this is a call instruction, we need to split the basic block that
889    // the call lives in.
890    //
891    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
892                                          CalledFunc->getName()+".exit");
893  }
894
895  // Change the branch that used to go to AfterCallBB to branch to the first
896  // basic block of the inlined function.
897  //
898  TerminatorInst *Br = OrigBB->getTerminator();
899  assert(Br && Br->getOpcode() == Instruction::Br &&
900         "splitBasicBlock broken!");
901  Br->setOperand(0, FirstNewBlock);
902
903
904  // Now that the function is correct, make it a little bit nicer.  In
905  // particular, move the basic blocks inserted from the end of the function
906  // into the space made by splitting the source basic block.
907  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
908                                     FirstNewBlock, Caller->end());
909
910  // Handle all of the return instructions that we just cloned in, and eliminate
911  // any users of the original call/invoke instruction.
912  Type *RTy = CalledFunc->getReturnType();
913
914  PHINode *PHI = nullptr;
915  if (Returns.size() > 1) {
916    // The PHI node should go at the front of the new basic block to merge all
917    // possible incoming values.
918    if (!TheCall->use_empty()) {
919      PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
920                            AfterCallBB->begin());
921      // Anything that used the result of the function call should now use the
922      // PHI node as their operand.
923      TheCall->replaceAllUsesWith(PHI);
924    }
925
926    // Loop over all of the return instructions adding entries to the PHI node
927    // as appropriate.
928    if (PHI) {
929      for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
930        ReturnInst *RI = Returns[i];
931        assert(RI->getReturnValue()->getType() == PHI->getType() &&
932               "Ret value not consistent in function!");
933        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
934      }
935    }
936
937
938    // Add a branch to the merge points and remove return instructions.
939    DebugLoc Loc;
940    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
941      ReturnInst *RI = Returns[i];
942      BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
943      Loc = RI->getDebugLoc();
944      BI->setDebugLoc(Loc);
945      RI->eraseFromParent();
946    }
947    // We need to set the debug location to *somewhere* inside the
948    // inlined function. The line number may be nonsensical, but the
949    // instruction will at least be associated with the right
950    // function.
951    if (CreatedBranchToNormalDest)
952      CreatedBranchToNormalDest->setDebugLoc(Loc);
953  } else if (!Returns.empty()) {
954    // Otherwise, if there is exactly one return value, just replace anything
955    // using the return value of the call with the computed value.
956    if (!TheCall->use_empty()) {
957      if (TheCall == Returns[0]->getReturnValue())
958        TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
959      else
960        TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
961    }
962
963    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
964    BasicBlock *ReturnBB = Returns[0]->getParent();
965    ReturnBB->replaceAllUsesWith(AfterCallBB);
966
967    // Splice the code from the return block into the block that it will return
968    // to, which contains the code that was after the call.
969    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
970                                      ReturnBB->getInstList());
971
972    if (CreatedBranchToNormalDest)
973      CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
974
975    // Delete the return instruction now and empty ReturnBB now.
976    Returns[0]->eraseFromParent();
977    ReturnBB->eraseFromParent();
978  } else if (!TheCall->use_empty()) {
979    // No returns, but something is using the return value of the call.  Just
980    // nuke the result.
981    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
982  }
983
984  // Since we are now done with the Call/Invoke, we can delete it.
985  TheCall->eraseFromParent();
986
987  // If we inlined any musttail calls and the original return is now
988  // unreachable, delete it.  It can only contain a bitcast and ret.
989  if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB))
990    AfterCallBB->eraseFromParent();
991
992  // We should always be able to fold the entry block of the function into the
993  // single predecessor of the block...
994  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
995  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
996
997  // Splice the code entry block into calling block, right before the
998  // unconditional branch.
999  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
1000  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
1001
1002  // Remove the unconditional branch.
1003  OrigBB->getInstList().erase(Br);
1004
1005  // Now we can remove the CalleeEntry block, which is now empty.
1006  Caller->getBasicBlockList().erase(CalleeEntry);
1007
1008  // If we inserted a phi node, check to see if it has a single value (e.g. all
1009  // the entries are the same or undef).  If so, remove the PHI so it doesn't
1010  // block other optimizations.
1011  if (PHI) {
1012    if (Value *V = SimplifyInstruction(PHI, IFI.DL)) {
1013      PHI->replaceAllUsesWith(V);
1014      PHI->eraseFromParent();
1015    }
1016  }
1017
1018  return true;
1019}
1020