InlineFunction.cpp revision ece2c04d532d46405c085769d03173b392813eb3
1//===- InlineFunction.cpp - Code to perform function inlining -------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements inlining of a function into a call site, resolving
11// parameters and the return value as appropriate.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/Cloning.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Module.h"
19#include "llvm/Instructions.h"
20#include "llvm/Intrinsics.h"
21#include "llvm/Analysis/CallGraph.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/Support/CallSite.h"
24using namespace llvm;
25
26bool llvm::InlineFunction(CallInst *CI, CallGraph *CG, const TargetData *TD) {
27  return InlineFunction(CallSite(CI), CG, TD);
28}
29bool llvm::InlineFunction(InvokeInst *II, CallGraph *CG, const TargetData *TD) {
30  return InlineFunction(CallSite(II), CG, TD);
31}
32
33/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
34/// in the body of the inlined function into invokes and turn unwind
35/// instructions into branches to the invoke unwind dest.
36///
37/// II is the invoke instruction begin inlined.  FirstNewBlock is the first
38/// block of the inlined code (the last block is the end of the function),
39/// and InlineCodeInfo is information about the code that got inlined.
40static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
41                                ClonedCodeInfo &InlinedCodeInfo) {
42  BasicBlock *InvokeDest = II->getUnwindDest();
43  std::vector<Value*> InvokeDestPHIValues;
44
45  // If there are PHI nodes in the unwind destination block, we need to
46  // keep track of which values came into them from this invoke, then remove
47  // the entry for this block.
48  BasicBlock *InvokeBlock = II->getParent();
49  for (BasicBlock::iterator I = InvokeDest->begin(); isa<PHINode>(I); ++I) {
50    PHINode *PN = cast<PHINode>(I);
51    // Save the value to use for this edge.
52    InvokeDestPHIValues.push_back(PN->getIncomingValueForBlock(InvokeBlock));
53  }
54
55  Function *Caller = FirstNewBlock->getParent();
56
57  // The inlined code is currently at the end of the function, scan from the
58  // start of the inlined code to its end, checking for stuff we need to
59  // rewrite.
60  if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
61    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
62         BB != E; ++BB) {
63      if (InlinedCodeInfo.ContainsCalls) {
64        for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
65          Instruction *I = BBI++;
66
67          // We only need to check for function calls: inlined invoke
68          // instructions require no special handling.
69          if (!isa<CallInst>(I)) continue;
70          CallInst *CI = cast<CallInst>(I);
71
72          // If this call cannot unwind, don't convert it to an invoke.
73          if (CI->isNoUnwind())
74            continue;
75
76          // Convert this function call into an invoke instruction.
77          // First, split the basic block.
78          BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
79
80          // Next, create the new invoke instruction, inserting it at the end
81          // of the old basic block.
82          SmallVector<Value*, 8> InvokeArgs(CI->op_begin()+1, CI->op_end());
83          InvokeInst *II =
84            new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
85                           InvokeArgs.begin(), InvokeArgs.end(),
86                           CI->getName(), BB->getTerminator());
87          II->setCallingConv(CI->getCallingConv());
88          II->setParamAttrs(CI->getParamAttrs());
89
90          // Make sure that anything using the call now uses the invoke!
91          CI->replaceAllUsesWith(II);
92
93          // Delete the unconditional branch inserted by splitBasicBlock
94          BB->getInstList().pop_back();
95          Split->getInstList().pop_front();  // Delete the original call
96
97          // Update any PHI nodes in the exceptional block to indicate that
98          // there is now a new entry in them.
99          unsigned i = 0;
100          for (BasicBlock::iterator I = InvokeDest->begin();
101               isa<PHINode>(I); ++I, ++i) {
102            PHINode *PN = cast<PHINode>(I);
103            PN->addIncoming(InvokeDestPHIValues[i], BB);
104          }
105
106          // This basic block is now complete, start scanning the next one.
107          break;
108        }
109      }
110
111      if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
112        // An UnwindInst requires special handling when it gets inlined into an
113        // invoke site.  Once this happens, we know that the unwind would cause
114        // a control transfer to the invoke exception destination, so we can
115        // transform it into a direct branch to the exception destination.
116        new BranchInst(InvokeDest, UI);
117
118        // Delete the unwind instruction!
119        UI->getParent()->getInstList().pop_back();
120
121        // Update any PHI nodes in the exceptional block to indicate that
122        // there is now a new entry in them.
123        unsigned i = 0;
124        for (BasicBlock::iterator I = InvokeDest->begin();
125             isa<PHINode>(I); ++I, ++i) {
126          PHINode *PN = cast<PHINode>(I);
127          PN->addIncoming(InvokeDestPHIValues[i], BB);
128        }
129      }
130    }
131  }
132
133  // Now that everything is happy, we have one final detail.  The PHI nodes in
134  // the exception destination block still have entries due to the original
135  // invoke instruction.  Eliminate these entries (which might even delete the
136  // PHI node) now.
137  InvokeDest->removePredecessor(II->getParent());
138}
139
140/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
141/// into the caller, update the specified callgraph to reflect the changes we
142/// made.  Note that it's possible that not all code was copied over, so only
143/// some edges of the callgraph will be remain.
144static void UpdateCallGraphAfterInlining(const Function *Caller,
145                                         const Function *Callee,
146                                         Function::iterator FirstNewBlock,
147                                       DenseMap<const Value*, Value*> &ValueMap,
148                                         CallGraph &CG) {
149  // Update the call graph by deleting the edge from Callee to Caller
150  CallGraphNode *CalleeNode = CG[Callee];
151  CallGraphNode *CallerNode = CG[Caller];
152  CallerNode->removeCallEdgeTo(CalleeNode);
153
154  // Since we inlined some uninlined call sites in the callee into the caller,
155  // add edges from the caller to all of the callees of the callee.
156  for (CallGraphNode::iterator I = CalleeNode->begin(),
157       E = CalleeNode->end(); I != E; ++I) {
158    const Instruction *OrigCall = I->first.getInstruction();
159
160    DenseMap<const Value*, Value*>::iterator VMI = ValueMap.find(OrigCall);
161    // Only copy the edge if the call was inlined!
162    if (VMI != ValueMap.end() && VMI->second) {
163      // If the call was inlined, but then constant folded, there is no edge to
164      // add.  Check for this case.
165      if (Instruction *NewCall = dyn_cast<Instruction>(VMI->second))
166        CallerNode->addCalledFunction(CallSite::get(NewCall), I->second);
167    }
168  }
169}
170
171
172// InlineFunction - This function inlines the called function into the basic
173// block of the caller.  This returns false if it is not possible to inline this
174// call.  The program is still in a well defined state if this occurs though.
175//
176// Note that this only does one level of inlining.  For example, if the
177// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
178// exists in the instruction stream.  Similiarly this will inline a recursive
179// function by one level.
180//
181bool llvm::InlineFunction(CallSite CS, CallGraph *CG, const TargetData *TD) {
182  Instruction *TheCall = CS.getInstruction();
183  assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
184         "Instruction not in function!");
185
186  const Function *CalledFunc = CS.getCalledFunction();
187  if (CalledFunc == 0 ||          // Can't inline external function or indirect
188      CalledFunc->isDeclaration() || // call, or call to a vararg function!
189      CalledFunc->getFunctionType()->isVarArg()) return false;
190
191
192  // If the call to the callee is a non-tail call, we must clear the 'tail'
193  // flags on any calls that we inline.
194  bool MustClearTailCallFlags =
195    isa<CallInst>(TheCall) && !cast<CallInst>(TheCall)->isTailCall();
196
197  BasicBlock *OrigBB = TheCall->getParent();
198  Function *Caller = OrigBB->getParent();
199
200  // Get an iterator to the last basic block in the function, which will have
201  // the new function inlined after it.
202  //
203  Function::iterator LastBlock = &Caller->back();
204
205  // Make sure to capture all of the return instructions from the cloned
206  // function.
207  std::vector<ReturnInst*> Returns;
208  ClonedCodeInfo InlinedFunctionInfo;
209  Function::iterator FirstNewBlock;
210
211  { // Scope to destroy ValueMap after cloning.
212    DenseMap<const Value*, Value*> ValueMap;
213
214    // Calculate the vector of arguments to pass into the function cloner, which
215    // matches up the formal to the actual argument values.
216    assert(std::distance(CalledFunc->arg_begin(), CalledFunc->arg_end()) ==
217           std::distance(CS.arg_begin(), CS.arg_end()) &&
218           "No varargs calls can be inlined!");
219    CallSite::arg_iterator AI = CS.arg_begin();
220    for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
221           E = CalledFunc->arg_end(); I != E; ++I, ++AI)
222      ValueMap[I] = *AI;
223
224    // We want the inliner to prune the code as it copies.  We would LOVE to
225    // have no dead or constant instructions leftover after inlining occurs
226    // (which can happen, e.g., because an argument was constant), but we'll be
227    // happy with whatever the cloner can do.
228    CloneAndPruneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i",
229                              &InlinedFunctionInfo, TD);
230
231    // Remember the first block that is newly cloned over.
232    FirstNewBlock = LastBlock; ++FirstNewBlock;
233
234    // Update the callgraph if requested.
235    if (CG)
236      UpdateCallGraphAfterInlining(Caller, CalledFunc, FirstNewBlock, ValueMap,
237                                   *CG);
238  }
239
240  // If there are any alloca instructions in the block that used to be the entry
241  // block for the callee, move them to the entry block of the caller.  First
242  // calculate which instruction they should be inserted before.  We insert the
243  // instructions at the end of the current alloca list.
244  //
245  {
246    BasicBlock::iterator InsertPoint = Caller->begin()->begin();
247    for (BasicBlock::iterator I = FirstNewBlock->begin(),
248           E = FirstNewBlock->end(); I != E; )
249      if (AllocaInst *AI = dyn_cast<AllocaInst>(I++)) {
250        // If the alloca is now dead, remove it.  This often occurs due to code
251        // specialization.
252        if (AI->use_empty()) {
253          AI->eraseFromParent();
254          continue;
255        }
256
257        if (isa<Constant>(AI->getArraySize())) {
258          // Scan for the block of allocas that we can move over, and move them
259          // all at once.
260          while (isa<AllocaInst>(I) &&
261                 isa<Constant>(cast<AllocaInst>(I)->getArraySize()))
262            ++I;
263
264          // Transfer all of the allocas over in a block.  Using splice means
265          // that the instructions aren't removed from the symbol table, then
266          // reinserted.
267          Caller->getEntryBlock().getInstList().splice(
268              InsertPoint,
269              FirstNewBlock->getInstList(),
270              AI, I);
271        }
272      }
273  }
274
275  // If the inlined code contained dynamic alloca instructions, wrap the inlined
276  // code with llvm.stacksave/llvm.stackrestore intrinsics.
277  if (InlinedFunctionInfo.ContainsDynamicAllocas) {
278    Module *M = Caller->getParent();
279    const Type *BytePtr = PointerType::get(Type::Int8Ty);
280    // Get the two intrinsics we care about.
281    Constant *StackSave, *StackRestore;
282    StackSave    = M->getOrInsertFunction("llvm.stacksave", BytePtr, NULL);
283    StackRestore = M->getOrInsertFunction("llvm.stackrestore", Type::VoidTy,
284                                          BytePtr, NULL);
285
286    // If we are preserving the callgraph, add edges to the stacksave/restore
287    // functions for the calls we insert.
288    CallGraphNode *StackSaveCGN = 0, *StackRestoreCGN = 0, *CallerNode = 0;
289    if (CG) {
290      // We know that StackSave/StackRestore are Function*'s, because they are
291      // intrinsics which must have the right types.
292      StackSaveCGN    = CG->getOrInsertFunction(cast<Function>(StackSave));
293      StackRestoreCGN = CG->getOrInsertFunction(cast<Function>(StackRestore));
294      CallerNode = (*CG)[Caller];
295    }
296
297    // Insert the llvm.stacksave.
298    CallInst *SavedPtr = new CallInst(StackSave, "savedstack",
299                                      FirstNewBlock->begin());
300    if (CG) CallerNode->addCalledFunction(SavedPtr, StackSaveCGN);
301
302    // Insert a call to llvm.stackrestore before any return instructions in the
303    // inlined function.
304    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
305      CallInst *CI = new CallInst(StackRestore, SavedPtr, "", Returns[i]);
306      if (CG) CallerNode->addCalledFunction(CI, StackRestoreCGN);
307    }
308
309    // Count the number of StackRestore calls we insert.
310    unsigned NumStackRestores = Returns.size();
311
312    // If we are inlining an invoke instruction, insert restores before each
313    // unwind.  These unwinds will be rewritten into branches later.
314    if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
315      for (Function::iterator BB = FirstNewBlock, E = Caller->end();
316           BB != E; ++BB)
317        if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
318          new CallInst(StackRestore, SavedPtr, "", UI);
319          ++NumStackRestores;
320        }
321    }
322  }
323
324  // If we are inlining tail call instruction through a call site that isn't
325  // marked 'tail', we must remove the tail marker for any calls in the inlined
326  // code.
327  if (MustClearTailCallFlags && InlinedFunctionInfo.ContainsCalls) {
328    for (Function::iterator BB = FirstNewBlock, E = Caller->end();
329         BB != E; ++BB)
330      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
331        if (CallInst *CI = dyn_cast<CallInst>(I))
332          CI->setTailCall(false);
333  }
334
335  // If we are inlining for an invoke instruction, we must make sure to rewrite
336  // any inlined 'unwind' instructions into branches to the invoke exception
337  // destination, and call instructions into invoke instructions.
338  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
339    HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
340
341  // If we cloned in _exactly one_ basic block, and if that block ends in a
342  // return instruction, we splice the body of the inlined callee directly into
343  // the calling basic block.
344  if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
345    // Move all of the instructions right before the call.
346    OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
347                                 FirstNewBlock->begin(), FirstNewBlock->end());
348    // Remove the cloned basic block.
349    Caller->getBasicBlockList().pop_back();
350
351    // If the call site was an invoke instruction, add a branch to the normal
352    // destination.
353    if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
354      new BranchInst(II->getNormalDest(), TheCall);
355
356    // If the return instruction returned a value, replace uses of the call with
357    // uses of the returned value.
358    if (!TheCall->use_empty())
359      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
360
361    // Since we are now done with the Call/Invoke, we can delete it.
362    TheCall->getParent()->getInstList().erase(TheCall);
363
364    // Since we are now done with the return instruction, delete it also.
365    Returns[0]->getParent()->getInstList().erase(Returns[0]);
366
367    // We are now done with the inlining.
368    return true;
369  }
370
371  // Otherwise, we have the normal case, of more than one block to inline or
372  // multiple return sites.
373
374  // We want to clone the entire callee function into the hole between the
375  // "starter" and "ender" blocks.  How we accomplish this depends on whether
376  // this is an invoke instruction or a call instruction.
377  BasicBlock *AfterCallBB;
378  if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
379
380    // Add an unconditional branch to make this look like the CallInst case...
381    BranchInst *NewBr = new BranchInst(II->getNormalDest(), TheCall);
382
383    // Split the basic block.  This guarantees that no PHI nodes will have to be
384    // updated due to new incoming edges, and make the invoke case more
385    // symmetric to the call case.
386    AfterCallBB = OrigBB->splitBasicBlock(NewBr,
387                                          CalledFunc->getName()+".exit");
388
389  } else {  // It's a call
390    // If this is a call instruction, we need to split the basic block that
391    // the call lives in.
392    //
393    AfterCallBB = OrigBB->splitBasicBlock(TheCall,
394                                          CalledFunc->getName()+".exit");
395  }
396
397  // Change the branch that used to go to AfterCallBB to branch to the first
398  // basic block of the inlined function.
399  //
400  TerminatorInst *Br = OrigBB->getTerminator();
401  assert(Br && Br->getOpcode() == Instruction::Br &&
402         "splitBasicBlock broken!");
403  Br->setOperand(0, FirstNewBlock);
404
405
406  // Now that the function is correct, make it a little bit nicer.  In
407  // particular, move the basic blocks inserted from the end of the function
408  // into the space made by splitting the source basic block.
409  //
410  Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
411                                     FirstNewBlock, Caller->end());
412
413  // Handle all of the return instructions that we just cloned in, and eliminate
414  // any users of the original call/invoke instruction.
415  if (Returns.size() > 1) {
416    // The PHI node should go at the front of the new basic block to merge all
417    // possible incoming values.
418    //
419    PHINode *PHI = 0;
420    if (!TheCall->use_empty()) {
421      PHI = new PHINode(CalledFunc->getReturnType(),
422                        TheCall->getName(), AfterCallBB->begin());
423
424      // Anything that used the result of the function call should now use the
425      // PHI node as their operand.
426      //
427      TheCall->replaceAllUsesWith(PHI);
428    }
429
430    // Loop over all of the return instructions, turning them into unconditional
431    // branches to the merge point now, and adding entries to the PHI node as
432    // appropriate.
433    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
434      ReturnInst *RI = Returns[i];
435
436      if (PHI) {
437        assert(RI->getReturnValue() && "Ret should have value!");
438        assert(RI->getReturnValue()->getType() == PHI->getType() &&
439               "Ret value not consistent in function!");
440        PHI->addIncoming(RI->getReturnValue(), RI->getParent());
441      }
442
443      // Add a branch to the merge point where the PHI node lives if it exists.
444      new BranchInst(AfterCallBB, RI);
445
446      // Delete the return instruction now
447      RI->getParent()->getInstList().erase(RI);
448    }
449
450  } else if (!Returns.empty()) {
451    // Otherwise, if there is exactly one return value, just replace anything
452    // using the return value of the call with the computed value.
453    if (!TheCall->use_empty())
454      TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
455
456    // Splice the code from the return block into the block that it will return
457    // to, which contains the code that was after the call.
458    BasicBlock *ReturnBB = Returns[0]->getParent();
459    AfterCallBB->getInstList().splice(AfterCallBB->begin(),
460                                      ReturnBB->getInstList());
461
462    // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
463    ReturnBB->replaceAllUsesWith(AfterCallBB);
464
465    // Delete the return instruction now and empty ReturnBB now.
466    Returns[0]->eraseFromParent();
467    ReturnBB->eraseFromParent();
468  } else if (!TheCall->use_empty()) {
469    // No returns, but something is using the return value of the call.  Just
470    // nuke the result.
471    TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
472  }
473
474  // Since we are now done with the Call/Invoke, we can delete it.
475  TheCall->eraseFromParent();
476
477  // We should always be able to fold the entry block of the function into the
478  // single predecessor of the block...
479  assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
480  BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
481
482  // Splice the code entry block into calling block, right before the
483  // unconditional branch.
484  OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
485  CalleeEntry->replaceAllUsesWith(OrigBB);  // Update PHI nodes
486
487  // Remove the unconditional branch.
488  OrigBB->getInstList().erase(Br);
489
490  // Now we can remove the CalleeEntry block, which is now empty.
491  Caller->getBasicBlockList().erase(CalleeEntry);
492
493  return true;
494}
495