LoopSimplify.cpp revision 0a205a459884ec745df1c529396dd921f029dafd
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Note that the simplifycfg pass will clean up blocks which are split out but
27// end up being unnecessary, so usage of this pass should not pessimize
28// generated code.
29//
30// This pass obviously modifies the CFG, but updates loop information and
31// dominator information.
32//
33//===----------------------------------------------------------------------===//
34
35#define DEBUG_TYPE "loopsimplify"
36#include "llvm/Transforms/Scalar.h"
37#include "llvm/Constants.h"
38#include "llvm/Instructions.h"
39#include "llvm/Function.h"
40#include "llvm/LLVMContext.h"
41#include "llvm/Type.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/Analysis/Dominators.h"
44#include "llvm/Analysis/LoopInfo.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Support/CFG.h"
48#include "llvm/Support/Compiler.h"
49#include "llvm/ADT/SetOperations.h"
50#include "llvm/ADT/SetVector.h"
51#include "llvm/ADT/Statistic.h"
52#include "llvm/ADT/DepthFirstIterator.h"
53using namespace llvm;
54
55STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
56STATISTIC(NumNested  , "Number of nested loops split out");
57
58namespace {
59  struct VISIBILITY_HIDDEN LoopSimplify : public FunctionPass {
60    static char ID; // Pass identification, replacement for typeid
61    LoopSimplify() : FunctionPass(&ID) {}
62
63    // AA - If we have an alias analysis object to update, this is it, otherwise
64    // this is null.
65    AliasAnalysis *AA;
66    LoopInfo *LI;
67    DominatorTree *DT;
68    virtual bool runOnFunction(Function &F);
69
70    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
71      // We need loop information to identify the loops...
72      AU.addRequired<LoopInfo>();
73      AU.addRequired<DominatorTree>();
74
75      AU.addPreserved<LoopInfo>();
76      AU.addPreserved<DominatorTree>();
77      AU.addPreserved<DominanceFrontier>();
78      AU.addPreserved<AliasAnalysis>();
79      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
80    }
81
82    /// verifyAnalysis() - Verify loop nest.
83    void verifyAnalysis() const {
84#ifndef NDEBUG
85      LoopInfo *NLI = &getAnalysis<LoopInfo>();
86      for (LoopInfo::iterator I = NLI->begin(), E = NLI->end(); I != E; ++I)
87        (*I)->verifyLoop();
88#endif
89    }
90
91  private:
92    bool ProcessLoop(Loop *L);
93    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
94    void InsertPreheaderForLoop(Loop *L);
95    Loop *SeparateNestedLoop(Loop *L);
96    void InsertUniqueBackedgeBlock(Loop *L);
97    void PlaceSplitBlockCarefully(BasicBlock *NewBB,
98                                  SmallVectorImpl<BasicBlock*> &SplitPreds,
99                                  Loop *L);
100  };
101}
102
103char LoopSimplify::ID = 0;
104static RegisterPass<LoopSimplify>
105X("loopsimplify", "Canonicalize natural loops", true);
106
107// Publically exposed interface to pass...
108const PassInfo *const llvm::LoopSimplifyID = &X;
109FunctionPass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
110
111/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
112/// it in any convenient order) inserting preheaders...
113///
114bool LoopSimplify::runOnFunction(Function &F) {
115  bool Changed = false;
116  LI = &getAnalysis<LoopInfo>();
117  AA = getAnalysisIfAvailable<AliasAnalysis>();
118  DT = &getAnalysis<DominatorTree>();
119
120  // Check to see that no blocks (other than the header) in loops have
121  // predecessors that are not in loops.  This is not valid for natural loops,
122  // but can occur if the blocks are unreachable.  Since they are unreachable we
123  // can just shamelessly destroy their terminators to make them not branch into
124  // the loop!
125  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
126    // This case can only occur for unreachable blocks.  Blocks that are
127    // unreachable can't be in loops, so filter those blocks out.
128    if (LI->getLoopFor(BB)) continue;
129
130    bool BlockUnreachable = false;
131    TerminatorInst *TI = BB->getTerminator();
132
133    // Check to see if any successors of this block are non-loop-header loops
134    // that are not the header.
135    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
136      // If this successor is not in a loop, BB is clearly ok.
137      Loop *L = LI->getLoopFor(TI->getSuccessor(i));
138      if (!L) continue;
139
140      // If the succ is the loop header, and if L is a top-level loop, then this
141      // is an entrance into a loop through the header, which is also ok.
142      if (L->getHeader() == TI->getSuccessor(i) && L->getParentLoop() == 0)
143        continue;
144
145      // Otherwise, this is an entrance into a loop from some place invalid.
146      // Either the loop structure is invalid and this is not a natural loop (in
147      // which case the compiler is buggy somewhere else) or BB is unreachable.
148      BlockUnreachable = true;
149      break;
150    }
151
152    // If this block is ok, check the next one.
153    if (!BlockUnreachable) continue;
154
155    // Otherwise, this block is dead.  To clean up the CFG and to allow later
156    // loop transformations to ignore this case, we delete the edges into the
157    // loop by replacing the terminator.
158
159    // Remove PHI entries from the successors.
160    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
161      TI->getSuccessor(i)->removePredecessor(BB);
162
163    // Add a new unreachable instruction before the old terminator.
164    new UnreachableInst(TI);
165
166    // Delete the dead terminator.
167    if (AA) AA->deleteValue(TI);
168    if (!TI->use_empty())
169      TI->replaceAllUsesWith(Context->getUndef(TI->getType()));
170    TI->eraseFromParent();
171    Changed |= true;
172  }
173
174  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
175    Changed |= ProcessLoop(*I);
176
177  return Changed;
178}
179
180/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
181/// all loops have preheaders.
182///
183bool LoopSimplify::ProcessLoop(Loop *L) {
184  bool Changed = false;
185ReprocessLoop:
186
187  // Canonicalize inner loops before outer loops.  Inner loop canonicalization
188  // can provide work for the outer loop to canonicalize.
189  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
190    Changed |= ProcessLoop(*I);
191
192  assert(L->getBlocks()[0] == L->getHeader() &&
193         "Header isn't first block in loop?");
194
195  // Does the loop already have a preheader?  If so, don't insert one.
196  if (L->getLoopPreheader() == 0) {
197    InsertPreheaderForLoop(L);
198    NumInserted++;
199    Changed = true;
200  }
201
202  // Next, check to make sure that all exit nodes of the loop only have
203  // predecessors that are inside of the loop.  This check guarantees that the
204  // loop preheader/header will dominate the exit blocks.  If the exit block has
205  // predecessors from outside of the loop, split the edge now.
206  SmallVector<BasicBlock*, 8> ExitBlocks;
207  L->getExitBlocks(ExitBlocks);
208
209  SetVector<BasicBlock*> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end());
210  for (SetVector<BasicBlock*>::iterator I = ExitBlockSet.begin(),
211         E = ExitBlockSet.end(); I != E; ++I) {
212    BasicBlock *ExitBlock = *I;
213    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
214         PI != PE; ++PI)
215      // Must be exactly this loop: no subloops, parent loops, or non-loop preds
216      // allowed.
217      if (!L->contains(*PI)) {
218        RewriteLoopExitBlock(L, ExitBlock);
219        NumInserted++;
220        Changed = true;
221        break;
222      }
223  }
224
225  // If the header has more than two predecessors at this point (from the
226  // preheader and from multiple backedges), we must adjust the loop.
227  unsigned NumBackedges = L->getNumBackEdges();
228  if (NumBackedges != 1) {
229    // If this is really a nested loop, rip it out into a child loop.  Don't do
230    // this for loops with a giant number of backedges, just factor them into a
231    // common backedge instead.
232    if (NumBackedges < 8) {
233      if (Loop *NL = SeparateNestedLoop(L)) {
234        ++NumNested;
235        // This is a big restructuring change, reprocess the whole loop.
236        ProcessLoop(NL);
237        Changed = true;
238        // GCC doesn't tail recursion eliminate this.
239        goto ReprocessLoop;
240      }
241    }
242
243    // If we either couldn't, or didn't want to, identify nesting of the loops,
244    // insert a new block that all backedges target, then make it jump to the
245    // loop header.
246    InsertUniqueBackedgeBlock(L);
247    NumInserted++;
248    Changed = true;
249  }
250
251  // Scan over the PHI nodes in the loop header.  Since they now have only two
252  // incoming values (the loop is canonicalized), we may have simplified the PHI
253  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
254  PHINode *PN;
255  for (BasicBlock::iterator I = L->getHeader()->begin();
256       (PN = dyn_cast<PHINode>(I++)); )
257    if (Value *V = PN->hasConstantValue()) {
258      if (AA) AA->deleteValue(PN);
259      PN->replaceAllUsesWith(V);
260      PN->eraseFromParent();
261    }
262
263  // If this loop has muliple exits and the exits all go to the same
264  // block, attempt to merge the exits. This helps several passes, such
265  // as LoopRotation, which do not support loops with multiple exits.
266  // SimplifyCFG also does this (and this code uses the same utility
267  // function), however this code is loop-aware, where SimplifyCFG is
268  // not. That gives it the advantage of being able to hoist
269  // loop-invariant instructions out of the way to open up more
270  // opportunities, and the disadvantage of having the responsibility
271  // to preserve dominator information.
272  if (ExitBlocks.size() > 1 && L->getUniqueExitBlock()) {
273    SmallVector<BasicBlock*, 8> ExitingBlocks;
274    L->getExitingBlocks(ExitingBlocks);
275    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
276      BasicBlock *ExitingBlock = ExitingBlocks[i];
277      if (!ExitingBlock->getSinglePredecessor()) continue;
278      BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
279      if (!BI || !BI->isConditional()) continue;
280      CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
281      if (!CI || CI->getParent() != ExitingBlock) continue;
282
283      // Attempt to hoist out all instructions except for the
284      // comparison and the branch.
285      bool AllInvariant = true;
286      for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
287        Instruction *Inst = I++;
288        if (Inst == CI)
289          continue;
290        if (Inst->isTrapping()) {
291          AllInvariant = false;
292          break;
293        }
294        for (unsigned j = 0, f = Inst->getNumOperands(); j != f; ++j)
295          if (!L->isLoopInvariant(Inst->getOperand(j))) {
296            AllInvariant = false;
297            break;
298          }
299        if (!AllInvariant)
300          break;
301        // Hoist.
302        Inst->moveBefore(L->getLoopPreheader()->getTerminator());
303      }
304      if (!AllInvariant) continue;
305
306      // The block has now been cleared of all instructions except for
307      // a comparison and a conditional branch. SimplifyCFG may be able
308      // to fold it now.
309      if (!FoldBranchToCommonDest(BI)) continue;
310
311      // Success. The block is now dead, so remove it from the loop,
312      // update the dominator tree and dominance frontier, and delete it.
313      assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
314      Changed = true;
315      LI->removeBlock(ExitingBlock);
316
317      DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>();
318      DomTreeNode *Node = DT->getNode(ExitingBlock);
319      const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
320        Node->getChildren();
321      for (unsigned k = 0, g = Children.size(); k != g; ++k) {
322        DT->changeImmediateDominator(Children[k], Node->getIDom());
323        if (DF) DF->changeImmediateDominator(Children[k]->getBlock(),
324                                             Node->getIDom()->getBlock(),
325                                             DT);
326      }
327      DT->eraseNode(ExitingBlock);
328      if (DF) DF->removeBlock(ExitingBlock);
329
330      BI->getSuccessor(0)->removePredecessor(ExitingBlock);
331      BI->getSuccessor(1)->removePredecessor(ExitingBlock);
332      ExitingBlock->eraseFromParent();
333    }
334  }
335
336  return Changed;
337}
338
339/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
340/// preheader, this method is called to insert one.  This method has two phases:
341/// preheader insertion and analysis updating.
342///
343void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
344  BasicBlock *Header = L->getHeader();
345
346  // Compute the set of predecessors of the loop that are not in the loop.
347  SmallVector<BasicBlock*, 8> OutsideBlocks;
348  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
349       PI != PE; ++PI)
350    if (!L->contains(*PI))           // Coming in from outside the loop?
351      OutsideBlocks.push_back(*PI);  // Keep track of it...
352
353  // Split out the loop pre-header.
354  BasicBlock *NewBB =
355    SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
356                           ".preheader", this);
357
358
359  //===--------------------------------------------------------------------===//
360  //  Update analysis results now that we have performed the transformation
361  //
362
363  // We know that we have loop information to update... update it now.
364  if (Loop *Parent = L->getParentLoop())
365    Parent->addBasicBlockToLoop(NewBB, LI->getBase());
366
367  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
368  // code layout too horribly.
369  PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
370}
371
372/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
373/// blocks.  This method is used to split exit blocks that have predecessors
374/// outside of the loop.
375BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
376  SmallVector<BasicBlock*, 8> LoopBlocks;
377  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
378    if (L->contains(*I))
379      LoopBlocks.push_back(*I);
380
381  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
382  BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0],
383                                             LoopBlocks.size(), ".loopexit",
384                                             this);
385
386  // Update Loop Information - we know that the new block will be in whichever
387  // loop the Exit block is in.  Note that it may not be in that immediate loop,
388  // if the successor is some other loop header.  In that case, we continue
389  // walking up the loop tree to find a loop that contains both the successor
390  // block and the predecessor block.
391  Loop *SuccLoop = LI->getLoopFor(Exit);
392  while (SuccLoop && !SuccLoop->contains(L->getHeader()))
393    SuccLoop = SuccLoop->getParentLoop();
394  if (SuccLoop)
395    SuccLoop->addBasicBlockToLoop(NewBB, LI->getBase());
396
397  return NewBB;
398}
399
400/// AddBlockAndPredsToSet - Add the specified block, and all of its
401/// predecessors, to the specified set, if it's not already in there.  Stop
402/// predecessor traversal when we reach StopBlock.
403static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
404                                  std::set<BasicBlock*> &Blocks) {
405  std::vector<BasicBlock *> WorkList;
406  WorkList.push_back(InputBB);
407  do {
408    BasicBlock *BB = WorkList.back(); WorkList.pop_back();
409    if (Blocks.insert(BB).second && BB != StopBlock)
410      // If BB is not already processed and it is not a stop block then
411      // insert its predecessor in the work list
412      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
413        BasicBlock *WBB = *I;
414        WorkList.push_back(WBB);
415      }
416  } while(!WorkList.empty());
417}
418
419/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
420/// PHI node that tells us how to partition the loops.
421static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
422                                        AliasAnalysis *AA) {
423  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
424    PHINode *PN = cast<PHINode>(I);
425    ++I;
426    if (Value *V = PN->hasConstantValue())
427      if (!isa<Instruction>(V) || DT->dominates(cast<Instruction>(V), PN)) {
428        // This is a degenerate PHI already, don't modify it!
429        PN->replaceAllUsesWith(V);
430        if (AA) AA->deleteValue(PN);
431        PN->eraseFromParent();
432        continue;
433      }
434
435    // Scan this PHI node looking for a use of the PHI node by itself.
436    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
437      if (PN->getIncomingValue(i) == PN &&
438          L->contains(PN->getIncomingBlock(i)))
439        // We found something tasty to remove.
440        return PN;
441  }
442  return 0;
443}
444
445// PlaceSplitBlockCarefully - If the block isn't already, move the new block to
446// right after some 'outside block' block.  This prevents the preheader from
447// being placed inside the loop body, e.g. when the loop hasn't been rotated.
448void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
449                                       SmallVectorImpl<BasicBlock*> &SplitPreds,
450                                            Loop *L) {
451  // Check to see if NewBB is already well placed.
452  Function::iterator BBI = NewBB; --BBI;
453  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
454    if (&*BBI == SplitPreds[i])
455      return;
456  }
457
458  // If it isn't already after an outside block, move it after one.  This is
459  // always good as it makes the uncond branch from the outside block into a
460  // fall-through.
461
462  // Figure out *which* outside block to put this after.  Prefer an outside
463  // block that neighbors a BB actually in the loop.
464  BasicBlock *FoundBB = 0;
465  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
466    Function::iterator BBI = SplitPreds[i];
467    if (++BBI != NewBB->getParent()->end() &&
468        L->contains(BBI)) {
469      FoundBB = SplitPreds[i];
470      break;
471    }
472  }
473
474  // If our heuristic for a *good* bb to place this after doesn't find
475  // anything, just pick something.  It's likely better than leaving it within
476  // the loop.
477  if (!FoundBB)
478    FoundBB = SplitPreds[0];
479  NewBB->moveAfter(FoundBB);
480}
481
482
483/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
484/// them out into a nested loop.  This is important for code that looks like
485/// this:
486///
487///  Loop:
488///     ...
489///     br cond, Loop, Next
490///     ...
491///     br cond2, Loop, Out
492///
493/// To identify this common case, we look at the PHI nodes in the header of the
494/// loop.  PHI nodes with unchanging values on one backedge correspond to values
495/// that change in the "outer" loop, but not in the "inner" loop.
496///
497/// If we are able to separate out a loop, return the new outer loop that was
498/// created.
499///
500Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
501  PHINode *PN = FindPHIToPartitionLoops(L, DT, AA);
502  if (PN == 0) return 0;  // No known way to partition.
503
504  // Pull out all predecessors that have varying values in the loop.  This
505  // handles the case when a PHI node has multiple instances of itself as
506  // arguments.
507  SmallVector<BasicBlock*, 8> OuterLoopPreds;
508  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
509    if (PN->getIncomingValue(i) != PN ||
510        !L->contains(PN->getIncomingBlock(i)))
511      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
512
513  BasicBlock *Header = L->getHeader();
514  BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0],
515                                             OuterLoopPreds.size(),
516                                             ".outer", this);
517
518  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
519  // code layout too horribly.
520  PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
521
522  // Create the new outer loop.
523  Loop *NewOuter = new Loop();
524
525  // Change the parent loop to use the outer loop as its child now.
526  if (Loop *Parent = L->getParentLoop())
527    Parent->replaceChildLoopWith(L, NewOuter);
528  else
529    LI->changeTopLevelLoop(L, NewOuter);
530
531  // This block is going to be our new header block: add it to this loop and all
532  // parent loops.
533  NewOuter->addBasicBlockToLoop(NewBB, LI->getBase());
534
535  // L is now a subloop of our outer loop.
536  NewOuter->addChildLoop(L);
537
538  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
539       I != E; ++I)
540    NewOuter->addBlockEntry(*I);
541
542  // Determine which blocks should stay in L and which should be moved out to
543  // the Outer loop now.
544  std::set<BasicBlock*> BlocksInL;
545  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
546    if (DT->dominates(Header, *PI))
547      AddBlockAndPredsToSet(*PI, Header, BlocksInL);
548
549
550  // Scan all of the loop children of L, moving them to OuterLoop if they are
551  // not part of the inner loop.
552  const std::vector<Loop*> &SubLoops = L->getSubLoops();
553  for (size_t I = 0; I != SubLoops.size(); )
554    if (BlocksInL.count(SubLoops[I]->getHeader()))
555      ++I;   // Loop remains in L
556    else
557      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
558
559  // Now that we know which blocks are in L and which need to be moved to
560  // OuterLoop, move any blocks that need it.
561  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
562    BasicBlock *BB = L->getBlocks()[i];
563    if (!BlocksInL.count(BB)) {
564      // Move this block to the parent, updating the exit blocks sets
565      L->removeBlockFromLoop(BB);
566      if ((*LI)[BB] == L)
567        LI->changeLoopFor(BB, NewOuter);
568      --i;
569    }
570  }
571
572  return NewOuter;
573}
574
575
576
577/// InsertUniqueBackedgeBlock - This method is called when the specified loop
578/// has more than one backedge in it.  If this occurs, revector all of these
579/// backedges to target a new basic block and have that block branch to the loop
580/// header.  This ensures that loops have exactly one backedge.
581///
582void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
583  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
584
585  // Get information about the loop
586  BasicBlock *Preheader = L->getLoopPreheader();
587  BasicBlock *Header = L->getHeader();
588  Function *F = Header->getParent();
589
590  // Figure out which basic blocks contain back-edges to the loop header.
591  std::vector<BasicBlock*> BackedgeBlocks;
592  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
593    if (*I != Preheader) BackedgeBlocks.push_back(*I);
594
595  // Create and insert the new backedge block...
596  BasicBlock *BEBlock = BasicBlock::Create(Header->getName()+".backedge", F);
597  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
598
599  // Move the new backedge block to right after the last backedge block.
600  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
601  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
602
603  // Now that the block has been inserted into the function, create PHI nodes in
604  // the backedge block which correspond to any PHI nodes in the header block.
605  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
606    PHINode *PN = cast<PHINode>(I);
607    PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be",
608                                     BETerminator);
609    NewPN->reserveOperandSpace(BackedgeBlocks.size());
610    if (AA) AA->copyValue(PN, NewPN);
611
612    // Loop over the PHI node, moving all entries except the one for the
613    // preheader over to the new PHI node.
614    unsigned PreheaderIdx = ~0U;
615    bool HasUniqueIncomingValue = true;
616    Value *UniqueValue = 0;
617    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
618      BasicBlock *IBB = PN->getIncomingBlock(i);
619      Value *IV = PN->getIncomingValue(i);
620      if (IBB == Preheader) {
621        PreheaderIdx = i;
622      } else {
623        NewPN->addIncoming(IV, IBB);
624        if (HasUniqueIncomingValue) {
625          if (UniqueValue == 0)
626            UniqueValue = IV;
627          else if (UniqueValue != IV)
628            HasUniqueIncomingValue = false;
629        }
630      }
631    }
632
633    // Delete all of the incoming values from the old PN except the preheader's
634    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
635    if (PreheaderIdx != 0) {
636      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
637      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
638    }
639    // Nuke all entries except the zero'th.
640    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
641      PN->removeIncomingValue(e-i, false);
642
643    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
644    PN->addIncoming(NewPN, BEBlock);
645
646    // As an optimization, if all incoming values in the new PhiNode (which is a
647    // subset of the incoming values of the old PHI node) have the same value,
648    // eliminate the PHI Node.
649    if (HasUniqueIncomingValue) {
650      NewPN->replaceAllUsesWith(UniqueValue);
651      if (AA) AA->deleteValue(NewPN);
652      BEBlock->getInstList().erase(NewPN);
653    }
654  }
655
656  // Now that all of the PHI nodes have been inserted and adjusted, modify the
657  // backedge blocks to just to the BEBlock instead of the header.
658  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
659    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
660    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
661      if (TI->getSuccessor(Op) == Header)
662        TI->setSuccessor(Op, BEBlock);
663  }
664
665  //===--- Update all analyses which we must preserve now -----------------===//
666
667  // Update Loop Information - we know that this block is now in the current
668  // loop and all parent loops.
669  L->addBasicBlockToLoop(BEBlock, LI->getBase());
670
671  // Update dominator information
672  DT->splitBlock(BEBlock);
673  if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>())
674    DF->splitBlock(BEBlock);
675}
676