LoopSimplify.cpp revision 2aa93efa0c983449e5464165e80ebd9c0fb5f6c1
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Note that the simplifycfg pass will clean up blocks which are split out but
27// end up being unnecessary, so usage of this pass should not pessimize
28// generated code.
29//
30// This pass obviously modifies the CFG, but updates loop information and
31// dominator information.
32//
33//===----------------------------------------------------------------------===//
34
35#define DEBUG_TYPE "loopsimplify"
36#include "llvm/Transforms/Scalar.h"
37#include "llvm/Constants.h"
38#include "llvm/Instructions.h"
39#include "llvm/Function.h"
40#include "llvm/Type.h"
41#include "llvm/Analysis/AliasAnalysis.h"
42#include "llvm/Analysis/Dominators.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include "llvm/Transforms/Utils/Local.h"
46#include "llvm/Support/CFG.h"
47#include "llvm/Support/Compiler.h"
48#include "llvm/ADT/SetOperations.h"
49#include "llvm/ADT/SetVector.h"
50#include "llvm/ADT/Statistic.h"
51#include "llvm/ADT/DepthFirstIterator.h"
52using namespace llvm;
53
54STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
55STATISTIC(NumNested  , "Number of nested loops split out");
56
57namespace {
58  struct VISIBILITY_HIDDEN LoopSimplify : public FunctionPass {
59    static char ID; // Pass identification, replacement for typeid
60    LoopSimplify() : FunctionPass(&ID) {}
61
62    // AA - If we have an alias analysis object to update, this is it, otherwise
63    // this is null.
64    AliasAnalysis *AA;
65    LoopInfo *LI;
66    DominatorTree *DT;
67    virtual bool runOnFunction(Function &F);
68
69    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
70      // We need loop information to identify the loops...
71      AU.addRequired<LoopInfo>();
72      AU.addRequired<DominatorTree>();
73
74      AU.addPreserved<LoopInfo>();
75      AU.addPreserved<DominatorTree>();
76      AU.addPreserved<DominanceFrontier>();
77      AU.addPreserved<AliasAnalysis>();
78      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
79    }
80
81    /// verifyAnalysis() - Verify loop nest.
82    void verifyAnalysis() const {
83#ifndef NDEBUG
84      LoopInfo *NLI = &getAnalysis<LoopInfo>();
85      for (LoopInfo::iterator I = NLI->begin(), E = NLI->end(); I != E; ++I)
86        (*I)->verifyLoop();
87#endif
88    }
89
90  private:
91    bool ProcessLoop(Loop *L);
92    BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit);
93    void InsertPreheaderForLoop(Loop *L);
94    Loop *SeparateNestedLoop(Loop *L);
95    void InsertUniqueBackedgeBlock(Loop *L);
96    void PlaceSplitBlockCarefully(BasicBlock *NewBB,
97                                  SmallVectorImpl<BasicBlock*> &SplitPreds,
98                                  Loop *L);
99  };
100}
101
102char LoopSimplify::ID = 0;
103static RegisterPass<LoopSimplify>
104X("loopsimplify", "Canonicalize natural loops", true);
105
106// Publically exposed interface to pass...
107const PassInfo *const llvm::LoopSimplifyID = &X;
108FunctionPass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
109
110/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
111/// it in any convenient order) inserting preheaders...
112///
113bool LoopSimplify::runOnFunction(Function &F) {
114  bool Changed = false;
115  LI = &getAnalysis<LoopInfo>();
116  AA = getAnalysisIfAvailable<AliasAnalysis>();
117  DT = &getAnalysis<DominatorTree>();
118
119  // Check to see that no blocks (other than the header) in loops have
120  // predecessors that are not in loops.  This is not valid for natural loops,
121  // but can occur if the blocks are unreachable.  Since they are unreachable we
122  // can just shamelessly destroy their terminators to make them not branch into
123  // the loop!
124  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
125    // This case can only occur for unreachable blocks.  Blocks that are
126    // unreachable can't be in loops, so filter those blocks out.
127    if (LI->getLoopFor(BB)) continue;
128
129    bool BlockUnreachable = false;
130    TerminatorInst *TI = BB->getTerminator();
131
132    // Check to see if any successors of this block are non-loop-header loops
133    // that are not the header.
134    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
135      // If this successor is not in a loop, BB is clearly ok.
136      Loop *L = LI->getLoopFor(TI->getSuccessor(i));
137      if (!L) continue;
138
139      // If the succ is the loop header, and if L is a top-level loop, then this
140      // is an entrance into a loop through the header, which is also ok.
141      if (L->getHeader() == TI->getSuccessor(i) && L->getParentLoop() == 0)
142        continue;
143
144      // Otherwise, this is an entrance into a loop from some place invalid.
145      // Either the loop structure is invalid and this is not a natural loop (in
146      // which case the compiler is buggy somewhere else) or BB is unreachable.
147      BlockUnreachable = true;
148      break;
149    }
150
151    // If this block is ok, check the next one.
152    if (!BlockUnreachable) continue;
153
154    // Otherwise, this block is dead.  To clean up the CFG and to allow later
155    // loop transformations to ignore this case, we delete the edges into the
156    // loop by replacing the terminator.
157
158    // Remove PHI entries from the successors.
159    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
160      TI->getSuccessor(i)->removePredecessor(BB);
161
162    // Add a new unreachable instruction before the old terminator.
163    new UnreachableInst(TI);
164
165    // Delete the dead terminator.
166    if (AA) AA->deleteValue(TI);
167    if (!TI->use_empty())
168      TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
169    TI->eraseFromParent();
170    Changed |= true;
171  }
172
173  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
174    Changed |= ProcessLoop(*I);
175
176  return Changed;
177}
178
179/// ProcessLoop - Walk the loop structure in depth first order, ensuring that
180/// all loops have preheaders.
181///
182bool LoopSimplify::ProcessLoop(Loop *L) {
183  bool Changed = false;
184ReprocessLoop:
185
186  // Canonicalize inner loops before outer loops.  Inner loop canonicalization
187  // can provide work for the outer loop to canonicalize.
188  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
189    Changed |= ProcessLoop(*I);
190
191  assert(L->getBlocks()[0] == L->getHeader() &&
192         "Header isn't first block in loop?");
193
194  // Does the loop already have a preheader?  If so, don't insert one.
195  if (L->getLoopPreheader() == 0) {
196    InsertPreheaderForLoop(L);
197    NumInserted++;
198    Changed = true;
199  }
200
201  // Next, check to make sure that all exit nodes of the loop only have
202  // predecessors that are inside of the loop.  This check guarantees that the
203  // loop preheader/header will dominate the exit blocks.  If the exit block has
204  // predecessors from outside of the loop, split the edge now.
205  SmallVector<BasicBlock*, 8> ExitBlocks;
206  L->getExitBlocks(ExitBlocks);
207
208  SetVector<BasicBlock*> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end());
209  for (SetVector<BasicBlock*>::iterator I = ExitBlockSet.begin(),
210         E = ExitBlockSet.end(); I != E; ++I) {
211    BasicBlock *ExitBlock = *I;
212    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
213         PI != PE; ++PI)
214      // Must be exactly this loop: no subloops, parent loops, or non-loop preds
215      // allowed.
216      if (!L->contains(*PI)) {
217        RewriteLoopExitBlock(L, ExitBlock);
218        NumInserted++;
219        Changed = true;
220        break;
221      }
222  }
223
224  // If the header has more than two predecessors at this point (from the
225  // preheader and from multiple backedges), we must adjust the loop.
226  unsigned NumBackedges = L->getNumBackEdges();
227  if (NumBackedges != 1) {
228    // If this is really a nested loop, rip it out into a child loop.  Don't do
229    // this for loops with a giant number of backedges, just factor them into a
230    // common backedge instead.
231    if (NumBackedges < 8) {
232      if (Loop *NL = SeparateNestedLoop(L)) {
233        ++NumNested;
234        // This is a big restructuring change, reprocess the whole loop.
235        ProcessLoop(NL);
236        Changed = true;
237        // GCC doesn't tail recursion eliminate this.
238        goto ReprocessLoop;
239      }
240    }
241
242    // If we either couldn't, or didn't want to, identify nesting of the loops,
243    // insert a new block that all backedges target, then make it jump to the
244    // loop header.
245    InsertUniqueBackedgeBlock(L);
246    NumInserted++;
247    Changed = true;
248  }
249
250  // Scan over the PHI nodes in the loop header.  Since they now have only two
251  // incoming values (the loop is canonicalized), we may have simplified the PHI
252  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
253  PHINode *PN;
254  for (BasicBlock::iterator I = L->getHeader()->begin();
255       (PN = dyn_cast<PHINode>(I++)); )
256    if (Value *V = PN->hasConstantValue()) {
257      if (AA) AA->deleteValue(PN);
258      PN->replaceAllUsesWith(V);
259      PN->eraseFromParent();
260    }
261
262  // If this loop has muliple exits and the exits all go to the same
263  // block, attempt to merge the exits. This helps several passes, such
264  // as LoopRotation, which do not support loops with multiple exits.
265  // SimplifyCFG also does this (and this code uses the same utility
266  // function), however this code is loop-aware, where SimplifyCFG is
267  // not. That gives it the advantage of being able to hoist
268  // loop-invariant instructions out of the way to open up more
269  // opportunities, and the disadvantage of having the responsibility
270  // to preserve dominator information.
271  if (ExitBlocks.size() > 1 && L->getUniqueExitBlock()) {
272    SmallVector<BasicBlock*, 8> ExitingBlocks;
273    L->getExitingBlocks(ExitingBlocks);
274    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
275      BasicBlock *ExitingBlock = ExitingBlocks[i];
276      if (!ExitingBlock->getSinglePredecessor()) continue;
277      BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
278      if (!BI || !BI->isConditional()) continue;
279      CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
280      if (!CI || CI->getParent() != ExitingBlock) continue;
281
282      // Attempt to hoist out all instructions except for the
283      // comparison and the branch.
284      bool AllInvariant = true;
285      for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
286        Instruction *Inst = I++;
287        if (Inst == CI)
288          continue;
289        if (Inst->isTrapping()) {
290          AllInvariant = false;
291          break;
292        }
293        for (unsigned j = 0, f = Inst->getNumOperands(); j != f; ++j)
294          if (!L->isLoopInvariant(Inst->getOperand(j))) {
295            AllInvariant = false;
296            break;
297          }
298        if (!AllInvariant)
299          break;
300        // Hoist.
301        Inst->moveBefore(L->getLoopPreheader()->getTerminator());
302      }
303      if (!AllInvariant) continue;
304
305      // The block has now been cleared of all instructions except for
306      // a comparison and a conditional branch. SimplifyCFG may be able
307      // to fold it now.
308      if (!FoldBranchToCommonDest(BI)) continue;
309
310      // Success. The block is now dead, so remove it from the loop,
311      // update the dominator tree and dominance frontier, and delete it.
312      assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
313      Changed = true;
314      LI->removeBlock(ExitingBlock);
315
316      DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>();
317      DomTreeNode *Node = DT->getNode(ExitingBlock);
318      const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
319        Node->getChildren();
320      for (unsigned k = 0, g = Children.size(); k != g; ++k) {
321        DT->changeImmediateDominator(Children[k], Node->getIDom());
322        if (DF) DF->changeImmediateDominator(Children[k]->getBlock(),
323                                             Node->getIDom()->getBlock(),
324                                             DT);
325      }
326      DT->eraseNode(ExitingBlock);
327      if (DF) DF->removeBlock(ExitingBlock);
328
329      BI->getSuccessor(0)->removePredecessor(ExitingBlock);
330      BI->getSuccessor(1)->removePredecessor(ExitingBlock);
331      ExitingBlock->eraseFromParent();
332    }
333  }
334
335  return Changed;
336}
337
338/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
339/// preheader, this method is called to insert one.  This method has two phases:
340/// preheader insertion and analysis updating.
341///
342void LoopSimplify::InsertPreheaderForLoop(Loop *L) {
343  BasicBlock *Header = L->getHeader();
344
345  // Compute the set of predecessors of the loop that are not in the loop.
346  SmallVector<BasicBlock*, 8> OutsideBlocks;
347  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
348       PI != PE; ++PI)
349    if (!L->contains(*PI))           // Coming in from outside the loop?
350      OutsideBlocks.push_back(*PI);  // Keep track of it...
351
352  // Split out the loop pre-header.
353  BasicBlock *NewBB =
354    SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
355                           ".preheader", this);
356
357
358  //===--------------------------------------------------------------------===//
359  //  Update analysis results now that we have performed the transformation
360  //
361
362  // We know that we have loop information to update... update it now.
363  if (Loop *Parent = L->getParentLoop())
364    Parent->addBasicBlockToLoop(NewBB, LI->getBase());
365
366  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
367  // code layout too horribly.
368  PlaceSplitBlockCarefully(NewBB, OutsideBlocks, L);
369}
370
371/// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit
372/// blocks.  This method is used to split exit blocks that have predecessors
373/// outside of the loop.
374BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
375  SmallVector<BasicBlock*, 8> LoopBlocks;
376  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I)
377    if (L->contains(*I))
378      LoopBlocks.push_back(*I);
379
380  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
381  BasicBlock *NewBB = SplitBlockPredecessors(Exit, &LoopBlocks[0],
382                                             LoopBlocks.size(), ".loopexit",
383                                             this);
384
385  // Update Loop Information - we know that the new block will be in whichever
386  // loop the Exit block is in.  Note that it may not be in that immediate loop,
387  // if the successor is some other loop header.  In that case, we continue
388  // walking up the loop tree to find a loop that contains both the successor
389  // block and the predecessor block.
390  Loop *SuccLoop = LI->getLoopFor(Exit);
391  while (SuccLoop && !SuccLoop->contains(L->getHeader()))
392    SuccLoop = SuccLoop->getParentLoop();
393  if (SuccLoop)
394    SuccLoop->addBasicBlockToLoop(NewBB, LI->getBase());
395
396  return NewBB;
397}
398
399/// AddBlockAndPredsToSet - Add the specified block, and all of its
400/// predecessors, to the specified set, if it's not already in there.  Stop
401/// predecessor traversal when we reach StopBlock.
402static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
403                                  std::set<BasicBlock*> &Blocks) {
404  std::vector<BasicBlock *> WorkList;
405  WorkList.push_back(InputBB);
406  do {
407    BasicBlock *BB = WorkList.back(); WorkList.pop_back();
408    if (Blocks.insert(BB).second && BB != StopBlock)
409      // If BB is not already processed and it is not a stop block then
410      // insert its predecessor in the work list
411      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
412        BasicBlock *WBB = *I;
413        WorkList.push_back(WBB);
414      }
415  } while(!WorkList.empty());
416}
417
418/// FindPHIToPartitionLoops - The first part of loop-nestification is to find a
419/// PHI node that tells us how to partition the loops.
420static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT,
421                                        AliasAnalysis *AA) {
422  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
423    PHINode *PN = cast<PHINode>(I);
424    ++I;
425    if (Value *V = PN->hasConstantValue())
426      if (!isa<Instruction>(V) || DT->dominates(cast<Instruction>(V), PN)) {
427        // This is a degenerate PHI already, don't modify it!
428        PN->replaceAllUsesWith(V);
429        if (AA) AA->deleteValue(PN);
430        PN->eraseFromParent();
431        continue;
432      }
433
434    // Scan this PHI node looking for a use of the PHI node by itself.
435    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
436      if (PN->getIncomingValue(i) == PN &&
437          L->contains(PN->getIncomingBlock(i)))
438        // We found something tasty to remove.
439        return PN;
440  }
441  return 0;
442}
443
444// PlaceSplitBlockCarefully - If the block isn't already, move the new block to
445// right after some 'outside block' block.  This prevents the preheader from
446// being placed inside the loop body, e.g. when the loop hasn't been rotated.
447void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB,
448                                       SmallVectorImpl<BasicBlock*> &SplitPreds,
449                                            Loop *L) {
450  // Check to see if NewBB is already well placed.
451  Function::iterator BBI = NewBB; --BBI;
452  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
453    if (&*BBI == SplitPreds[i])
454      return;
455  }
456
457  // If it isn't already after an outside block, move it after one.  This is
458  // always good as it makes the uncond branch from the outside block into a
459  // fall-through.
460
461  // Figure out *which* outside block to put this after.  Prefer an outside
462  // block that neighbors a BB actually in the loop.
463  BasicBlock *FoundBB = 0;
464  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
465    Function::iterator BBI = SplitPreds[i];
466    if (++BBI != NewBB->getParent()->end() &&
467        L->contains(BBI)) {
468      FoundBB = SplitPreds[i];
469      break;
470    }
471  }
472
473  // If our heuristic for a *good* bb to place this after doesn't find
474  // anything, just pick something.  It's likely better than leaving it within
475  // the loop.
476  if (!FoundBB)
477    FoundBB = SplitPreds[0];
478  NewBB->moveAfter(FoundBB);
479}
480
481
482/// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of
483/// them out into a nested loop.  This is important for code that looks like
484/// this:
485///
486///  Loop:
487///     ...
488///     br cond, Loop, Next
489///     ...
490///     br cond2, Loop, Out
491///
492/// To identify this common case, we look at the PHI nodes in the header of the
493/// loop.  PHI nodes with unchanging values on one backedge correspond to values
494/// that change in the "outer" loop, but not in the "inner" loop.
495///
496/// If we are able to separate out a loop, return the new outer loop that was
497/// created.
498///
499Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
500  PHINode *PN = FindPHIToPartitionLoops(L, DT, AA);
501  if (PN == 0) return 0;  // No known way to partition.
502
503  // Pull out all predecessors that have varying values in the loop.  This
504  // handles the case when a PHI node has multiple instances of itself as
505  // arguments.
506  SmallVector<BasicBlock*, 8> OuterLoopPreds;
507  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
508    if (PN->getIncomingValue(i) != PN ||
509        !L->contains(PN->getIncomingBlock(i)))
510      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
511
512  BasicBlock *Header = L->getHeader();
513  BasicBlock *NewBB = SplitBlockPredecessors(Header, &OuterLoopPreds[0],
514                                             OuterLoopPreds.size(),
515                                             ".outer", this);
516
517  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
518  // code layout too horribly.
519  PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L);
520
521  // Create the new outer loop.
522  Loop *NewOuter = new Loop();
523
524  // Change the parent loop to use the outer loop as its child now.
525  if (Loop *Parent = L->getParentLoop())
526    Parent->replaceChildLoopWith(L, NewOuter);
527  else
528    LI->changeTopLevelLoop(L, NewOuter);
529
530  // This block is going to be our new header block: add it to this loop and all
531  // parent loops.
532  NewOuter->addBasicBlockToLoop(NewBB, LI->getBase());
533
534  // L is now a subloop of our outer loop.
535  NewOuter->addChildLoop(L);
536
537  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
538       I != E; ++I)
539    NewOuter->addBlockEntry(*I);
540
541  // Determine which blocks should stay in L and which should be moved out to
542  // the Outer loop now.
543  std::set<BasicBlock*> BlocksInL;
544  for (pred_iterator PI = pred_begin(Header), E = pred_end(Header); PI!=E; ++PI)
545    if (DT->dominates(Header, *PI))
546      AddBlockAndPredsToSet(*PI, Header, BlocksInL);
547
548
549  // Scan all of the loop children of L, moving them to OuterLoop if they are
550  // not part of the inner loop.
551  const std::vector<Loop*> &SubLoops = L->getSubLoops();
552  for (size_t I = 0; I != SubLoops.size(); )
553    if (BlocksInL.count(SubLoops[I]->getHeader()))
554      ++I;   // Loop remains in L
555    else
556      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
557
558  // Now that we know which blocks are in L and which need to be moved to
559  // OuterLoop, move any blocks that need it.
560  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
561    BasicBlock *BB = L->getBlocks()[i];
562    if (!BlocksInL.count(BB)) {
563      // Move this block to the parent, updating the exit blocks sets
564      L->removeBlockFromLoop(BB);
565      if ((*LI)[BB] == L)
566        LI->changeLoopFor(BB, NewOuter);
567      --i;
568    }
569  }
570
571  return NewOuter;
572}
573
574
575
576/// InsertUniqueBackedgeBlock - This method is called when the specified loop
577/// has more than one backedge in it.  If this occurs, revector all of these
578/// backedges to target a new basic block and have that block branch to the loop
579/// header.  This ensures that loops have exactly one backedge.
580///
581void LoopSimplify::InsertUniqueBackedgeBlock(Loop *L) {
582  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
583
584  // Get information about the loop
585  BasicBlock *Preheader = L->getLoopPreheader();
586  BasicBlock *Header = L->getHeader();
587  Function *F = Header->getParent();
588
589  // Figure out which basic blocks contain back-edges to the loop header.
590  std::vector<BasicBlock*> BackedgeBlocks;
591  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I)
592    if (*I != Preheader) BackedgeBlocks.push_back(*I);
593
594  // Create and insert the new backedge block...
595  BasicBlock *BEBlock = BasicBlock::Create(Header->getName()+".backedge", F);
596  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
597
598  // Move the new backedge block to right after the last backedge block.
599  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
600  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
601
602  // Now that the block has been inserted into the function, create PHI nodes in
603  // the backedge block which correspond to any PHI nodes in the header block.
604  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
605    PHINode *PN = cast<PHINode>(I);
606    PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".be",
607                                     BETerminator);
608    NewPN->reserveOperandSpace(BackedgeBlocks.size());
609    if (AA) AA->copyValue(PN, NewPN);
610
611    // Loop over the PHI node, moving all entries except the one for the
612    // preheader over to the new PHI node.
613    unsigned PreheaderIdx = ~0U;
614    bool HasUniqueIncomingValue = true;
615    Value *UniqueValue = 0;
616    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
617      BasicBlock *IBB = PN->getIncomingBlock(i);
618      Value *IV = PN->getIncomingValue(i);
619      if (IBB == Preheader) {
620        PreheaderIdx = i;
621      } else {
622        NewPN->addIncoming(IV, IBB);
623        if (HasUniqueIncomingValue) {
624          if (UniqueValue == 0)
625            UniqueValue = IV;
626          else if (UniqueValue != IV)
627            HasUniqueIncomingValue = false;
628        }
629      }
630    }
631
632    // Delete all of the incoming values from the old PN except the preheader's
633    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
634    if (PreheaderIdx != 0) {
635      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
636      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
637    }
638    // Nuke all entries except the zero'th.
639    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
640      PN->removeIncomingValue(e-i, false);
641
642    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
643    PN->addIncoming(NewPN, BEBlock);
644
645    // As an optimization, if all incoming values in the new PhiNode (which is a
646    // subset of the incoming values of the old PHI node) have the same value,
647    // eliminate the PHI Node.
648    if (HasUniqueIncomingValue) {
649      NewPN->replaceAllUsesWith(UniqueValue);
650      if (AA) AA->deleteValue(NewPN);
651      BEBlock->getInstList().erase(NewPN);
652    }
653  }
654
655  // Now that all of the PHI nodes have been inserted and adjusted, modify the
656  // backedge blocks to just to the BEBlock instead of the header.
657  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
658    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
659    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
660      if (TI->getSuccessor(Op) == Header)
661        TI->setSuccessor(Op, BEBlock);
662  }
663
664  //===--- Update all analyses which we must preserve now -----------------===//
665
666  // Update Loop Information - we know that this block is now in the current
667  // loop and all parent loops.
668  L->addBasicBlockToLoop(BEBlock, LI->getBase());
669
670  // Update dominator information
671  DT->splitBlock(BEBlock);
672  if (DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>())
673    DF->splitBlock(BEBlock);
674}
675