LoopSimplify.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs several transformations to transform natural loops into a
11// simpler form, which makes subsequent analyses and transformations simpler and
12// more effective.
13//
14// Loop pre-header insertion guarantees that there is a single, non-critical
15// entry edge from outside of the loop to the loop header.  This simplifies a
16// number of analyses and transformations, such as LICM.
17//
18// Loop exit-block insertion guarantees that all exit blocks from the loop
19// (blocks which are outside of the loop that have predecessors inside of the
20// loop) only have predecessors from inside of the loop (and are thus dominated
21// by the loop header).  This simplifies transformations such as store-sinking
22// that are built into LICM.
23//
24// This pass also guarantees that loops will have exactly one backedge.
25//
26// Indirectbr instructions introduce several complications. If the loop
27// contains or is entered by an indirectbr instruction, it may not be possible
28// to transform the loop and make these guarantees. Client code should check
29// that these conditions are true before relying on them.
30//
31// Note that the simplifycfg pass will clean up blocks which are split out but
32// end up being unnecessary, so usage of this pass should not pessimize
33// generated code.
34//
35// This pass obviously modifies the CFG, but updates loop information and
36// dominator information.
37//
38//===----------------------------------------------------------------------===//
39
40#include "llvm/Transforms/Scalar.h"
41#include "llvm/ADT/DepthFirstIterator.h"
42#include "llvm/ADT/SetOperations.h"
43#include "llvm/ADT/SetVector.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/Statistic.h"
46#include "llvm/Analysis/AliasAnalysis.h"
47#include "llvm/Analysis/DependenceAnalysis.h"
48#include "llvm/Analysis/InstructionSimplify.h"
49#include "llvm/Analysis/LoopInfo.h"
50#include "llvm/Analysis/ScalarEvolution.h"
51#include "llvm/IR/CFG.h"
52#include "llvm/IR/Constants.h"
53#include "llvm/IR/Dominators.h"
54#include "llvm/IR/Function.h"
55#include "llvm/IR/Instructions.h"
56#include "llvm/IR/IntrinsicInst.h"
57#include "llvm/IR/LLVMContext.h"
58#include "llvm/IR/Type.h"
59#include "llvm/Support/Debug.h"
60#include "llvm/Transforms/Utils/BasicBlockUtils.h"
61#include "llvm/Transforms/Utils/Local.h"
62#include "llvm/Transforms/Utils/LoopUtils.h"
63using namespace llvm;
64
65#define DEBUG_TYPE "loop-simplify"
66
67STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted");
68STATISTIC(NumNested  , "Number of nested loops split out");
69
70// If the block isn't already, move the new block to right after some 'outside
71// block' block.  This prevents the preheader from being placed inside the loop
72// body, e.g. when the loop hasn't been rotated.
73static void placeSplitBlockCarefully(BasicBlock *NewBB,
74                                     SmallVectorImpl<BasicBlock *> &SplitPreds,
75                                     Loop *L) {
76  // Check to see if NewBB is already well placed.
77  Function::iterator BBI = NewBB; --BBI;
78  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
79    if (&*BBI == SplitPreds[i])
80      return;
81  }
82
83  // If it isn't already after an outside block, move it after one.  This is
84  // always good as it makes the uncond branch from the outside block into a
85  // fall-through.
86
87  // Figure out *which* outside block to put this after.  Prefer an outside
88  // block that neighbors a BB actually in the loop.
89  BasicBlock *FoundBB = nullptr;
90  for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) {
91    Function::iterator BBI = SplitPreds[i];
92    if (++BBI != NewBB->getParent()->end() &&
93        L->contains(BBI)) {
94      FoundBB = SplitPreds[i];
95      break;
96    }
97  }
98
99  // If our heuristic for a *good* bb to place this after doesn't find
100  // anything, just pick something.  It's likely better than leaving it within
101  // the loop.
102  if (!FoundBB)
103    FoundBB = SplitPreds[0];
104  NewBB->moveAfter(FoundBB);
105}
106
107/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a
108/// preheader, this method is called to insert one.  This method has two phases:
109/// preheader insertion and analysis updating.
110///
111BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, Pass *PP) {
112  BasicBlock *Header = L->getHeader();
113
114  // Compute the set of predecessors of the loop that are not in the loop.
115  SmallVector<BasicBlock*, 8> OutsideBlocks;
116  for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header);
117       PI != PE; ++PI) {
118    BasicBlock *P = *PI;
119    if (!L->contains(P)) {         // Coming in from outside the loop?
120      // If the loop is branched to from an indirect branch, we won't
121      // be able to fully transform the loop, because it prohibits
122      // edge splitting.
123      if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
124
125      // Keep track of it.
126      OutsideBlocks.push_back(P);
127    }
128  }
129
130  // Split out the loop pre-header.
131  BasicBlock *PreheaderBB;
132  if (!Header->isLandingPad()) {
133    PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader",
134                                         PP);
135  } else {
136    SmallVector<BasicBlock*, 2> NewBBs;
137    SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader",
138                                ".split-lp", PP, NewBBs);
139    PreheaderBB = NewBBs[0];
140  }
141
142  PreheaderBB->getTerminator()->setDebugLoc(
143                                      Header->getFirstNonPHI()->getDebugLoc());
144  DEBUG(dbgs() << "LoopSimplify: Creating pre-header "
145               << PreheaderBB->getName() << "\n");
146
147  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
148  // code layout too horribly.
149  placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L);
150
151  return PreheaderBB;
152}
153
154/// \brief Ensure that the loop preheader dominates all exit blocks.
155///
156/// This method is used to split exit blocks that have predecessors outside of
157/// the loop.
158static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, Pass *PP) {
159  SmallVector<BasicBlock*, 8> LoopBlocks;
160  for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) {
161    BasicBlock *P = *I;
162    if (L->contains(P)) {
163      // Don't do this if the loop is exited via an indirect branch.
164      if (isa<IndirectBrInst>(P->getTerminator())) return nullptr;
165
166      LoopBlocks.push_back(P);
167    }
168  }
169
170  assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?");
171  BasicBlock *NewExitBB = nullptr;
172
173  if (Exit->isLandingPad()) {
174    SmallVector<BasicBlock*, 2> NewBBs;
175    SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0],
176                                                            LoopBlocks.size()),
177                                ".loopexit", ".nonloopexit",
178                                PP, NewBBs);
179    NewExitBB = NewBBs[0];
180  } else {
181    NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", PP);
182  }
183
184  DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
185               << NewExitBB->getName() << "\n");
186  return NewExitBB;
187}
188
189/// Add the specified block, and all of its predecessors, to the specified set,
190/// if it's not already in there.  Stop predecessor traversal when we reach
191/// StopBlock.
192static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock,
193                                  std::set<BasicBlock*> &Blocks) {
194  SmallVector<BasicBlock *, 8> Worklist;
195  Worklist.push_back(InputBB);
196  do {
197    BasicBlock *BB = Worklist.pop_back_val();
198    if (Blocks.insert(BB).second && BB != StopBlock)
199      // If BB is not already processed and it is not a stop block then
200      // insert its predecessor in the work list
201      for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
202        BasicBlock *WBB = *I;
203        Worklist.push_back(WBB);
204      }
205  } while (!Worklist.empty());
206}
207
208/// \brief The first part of loop-nestification is to find a PHI node that tells
209/// us how to partition the loops.
210static PHINode *findPHIToPartitionLoops(Loop *L, AliasAnalysis *AA,
211                                        DominatorTree *DT) {
212  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) {
213    PHINode *PN = cast<PHINode>(I);
214    ++I;
215    if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT)) {
216      // This is a degenerate PHI already, don't modify it!
217      PN->replaceAllUsesWith(V);
218      if (AA) AA->deleteValue(PN);
219      PN->eraseFromParent();
220      continue;
221    }
222
223    // Scan this PHI node looking for a use of the PHI node by itself.
224    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
225      if (PN->getIncomingValue(i) == PN &&
226          L->contains(PN->getIncomingBlock(i)))
227        // We found something tasty to remove.
228        return PN;
229  }
230  return nullptr;
231}
232
233/// \brief If this loop has multiple backedges, try to pull one of them out into
234/// a nested loop.
235///
236/// This is important for code that looks like
237/// this:
238///
239///  Loop:
240///     ...
241///     br cond, Loop, Next
242///     ...
243///     br cond2, Loop, Out
244///
245/// To identify this common case, we look at the PHI nodes in the header of the
246/// loop.  PHI nodes with unchanging values on one backedge correspond to values
247/// that change in the "outer" loop, but not in the "inner" loop.
248///
249/// If we are able to separate out a loop, return the new outer loop that was
250/// created.
251///
252static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader,
253                                AliasAnalysis *AA, DominatorTree *DT,
254                                LoopInfo *LI, ScalarEvolution *SE, Pass *PP) {
255  // Don't try to separate loops without a preheader.
256  if (!Preheader)
257    return nullptr;
258
259  // The header is not a landing pad; preheader insertion should ensure this.
260  assert(!L->getHeader()->isLandingPad() &&
261         "Can't insert backedge to landing pad");
262
263  PHINode *PN = findPHIToPartitionLoops(L, AA, DT);
264  if (!PN) return nullptr;  // No known way to partition.
265
266  // Pull out all predecessors that have varying values in the loop.  This
267  // handles the case when a PHI node has multiple instances of itself as
268  // arguments.
269  SmallVector<BasicBlock*, 8> OuterLoopPreds;
270  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
271    if (PN->getIncomingValue(i) != PN ||
272        !L->contains(PN->getIncomingBlock(i))) {
273      // We can't split indirectbr edges.
274      if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator()))
275        return nullptr;
276      OuterLoopPreds.push_back(PN->getIncomingBlock(i));
277    }
278  }
279  DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n");
280
281  // If ScalarEvolution is around and knows anything about values in
282  // this loop, tell it to forget them, because we're about to
283  // substantially change it.
284  if (SE)
285    SE->forgetLoop(L);
286
287  BasicBlock *Header = L->getHeader();
288  BasicBlock *NewBB =
289    SplitBlockPredecessors(Header, OuterLoopPreds,  ".outer", PP);
290
291  // Make sure that NewBB is put someplace intelligent, which doesn't mess up
292  // code layout too horribly.
293  placeSplitBlockCarefully(NewBB, OuterLoopPreds, L);
294
295  // Create the new outer loop.
296  Loop *NewOuter = new Loop();
297
298  // Change the parent loop to use the outer loop as its child now.
299  if (Loop *Parent = L->getParentLoop())
300    Parent->replaceChildLoopWith(L, NewOuter);
301  else
302    LI->changeTopLevelLoop(L, NewOuter);
303
304  // L is now a subloop of our outer loop.
305  NewOuter->addChildLoop(L);
306
307  for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
308       I != E; ++I)
309    NewOuter->addBlockEntry(*I);
310
311  // Now reset the header in L, which had been moved by
312  // SplitBlockPredecessors for the outer loop.
313  L->moveToHeader(Header);
314
315  // Determine which blocks should stay in L and which should be moved out to
316  // the Outer loop now.
317  std::set<BasicBlock*> BlocksInL;
318  for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) {
319    BasicBlock *P = *PI;
320    if (DT->dominates(Header, P))
321      addBlockAndPredsToSet(P, Header, BlocksInL);
322  }
323
324  // Scan all of the loop children of L, moving them to OuterLoop if they are
325  // not part of the inner loop.
326  const std::vector<Loop*> &SubLoops = L->getSubLoops();
327  for (size_t I = 0; I != SubLoops.size(); )
328    if (BlocksInL.count(SubLoops[I]->getHeader()))
329      ++I;   // Loop remains in L
330    else
331      NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I));
332
333  // Now that we know which blocks are in L and which need to be moved to
334  // OuterLoop, move any blocks that need it.
335  for (unsigned i = 0; i != L->getBlocks().size(); ++i) {
336    BasicBlock *BB = L->getBlocks()[i];
337    if (!BlocksInL.count(BB)) {
338      // Move this block to the parent, updating the exit blocks sets
339      L->removeBlockFromLoop(BB);
340      if ((*LI)[BB] == L)
341        LI->changeLoopFor(BB, NewOuter);
342      --i;
343    }
344  }
345
346  return NewOuter;
347}
348
349/// \brief This method is called when the specified loop has more than one
350/// backedge in it.
351///
352/// If this occurs, revector all of these backedges to target a new basic block
353/// and have that block branch to the loop header.  This ensures that loops
354/// have exactly one backedge.
355static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader,
356                                             AliasAnalysis *AA,
357                                             DominatorTree *DT, LoopInfo *LI) {
358  assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!");
359
360  // Get information about the loop
361  BasicBlock *Header = L->getHeader();
362  Function *F = Header->getParent();
363
364  // Unique backedge insertion currently depends on having a preheader.
365  if (!Preheader)
366    return nullptr;
367
368  // The header is not a landing pad; preheader insertion should ensure this.
369  assert(!Header->isLandingPad() && "Can't insert backedge to landing pad");
370
371  // Figure out which basic blocks contain back-edges to the loop header.
372  std::vector<BasicBlock*> BackedgeBlocks;
373  for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){
374    BasicBlock *P = *I;
375
376    // Indirectbr edges cannot be split, so we must fail if we find one.
377    if (isa<IndirectBrInst>(P->getTerminator()))
378      return nullptr;
379
380    if (P != Preheader) BackedgeBlocks.push_back(P);
381  }
382
383  // Create and insert the new backedge block...
384  BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(),
385                                           Header->getName()+".backedge", F);
386  BranchInst *BETerminator = BranchInst::Create(Header, BEBlock);
387
388  DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block "
389               << BEBlock->getName() << "\n");
390
391  // Move the new backedge block to right after the last backedge block.
392  Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos;
393  F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock);
394
395  // Now that the block has been inserted into the function, create PHI nodes in
396  // the backedge block which correspond to any PHI nodes in the header block.
397  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
398    PHINode *PN = cast<PHINode>(I);
399    PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(),
400                                     PN->getName()+".be", BETerminator);
401    if (AA) AA->copyValue(PN, NewPN);
402
403    // Loop over the PHI node, moving all entries except the one for the
404    // preheader over to the new PHI node.
405    unsigned PreheaderIdx = ~0U;
406    bool HasUniqueIncomingValue = true;
407    Value *UniqueValue = nullptr;
408    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
409      BasicBlock *IBB = PN->getIncomingBlock(i);
410      Value *IV = PN->getIncomingValue(i);
411      if (IBB == Preheader) {
412        PreheaderIdx = i;
413      } else {
414        NewPN->addIncoming(IV, IBB);
415        if (HasUniqueIncomingValue) {
416          if (!UniqueValue)
417            UniqueValue = IV;
418          else if (UniqueValue != IV)
419            HasUniqueIncomingValue = false;
420        }
421      }
422    }
423
424    // Delete all of the incoming values from the old PN except the preheader's
425    assert(PreheaderIdx != ~0U && "PHI has no preheader entry??");
426    if (PreheaderIdx != 0) {
427      PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx));
428      PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx));
429    }
430    // Nuke all entries except the zero'th.
431    for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i)
432      PN->removeIncomingValue(e-i, false);
433
434    // Finally, add the newly constructed PHI node as the entry for the BEBlock.
435    PN->addIncoming(NewPN, BEBlock);
436
437    // As an optimization, if all incoming values in the new PhiNode (which is a
438    // subset of the incoming values of the old PHI node) have the same value,
439    // eliminate the PHI Node.
440    if (HasUniqueIncomingValue) {
441      NewPN->replaceAllUsesWith(UniqueValue);
442      if (AA) AA->deleteValue(NewPN);
443      BEBlock->getInstList().erase(NewPN);
444    }
445  }
446
447  // Now that all of the PHI nodes have been inserted and adjusted, modify the
448  // backedge blocks to just to the BEBlock instead of the header.
449  for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) {
450    TerminatorInst *TI = BackedgeBlocks[i]->getTerminator();
451    for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op)
452      if (TI->getSuccessor(Op) == Header)
453        TI->setSuccessor(Op, BEBlock);
454  }
455
456  //===--- Update all analyses which we must preserve now -----------------===//
457
458  // Update Loop Information - we know that this block is now in the current
459  // loop and all parent loops.
460  L->addBasicBlockToLoop(BEBlock, LI->getBase());
461
462  // Update dominator information
463  DT->splitBlock(BEBlock);
464
465  return BEBlock;
466}
467
468/// \brief Simplify one loop and queue further loops for simplification.
469///
470/// FIXME: Currently this accepts both lots of analyses that it uses and a raw
471/// Pass pointer. The Pass pointer is used by numerous utilities to update
472/// specific analyses. Rather than a pass it would be much cleaner and more
473/// explicit if they accepted the analysis directly and then updated it.
474static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist,
475                            AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI,
476                            ScalarEvolution *SE, Pass *PP) {
477  bool Changed = false;
478ReprocessLoop:
479
480  // Check to see that no blocks (other than the header) in this loop have
481  // predecessors that are not in the loop.  This is not valid for natural
482  // loops, but can occur if the blocks are unreachable.  Since they are
483  // unreachable we can just shamelessly delete those CFG edges!
484  for (Loop::block_iterator BB = L->block_begin(), E = L->block_end();
485       BB != E; ++BB) {
486    if (*BB == L->getHeader()) continue;
487
488    SmallPtrSet<BasicBlock*, 4> BadPreds;
489    for (pred_iterator PI = pred_begin(*BB),
490         PE = pred_end(*BB); PI != PE; ++PI) {
491      BasicBlock *P = *PI;
492      if (!L->contains(P))
493        BadPreds.insert(P);
494    }
495
496    // Delete each unique out-of-loop (and thus dead) predecessor.
497    for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(),
498         E = BadPreds.end(); I != E; ++I) {
499
500      DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor "
501                   << (*I)->getName() << "\n");
502
503      // Inform each successor of each dead pred.
504      for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI)
505        (*SI)->removePredecessor(*I);
506      // Zap the dead pred's terminator and replace it with unreachable.
507      TerminatorInst *TI = (*I)->getTerminator();
508       TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
509      (*I)->getTerminator()->eraseFromParent();
510      new UnreachableInst((*I)->getContext(), *I);
511      Changed = true;
512    }
513  }
514
515  // If there are exiting blocks with branches on undef, resolve the undef in
516  // the direction which will exit the loop. This will help simplify loop
517  // trip count computations.
518  SmallVector<BasicBlock*, 8> ExitingBlocks;
519  L->getExitingBlocks(ExitingBlocks);
520  for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
521       E = ExitingBlocks.end(); I != E; ++I)
522    if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator()))
523      if (BI->isConditional()) {
524        if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) {
525
526          DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in "
527                       << (*I)->getName() << "\n");
528
529          BI->setCondition(ConstantInt::get(Cond->getType(),
530                                            !L->contains(BI->getSuccessor(0))));
531
532          // This may make the loop analyzable, force SCEV recomputation.
533          if (SE)
534            SE->forgetLoop(L);
535
536          Changed = true;
537        }
538      }
539
540  // Does the loop already have a preheader?  If so, don't insert one.
541  BasicBlock *Preheader = L->getLoopPreheader();
542  if (!Preheader) {
543    Preheader = InsertPreheaderForLoop(L, PP);
544    if (Preheader) {
545      ++NumInserted;
546      Changed = true;
547    }
548  }
549
550  // Next, check to make sure that all exit nodes of the loop only have
551  // predecessors that are inside of the loop.  This check guarantees that the
552  // loop preheader/header will dominate the exit blocks.  If the exit block has
553  // predecessors from outside of the loop, split the edge now.
554  SmallVector<BasicBlock*, 8> ExitBlocks;
555  L->getExitBlocks(ExitBlocks);
556
557  SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(),
558                                               ExitBlocks.end());
559  for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(),
560         E = ExitBlockSet.end(); I != E; ++I) {
561    BasicBlock *ExitBlock = *I;
562    for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock);
563         PI != PE; ++PI)
564      // Must be exactly this loop: no subloops, parent loops, or non-loop preds
565      // allowed.
566      if (!L->contains(*PI)) {
567        if (rewriteLoopExitBlock(L, ExitBlock, PP)) {
568          ++NumInserted;
569          Changed = true;
570        }
571        break;
572      }
573  }
574
575  // If the header has more than two predecessors at this point (from the
576  // preheader and from multiple backedges), we must adjust the loop.
577  BasicBlock *LoopLatch = L->getLoopLatch();
578  if (!LoopLatch) {
579    // If this is really a nested loop, rip it out into a child loop.  Don't do
580    // this for loops with a giant number of backedges, just factor them into a
581    // common backedge instead.
582    if (L->getNumBackEdges() < 8) {
583      if (Loop *OuterL = separateNestedLoop(L, Preheader, AA, DT, LI, SE, PP)) {
584        ++NumNested;
585        // Enqueue the outer loop as it should be processed next in our
586        // depth-first nest walk.
587        Worklist.push_back(OuterL);
588
589        // This is a big restructuring change, reprocess the whole loop.
590        Changed = true;
591        // GCC doesn't tail recursion eliminate this.
592        // FIXME: It isn't clear we can't rely on LLVM to TRE this.
593        goto ReprocessLoop;
594      }
595    }
596
597    // If we either couldn't, or didn't want to, identify nesting of the loops,
598    // insert a new block that all backedges target, then make it jump to the
599    // loop header.
600    LoopLatch = insertUniqueBackedgeBlock(L, Preheader, AA, DT, LI);
601    if (LoopLatch) {
602      ++NumInserted;
603      Changed = true;
604    }
605  }
606
607  // Scan over the PHI nodes in the loop header.  Since they now have only two
608  // incoming values (the loop is canonicalized), we may have simplified the PHI
609  // down to 'X = phi [X, Y]', which should be replaced with 'Y'.
610  PHINode *PN;
611  for (BasicBlock::iterator I = L->getHeader()->begin();
612       (PN = dyn_cast<PHINode>(I++)); )
613    if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, DT)) {
614      if (AA) AA->deleteValue(PN);
615      if (SE) SE->forgetValue(PN);
616      PN->replaceAllUsesWith(V);
617      PN->eraseFromParent();
618    }
619
620  // If this loop has multiple exits and the exits all go to the same
621  // block, attempt to merge the exits. This helps several passes, such
622  // as LoopRotation, which do not support loops with multiple exits.
623  // SimplifyCFG also does this (and this code uses the same utility
624  // function), however this code is loop-aware, where SimplifyCFG is
625  // not. That gives it the advantage of being able to hoist
626  // loop-invariant instructions out of the way to open up more
627  // opportunities, and the disadvantage of having the responsibility
628  // to preserve dominator information.
629  bool UniqueExit = true;
630  if (!ExitBlocks.empty())
631    for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i)
632      if (ExitBlocks[i] != ExitBlocks[0]) {
633        UniqueExit = false;
634        break;
635      }
636  if (UniqueExit) {
637    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
638      BasicBlock *ExitingBlock = ExitingBlocks[i];
639      if (!ExitingBlock->getSinglePredecessor()) continue;
640      BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
641      if (!BI || !BI->isConditional()) continue;
642      CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
643      if (!CI || CI->getParent() != ExitingBlock) continue;
644
645      // Attempt to hoist out all instructions except for the
646      // comparison and the branch.
647      bool AllInvariant = true;
648      bool AnyInvariant = false;
649      for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) {
650        Instruction *Inst = I++;
651        // Skip debug info intrinsics.
652        if (isa<DbgInfoIntrinsic>(Inst))
653          continue;
654        if (Inst == CI)
655          continue;
656        if (!L->makeLoopInvariant(Inst, AnyInvariant,
657                                  Preheader ? Preheader->getTerminator()
658                                            : nullptr)) {
659          AllInvariant = false;
660          break;
661        }
662      }
663      if (AnyInvariant) {
664        Changed = true;
665        // The loop disposition of all SCEV expressions that depend on any
666        // hoisted values have also changed.
667        if (SE)
668          SE->forgetLoopDispositions(L);
669      }
670      if (!AllInvariant) continue;
671
672      // The block has now been cleared of all instructions except for
673      // a comparison and a conditional branch. SimplifyCFG may be able
674      // to fold it now.
675      if (!FoldBranchToCommonDest(BI)) continue;
676
677      // Success. The block is now dead, so remove it from the loop,
678      // update the dominator tree and delete it.
679      DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block "
680                   << ExitingBlock->getName() << "\n");
681
682      // Notify ScalarEvolution before deleting this block. Currently assume the
683      // parent loop doesn't change (spliting edges doesn't count). If blocks,
684      // CFG edges, or other values in the parent loop change, then we need call
685      // to forgetLoop() for the parent instead.
686      if (SE)
687        SE->forgetLoop(L);
688
689      assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock));
690      Changed = true;
691      LI->removeBlock(ExitingBlock);
692
693      DomTreeNode *Node = DT->getNode(ExitingBlock);
694      const std::vector<DomTreeNodeBase<BasicBlock> *> &Children =
695        Node->getChildren();
696      while (!Children.empty()) {
697        DomTreeNode *Child = Children.front();
698        DT->changeImmediateDominator(Child, Node->getIDom());
699      }
700      DT->eraseNode(ExitingBlock);
701
702      BI->getSuccessor(0)->removePredecessor(ExitingBlock);
703      BI->getSuccessor(1)->removePredecessor(ExitingBlock);
704      ExitingBlock->eraseFromParent();
705    }
706  }
707
708  return Changed;
709}
710
711bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
712                        AliasAnalysis *AA, ScalarEvolution *SE) {
713  bool Changed = false;
714
715  // Worklist maintains our depth-first queue of loops in this nest to process.
716  SmallVector<Loop *, 4> Worklist;
717  Worklist.push_back(L);
718
719  // Walk the worklist from front to back, pushing newly found sub loops onto
720  // the back. This will let us process loops from back to front in depth-first
721  // order. We can use this simple process because loops form a tree.
722  for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
723    Loop *L2 = Worklist[Idx];
724    for (Loop::iterator I = L2->begin(), E = L2->end(); I != E; ++I)
725      Worklist.push_back(*I);
726  }
727
728  while (!Worklist.empty())
729    Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, AA, DT, LI, SE, PP);
730
731  return Changed;
732}
733
734namespace {
735  struct LoopSimplify : public FunctionPass {
736    static char ID; // Pass identification, replacement for typeid
737    LoopSimplify() : FunctionPass(ID) {
738      initializeLoopSimplifyPass(*PassRegistry::getPassRegistry());
739    }
740
741    // AA - If we have an alias analysis object to update, this is it, otherwise
742    // this is null.
743    AliasAnalysis *AA;
744    DominatorTree *DT;
745    LoopInfo *LI;
746    ScalarEvolution *SE;
747
748    bool runOnFunction(Function &F) override;
749
750    void getAnalysisUsage(AnalysisUsage &AU) const override {
751      // We need loop information to identify the loops...
752      AU.addRequired<DominatorTreeWrapperPass>();
753      AU.addPreserved<DominatorTreeWrapperPass>();
754
755      AU.addRequired<LoopInfo>();
756      AU.addPreserved<LoopInfo>();
757
758      AU.addPreserved<AliasAnalysis>();
759      AU.addPreserved<ScalarEvolution>();
760      AU.addPreserved<DependenceAnalysis>();
761      AU.addPreservedID(BreakCriticalEdgesID);  // No critical edges added.
762    }
763
764    /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees.
765    void verifyAnalysis() const override;
766  };
767}
768
769char LoopSimplify::ID = 0;
770INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify",
771                "Canonicalize natural loops", true, false)
772INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
773INITIALIZE_PASS_DEPENDENCY(LoopInfo)
774INITIALIZE_PASS_END(LoopSimplify, "loop-simplify",
775                "Canonicalize natural loops", true, false)
776
777// Publicly exposed interface to pass...
778char &llvm::LoopSimplifyID = LoopSimplify::ID;
779Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); }
780
781/// runOnFunction - Run down all loops in the CFG (recursively, but we could do
782/// it in any convenient order) inserting preheaders...
783///
784bool LoopSimplify::runOnFunction(Function &F) {
785  bool Changed = false;
786  AA = getAnalysisIfAvailable<AliasAnalysis>();
787  LI = &getAnalysis<LoopInfo>();
788  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
789  SE = getAnalysisIfAvailable<ScalarEvolution>();
790
791  // Simplify each loop nest in the function.
792  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
793    Changed |= simplifyLoop(*I, DT, LI, this, AA, SE);
794
795  return Changed;
796}
797
798// FIXME: Restore this code when we re-enable verification in verifyAnalysis
799// below.
800#if 0
801static void verifyLoop(Loop *L) {
802  // Verify subloops.
803  for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
804    verifyLoop(*I);
805
806  // It used to be possible to just assert L->isLoopSimplifyForm(), however
807  // with the introduction of indirectbr, there are now cases where it's
808  // not possible to transform a loop as necessary. We can at least check
809  // that there is an indirectbr near any time there's trouble.
810
811  // Indirectbr can interfere with preheader and unique backedge insertion.
812  if (!L->getLoopPreheader() || !L->getLoopLatch()) {
813    bool HasIndBrPred = false;
814    for (pred_iterator PI = pred_begin(L->getHeader()),
815         PE = pred_end(L->getHeader()); PI != PE; ++PI)
816      if (isa<IndirectBrInst>((*PI)->getTerminator())) {
817        HasIndBrPred = true;
818        break;
819      }
820    assert(HasIndBrPred &&
821           "LoopSimplify has no excuse for missing loop header info!");
822    (void)HasIndBrPred;
823  }
824
825  // Indirectbr can interfere with exit block canonicalization.
826  if (!L->hasDedicatedExits()) {
827    bool HasIndBrExiting = false;
828    SmallVector<BasicBlock*, 8> ExitingBlocks;
829    L->getExitingBlocks(ExitingBlocks);
830    for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
831      if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) {
832        HasIndBrExiting = true;
833        break;
834      }
835    }
836
837    assert(HasIndBrExiting &&
838           "LoopSimplify has no excuse for missing exit block info!");
839    (void)HasIndBrExiting;
840  }
841}
842#endif
843
844void LoopSimplify::verifyAnalysis() const {
845  // FIXME: This routine is being called mid-way through the loop pass manager
846  // as loop passes destroy this analysis. That's actually fine, but we have no
847  // way of expressing that here. Once all of the passes that destroy this are
848  // hoisted out of the loop pass manager we can add back verification here.
849#if 0
850  for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
851    verifyLoop(*I);
852#endif
853}
854