LoopUnroll.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements some loop unrolling utilities. It does not define any
11// actual pass or policy, but provides a single function to perform loop
12// unrolling.
13//
14// The process of unrolling can produce extraneous basic blocks linked with
15// unconditional branches.  This will be corrected in the future.
16//
17//===----------------------------------------------------------------------===//
18
19#define DEBUG_TYPE "loop-unroll"
20#include "llvm/Transforms/Utils/UnrollLoop.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/LoopIterator.h"
24#include "llvm/Analysis/LoopPass.h"
25#include "llvm/Analysis/ScalarEvolution.h"
26#include "llvm/IR/BasicBlock.h"
27#include "llvm/IR/Dominators.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/Transforms/Utils/BasicBlockUtils.h"
31#include "llvm/Transforms/Utils/Cloning.h"
32#include "llvm/Transforms/Utils/Local.h"
33#include "llvm/Transforms/Utils/LoopUtils.h"
34#include "llvm/Transforms/Utils/SimplifyIndVar.h"
35using namespace llvm;
36
37// TODO: Should these be here or in LoopUnroll?
38STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
39STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
40
41/// RemapInstruction - Convert the instruction operands from referencing the
42/// current values into those specified by VMap.
43static inline void RemapInstruction(Instruction *I,
44                                    ValueToValueMapTy &VMap) {
45  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
46    Value *Op = I->getOperand(op);
47    ValueToValueMapTy::iterator It = VMap.find(Op);
48    if (It != VMap.end())
49      I->setOperand(op, It->second);
50  }
51
52  if (PHINode *PN = dyn_cast<PHINode>(I)) {
53    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
54      ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
55      if (It != VMap.end())
56        PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
57    }
58  }
59}
60
61/// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
62/// only has one predecessor, and that predecessor only has one successor.
63/// The LoopInfo Analysis that is passed will be kept consistent.
64/// Returns the new combined block.
65static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI,
66                                            LPPassManager *LPM) {
67  // Merge basic blocks into their predecessor if there is only one distinct
68  // pred, and if there is only one distinct successor of the predecessor, and
69  // if there are no PHI nodes.
70  BasicBlock *OnlyPred = BB->getSinglePredecessor();
71  if (!OnlyPred) return 0;
72
73  if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
74    return 0;
75
76  DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
77
78  // Resolve any PHI nodes at the start of the block.  They are all
79  // guaranteed to have exactly one entry if they exist, unless there are
80  // multiple duplicate (but guaranteed to be equal) entries for the
81  // incoming edges.  This occurs when there are multiple edges from
82  // OnlyPred to OnlySucc.
83  FoldSingleEntryPHINodes(BB);
84
85  // Delete the unconditional branch from the predecessor...
86  OnlyPred->getInstList().pop_back();
87
88  // Make all PHI nodes that referred to BB now refer to Pred as their
89  // source...
90  BB->replaceAllUsesWith(OnlyPred);
91
92  // Move all definitions in the successor to the predecessor...
93  OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
94
95  // OldName will be valid until erased.
96  StringRef OldName = BB->getName();
97
98  // Erase basic block from the function...
99
100  // ScalarEvolution holds references to loop exit blocks.
101  if (LPM) {
102    if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
103      if (Loop *L = LI->getLoopFor(BB))
104        SE->forgetLoop(L);
105    }
106  }
107  LI->removeBlock(BB);
108
109  // Inherit predecessor's name if it exists...
110  if (!OldName.empty() && !OnlyPred->hasName())
111    OnlyPred->setName(OldName);
112
113  BB->eraseFromParent();
114
115  return OnlyPred;
116}
117
118/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
119/// if unrolling was successful, or false if the loop was unmodified. Unrolling
120/// can only fail when the loop's latch block is not terminated by a conditional
121/// branch instruction. However, if the trip count (and multiple) are not known,
122/// loop unrolling will mostly produce more code that is no faster.
123///
124/// TripCount is generally defined as the number of times the loop header
125/// executes. UnrollLoop relaxes the definition to permit early exits: here
126/// TripCount is the iteration on which control exits LatchBlock if no early
127/// exits were taken. Note that UnrollLoop assumes that the loop counter test
128/// terminates LatchBlock in order to remove unnecesssary instances of the
129/// test. In other words, control may exit the loop prior to TripCount
130/// iterations via an early branch, but control may not exit the loop from the
131/// LatchBlock's terminator prior to TripCount iterations.
132///
133/// Similarly, TripMultiple divides the number of times that the LatchBlock may
134/// execute without exiting the loop.
135///
136/// The LoopInfo Analysis that is passed will be kept consistent.
137///
138/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
139/// removed from the LoopPassManager as well. LPM can also be NULL.
140///
141/// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
142/// available from the Pass it must also preserve those analyses.
143bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
144                      bool AllowRuntime, unsigned TripMultiple,
145                      LoopInfo *LI, Pass *PP, LPPassManager *LPM) {
146  BasicBlock *Preheader = L->getLoopPreheader();
147  if (!Preheader) {
148    DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
149    return false;
150  }
151
152  BasicBlock *LatchBlock = L->getLoopLatch();
153  if (!LatchBlock) {
154    DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
155    return false;
156  }
157
158  // Loops with indirectbr cannot be cloned.
159  if (!L->isSafeToClone()) {
160    DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
161    return false;
162  }
163
164  BasicBlock *Header = L->getHeader();
165  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
166
167  if (!BI || BI->isUnconditional()) {
168    // The loop-rotate pass can be helpful to avoid this in many cases.
169    DEBUG(dbgs() <<
170             "  Can't unroll; loop not terminated by a conditional branch.\n");
171    return false;
172  }
173
174  if (Header->hasAddressTaken()) {
175    // The loop-rotate pass can be helpful to avoid this in many cases.
176    DEBUG(dbgs() <<
177          "  Won't unroll loop: address of header block is taken.\n");
178    return false;
179  }
180
181  if (TripCount != 0)
182    DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
183  if (TripMultiple != 1)
184    DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
185
186  // Effectively "DCE" unrolled iterations that are beyond the tripcount
187  // and will never be executed.
188  if (TripCount != 0 && Count > TripCount)
189    Count = TripCount;
190
191  // Don't enter the unroll code if there is nothing to do. This way we don't
192  // need to support "partial unrolling by 1".
193  if (TripCount == 0 && Count < 2)
194    return false;
195
196  assert(Count > 0);
197  assert(TripMultiple > 0);
198  assert(TripCount == 0 || TripCount % TripMultiple == 0);
199
200  // Are we eliminating the loop control altogether?
201  bool CompletelyUnroll = Count == TripCount;
202
203  // We assume a run-time trip count if the compiler cannot
204  // figure out the loop trip count and the unroll-runtime
205  // flag is specified.
206  bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
207
208  if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM))
209    return false;
210
211  // Notify ScalarEvolution that the loop will be substantially changed,
212  // if not outright eliminated.
213  if (PP) {
214    ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
215    if (SE)
216      SE->forgetLoop(L);
217  }
218
219  // If we know the trip count, we know the multiple...
220  unsigned BreakoutTrip = 0;
221  if (TripCount != 0) {
222    BreakoutTrip = TripCount % Count;
223    TripMultiple = 0;
224  } else {
225    // Figure out what multiple to use.
226    BreakoutTrip = TripMultiple =
227      (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
228  }
229
230  if (CompletelyUnroll) {
231    DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
232          << " with trip count " << TripCount << "!\n");
233  } else {
234    DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
235          << " by " << Count);
236    if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
237      DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
238    } else if (TripMultiple != 1) {
239      DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
240    } else if (RuntimeTripCount) {
241      DEBUG(dbgs() << " with run-time trip count");
242    }
243    DEBUG(dbgs() << "!\n");
244  }
245
246  bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
247  BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
248
249  // For the first iteration of the loop, we should use the precloned values for
250  // PHI nodes.  Insert associations now.
251  ValueToValueMapTy LastValueMap;
252  std::vector<PHINode*> OrigPHINode;
253  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
254    OrigPHINode.push_back(cast<PHINode>(I));
255  }
256
257  std::vector<BasicBlock*> Headers;
258  std::vector<BasicBlock*> Latches;
259  Headers.push_back(Header);
260  Latches.push_back(LatchBlock);
261
262  // The current on-the-fly SSA update requires blocks to be processed in
263  // reverse postorder so that LastValueMap contains the correct value at each
264  // exit.
265  LoopBlocksDFS DFS(L);
266  DFS.perform(LI);
267
268  // Stash the DFS iterators before adding blocks to the loop.
269  LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
270  LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
271
272  for (unsigned It = 1; It != Count; ++It) {
273    std::vector<BasicBlock*> NewBlocks;
274
275    for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
276      ValueToValueMapTy VMap;
277      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
278      Header->getParent()->getBasicBlockList().push_back(New);
279
280      // Loop over all of the PHI nodes in the block, changing them to use the
281      // incoming values from the previous block.
282      if (*BB == Header)
283        for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
284          PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
285          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
286          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
287            if (It > 1 && L->contains(InValI))
288              InVal = LastValueMap[InValI];
289          VMap[OrigPHINode[i]] = InVal;
290          New->getInstList().erase(NewPHI);
291        }
292
293      // Update our running map of newest clones
294      LastValueMap[*BB] = New;
295      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
296           VI != VE; ++VI)
297        LastValueMap[VI->first] = VI->second;
298
299      L->addBasicBlockToLoop(New, LI->getBase());
300
301      // Add phi entries for newly created values to all exit blocks.
302      for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
303           SI != SE; ++SI) {
304        if (L->contains(*SI))
305          continue;
306        for (BasicBlock::iterator BBI = (*SI)->begin();
307             PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
308          Value *Incoming = phi->getIncomingValueForBlock(*BB);
309          ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
310          if (It != LastValueMap.end())
311            Incoming = It->second;
312          phi->addIncoming(Incoming, New);
313        }
314      }
315      // Keep track of new headers and latches as we create them, so that
316      // we can insert the proper branches later.
317      if (*BB == Header)
318        Headers.push_back(New);
319      if (*BB == LatchBlock)
320        Latches.push_back(New);
321
322      NewBlocks.push_back(New);
323    }
324
325    // Remap all instructions in the most recent iteration
326    for (unsigned i = 0; i < NewBlocks.size(); ++i)
327      for (BasicBlock::iterator I = NewBlocks[i]->begin(),
328           E = NewBlocks[i]->end(); I != E; ++I)
329        ::RemapInstruction(I, LastValueMap);
330  }
331
332  // Loop over the PHI nodes in the original block, setting incoming values.
333  for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
334    PHINode *PN = OrigPHINode[i];
335    if (CompletelyUnroll) {
336      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
337      Header->getInstList().erase(PN);
338    }
339    else if (Count > 1) {
340      Value *InVal = PN->removeIncomingValue(LatchBlock, false);
341      // If this value was defined in the loop, take the value defined by the
342      // last iteration of the loop.
343      if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
344        if (L->contains(InValI))
345          InVal = LastValueMap[InVal];
346      }
347      assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
348      PN->addIncoming(InVal, Latches.back());
349    }
350  }
351
352  // Now that all the basic blocks for the unrolled iterations are in place,
353  // set up the branches to connect them.
354  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
355    // The original branch was replicated in each unrolled iteration.
356    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
357
358    // The branch destination.
359    unsigned j = (i + 1) % e;
360    BasicBlock *Dest = Headers[j];
361    bool NeedConditional = true;
362
363    if (RuntimeTripCount && j != 0) {
364      NeedConditional = false;
365    }
366
367    // For a complete unroll, make the last iteration end with a branch
368    // to the exit block.
369    if (CompletelyUnroll && j == 0) {
370      Dest = LoopExit;
371      NeedConditional = false;
372    }
373
374    // If we know the trip count or a multiple of it, we can safely use an
375    // unconditional branch for some iterations.
376    if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
377      NeedConditional = false;
378    }
379
380    if (NeedConditional) {
381      // Update the conditional branch's successor for the following
382      // iteration.
383      Term->setSuccessor(!ContinueOnTrue, Dest);
384    } else {
385      // Remove phi operands at this loop exit
386      if (Dest != LoopExit) {
387        BasicBlock *BB = Latches[i];
388        for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
389             SI != SE; ++SI) {
390          if (*SI == Headers[i])
391            continue;
392          for (BasicBlock::iterator BBI = (*SI)->begin();
393               PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
394            Phi->removeIncomingValue(BB, false);
395          }
396        }
397      }
398      // Replace the conditional branch with an unconditional one.
399      BranchInst::Create(Dest, Term);
400      Term->eraseFromParent();
401    }
402  }
403
404  // Merge adjacent basic blocks, if possible.
405  for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
406    BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
407    if (Term->isUnconditional()) {
408      BasicBlock *Dest = Term->getSuccessor(0);
409      if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM))
410        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
411    }
412  }
413
414  DominatorTree *DT = 0;
415  if (PP) {
416    // FIXME: Reconstruct dom info, because it is not preserved properly.
417    // Incrementally updating domtree after loop unrolling would be easy.
418    if (DominatorTreeWrapperPass *DTWP =
419            PP->getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
420      DT = &DTWP->getDomTree();
421      DT->recalculate(*L->getHeader()->getParent());
422    }
423
424    // Simplify any new induction variables in the partially unrolled loop.
425    ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
426    if (SE && !CompletelyUnroll) {
427      SmallVector<WeakVH, 16> DeadInsts;
428      simplifyLoopIVs(L, SE, LPM, DeadInsts);
429
430      // Aggressively clean up dead instructions that simplifyLoopIVs already
431      // identified. Any remaining should be cleaned up below.
432      while (!DeadInsts.empty())
433        if (Instruction *Inst =
434            dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
435          RecursivelyDeleteTriviallyDeadInstructions(Inst);
436    }
437  }
438  // At this point, the code is well formed.  We now do a quick sweep over the
439  // inserted code, doing constant propagation and dead code elimination as we
440  // go.
441  const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
442  for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
443       BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
444    for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
445      Instruction *Inst = I++;
446
447      if (isInstructionTriviallyDead(Inst))
448        (*BB)->getInstList().erase(Inst);
449      else if (Value *V = SimplifyInstruction(Inst))
450        if (LI->replacementPreservesLCSSAForm(Inst, V)) {
451          Inst->replaceAllUsesWith(V);
452          (*BB)->getInstList().erase(Inst);
453        }
454    }
455
456  NumCompletelyUnrolled += CompletelyUnroll;
457  ++NumUnrolled;
458
459  Loop *OuterL = L->getParentLoop();
460  // Remove the loop from the LoopPassManager if it's completely removed.
461  if (CompletelyUnroll && LPM != NULL)
462    LPM->deleteLoopFromQueue(L);
463
464  // If we have a pass and a DominatorTree we should re-simplify impacted loops
465  // to ensure subsequent analyses can rely on this form. We want to simplify
466  // at least one layer outside of the loop that was unrolled so that any
467  // changes to the parent loop exposed by the unrolling are considered.
468  if (PP && DT) {
469    if (!OuterL && !CompletelyUnroll)
470      OuterL = L;
471    if (OuterL) {
472      ScalarEvolution *SE = PP->getAnalysisIfAvailable<ScalarEvolution>();
473      simplifyLoop(OuterL, DT, LI, PP, /*AliasAnalysis*/ 0, SE);
474      formLCSSARecursively(*OuterL, *DT, SE);
475    }
476  }
477
478  return true;
479}
480