LowerInvoke.cpp revision f5a86f45e75ec744c203270ffa03659eb0a220c1
1//===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation is designed for use by code generators which do not yet
11// support stack unwinding.  This pass supports two models of exception handling
12// lowering, the 'cheap' support and the 'expensive' support.
13//
14// 'Cheap' exception handling support gives the program the ability to execute
15// any program which does not "throw an exception", by turning 'invoke'
16// instructions into calls and by turning 'unwind' instructions into calls to
17// abort().  If the program does dynamically use the unwind instruction, the
18// program will print a message then abort.
19//
20// 'Expensive' exception handling support gives the full exception handling
21// support to the program at the cost of making the 'invoke' instruction
22// really expensive.  It basically inserts setjmp/longjmp calls to emulate the
23// exception handling as necessary.
24//
25// Because the 'expensive' support slows down programs a lot, and EH is only
26// used for a subset of the programs, it must be specifically enabled by an
27// option.
28//
29// Note that after this pass runs the CFG is not entirely accurate (exceptional
30// control flow edges are not correct anymore) so only very simple things should
31// be done after the lowerinvoke pass has run (like generation of native code).
32// This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33// support the invoke instruction yet" lowering pass.
34//
35//===----------------------------------------------------------------------===//
36
37#define DEBUG_TYPE "lowerinvoke"
38#include "llvm/Transforms/Scalar.h"
39#include "llvm/Constants.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/Instructions.h"
42#include "llvm/Intrinsics.h"
43#include "llvm/LLVMContext.h"
44#include "llvm/Module.h"
45#include "llvm/Pass.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Transforms/Utils/Local.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Target/TargetLowering.h"
51#include <csetjmp>
52#include <set>
53using namespace llvm;
54
55STATISTIC(NumInvokes, "Number of invokes replaced");
56STATISTIC(NumUnwinds, "Number of unwinds replaced");
57STATISTIC(NumSpilled, "Number of registers live across unwind edges");
58
59static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support",
60 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
61
62namespace {
63  class LowerInvoke : public FunctionPass {
64    // Used for both models.
65    Constant *WriteFn;
66    Constant *AbortFn;
67    Value *AbortMessage;
68    unsigned AbortMessageLength;
69
70    // Used for expensive EH support.
71    const Type *JBLinkTy;
72    GlobalVariable *JBListHead;
73    Constant *SetJmpFn, *LongJmpFn;
74
75    // We peek in TLI to grab the target's jmp_buf size and alignment
76    const TargetLowering *TLI;
77
78  public:
79    static char ID; // Pass identification, replacement for typeid
80    explicit LowerInvoke(const TargetLowering *tli = NULL)
81      : FunctionPass(&ID), TLI(tli) { }
82    bool doInitialization(Module &M);
83    bool runOnFunction(Function &F);
84
85    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
86      // This is a cluster of orthogonal Transforms
87      AU.addPreservedID(PromoteMemoryToRegisterID);
88      AU.addPreservedID(LowerSwitchID);
89      AU.addPreservedID(LowerAllocationsID);
90    }
91
92  private:
93    void createAbortMessage(Module *M);
94    void writeAbortMessage(Instruction *IB);
95    bool insertCheapEHSupport(Function &F);
96    void splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes);
97    void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
98                                AllocaInst *InvokeNum, SwitchInst *CatchSwitch);
99    bool insertExpensiveEHSupport(Function &F);
100  };
101}
102
103char LowerInvoke::ID = 0;
104static RegisterPass<LowerInvoke>
105X("lowerinvoke", "Lower invoke and unwind, for unwindless code generators");
106
107const PassInfo *const llvm::LowerInvokePassID = &X;
108
109// Public Interface To the LowerInvoke pass.
110FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) {
111  return new LowerInvoke(TLI);
112}
113
114// doInitialization - Make sure that there is a prototype for abort in the
115// current module.
116bool LowerInvoke::doInitialization(Module &M) {
117  const Type *VoidPtrTy =
118          Type::getInt8PtrTy(M.getContext());
119  AbortMessage = 0;
120  if (ExpensiveEHSupport) {
121    // Insert a type for the linked list of jump buffers.
122    unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0;
123    JBSize = JBSize ? JBSize : 200;
124    const Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize);
125
126    { // The type is recursive, so use a type holder.
127      std::vector<const Type*> Elements;
128      Elements.push_back(JmpBufTy);
129      OpaqueType *OT = OpaqueType::get(M.getContext());
130      Elements.push_back(PointerType::getUnqual(OT));
131      PATypeHolder JBLType(StructType::get(M.getContext(), Elements));
132      OT->refineAbstractTypeTo(JBLType.get());  // Complete the cycle.
133      JBLinkTy = JBLType.get();
134      M.addTypeName("llvm.sjljeh.jmpbufty", JBLinkTy);
135    }
136
137    const Type *PtrJBList = PointerType::getUnqual(JBLinkTy);
138
139    // Now that we've done that, insert the jmpbuf list head global, unless it
140    // already exists.
141    if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) {
142      JBListHead = new GlobalVariable(M, PtrJBList, false,
143                                      GlobalValue::LinkOnceAnyLinkage,
144                                      Constant::getNullValue(PtrJBList),
145                                      "llvm.sjljeh.jblist");
146    }
147
148// VisualStudio defines setjmp as _setjmp via #include <csetjmp> / <setjmp.h>,
149// so it looks like Intrinsic::_setjmp
150#if defined(_MSC_VER) && defined(setjmp)
151#define setjmp_undefined_for_visual_studio
152#undef setjmp
153#endif
154
155    SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp);
156
157#if defined(_MSC_VER) && defined(setjmp_undefined_for_visual_studio)
158// let's return it to _setjmp state in case anyone ever needs it after this
159// point under VisualStudio
160#define setjmp _setjmp
161#endif
162
163    LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp);
164  }
165
166  // We need the 'write' and 'abort' functions for both models.
167  AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()),
168                                  (Type *)0);
169#if 0 // "write" is Unix-specific.. code is going away soon anyway.
170  WriteFn = M.getOrInsertFunction("write", Type::VoidTy, Type::Int32Ty,
171                                  VoidPtrTy, Type::Int32Ty, (Type *)0);
172#else
173  WriteFn = 0;
174#endif
175  return true;
176}
177
178void LowerInvoke::createAbortMessage(Module *M) {
179  if (ExpensiveEHSupport) {
180    // The abort message for expensive EH support tells the user that the
181    // program 'unwound' without an 'invoke' instruction.
182    Constant *Msg =
183      ConstantArray::get(M->getContext(),
184                         "ERROR: Exception thrown, but not caught!\n");
185    AbortMessageLength = Msg->getNumOperands()-1;  // don't include \0
186
187    GlobalVariable *MsgGV = new GlobalVariable(*M, Msg->getType(), true,
188                                               GlobalValue::InternalLinkage,
189                                               Msg, "abortmsg");
190    std::vector<Constant*> GEPIdx(2,
191                     Constant::getNullValue(Type::getInt32Ty(M->getContext())));
192    AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, &GEPIdx[0], 2);
193  } else {
194    // The abort message for cheap EH support tells the user that EH is not
195    // enabled.
196    Constant *Msg =
197      ConstantArray::get(M->getContext(),
198                        "Exception handler needed, but not enabled."
199                        "Recompile program with -enable-correct-eh-support.\n");
200    AbortMessageLength = Msg->getNumOperands()-1;  // don't include \0
201
202    GlobalVariable *MsgGV = new GlobalVariable(*M, Msg->getType(), true,
203                                               GlobalValue::InternalLinkage,
204                                               Msg, "abortmsg");
205    std::vector<Constant*> GEPIdx(2, Constant::getNullValue(
206                                            Type::getInt32Ty(M->getContext())));
207    AbortMessage = ConstantExpr::getGetElementPtr(MsgGV, &GEPIdx[0], 2);
208  }
209}
210
211
212void LowerInvoke::writeAbortMessage(Instruction *IB) {
213#if 0
214  if (AbortMessage == 0)
215    createAbortMessage(IB->getParent()->getParent()->getParent());
216
217  // These are the arguments we WANT...
218  Value* Args[3];
219  Args[0] = ConstantInt::get(Type::Int32Ty, 2);
220  Args[1] = AbortMessage;
221  Args[2] = ConstantInt::get(Type::Int32Ty, AbortMessageLength);
222  (new CallInst(WriteFn, Args, 3, "", IB))->setTailCall();
223#endif
224}
225
226bool LowerInvoke::insertCheapEHSupport(Function &F) {
227  bool Changed = false;
228  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
229    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
230      std::vector<Value*> CallArgs(II->op_begin()+3, II->op_end());
231      // Insert a normal call instruction...
232      CallInst *NewCall = CallInst::Create(II->getCalledValue(),
233                                           CallArgs.begin(), CallArgs.end(), "",II);
234      NewCall->takeName(II);
235      NewCall->setCallingConv(II->getCallingConv());
236      NewCall->setAttributes(II->getAttributes());
237      II->replaceAllUsesWith(NewCall);
238
239      // Insert an unconditional branch to the normal destination.
240      BranchInst::Create(II->getNormalDest(), II);
241
242      // Remove any PHI node entries from the exception destination.
243      II->getUnwindDest()->removePredecessor(BB);
244
245      // Remove the invoke instruction now.
246      BB->getInstList().erase(II);
247
248      ++NumInvokes; Changed = true;
249    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
250      // Insert a new call to write(2, AbortMessage, AbortMessageLength);
251      writeAbortMessage(UI);
252
253      // Insert a call to abort()
254      CallInst::Create(AbortFn, "", UI)->setTailCall();
255
256      // Insert a return instruction.  This really should be a "barrier", as it
257      // is unreachable.
258      ReturnInst::Create(F.getContext(),
259                         F.getReturnType() == Type::getVoidTy(F.getContext()) ?
260                          0 : Constant::getNullValue(F.getReturnType()), UI);
261
262      // Remove the unwind instruction now.
263      BB->getInstList().erase(UI);
264
265      ++NumUnwinds; Changed = true;
266    }
267  return Changed;
268}
269
270/// rewriteExpensiveInvoke - Insert code and hack the function to replace the
271/// specified invoke instruction with a call.
272void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
273                                         AllocaInst *InvokeNum,
274                                         SwitchInst *CatchSwitch) {
275  ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
276                                            InvokeNo);
277
278  // If the unwind edge has phi nodes, split the edge.
279  if (isa<PHINode>(II->getUnwindDest()->begin())) {
280    SplitCriticalEdge(II, 1, this);
281
282    // If there are any phi nodes left, they must have a single predecessor.
283    while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
284      PN->replaceAllUsesWith(PN->getIncomingValue(0));
285      PN->eraseFromParent();
286    }
287  }
288
289  // Insert a store of the invoke num before the invoke and store zero into the
290  // location afterward.
291  new StoreInst(InvokeNoC, InvokeNum, true, II);  // volatile
292
293  BasicBlock::iterator NI = II->getNormalDest()->getFirstNonPHI();
294  // nonvolatile.
295  new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())),
296                InvokeNum, false, NI);
297
298  // Add a switch case to our unwind block.
299  CatchSwitch->addCase(InvokeNoC, II->getUnwindDest());
300
301  // Insert a normal call instruction.
302  std::vector<Value*> CallArgs(II->op_begin()+3, II->op_end());
303  CallInst *NewCall = CallInst::Create(II->getCalledValue(),
304                                       CallArgs.begin(), CallArgs.end(), "",
305                                       II);
306  NewCall->takeName(II);
307  NewCall->setCallingConv(II->getCallingConv());
308  NewCall->setAttributes(II->getAttributes());
309  II->replaceAllUsesWith(NewCall);
310
311  // Replace the invoke with an uncond branch.
312  BranchInst::Create(II->getNormalDest(), NewCall->getParent());
313  II->eraseFromParent();
314}
315
316/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
317/// we reach blocks we've already seen.
318static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
319  if (!LiveBBs.insert(BB).second) return; // already been here.
320
321  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
322    MarkBlocksLiveIn(*PI, LiveBBs);
323}
324
325// First thing we need to do is scan the whole function for values that are
326// live across unwind edges.  Each value that is live across an unwind edge
327// we spill into a stack location, guaranteeing that there is nothing live
328// across the unwind edge.  This process also splits all critical edges
329// coming out of invoke's.
330void LowerInvoke::
331splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes) {
332  // First step, split all critical edges from invoke instructions.
333  for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
334    InvokeInst *II = Invokes[i];
335    SplitCriticalEdge(II, 0, this);
336    SplitCriticalEdge(II, 1, this);
337    assert(!isa<PHINode>(II->getNormalDest()) &&
338           !isa<PHINode>(II->getUnwindDest()) &&
339           "critical edge splitting left single entry phi nodes?");
340  }
341
342  Function *F = Invokes.back()->getParent()->getParent();
343
344  // To avoid having to handle incoming arguments specially, we lower each arg
345  // to a copy instruction in the entry block.  This ensures that the argument
346  // value itself cannot be live across the entry block.
347  BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
348  while (isa<AllocaInst>(AfterAllocaInsertPt) &&
349        isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
350    ++AfterAllocaInsertPt;
351  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
352       AI != E; ++AI) {
353    // This is always a no-op cast because we're casting AI to AI->getType() so
354    // src and destination types are identical. BitCast is the only possibility.
355    CastInst *NC = new BitCastInst(
356      AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
357    AI->replaceAllUsesWith(NC);
358    // Normally its is forbidden to replace a CastInst's operand because it
359    // could cause the opcode to reflect an illegal conversion. However, we're
360    // replacing it here with the same value it was constructed with to simply
361    // make NC its user.
362    NC->setOperand(0, AI);
363  }
364
365  // Finally, scan the code looking for instructions with bad live ranges.
366  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
367    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
368      // Ignore obvious cases we don't have to handle.  In particular, most
369      // instructions either have no uses or only have a single use inside the
370      // current block.  Ignore them quickly.
371      Instruction *Inst = II;
372      if (Inst->use_empty()) continue;
373      if (Inst->hasOneUse() &&
374          cast<Instruction>(Inst->use_back())->getParent() == BB &&
375          !isa<PHINode>(Inst->use_back())) continue;
376
377      // If this is an alloca in the entry block, it's not a real register
378      // value.
379      if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
380        if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
381          continue;
382
383      // Avoid iterator invalidation by copying users to a temporary vector.
384      std::vector<Instruction*> Users;
385      for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
386           UI != E; ++UI) {
387        Instruction *User = cast<Instruction>(*UI);
388        if (User->getParent() != BB || isa<PHINode>(User))
389          Users.push_back(User);
390      }
391
392      // Scan all of the uses and see if the live range is live across an unwind
393      // edge.  If we find a use live across an invoke edge, create an alloca
394      // and spill the value.
395      std::set<InvokeInst*> InvokesWithStoreInserted;
396
397      // Find all of the blocks that this value is live in.
398      std::set<BasicBlock*> LiveBBs;
399      LiveBBs.insert(Inst->getParent());
400      while (!Users.empty()) {
401        Instruction *U = Users.back();
402        Users.pop_back();
403
404        if (!isa<PHINode>(U)) {
405          MarkBlocksLiveIn(U->getParent(), LiveBBs);
406        } else {
407          // Uses for a PHI node occur in their predecessor block.
408          PHINode *PN = cast<PHINode>(U);
409          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
410            if (PN->getIncomingValue(i) == Inst)
411              MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
412        }
413      }
414
415      // Now that we know all of the blocks that this thing is live in, see if
416      // it includes any of the unwind locations.
417      bool NeedsSpill = false;
418      for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
419        BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
420        if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
421          NeedsSpill = true;
422        }
423      }
424
425      // If we decided we need a spill, do it.
426      if (NeedsSpill) {
427        ++NumSpilled;
428        DemoteRegToStack(*Inst, true);
429      }
430    }
431}
432
433bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
434  std::vector<ReturnInst*> Returns;
435  std::vector<UnwindInst*> Unwinds;
436  std::vector<InvokeInst*> Invokes;
437
438  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
439    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
440      // Remember all return instructions in case we insert an invoke into this
441      // function.
442      Returns.push_back(RI);
443    } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
444      Invokes.push_back(II);
445    } else if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
446      Unwinds.push_back(UI);
447    }
448
449  if (Unwinds.empty() && Invokes.empty()) return false;
450
451  NumInvokes += Invokes.size();
452  NumUnwinds += Unwinds.size();
453
454  // TODO: This is not an optimal way to do this.  In particular, this always
455  // inserts setjmp calls into the entries of functions with invoke instructions
456  // even though there are possibly paths through the function that do not
457  // execute any invokes.  In particular, for functions with early exits, e.g.
458  // the 'addMove' method in hexxagon, it would be nice to not have to do the
459  // setjmp stuff on the early exit path.  This requires a bit of dataflow, but
460  // would not be too hard to do.
461
462  // If we have an invoke instruction, insert a setjmp that dominates all
463  // invokes.  After the setjmp, use a cond branch that goes to the original
464  // code path on zero, and to a designated 'catch' block of nonzero.
465  Value *OldJmpBufPtr = 0;
466  if (!Invokes.empty()) {
467    // First thing we need to do is scan the whole function for values that are
468    // live across unwind edges.  Each value that is live across an unwind edge
469    // we spill into a stack location, guaranteeing that there is nothing live
470    // across the unwind edge.  This process also splits all critical edges
471    // coming out of invoke's.
472    splitLiveRangesLiveAcrossInvokes(Invokes);
473
474    BasicBlock *EntryBB = F.begin();
475
476    // Create an alloca for the incoming jump buffer ptr and the new jump buffer
477    // that needs to be restored on all exits from the function.  This is an
478    // alloca because the value needs to be live across invokes.
479    unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0;
480    AllocaInst *JmpBuf =
481      new AllocaInst(JBLinkTy, 0, Align,
482                     "jblink", F.begin()->begin());
483
484    std::vector<Value*> Idx;
485    Idx.push_back(Constant::getNullValue(Type::getInt32Ty(F.getContext())));
486    Idx.push_back(ConstantInt::get(Type::getInt32Ty(F.getContext()), 1));
487    OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx.begin(), Idx.end(),
488                                             "OldBuf",
489                                              EntryBB->getTerminator());
490
491    // Copy the JBListHead to the alloca.
492    Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true,
493                                 EntryBB->getTerminator());
494    new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator());
495
496    // Add the new jumpbuf to the list.
497    new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator());
498
499    // Create the catch block.  The catch block is basically a big switch
500    // statement that goes to all of the invoke catch blocks.
501    BasicBlock *CatchBB =
502            BasicBlock::Create(F.getContext(), "setjmp.catch", &F);
503
504    // Create an alloca which keeps track of which invoke is currently
505    // executing.  For normal calls it contains zero.
506    AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0,
507                                           "invokenum",EntryBB->begin());
508    new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
509                  InvokeNum, true, EntryBB->getTerminator());
510
511    // Insert a load in the Catch block, and a switch on its value.  By default,
512    // we go to a block that just does an unwind (which is the correct action
513    // for a standard call).
514    BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F);
515    Unwinds.push_back(new UnwindInst(F.getContext(), UnwindBB));
516
517    Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB);
518    SwitchInst *CatchSwitch =
519      SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB);
520
521    // Now that things are set up, insert the setjmp call itself.
522
523    // Split the entry block to insert the conditional branch for the setjmp.
524    BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
525                                                     "setjmp.cont");
526
527    Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0);
528    Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx.begin(), Idx.end(),
529                                                 "TheJmpBuf",
530                                                 EntryBB->getTerminator());
531    JmpBufPtr = new BitCastInst(JmpBufPtr,
532                        Type::getInt8PtrTy(F.getContext()),
533                                "tmp", EntryBB->getTerminator());
534    Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret",
535                                    EntryBB->getTerminator());
536
537    // Compare the return value to zero.
538    Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
539                                   ICmpInst::ICMP_EQ, SJRet,
540                                   Constant::getNullValue(SJRet->getType()),
541                                   "notunwind");
542    // Nuke the uncond branch.
543    EntryBB->getTerminator()->eraseFromParent();
544
545    // Put in a new condbranch in its place.
546    BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB);
547
548    // At this point, we are all set up, rewrite each invoke instruction.
549    for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
550      rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, CatchSwitch);
551  }
552
553  // We know that there is at least one unwind.
554
555  // Create three new blocks, the block to load the jmpbuf ptr and compare
556  // against null, the block to do the longjmp, and the error block for if it
557  // is null.  Add them at the end of the function because they are not hot.
558  BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(),
559                                                "dounwind", &F);
560  BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F);
561  BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F);
562
563  // If this function contains an invoke, restore the old jumpbuf ptr.
564  Value *BufPtr;
565  if (OldJmpBufPtr) {
566    // Before the return, insert a copy from the saved value to the new value.
567    BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler);
568    new StoreInst(BufPtr, JBListHead, UnwindHandler);
569  } else {
570    BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler);
571  }
572
573  // Load the JBList, if it's null, then there was no catch!
574  Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr,
575                                Constant::getNullValue(BufPtr->getType()),
576                                "notnull");
577  BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler);
578
579  // Create the block to do the longjmp.
580  // Get a pointer to the jmpbuf and longjmp.
581  std::vector<Value*> Idx;
582  Idx.push_back(Constant::getNullValue(Type::getInt32Ty(F.getContext())));
583  Idx.push_back(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0));
584  Idx[0] = GetElementPtrInst::Create(BufPtr, Idx.begin(), Idx.end(), "JmpBuf",
585                                     UnwindBlock);
586  Idx[0] = new BitCastInst(Idx[0],
587             Type::getInt8PtrTy(F.getContext()),
588                           "tmp", UnwindBlock);
589  Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1);
590  CallInst::Create(LongJmpFn, Idx.begin(), Idx.end(), "", UnwindBlock);
591  new UnreachableInst(F.getContext(), UnwindBlock);
592
593  // Set up the term block ("throw without a catch").
594  new UnreachableInst(F.getContext(), TermBlock);
595
596  // Insert a new call to write(2, AbortMessage, AbortMessageLength);
597  writeAbortMessage(TermBlock->getTerminator());
598
599  // Insert a call to abort()
600  CallInst::Create(AbortFn, "",
601                   TermBlock->getTerminator())->setTailCall();
602
603
604  // Replace all unwinds with a branch to the unwind handler.
605  for (unsigned i = 0, e = Unwinds.size(); i != e; ++i) {
606    BranchInst::Create(UnwindHandler, Unwinds[i]);
607    Unwinds[i]->eraseFromParent();
608  }
609
610  // Finally, for any returns from this function, if this function contains an
611  // invoke, restore the old jmpbuf pointer to its input value.
612  if (OldJmpBufPtr) {
613    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
614      ReturnInst *R = Returns[i];
615
616      // Before the return, insert a copy from the saved value to the new value.
617      Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R);
618      new StoreInst(OldBuf, JBListHead, true, R);
619    }
620  }
621
622  return true;
623}
624
625bool LowerInvoke::runOnFunction(Function &F) {
626  if (ExpensiveEHSupport)
627    return insertExpensiveEHSupport(F);
628  else
629    return insertCheapEHSupport(F);
630}
631