PromoteMemoryToRegister.cpp revision 16eeb6f5ebc978b03745177b9ac82684ab1c6932
1//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file promotes memory references to be register references.  It promotes
11// alloca instructions which only have loads and stores as uses.  An alloca is
12// transformed by using iterated dominator frontiers to place PHI nodes, then
13// traversing the function in depth-first order to rewrite loads and stores as
14// appropriate.
15//
16// The algorithm used here is based on:
17//
18//   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
19//   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
20//   Programming Languages
21//   POPL '95. ACM, New York, NY, 62-73.
22//
23// It has been modified to not explicitly use the DJ graph data structure and to
24// directly compute pruned SSA using per-variable liveness information.
25//
26//===----------------------------------------------------------------------===//
27
28#define DEBUG_TYPE "mem2reg"
29#include "llvm/Transforms/Utils/PromoteMemToReg.h"
30#include "llvm/Constants.h"
31#include "llvm/DebugInfo.h"
32#include "llvm/DerivedTypes.h"
33#include "llvm/DIBuilder.h"
34#include "llvm/Function.h"
35#include "llvm/Instructions.h"
36#include "llvm/IntrinsicInst.h"
37#include "llvm/Metadata.h"
38#include "llvm/Analysis/AliasSetTracker.h"
39#include "llvm/Analysis/Dominators.h"
40#include "llvm/Analysis/InstructionSimplify.h"
41#include "llvm/Analysis/ValueTracking.h"
42#include "llvm/Transforms/Utils/Local.h"
43#include "llvm/ADT/DenseMap.h"
44#include "llvm/ADT/Hashing.h"
45#include "llvm/ADT/SmallPtrSet.h"
46#include "llvm/ADT/SmallVector.h"
47#include "llvm/ADT/Statistic.h"
48#include "llvm/ADT/STLExtras.h"
49#include "llvm/Support/CFG.h"
50#include <algorithm>
51#include <queue>
52using namespace llvm;
53
54STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
55STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
56STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
57STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
58
59namespace llvm {
60template<>
61struct DenseMapInfo<std::pair<BasicBlock*, unsigned> > {
62  typedef std::pair<BasicBlock*, unsigned> EltTy;
63  static inline EltTy getEmptyKey() {
64    return EltTy(reinterpret_cast<BasicBlock*>(-1), ~0U);
65  }
66  static inline EltTy getTombstoneKey() {
67    return EltTy(reinterpret_cast<BasicBlock*>(-2), 0U);
68  }
69  static unsigned getHashValue(const std::pair<BasicBlock*, unsigned> &Val) {
70    using llvm::hash_value;
71    return static_cast<unsigned>(hash_value(Val));
72  }
73  static bool isEqual(const EltTy &LHS, const EltTy &RHS) {
74    return LHS == RHS;
75  }
76};
77}
78
79/// isAllocaPromotable - Return true if this alloca is legal for promotion.
80/// This is true if there are only loads and stores to the alloca.
81///
82bool llvm::isAllocaPromotable(const AllocaInst *AI) {
83  // FIXME: If the memory unit is of pointer or integer type, we can permit
84  // assignments to subsections of the memory unit.
85
86  // Only allow direct and non-volatile loads and stores...
87  for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end();
88       UI != UE; ++UI) {   // Loop over all of the uses of the alloca
89    const User *U = *UI;
90    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
91      // Note that atomic loads can be transformed; atomic semantics do
92      // not have any meaning for a local alloca.
93      if (LI->isVolatile())
94        return false;
95    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
96      if (SI->getOperand(0) == AI)
97        return false;   // Don't allow a store OF the AI, only INTO the AI.
98      // Note that atomic stores can be transformed; atomic semantics do
99      // not have any meaning for a local alloca.
100      if (SI->isVolatile())
101        return false;
102    } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
103      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
104          II->getIntrinsicID() != Intrinsic::lifetime_end)
105        return false;
106    } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
107      if (BCI->getType() != Type::getInt8PtrTy(U->getContext()))
108        return false;
109      if (!onlyUsedByLifetimeMarkers(BCI))
110        return false;
111    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
112      if (GEPI->getType() != Type::getInt8PtrTy(U->getContext()))
113        return false;
114      if (!GEPI->hasAllZeroIndices())
115        return false;
116      if (!onlyUsedByLifetimeMarkers(GEPI))
117        return false;
118    } else {
119      return false;
120    }
121  }
122
123  return true;
124}
125
126namespace {
127  struct AllocaInfo;
128
129  // Data package used by RenamePass()
130  class RenamePassData {
131  public:
132    typedef std::vector<Value *> ValVector;
133
134    RenamePassData() : BB(NULL), Pred(NULL), Values() {}
135    RenamePassData(BasicBlock *B, BasicBlock *P,
136                   const ValVector &V) : BB(B), Pred(P), Values(V) {}
137    BasicBlock *BB;
138    BasicBlock *Pred;
139    ValVector Values;
140
141    void swap(RenamePassData &RHS) {
142      std::swap(BB, RHS.BB);
143      std::swap(Pred, RHS.Pred);
144      Values.swap(RHS.Values);
145    }
146  };
147
148  /// LargeBlockInfo - This assigns and keeps a per-bb relative ordering of
149  /// load/store instructions in the block that directly load or store an alloca.
150  ///
151  /// This functionality is important because it avoids scanning large basic
152  /// blocks multiple times when promoting many allocas in the same block.
153  class LargeBlockInfo {
154    /// InstNumbers - For each instruction that we track, keep the index of the
155    /// instruction.  The index starts out as the number of the instruction from
156    /// the start of the block.
157    DenseMap<const Instruction *, unsigned> InstNumbers;
158  public:
159
160    /// isInterestingInstruction - This code only looks at accesses to allocas.
161    static bool isInterestingInstruction(const Instruction *I) {
162      return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
163             (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
164    }
165
166    /// getInstructionIndex - Get or calculate the index of the specified
167    /// instruction.
168    unsigned getInstructionIndex(const Instruction *I) {
169      assert(isInterestingInstruction(I) &&
170             "Not a load/store to/from an alloca?");
171
172      // If we already have this instruction number, return it.
173      DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
174      if (It != InstNumbers.end()) return It->second;
175
176      // Scan the whole block to get the instruction.  This accumulates
177      // information for every interesting instruction in the block, in order to
178      // avoid gratuitus rescans.
179      const BasicBlock *BB = I->getParent();
180      unsigned InstNo = 0;
181      for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end();
182           BBI != E; ++BBI)
183        if (isInterestingInstruction(BBI))
184          InstNumbers[BBI] = InstNo++;
185      It = InstNumbers.find(I);
186
187      assert(It != InstNumbers.end() && "Didn't insert instruction?");
188      return It->second;
189    }
190
191    void deleteValue(const Instruction *I) {
192      InstNumbers.erase(I);
193    }
194
195    void clear() {
196      InstNumbers.clear();
197    }
198  };
199
200  struct PromoteMem2Reg {
201    /// Allocas - The alloca instructions being promoted.
202    ///
203    std::vector<AllocaInst*> Allocas;
204    DominatorTree &DT;
205    DIBuilder *DIB;
206
207    /// AST - An AliasSetTracker object to update.  If null, don't update it.
208    ///
209    AliasSetTracker *AST;
210
211    /// AllocaLookup - Reverse mapping of Allocas.
212    ///
213    DenseMap<AllocaInst*, unsigned>  AllocaLookup;
214
215    /// NewPhiNodes - The PhiNodes we're adding.
216    ///
217    DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*> NewPhiNodes;
218
219    /// PhiToAllocaMap - For each PHI node, keep track of which entry in Allocas
220    /// it corresponds to.
221    DenseMap<PHINode*, unsigned> PhiToAllocaMap;
222
223    /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
224    /// each alloca that is of pointer type, we keep track of what to copyValue
225    /// to the inserted PHI nodes here.
226    ///
227    std::vector<Value*> PointerAllocaValues;
228
229    /// AllocaDbgDeclares - For each alloca, we keep track of the dbg.declare
230    /// intrinsic that describes it, if any, so that we can convert it to a
231    /// dbg.value intrinsic if the alloca gets promoted.
232    SmallVector<DbgDeclareInst*, 8> AllocaDbgDeclares;
233
234    /// Visited - The set of basic blocks the renamer has already visited.
235    ///
236    SmallPtrSet<BasicBlock*, 16> Visited;
237
238    /// BBNumbers - Contains a stable numbering of basic blocks to avoid
239    /// non-determinstic behavior.
240    DenseMap<BasicBlock*, unsigned> BBNumbers;
241
242    /// DomLevels - Maps DomTreeNodes to their level in the dominator tree.
243    DenseMap<DomTreeNode*, unsigned> DomLevels;
244
245    /// BBNumPreds - Lazily compute the number of predecessors a block has.
246    DenseMap<const BasicBlock*, unsigned> BBNumPreds;
247  public:
248    PromoteMem2Reg(const std::vector<AllocaInst*> &A, DominatorTree &dt,
249                   AliasSetTracker *ast)
250      : Allocas(A), DT(dt), DIB(0), AST(ast) {}
251    ~PromoteMem2Reg() {
252      delete DIB;
253    }
254
255    void run();
256
257    /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
258    ///
259    bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
260      return DT.dominates(BB1, BB2);
261    }
262
263  private:
264    void RemoveFromAllocasList(unsigned &AllocaIdx) {
265      Allocas[AllocaIdx] = Allocas.back();
266      Allocas.pop_back();
267      --AllocaIdx;
268    }
269
270    unsigned getNumPreds(const BasicBlock *BB) {
271      unsigned &NP = BBNumPreds[BB];
272      if (NP == 0)
273        NP = std::distance(pred_begin(BB), pred_end(BB))+1;
274      return NP-1;
275    }
276
277    void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
278                                 AllocaInfo &Info);
279    void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
280                             const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
281                             SmallPtrSet<BasicBlock*, 32> &LiveInBlocks);
282
283    void RewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
284                                  LargeBlockInfo &LBI);
285    void PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
286                                  LargeBlockInfo &LBI);
287
288    void RenamePass(BasicBlock *BB, BasicBlock *Pred,
289                    RenamePassData::ValVector &IncVals,
290                    std::vector<RenamePassData> &Worklist);
291    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
292  };
293
294  struct AllocaInfo {
295    SmallVector<BasicBlock*, 32> DefiningBlocks;
296    SmallVector<BasicBlock*, 32> UsingBlocks;
297
298    StoreInst  *OnlyStore;
299    BasicBlock *OnlyBlock;
300    bool OnlyUsedInOneBlock;
301
302    Value *AllocaPointerVal;
303    DbgDeclareInst *DbgDeclare;
304
305    void clear() {
306      DefiningBlocks.clear();
307      UsingBlocks.clear();
308      OnlyStore = 0;
309      OnlyBlock = 0;
310      OnlyUsedInOneBlock = true;
311      AllocaPointerVal = 0;
312      DbgDeclare = 0;
313    }
314
315    /// AnalyzeAlloca - Scan the uses of the specified alloca, filling in our
316    /// ivars.
317    void AnalyzeAlloca(AllocaInst *AI) {
318      clear();
319
320      // As we scan the uses of the alloca instruction, keep track of stores,
321      // and decide whether all of the loads and stores to the alloca are within
322      // the same basic block.
323      for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
324           UI != E;)  {
325        Instruction *User = cast<Instruction>(*UI++);
326
327        if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
328          // Remember the basic blocks which define new values for the alloca
329          DefiningBlocks.push_back(SI->getParent());
330          AllocaPointerVal = SI->getOperand(0);
331          OnlyStore = SI;
332        } else {
333          LoadInst *LI = cast<LoadInst>(User);
334          // Otherwise it must be a load instruction, keep track of variable
335          // reads.
336          UsingBlocks.push_back(LI->getParent());
337          AllocaPointerVal = LI;
338        }
339
340        if (OnlyUsedInOneBlock) {
341          if (OnlyBlock == 0)
342            OnlyBlock = User->getParent();
343          else if (OnlyBlock != User->getParent())
344            OnlyUsedInOneBlock = false;
345        }
346      }
347
348      DbgDeclare = FindAllocaDbgDeclare(AI);
349    }
350  };
351
352  typedef std::pair<DomTreeNode*, unsigned> DomTreeNodePair;
353
354  struct DomTreeNodeCompare {
355    bool operator()(const DomTreeNodePair &LHS, const DomTreeNodePair &RHS) {
356      return LHS.second < RHS.second;
357    }
358  };
359}  // end of anonymous namespace
360
361static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
362  // Knowing that this alloca is promotable, we know that it's safe to kill all
363  // instructions except for load and store.
364
365  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
366       UI != UE;) {
367    Instruction *I = cast<Instruction>(*UI);
368    ++UI;
369    if (isa<LoadInst>(I) || isa<StoreInst>(I))
370      continue;
371
372    if (!I->getType()->isVoidTy()) {
373      // The only users of this bitcast/GEP instruction are lifetime intrinsics.
374      // Follow the use/def chain to erase them now instead of leaving it for
375      // dead code elimination later.
376      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
377           UI != UE;) {
378        Instruction *Inst = cast<Instruction>(*UI);
379        ++UI;
380        Inst->eraseFromParent();
381      }
382    }
383    I->eraseFromParent();
384  }
385}
386
387void PromoteMem2Reg::run() {
388  Function &F = *DT.getRoot()->getParent();
389
390  if (AST) PointerAllocaValues.resize(Allocas.size());
391  AllocaDbgDeclares.resize(Allocas.size());
392
393  AllocaInfo Info;
394  LargeBlockInfo LBI;
395
396  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
397    AllocaInst *AI = Allocas[AllocaNum];
398
399    assert(isAllocaPromotable(AI) &&
400           "Cannot promote non-promotable alloca!");
401    assert(AI->getParent()->getParent() == &F &&
402           "All allocas should be in the same function, which is same as DF!");
403
404    removeLifetimeIntrinsicUsers(AI);
405
406    if (AI->use_empty()) {
407      // If there are no uses of the alloca, just delete it now.
408      if (AST) AST->deleteValue(AI);
409      AI->eraseFromParent();
410
411      // Remove the alloca from the Allocas list, since it has been processed
412      RemoveFromAllocasList(AllocaNum);
413      ++NumDeadAlloca;
414      continue;
415    }
416
417    // Calculate the set of read and write-locations for each alloca.  This is
418    // analogous to finding the 'uses' and 'definitions' of each variable.
419    Info.AnalyzeAlloca(AI);
420
421    // If there is only a single store to this value, replace any loads of
422    // it that are directly dominated by the definition with the value stored.
423    if (Info.DefiningBlocks.size() == 1) {
424      RewriteSingleStoreAlloca(AI, Info, LBI);
425
426      // Finally, after the scan, check to see if the store is all that is left.
427      if (Info.UsingBlocks.empty()) {
428        // Record debuginfo for the store and remove the declaration's
429        // debuginfo.
430        if (DbgDeclareInst *DDI = Info.DbgDeclare) {
431          if (!DIB)
432            DIB = new DIBuilder(*DDI->getParent()->getParent()->getParent());
433          ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, *DIB);
434          DDI->eraseFromParent();
435        }
436        // Remove the (now dead) store and alloca.
437        Info.OnlyStore->eraseFromParent();
438        LBI.deleteValue(Info.OnlyStore);
439
440        if (AST) AST->deleteValue(AI);
441        AI->eraseFromParent();
442        LBI.deleteValue(AI);
443
444        // The alloca has been processed, move on.
445        RemoveFromAllocasList(AllocaNum);
446
447        ++NumSingleStore;
448        continue;
449      }
450    }
451
452    // If the alloca is only read and written in one basic block, just perform a
453    // linear sweep over the block to eliminate it.
454    if (Info.OnlyUsedInOneBlock) {
455      PromoteSingleBlockAlloca(AI, Info, LBI);
456
457      // Finally, after the scan, check to see if the stores are all that is
458      // left.
459      if (Info.UsingBlocks.empty()) {
460
461        // Remove the (now dead) stores and alloca.
462        while (!AI->use_empty()) {
463          StoreInst *SI = cast<StoreInst>(AI->use_back());
464          // Record debuginfo for the store before removing it.
465          if (DbgDeclareInst *DDI = Info.DbgDeclare) {
466            if (!DIB)
467              DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
468            ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
469          }
470          SI->eraseFromParent();
471          LBI.deleteValue(SI);
472        }
473
474        if (AST) AST->deleteValue(AI);
475        AI->eraseFromParent();
476        LBI.deleteValue(AI);
477
478        // The alloca has been processed, move on.
479        RemoveFromAllocasList(AllocaNum);
480
481        // The alloca's debuginfo can be removed as well.
482        if (DbgDeclareInst *DDI = Info.DbgDeclare)
483          DDI->eraseFromParent();
484
485        ++NumLocalPromoted;
486        continue;
487      }
488    }
489
490    // If we haven't computed dominator tree levels, do so now.
491    if (DomLevels.empty()) {
492      SmallVector<DomTreeNode*, 32> Worklist;
493
494      DomTreeNode *Root = DT.getRootNode();
495      DomLevels[Root] = 0;
496      Worklist.push_back(Root);
497
498      while (!Worklist.empty()) {
499        DomTreeNode *Node = Worklist.pop_back_val();
500        unsigned ChildLevel = DomLevels[Node] + 1;
501        for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
502             CI != CE; ++CI) {
503          DomLevels[*CI] = ChildLevel;
504          Worklist.push_back(*CI);
505        }
506      }
507    }
508
509    // If we haven't computed a numbering for the BB's in the function, do so
510    // now.
511    if (BBNumbers.empty()) {
512      unsigned ID = 0;
513      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
514        BBNumbers[I] = ID++;
515    }
516
517    // If we have an AST to keep updated, remember some pointer value that is
518    // stored into the alloca.
519    if (AST)
520      PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
521
522    // Remember the dbg.declare intrinsic describing this alloca, if any.
523    if (Info.DbgDeclare) AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
524
525    // Keep the reverse mapping of the 'Allocas' array for the rename pass.
526    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
527
528    // At this point, we're committed to promoting the alloca using IDF's, and
529    // the standard SSA construction algorithm.  Determine which blocks need PHI
530    // nodes and see if we can optimize out some work by avoiding insertion of
531    // dead phi nodes.
532    DetermineInsertionPoint(AI, AllocaNum, Info);
533  }
534
535  if (Allocas.empty())
536    return; // All of the allocas must have been trivial!
537
538  LBI.clear();
539
540
541  // Set the incoming values for the basic block to be null values for all of
542  // the alloca's.  We do this in case there is a load of a value that has not
543  // been stored yet.  In this case, it will get this null value.
544  //
545  RenamePassData::ValVector Values(Allocas.size());
546  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
547    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
548
549  // Walks all basic blocks in the function performing the SSA rename algorithm
550  // and inserting the phi nodes we marked as necessary
551  //
552  std::vector<RenamePassData> RenamePassWorkList;
553  RenamePassWorkList.push_back(RenamePassData(F.begin(), 0, Values));
554  do {
555    RenamePassData RPD;
556    RPD.swap(RenamePassWorkList.back());
557    RenamePassWorkList.pop_back();
558    // RenamePass may add new worklist entries.
559    RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
560  } while (!RenamePassWorkList.empty());
561
562  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
563  Visited.clear();
564
565  // Remove the allocas themselves from the function.
566  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
567    Instruction *A = Allocas[i];
568
569    // If there are any uses of the alloca instructions left, they must be in
570    // unreachable basic blocks that were not processed by walking the dominator
571    // tree. Just delete the users now.
572    if (!A->use_empty())
573      A->replaceAllUsesWith(UndefValue::get(A->getType()));
574    if (AST) AST->deleteValue(A);
575    A->eraseFromParent();
576  }
577
578  // Remove alloca's dbg.declare instrinsics from the function.
579  for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
580    if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
581      DDI->eraseFromParent();
582
583  // Loop over all of the PHI nodes and see if there are any that we can get
584  // rid of because they merge all of the same incoming values.  This can
585  // happen due to undef values coming into the PHI nodes.  This process is
586  // iterative, because eliminating one PHI node can cause others to be removed.
587  bool EliminatedAPHI = true;
588  while (EliminatedAPHI) {
589    EliminatedAPHI = false;
590
591    for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
592           NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E;) {
593      PHINode *PN = I->second;
594
595      // If this PHI node merges one value and/or undefs, get the value.
596      if (Value *V = SimplifyInstruction(PN, 0, 0, &DT)) {
597        if (AST && PN->getType()->isPointerTy())
598          AST->deleteValue(PN);
599        PN->replaceAllUsesWith(V);
600        PN->eraseFromParent();
601        NewPhiNodes.erase(I++);
602        EliminatedAPHI = true;
603        continue;
604      }
605      ++I;
606    }
607  }
608
609  // At this point, the renamer has added entries to PHI nodes for all reachable
610  // code.  Unfortunately, there may be unreachable blocks which the renamer
611  // hasn't traversed.  If this is the case, the PHI nodes may not
612  // have incoming values for all predecessors.  Loop over all PHI nodes we have
613  // created, inserting undef values if they are missing any incoming values.
614  //
615  for (DenseMap<std::pair<BasicBlock*, unsigned>, PHINode*>::iterator I =
616         NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
617    // We want to do this once per basic block.  As such, only process a block
618    // when we find the PHI that is the first entry in the block.
619    PHINode *SomePHI = I->second;
620    BasicBlock *BB = SomePHI->getParent();
621    if (&BB->front() != SomePHI)
622      continue;
623
624    // Only do work here if there the PHI nodes are missing incoming values.  We
625    // know that all PHI nodes that were inserted in a block will have the same
626    // number of incoming values, so we can just check any of them.
627    if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
628      continue;
629
630    // Get the preds for BB.
631    SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
632
633    // Ok, now we know that all of the PHI nodes are missing entries for some
634    // basic blocks.  Start by sorting the incoming predecessors for efficient
635    // access.
636    std::sort(Preds.begin(), Preds.end());
637
638    // Now we loop through all BB's which have entries in SomePHI and remove
639    // them from the Preds list.
640    for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
641      // Do a log(n) search of the Preds list for the entry we want.
642      SmallVector<BasicBlock*, 16>::iterator EntIt =
643        std::lower_bound(Preds.begin(), Preds.end(),
644                         SomePHI->getIncomingBlock(i));
645      assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
646             "PHI node has entry for a block which is not a predecessor!");
647
648      // Remove the entry
649      Preds.erase(EntIt);
650    }
651
652    // At this point, the blocks left in the preds list must have dummy
653    // entries inserted into every PHI nodes for the block.  Update all the phi
654    // nodes in this block that we are inserting (there could be phis before
655    // mem2reg runs).
656    unsigned NumBadPreds = SomePHI->getNumIncomingValues();
657    BasicBlock::iterator BBI = BB->begin();
658    while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
659           SomePHI->getNumIncomingValues() == NumBadPreds) {
660      Value *UndefVal = UndefValue::get(SomePHI->getType());
661      for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
662        SomePHI->addIncoming(UndefVal, Preds[pred]);
663    }
664  }
665
666  NewPhiNodes.clear();
667}
668
669
670/// ComputeLiveInBlocks - Determine which blocks the value is live in.  These
671/// are blocks which lead to uses.  Knowing this allows us to avoid inserting
672/// PHI nodes into blocks which don't lead to uses (thus, the inserted phi nodes
673/// would be dead).
674void PromoteMem2Reg::
675ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
676                    const SmallPtrSet<BasicBlock*, 32> &DefBlocks,
677                    SmallPtrSet<BasicBlock*, 32> &LiveInBlocks) {
678
679  // To determine liveness, we must iterate through the predecessors of blocks
680  // where the def is live.  Blocks are added to the worklist if we need to
681  // check their predecessors.  Start with all the using blocks.
682  SmallVector<BasicBlock*, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
683                                                   Info.UsingBlocks.end());
684
685  // If any of the using blocks is also a definition block, check to see if the
686  // definition occurs before or after the use.  If it happens before the use,
687  // the value isn't really live-in.
688  for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
689    BasicBlock *BB = LiveInBlockWorklist[i];
690    if (!DefBlocks.count(BB)) continue;
691
692    // Okay, this is a block that both uses and defines the value.  If the first
693    // reference to the alloca is a def (store), then we know it isn't live-in.
694    for (BasicBlock::iterator I = BB->begin(); ; ++I) {
695      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
696        if (SI->getOperand(1) != AI) continue;
697
698        // We found a store to the alloca before a load.  The alloca is not
699        // actually live-in here.
700        LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
701        LiveInBlockWorklist.pop_back();
702        --i, --e;
703        break;
704      }
705
706      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
707        if (LI->getOperand(0) != AI) continue;
708
709        // Okay, we found a load before a store to the alloca.  It is actually
710        // live into this block.
711        break;
712      }
713    }
714  }
715
716  // Now that we have a set of blocks where the phi is live-in, recursively add
717  // their predecessors until we find the full region the value is live.
718  while (!LiveInBlockWorklist.empty()) {
719    BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
720
721    // The block really is live in here, insert it into the set.  If already in
722    // the set, then it has already been processed.
723    if (!LiveInBlocks.insert(BB))
724      continue;
725
726    // Since the value is live into BB, it is either defined in a predecessor or
727    // live into it to.  Add the preds to the worklist unless they are a
728    // defining block.
729    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
730      BasicBlock *P = *PI;
731
732      // The value is not live into a predecessor if it defines the value.
733      if (DefBlocks.count(P))
734        continue;
735
736      // Otherwise it is, add to the worklist.
737      LiveInBlockWorklist.push_back(P);
738    }
739  }
740}
741
742/// DetermineInsertionPoint - At this point, we're committed to promoting the
743/// alloca using IDF's, and the standard SSA construction algorithm.  Determine
744/// which blocks need phi nodes and see if we can optimize out some work by
745/// avoiding insertion of dead phi nodes.
746void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
747                                             AllocaInfo &Info) {
748  // Unique the set of defining blocks for efficient lookup.
749  SmallPtrSet<BasicBlock*, 32> DefBlocks;
750  DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
751
752  // Determine which blocks the value is live in.  These are blocks which lead
753  // to uses.
754  SmallPtrSet<BasicBlock*, 32> LiveInBlocks;
755  ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
756
757  // Use a priority queue keyed on dominator tree level so that inserted nodes
758  // are handled from the bottom of the dominator tree upwards.
759  typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
760                              DomTreeNodeCompare> IDFPriorityQueue;
761  IDFPriorityQueue PQ;
762
763  for (SmallPtrSet<BasicBlock*, 32>::const_iterator I = DefBlocks.begin(),
764       E = DefBlocks.end(); I != E; ++I) {
765    if (DomTreeNode *Node = DT.getNode(*I))
766      PQ.push(std::make_pair(Node, DomLevels[Node]));
767  }
768
769  SmallVector<std::pair<unsigned, BasicBlock*>, 32> DFBlocks;
770  SmallPtrSet<DomTreeNode*, 32> Visited;
771  SmallVector<DomTreeNode*, 32> Worklist;
772  while (!PQ.empty()) {
773    DomTreeNodePair RootPair = PQ.top();
774    PQ.pop();
775    DomTreeNode *Root = RootPair.first;
776    unsigned RootLevel = RootPair.second;
777
778    // Walk all dominator tree children of Root, inspecting their CFG edges with
779    // targets elsewhere on the dominator tree. Only targets whose level is at
780    // most Root's level are added to the iterated dominance frontier of the
781    // definition set.
782
783    Worklist.clear();
784    Worklist.push_back(Root);
785
786    while (!Worklist.empty()) {
787      DomTreeNode *Node = Worklist.pop_back_val();
788      BasicBlock *BB = Node->getBlock();
789
790      for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
791           ++SI) {
792        DomTreeNode *SuccNode = DT.getNode(*SI);
793
794        // Quickly skip all CFG edges that are also dominator tree edges instead
795        // of catching them below.
796        if (SuccNode->getIDom() == Node)
797          continue;
798
799        unsigned SuccLevel = DomLevels[SuccNode];
800        if (SuccLevel > RootLevel)
801          continue;
802
803        if (!Visited.insert(SuccNode))
804          continue;
805
806        BasicBlock *SuccBB = SuccNode->getBlock();
807        if (!LiveInBlocks.count(SuccBB))
808          continue;
809
810        DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
811        if (!DefBlocks.count(SuccBB))
812          PQ.push(std::make_pair(SuccNode, SuccLevel));
813      }
814
815      for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
816           ++CI) {
817        if (!Visited.count(*CI))
818          Worklist.push_back(*CI);
819      }
820    }
821  }
822
823  if (DFBlocks.size() > 1)
824    std::sort(DFBlocks.begin(), DFBlocks.end());
825
826  unsigned CurrentVersion = 0;
827  for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
828    QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
829}
830
831/// RewriteSingleStoreAlloca - If there is only a single store to this value,
832/// replace any loads of it that are directly dominated by the definition with
833/// the value stored.
834void PromoteMem2Reg::RewriteSingleStoreAlloca(AllocaInst *AI,
835                                              AllocaInfo &Info,
836                                              LargeBlockInfo &LBI) {
837  StoreInst *OnlyStore = Info.OnlyStore;
838  bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
839  BasicBlock *StoreBB = OnlyStore->getParent();
840  int StoreIndex = -1;
841
842  // Clear out UsingBlocks.  We will reconstruct it here if needed.
843  Info.UsingBlocks.clear();
844
845  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
846    Instruction *UserInst = cast<Instruction>(*UI++);
847    if (!isa<LoadInst>(UserInst)) {
848      assert(UserInst == OnlyStore && "Should only have load/stores");
849      continue;
850    }
851    LoadInst *LI = cast<LoadInst>(UserInst);
852
853    // Okay, if we have a load from the alloca, we want to replace it with the
854    // only value stored to the alloca.  We can do this if the value is
855    // dominated by the store.  If not, we use the rest of the mem2reg machinery
856    // to insert the phi nodes as needed.
857    if (!StoringGlobalVal) {  // Non-instructions are always dominated.
858      if (LI->getParent() == StoreBB) {
859        // If we have a use that is in the same block as the store, compare the
860        // indices of the two instructions to see which one came first.  If the
861        // load came before the store, we can't handle it.
862        if (StoreIndex == -1)
863          StoreIndex = LBI.getInstructionIndex(OnlyStore);
864
865        if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
866          // Can't handle this load, bail out.
867          Info.UsingBlocks.push_back(StoreBB);
868          continue;
869        }
870
871      } else if (LI->getParent() != StoreBB &&
872                 !dominates(StoreBB, LI->getParent())) {
873        // If the load and store are in different blocks, use BB dominance to
874        // check their relationships.  If the store doesn't dom the use, bail
875        // out.
876        Info.UsingBlocks.push_back(LI->getParent());
877        continue;
878      }
879    }
880
881    // Otherwise, we *can* safely rewrite this load.
882    Value *ReplVal = OnlyStore->getOperand(0);
883    // If the replacement value is the load, this must occur in unreachable
884    // code.
885    if (ReplVal == LI)
886      ReplVal = UndefValue::get(LI->getType());
887    LI->replaceAllUsesWith(ReplVal);
888    if (AST && LI->getType()->isPointerTy())
889      AST->deleteValue(LI);
890    LI->eraseFromParent();
891    LBI.deleteValue(LI);
892  }
893}
894
895namespace {
896
897/// StoreIndexSearchPredicate - This is a helper predicate used to search by the
898/// first element of a pair.
899struct StoreIndexSearchPredicate {
900  bool operator()(const std::pair<unsigned, StoreInst*> &LHS,
901                  const std::pair<unsigned, StoreInst*> &RHS) {
902    return LHS.first < RHS.first;
903  }
904};
905
906}
907
908/// PromoteSingleBlockAlloca - Many allocas are only used within a single basic
909/// block.  If this is the case, avoid traversing the CFG and inserting a lot of
910/// potentially useless PHI nodes by just performing a single linear pass over
911/// the basic block using the Alloca.
912///
913/// If we cannot promote this alloca (because it is read before it is written),
914/// return true.  This is necessary in cases where, due to control flow, the
915/// alloca is potentially undefined on some control flow paths.  e.g. code like
916/// this is potentially correct:
917///
918///   for (...) { if (c) { A = undef; undef = B; } }
919///
920/// ... so long as A is not used before undef is set.
921///
922void PromoteMem2Reg::PromoteSingleBlockAlloca(AllocaInst *AI, AllocaInfo &Info,
923                                              LargeBlockInfo &LBI) {
924  // The trickiest case to handle is when we have large blocks. Because of this,
925  // this code is optimized assuming that large blocks happen.  This does not
926  // significantly pessimize the small block case.  This uses LargeBlockInfo to
927  // make it efficient to get the index of various operations in the block.
928
929  // Clear out UsingBlocks.  We will reconstruct it here if needed.
930  Info.UsingBlocks.clear();
931
932  // Walk the use-def list of the alloca, getting the locations of all stores.
933  typedef SmallVector<std::pair<unsigned, StoreInst*>, 64> StoresByIndexTy;
934  StoresByIndexTy StoresByIndex;
935
936  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
937       UI != E; ++UI)
938    if (StoreInst *SI = dyn_cast<StoreInst>(*UI))
939      StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
940
941  // If there are no stores to the alloca, just replace any loads with undef.
942  if (StoresByIndex.empty()) {
943    for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;)
944      if (LoadInst *LI = dyn_cast<LoadInst>(*UI++)) {
945        LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
946        if (AST && LI->getType()->isPointerTy())
947          AST->deleteValue(LI);
948        LBI.deleteValue(LI);
949        LI->eraseFromParent();
950      }
951    return;
952  }
953
954  // Sort the stores by their index, making it efficient to do a lookup with a
955  // binary search.
956  std::sort(StoresByIndex.begin(), StoresByIndex.end());
957
958  // Walk all of the loads from this alloca, replacing them with the nearest
959  // store above them, if any.
960  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E;) {
961    LoadInst *LI = dyn_cast<LoadInst>(*UI++);
962    if (!LI) continue;
963
964    unsigned LoadIdx = LBI.getInstructionIndex(LI);
965
966    // Find the nearest store that has a lower than this load.
967    StoresByIndexTy::iterator I =
968      std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
969                       std::pair<unsigned, StoreInst*>(LoadIdx, static_cast<StoreInst*>(0)),
970                       StoreIndexSearchPredicate());
971
972    // If there is no store before this load, then we can't promote this load.
973    if (I == StoresByIndex.begin()) {
974      // Can't handle this load, bail out.
975      Info.UsingBlocks.push_back(LI->getParent());
976      continue;
977    }
978
979    // Otherwise, there was a store before this load, the load takes its value.
980    --I;
981    LI->replaceAllUsesWith(I->second->getOperand(0));
982    if (AST && LI->getType()->isPointerTy())
983      AST->deleteValue(LI);
984    LI->eraseFromParent();
985    LBI.deleteValue(LI);
986  }
987}
988
989// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
990// Alloca returns true if there wasn't already a phi-node for that variable
991//
992bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
993                                  unsigned &Version) {
994  // Look up the basic-block in question.
995  PHINode *&PN = NewPhiNodes[std::make_pair(BB, AllocaNo)];
996
997  // If the BB already has a phi node added for the i'th alloca then we're done!
998  if (PN) return false;
999
1000  // Create a PhiNode using the dereferenced type... and add the phi-node to the
1001  // BasicBlock.
1002  PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
1003                       Allocas[AllocaNo]->getName() + "." + Twine(Version++),
1004                       BB->begin());
1005  ++NumPHIInsert;
1006  PhiToAllocaMap[PN] = AllocaNo;
1007
1008  if (AST && PN->getType()->isPointerTy())
1009    AST->copyValue(PointerAllocaValues[AllocaNo], PN);
1010
1011  return true;
1012}
1013
1014// RenamePass - Recursively traverse the CFG of the function, renaming loads and
1015// stores to the allocas which we are promoting.  IncomingVals indicates what
1016// value each Alloca contains on exit from the predecessor block Pred.
1017//
1018void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
1019                                RenamePassData::ValVector &IncomingVals,
1020                                std::vector<RenamePassData> &Worklist) {
1021NextIteration:
1022  // If we are inserting any phi nodes into this BB, they will already be in the
1023  // block.
1024  if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
1025    // If we have PHI nodes to update, compute the number of edges from Pred to
1026    // BB.
1027    if (PhiToAllocaMap.count(APN)) {
1028      // We want to be able to distinguish between PHI nodes being inserted by
1029      // this invocation of mem2reg from those phi nodes that already existed in
1030      // the IR before mem2reg was run.  We determine that APN is being inserted
1031      // because it is missing incoming edges.  All other PHI nodes being
1032      // inserted by this pass of mem2reg will have the same number of incoming
1033      // operands so far.  Remember this count.
1034      unsigned NewPHINumOperands = APN->getNumOperands();
1035
1036      unsigned NumEdges = 0;
1037      for (succ_iterator I = succ_begin(Pred), E = succ_end(Pred); I != E; ++I)
1038        if (*I == BB)
1039          ++NumEdges;
1040      assert(NumEdges && "Must be at least one edge from Pred to BB!");
1041
1042      // Add entries for all the phis.
1043      BasicBlock::iterator PNI = BB->begin();
1044      do {
1045        unsigned AllocaNo = PhiToAllocaMap[APN];
1046
1047        // Add N incoming values to the PHI node.
1048        for (unsigned i = 0; i != NumEdges; ++i)
1049          APN->addIncoming(IncomingVals[AllocaNo], Pred);
1050
1051        // The currently active variable for this block is now the PHI.
1052        IncomingVals[AllocaNo] = APN;
1053
1054        // Get the next phi node.
1055        ++PNI;
1056        APN = dyn_cast<PHINode>(PNI);
1057        if (APN == 0) break;
1058
1059        // Verify that it is missing entries.  If not, it is not being inserted
1060        // by this mem2reg invocation so we want to ignore it.
1061      } while (APN->getNumOperands() == NewPHINumOperands);
1062    }
1063  }
1064
1065  // Don't revisit blocks.
1066  if (!Visited.insert(BB)) return;
1067
1068  for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
1069    Instruction *I = II++; // get the instruction, increment iterator
1070
1071    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1072      AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1073      if (!Src) continue;
1074
1075      DenseMap<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
1076      if (AI == AllocaLookup.end()) continue;
1077
1078      Value *V = IncomingVals[AI->second];
1079
1080      // Anything using the load now uses the current value.
1081      LI->replaceAllUsesWith(V);
1082      if (AST && LI->getType()->isPointerTy())
1083        AST->deleteValue(LI);
1084      BB->getInstList().erase(LI);
1085    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1086      // Delete this instruction and mark the name as the current holder of the
1087      // value
1088      AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1089      if (!Dest) continue;
1090
1091      DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1092      if (ai == AllocaLookup.end())
1093        continue;
1094
1095      // what value were we writing?
1096      IncomingVals[ai->second] = SI->getOperand(0);
1097      // Record debuginfo for the store before removing it.
1098      if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second]) {
1099        if (!DIB)
1100          DIB = new DIBuilder(*SI->getParent()->getParent()->getParent());
1101        ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
1102      }
1103      BB->getInstList().erase(SI);
1104    }
1105  }
1106
1107  // 'Recurse' to our successors.
1108  succ_iterator I = succ_begin(BB), E = succ_end(BB);
1109  if (I == E) return;
1110
1111  // Keep track of the successors so we don't visit the same successor twice
1112  SmallPtrSet<BasicBlock*, 8> VisitedSuccs;
1113
1114  // Handle the first successor without using the worklist.
1115  VisitedSuccs.insert(*I);
1116  Pred = BB;
1117  BB = *I;
1118  ++I;
1119
1120  for (; I != E; ++I)
1121    if (VisitedSuccs.insert(*I))
1122      Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
1123
1124  goto NextIteration;
1125}
1126
1127/// PromoteMemToReg - Promote the specified list of alloca instructions into
1128/// scalar registers, inserting PHI nodes as appropriate.  This function does
1129/// not modify the CFG of the function at all.  All allocas must be from the
1130/// same function.
1131///
1132/// If AST is specified, the specified tracker is updated to reflect changes
1133/// made to the IR.
1134///
1135void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
1136                           DominatorTree &DT, AliasSetTracker *AST) {
1137  // If there is nothing to do, bail out...
1138  if (Allocas.empty()) return;
1139
1140  PromoteMem2Reg(Allocas, DT, AST).run();
1141}
1142