PromoteMemoryToRegister.cpp revision 634c76c08c34e5fb475527a4e91927a142dd9c46
1//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file promote memory references to be register references.  It promotes
11// alloca instructions which only have loads and stores as uses.  An alloca is
12// transformed by using dominator frontiers to place PHI nodes, then traversing
13// the function in depth-first order to rewrite loads and stores as appropriate.
14// This is just the standard SSA construction algorithm to construct "pruned"
15// SSA form.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/Utils/PromoteMemToReg.h"
20#include "llvm/Constants.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/Instructions.h"
24#include "llvm/Analysis/Dominators.h"
25#include "llvm/Analysis/AliasSetTracker.h"
26#include "llvm/ADT/StringExtras.h"
27#include "llvm/Support/CFG.h"
28#include "llvm/Support/StableBasicBlockNumbering.h"
29#include <algorithm>
30using namespace llvm;
31
32/// isAllocaPromotable - Return true if this alloca is legal for promotion.
33/// This is true if there are only loads and stores to the alloca.
34///
35bool llvm::isAllocaPromotable(const AllocaInst *AI, const TargetData &TD) {
36  // FIXME: If the memory unit is of pointer or integer type, we can permit
37  // assignments to subsections of the memory unit.
38
39  // Only allow direct loads and stores...
40  for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
41       UI != UE; ++UI)     // Loop over all of the uses of the alloca
42    if (isa<LoadInst>(*UI)) {
43      // noop
44    } else if (const StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
45      if (SI->getOperand(0) == AI)
46        return false;   // Don't allow a store OF the AI, only INTO the AI.
47    } else {
48      return false;   // Not a load or store.
49    }
50
51  return true;
52}
53
54namespace {
55  struct PromoteMem2Reg {
56    /// Allocas - The alloca instructions being promoted.
57    ///
58    std::vector<AllocaInst*> Allocas;
59    std::vector<AllocaInst*> &RetryList;
60    DominatorTree &DT;
61    DominanceFrontier &DF;
62    const TargetData &TD;
63
64    /// AST - An AliasSetTracker object to update.  If null, don't update it.
65    ///
66    AliasSetTracker *AST;
67
68    /// AllocaLookup - Reverse mapping of Allocas.
69    ///
70    std::map<AllocaInst*, unsigned>  AllocaLookup;
71
72    /// NewPhiNodes - The PhiNodes we're adding.
73    ///
74    std::map<BasicBlock*, std::vector<PHINode*> > NewPhiNodes;
75
76    /// PointerAllocaValues - If we are updating an AliasSetTracker, then for
77    /// each alloca that is of pointer type, we keep track of what to copyValue
78    /// to the inserted PHI nodes here.
79    ///
80    std::vector<Value*> PointerAllocaValues;
81
82    /// Visited - The set of basic blocks the renamer has already visited.
83    ///
84    std::set<BasicBlock*> Visited;
85
86    /// BBNumbers - Contains a stable numbering of basic blocks to avoid
87    /// non-determinstic behavior.
88    StableBasicBlockNumbering BBNumbers;
89
90  public:
91    PromoteMem2Reg(const std::vector<AllocaInst*> &A,
92                   std::vector<AllocaInst*> &Retry, DominatorTree &dt,
93                   DominanceFrontier &df, const TargetData &td,
94                   AliasSetTracker *ast)
95      : Allocas(A), RetryList(Retry), DT(dt), DF(df), TD(td), AST(ast) {}
96
97    void run();
98
99    /// properlyDominates - Return true if I1 properly dominates I2.
100    ///
101    bool properlyDominates(Instruction *I1, Instruction *I2) const {
102      if (InvokeInst *II = dyn_cast<InvokeInst>(I1))
103        I1 = II->getNormalDest()->begin();
104      return DT[I1->getParent()]->properlyDominates(DT[I2->getParent()]);
105    }
106
107    /// dominates - Return true if BB1 dominates BB2 using the DominatorTree.
108    ///
109    bool dominates(BasicBlock *BB1, BasicBlock *BB2) const {
110      return DT[BB1]->dominates(DT[BB2]);
111    }
112
113  private:
114    void MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
115                               std::set<PHINode*> &DeadPHINodes);
116    bool PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI);
117    void PromoteLocallyUsedAllocas(BasicBlock *BB,
118                                   const std::vector<AllocaInst*> &AIs);
119
120    void RenamePass(BasicBlock *BB, BasicBlock *Pred,
121                    std::vector<Value*> &IncVals);
122    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version,
123                      std::set<PHINode*> &InsertedPHINodes);
124  };
125}  // end of anonymous namespace
126
127void PromoteMem2Reg::run() {
128  Function &F = *DF.getRoot()->getParent();
129
130  // LocallyUsedAllocas - Keep track of all of the alloca instructions which are
131  // only used in a single basic block.  These instructions can be efficiently
132  // promoted by performing a single linear scan over that one block.  Since
133  // individual basic blocks are sometimes large, we group together all allocas
134  // that are live in a single basic block by the basic block they are live in.
135  std::map<BasicBlock*, std::vector<AllocaInst*> > LocallyUsedAllocas;
136
137  if (AST) PointerAllocaValues.resize(Allocas.size());
138
139  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
140    AllocaInst *AI = Allocas[AllocaNum];
141
142    assert(isAllocaPromotable(AI, TD) &&
143           "Cannot promote non-promotable alloca!");
144    assert(AI->getParent()->getParent() == &F &&
145           "All allocas should be in the same function, which is same as DF!");
146
147    if (AI->use_empty()) {
148      // If there are no uses of the alloca, just delete it now.
149      if (AST) AST->deleteValue(AI);
150      AI->eraseFromParent();
151
152      // Remove the alloca from the Allocas list, since it has been processed
153      Allocas[AllocaNum] = Allocas.back();
154      Allocas.pop_back();
155      --AllocaNum;
156      continue;
157    }
158
159    // Calculate the set of read and write-locations for each alloca.  This is
160    // analogous to finding the 'uses' and 'definitions' of each variable.
161    std::vector<BasicBlock*> DefiningBlocks;
162    std::vector<BasicBlock*> UsingBlocks;
163
164    StoreInst  *OnlyStore = 0;
165    BasicBlock *OnlyBlock = 0;
166    bool OnlyUsedInOneBlock = true;
167
168    // As we scan the uses of the alloca instruction, keep track of stores, and
169    // decide whether all of the loads and stores to the alloca are within the
170    // same basic block.
171    Value *AllocaPointerVal = 0;
172    for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E;++U){
173      Instruction *User = cast<Instruction>(*U);
174      if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
175        // Remember the basic blocks which define new values for the alloca
176        DefiningBlocks.push_back(SI->getParent());
177        AllocaPointerVal = SI->getOperand(0);
178        OnlyStore = SI;
179      } else {
180        LoadInst *LI = cast<LoadInst>(User);
181        // Otherwise it must be a load instruction, keep track of variable reads
182        UsingBlocks.push_back(LI->getParent());
183        AllocaPointerVal = LI;
184      }
185
186      if (OnlyUsedInOneBlock) {
187        if (OnlyBlock == 0)
188          OnlyBlock = User->getParent();
189        else if (OnlyBlock != User->getParent())
190          OnlyUsedInOneBlock = false;
191      }
192    }
193
194    // If the alloca is only read and written in one basic block, just perform a
195    // linear sweep over the block to eliminate it.
196    if (OnlyUsedInOneBlock) {
197      LocallyUsedAllocas[OnlyBlock].push_back(AI);
198
199      // Remove the alloca from the Allocas list, since it will be processed.
200      Allocas[AllocaNum] = Allocas.back();
201      Allocas.pop_back();
202      --AllocaNum;
203      continue;
204    }
205
206    // If there is only a single store to this value, replace any loads of
207    // it that are directly dominated by the definition with the value stored.
208    if (DefiningBlocks.size() == 1) {
209      // Be aware of loads before the store.
210      std::set<BasicBlock*> ProcessedBlocks;
211      for (unsigned i = 0, e = UsingBlocks.size(); i != e; ++i)
212        // If the store dominates the block and if we haven't processed it yet,
213        // do so now.
214        if (dominates(OnlyStore->getParent(), UsingBlocks[i]))
215          if (ProcessedBlocks.insert(UsingBlocks[i]).second) {
216            BasicBlock *UseBlock = UsingBlocks[i];
217
218            // If the use and store are in the same block, do a quick scan to
219            // verify that there are no uses before the store.
220            if (UseBlock == OnlyStore->getParent()) {
221              BasicBlock::iterator I = UseBlock->begin();
222              for (; &*I != OnlyStore; ++I) { // scan block for store.
223                if (isa<LoadInst>(I) && I->getOperand(0) == AI)
224                  break;
225              }
226              if (&*I != OnlyStore) break;  // Do not handle this case.
227            }
228
229            // Otherwise, if this is a different block or if all uses happen
230            // after the store, do a simple linear scan to replace loads with
231            // the stored value.
232            for (BasicBlock::iterator I = UseBlock->begin(),E = UseBlock->end();
233                 I != E; ) {
234              if (LoadInst *LI = dyn_cast<LoadInst>(I++)) {
235                if (LI->getOperand(0) == AI) {
236                  LI->replaceAllUsesWith(OnlyStore->getOperand(0));
237                  if (AST && isa<PointerType>(LI->getType()))
238                    AST->deleteValue(LI);
239                  LI->eraseFromParent();
240                }
241              }
242            }
243
244            // Finally, remove this block from the UsingBlock set.
245            UsingBlocks[i] = UsingBlocks.back();
246            --i; --e;
247          }
248
249      // Finally, after the scan, check to see if the store is all that is left.
250      if (UsingBlocks.empty()) {
251        // The alloca has been processed, move on.
252        Allocas[AllocaNum] = Allocas.back();
253        Allocas.pop_back();
254        --AllocaNum;
255        continue;
256      }
257    }
258
259
260    if (AST)
261      PointerAllocaValues[AllocaNum] = AllocaPointerVal;
262
263    // If we haven't computed a numbering for the BB's in the function, do so
264    // now.
265    BBNumbers.compute(F);
266
267    // Compute the locations where PhiNodes need to be inserted.  Look at the
268    // dominance frontier of EACH basic-block we have a write in.
269    //
270    unsigned CurrentVersion = 0;
271    std::set<PHINode*> InsertedPHINodes;
272    std::vector<unsigned> DFBlocks;
273    while (!DefiningBlocks.empty()) {
274      BasicBlock *BB = DefiningBlocks.back();
275      DefiningBlocks.pop_back();
276
277      // Look up the DF for this write, add it to PhiNodes
278      DominanceFrontier::const_iterator it = DF.find(BB);
279      if (it != DF.end()) {
280        const DominanceFrontier::DomSetType &S = it->second;
281
282        // In theory we don't need the indirection through the DFBlocks vector.
283        // In practice, the order of calling QueuePhiNode would depend on the
284        // (unspecified) ordering of basic blocks in the dominance frontier,
285        // which would give PHI nodes non-determinstic subscripts.  Fix this by
286        // processing blocks in order of the occurance in the function.
287        for (DominanceFrontier::DomSetType::const_iterator P = S.begin(),
288             PE = S.end(); P != PE; ++P)
289          DFBlocks.push_back(BBNumbers.getNumber(*P));
290
291        // Sort by which the block ordering in the function.
292        std::sort(DFBlocks.begin(), DFBlocks.end());
293
294        for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i) {
295          BasicBlock *BB = BBNumbers.getBlock(DFBlocks[i]);
296          if (QueuePhiNode(BB, AllocaNum, CurrentVersion, InsertedPHINodes))
297            DefiningBlocks.push_back(BB);
298        }
299        DFBlocks.clear();
300      }
301    }
302
303    // Now that we have inserted PHI nodes along the Iterated Dominance Frontier
304    // of the writes to the variable, scan through the reads of the variable,
305    // marking PHI nodes which are actually necessary as alive (by removing them
306    // from the InsertedPHINodes set).  This is not perfect: there may PHI
307    // marked alive because of loads which are dominated by stores, but there
308    // will be no unmarked PHI nodes which are actually used.
309    //
310    for (unsigned i = 0, e = UsingBlocks.size(); i != e; ++i)
311      MarkDominatingPHILive(UsingBlocks[i], AllocaNum, InsertedPHINodes);
312    UsingBlocks.clear();
313
314    // If there are any PHI nodes which are now known to be dead, remove them!
315    for (std::set<PHINode*>::iterator I = InsertedPHINodes.begin(),
316           E = InsertedPHINodes.end(); I != E; ++I) {
317      PHINode *PN = *I;
318      std::vector<PHINode*> &BBPNs = NewPhiNodes[PN->getParent()];
319      BBPNs[AllocaNum] = 0;
320
321      // Check to see if we just removed the last inserted PHI node from this
322      // basic block.  If so, remove the entry for the basic block.
323      bool HasOtherPHIs = false;
324      for (unsigned i = 0, e = BBPNs.size(); i != e; ++i)
325        if (BBPNs[i]) {
326          HasOtherPHIs = true;
327          break;
328        }
329      if (!HasOtherPHIs)
330        NewPhiNodes.erase(PN->getParent());
331
332      if (AST && isa<PointerType>(PN->getType()))
333        AST->deleteValue(PN);
334      PN->eraseFromParent();
335    }
336
337    // Keep the reverse mapping of the 'Allocas' array.
338    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
339  }
340
341  // Process all allocas which are only used in a single basic block.
342  for (std::map<BasicBlock*, std::vector<AllocaInst*> >::iterator I =
343         LocallyUsedAllocas.begin(), E = LocallyUsedAllocas.end(); I != E; ++I){
344    const std::vector<AllocaInst*> &LocAllocas = I->second;
345    assert(!LocAllocas.empty() && "empty alloca list??");
346
347    // It's common for there to only be one alloca in the list.  Handle it
348    // efficiently.
349    if (LocAllocas.size() == 1) {
350      // If we can do the quick promotion pass, do so now.
351      if (PromoteLocallyUsedAlloca(I->first, LocAllocas[0]))
352        RetryList.push_back(LocAllocas[0]);  // Failed, retry later.
353    } else {
354      // Locally promote anything possible.  Note that if this is unable to
355      // promote a particular alloca, it puts the alloca onto the Allocas vector
356      // for global processing.
357      PromoteLocallyUsedAllocas(I->first, LocAllocas);
358    }
359  }
360
361  if (Allocas.empty())
362    return; // All of the allocas must have been trivial!
363
364  // Set the incoming values for the basic block to be null values for all of
365  // the alloca's.  We do this in case there is a load of a value that has not
366  // been stored yet.  In this case, it will get this null value.
367  //
368  std::vector<Value *> Values(Allocas.size());
369  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
370    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
371
372  // Walks all basic blocks in the function performing the SSA rename algorithm
373  // and inserting the phi nodes we marked as necessary
374  //
375  RenamePass(F.begin(), 0, Values);
376
377  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
378  Visited.clear();
379
380  // Remove the allocas themselves from the function.
381  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
382    Instruction *A = Allocas[i];
383
384    // If there are any uses of the alloca instructions left, they must be in
385    // sections of dead code that were not processed on the dominance frontier.
386    // Just delete the users now.
387    //
388    if (!A->use_empty())
389      A->replaceAllUsesWith(UndefValue::get(A->getType()));
390    if (AST) AST->deleteValue(A);
391    A->eraseFromParent();
392  }
393
394
395  // Loop over all of the PHI nodes and see if there are any that we can get
396  // rid of because they merge all of the same incoming values.  This can
397  // happen due to undef values coming into the PHI nodes.  This process is
398  // iterative, because eliminating one PHI node can cause others to be removed.
399  bool EliminatedAPHI = true;
400  while (EliminatedAPHI) {
401    EliminatedAPHI = false;
402
403    for (std::map<BasicBlock*, std::vector<PHINode *> >::iterator I =
404           NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
405      std::vector<PHINode*> &PNs = I->second;
406      for (unsigned i = 0, e = PNs.size(); i != e; ++i) {
407        if (!PNs[i]) continue;
408
409        // If this PHI node merges  one value and/or undefs, get the value.
410        if (Value *V = PNs[i]->hasConstantValue(true)) {
411          if (!isa<Instruction>(V) ||
412              properlyDominates(cast<Instruction>(V), PNs[i])) {
413            if (AST && isa<PointerType>(PNs[i]->getType()))
414              AST->deleteValue(PNs[i]);
415            PNs[i]->replaceAllUsesWith(V);
416            PNs[i]->eraseFromParent();
417            PNs[i] = 0;
418            EliminatedAPHI = true;
419            continue;
420          }
421        }
422      }
423    }
424  }
425
426  // At this point, the renamer has added entries to PHI nodes for all reachable
427  // code.  Unfortunately, there may be blocks which are not reachable, which
428  // the renamer hasn't traversed.  If this is the case, the PHI nodes may not
429  // have incoming values for all predecessors.  Loop over all PHI nodes we have
430  // created, inserting undef values if they are missing any incoming values.
431  //
432  for (std::map<BasicBlock*, std::vector<PHINode *> >::iterator I =
433         NewPhiNodes.begin(), E = NewPhiNodes.end(); I != E; ++I) {
434
435    std::vector<BasicBlock*> Preds(pred_begin(I->first), pred_end(I->first));
436    std::vector<PHINode*> &PNs = I->second;
437    assert(!PNs.empty() && "Empty PHI node list??");
438    PHINode *SomePHI = 0;
439    for (unsigned i = 0, e = PNs.size(); i != e; ++i)
440      if (PNs[i]) {
441        SomePHI = PNs[i];
442        break;
443      }
444
445    // Only do work here if there the PHI nodes are missing incoming values.  We
446    // know that all PHI nodes that were inserted in a block will have the same
447    // number of incoming values, so we can just check any PHI node.
448    if (SomePHI && Preds.size() != SomePHI->getNumIncomingValues()) {
449      // Ok, now we know that all of the PHI nodes are missing entries for some
450      // basic blocks.  Start by sorting the incoming predecessors for efficient
451      // access.
452      std::sort(Preds.begin(), Preds.end());
453
454      // Now we loop through all BB's which have entries in SomePHI and remove
455      // them from the Preds list.
456      for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
457        // Do a log(n) search of the Preds list for the entry we want.
458        std::vector<BasicBlock*>::iterator EntIt =
459          std::lower_bound(Preds.begin(), Preds.end(),
460                           SomePHI->getIncomingBlock(i));
461        assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i)&&
462               "PHI node has entry for a block which is not a predecessor!");
463
464        // Remove the entry
465        Preds.erase(EntIt);
466      }
467
468      // At this point, the blocks left in the preds list must have dummy
469      // entries inserted into every PHI nodes for the block.
470      for (unsigned i = 0, e = PNs.size(); i != e; ++i)
471        if (PHINode *PN = PNs[i]) {
472          Value *UndefVal = UndefValue::get(PN->getType());
473          for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
474            PN->addIncoming(UndefVal, Preds[pred]);
475        }
476    }
477  }
478}
479
480// MarkDominatingPHILive - Mem2Reg wants to construct "pruned" SSA form, not
481// "minimal" SSA form.  To do this, it inserts all of the PHI nodes on the IDF
482// as usual (inserting the PHI nodes in the DeadPHINodes set), then processes
483// each read of the variable.  For each block that reads the variable, this
484// function is called, which removes used PHI nodes from the DeadPHINodes set.
485// After all of the reads have been processed, any PHI nodes left in the
486// DeadPHINodes set are removed.
487//
488void PromoteMem2Reg::MarkDominatingPHILive(BasicBlock *BB, unsigned AllocaNum,
489                                           std::set<PHINode*> &DeadPHINodes) {
490  // Scan the immediate dominators of this block looking for a block which has a
491  // PHI node for Alloca num.  If we find it, mark the PHI node as being alive!
492  for (DominatorTree::Node *N = DT[BB]; N; N = N->getIDom()) {
493    BasicBlock *DomBB = N->getBlock();
494    std::map<BasicBlock*, std::vector<PHINode*> >::iterator
495      I = NewPhiNodes.find(DomBB);
496    if (I != NewPhiNodes.end() && I->second[AllocaNum]) {
497      // Ok, we found an inserted PHI node which dominates this value.
498      PHINode *DominatingPHI = I->second[AllocaNum];
499
500      // Find out if we previously thought it was dead.
501      std::set<PHINode*>::iterator DPNI = DeadPHINodes.find(DominatingPHI);
502      if (DPNI != DeadPHINodes.end()) {
503        // Ok, until now, we thought this PHI node was dead.  Mark it as being
504        // alive/needed.
505        DeadPHINodes.erase(DPNI);
506
507        // Now that we have marked the PHI node alive, also mark any PHI nodes
508        // which it might use as being alive as well.
509        for (pred_iterator PI = pred_begin(DomBB), PE = pred_end(DomBB);
510             PI != PE; ++PI)
511          MarkDominatingPHILive(*PI, AllocaNum, DeadPHINodes);
512      }
513    }
514  }
515}
516
517/// PromoteLocallyUsedAlloca - Many allocas are only used within a single basic
518/// block.  If this is the case, avoid traversing the CFG and inserting a lot of
519/// potentially useless PHI nodes by just performing a single linear pass over
520/// the basic block using the Alloca.
521///
522/// If we cannot promote this alloca (because it is read before it is written),
523/// return true.  This is necessary in cases where, due to control flow, the
524/// alloca is potentially undefined on some control flow paths.  e.g. code like
525/// this is potentially correct:
526///
527///   for (...) { if (c) { A = undef; undef = B; } }
528///
529/// ... so long as A is not used before undef is set.
530///
531bool PromoteMem2Reg::PromoteLocallyUsedAlloca(BasicBlock *BB, AllocaInst *AI) {
532  assert(!AI->use_empty() && "There are no uses of the alloca!");
533
534  // Handle degenerate cases quickly.
535  if (AI->hasOneUse()) {
536    Instruction *U = cast<Instruction>(AI->use_back());
537    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
538      // Must be a load of uninitialized value.
539      LI->replaceAllUsesWith(UndefValue::get(AI->getAllocatedType()));
540      if (AST && isa<PointerType>(LI->getType()))
541        AST->deleteValue(LI);
542    } else {
543      // Otherwise it must be a store which is never read.
544      assert(isa<StoreInst>(U));
545    }
546    BB->getInstList().erase(U);
547  } else {
548    // Uses of the uninitialized memory location shall get undef.
549    Value *CurVal = 0;
550
551    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
552      Instruction *Inst = I++;
553      if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
554        if (LI->getOperand(0) == AI) {
555          if (!CurVal) return true;  // Could not locally promote!
556
557          // Loads just returns the "current value"...
558          LI->replaceAllUsesWith(CurVal);
559          if (AST && isa<PointerType>(LI->getType()))
560            AST->deleteValue(LI);
561          BB->getInstList().erase(LI);
562        }
563      } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
564        if (SI->getOperand(1) == AI) {
565          // Store updates the "current value"...
566          CurVal = SI->getOperand(0);
567          BB->getInstList().erase(SI);
568        }
569      }
570    }
571  }
572
573  // After traversing the basic block, there should be no more uses of the
574  // alloca, remove it now.
575  assert(AI->use_empty() && "Uses of alloca from more than one BB??");
576  if (AST) AST->deleteValue(AI);
577  AI->getParent()->getInstList().erase(AI);
578  return false;
579}
580
581/// PromoteLocallyUsedAllocas - This method is just like
582/// PromoteLocallyUsedAlloca, except that it processes multiple alloca
583/// instructions in parallel.  This is important in cases where we have large
584/// basic blocks, as we don't want to rescan the entire basic block for each
585/// alloca which is locally used in it (which might be a lot).
586void PromoteMem2Reg::
587PromoteLocallyUsedAllocas(BasicBlock *BB, const std::vector<AllocaInst*> &AIs) {
588  std::map<AllocaInst*, Value*> CurValues;
589  for (unsigned i = 0, e = AIs.size(); i != e; ++i)
590    CurValues[AIs[i]] = 0; // Insert with null value
591
592  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
593    Instruction *Inst = I++;
594    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
595      // Is this a load of an alloca we are tracking?
596      if (AllocaInst *AI = dyn_cast<AllocaInst>(LI->getOperand(0))) {
597        std::map<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
598        if (AIt != CurValues.end()) {
599          // If loading an uninitialized value, allow the inter-block case to
600          // handle it.  Due to control flow, this might actually be ok.
601          if (AIt->second == 0) {  // Use of locally uninitialized value??
602            RetryList.push_back(AI);   // Retry elsewhere.
603            CurValues.erase(AIt);   // Stop tracking this here.
604            if (CurValues.empty()) return;
605          } else {
606            // Loads just returns the "current value"...
607            LI->replaceAllUsesWith(AIt->second);
608            if (AST && isa<PointerType>(LI->getType()))
609              AST->deleteValue(LI);
610            BB->getInstList().erase(LI);
611          }
612        }
613      }
614    } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
615      if (AllocaInst *AI = dyn_cast<AllocaInst>(SI->getOperand(1))) {
616        std::map<AllocaInst*, Value*>::iterator AIt = CurValues.find(AI);
617        if (AIt != CurValues.end()) {
618          // Store updates the "current value"...
619          AIt->second = SI->getOperand(0);
620          BB->getInstList().erase(SI);
621        }
622      }
623    }
624  }
625}
626
627
628
629// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
630// Alloca returns true if there wasn't already a phi-node for that variable
631//
632bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
633                                  unsigned &Version,
634                                  std::set<PHINode*> &InsertedPHINodes) {
635  // Look up the basic-block in question.
636  std::vector<PHINode*> &BBPNs = NewPhiNodes[BB];
637  if (BBPNs.empty()) BBPNs.resize(Allocas.size());
638
639  // If the BB already has a phi node added for the i'th alloca then we're done!
640  if (BBPNs[AllocaNo]) return false;
641
642  // Create a PhiNode using the dereferenced type... and add the phi-node to the
643  // BasicBlock.
644  PHINode *PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
645                            Allocas[AllocaNo]->getName() + "." +
646                                        utostr(Version++), BB->begin());
647  BBPNs[AllocaNo] = PN;
648  InsertedPHINodes.insert(PN);
649
650  if (AST && isa<PointerType>(PN->getType()))
651    AST->copyValue(PointerAllocaValues[AllocaNo], PN);
652
653  return true;
654}
655
656
657// RenamePass - Recursively traverse the CFG of the function, renaming loads and
658// stores to the allocas which we are promoting.  IncomingVals indicates what
659// value each Alloca contains on exit from the predecessor block Pred.
660//
661void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
662                                std::vector<Value*> &IncomingVals) {
663
664  // If this BB needs a PHI node, update the PHI node for each variable we need
665  // PHI nodes for.
666  std::map<BasicBlock*, std::vector<PHINode *> >::iterator
667    BBPNI = NewPhiNodes.find(BB);
668  if (BBPNI != NewPhiNodes.end()) {
669    std::vector<PHINode *> &BBPNs = BBPNI->second;
670    for (unsigned k = 0; k != BBPNs.size(); ++k)
671      if (PHINode *PN = BBPNs[k]) {
672        // Add this incoming value to the PHI node.
673        PN->addIncoming(IncomingVals[k], Pred);
674
675        // The currently active variable for this block is now the PHI.
676        IncomingVals[k] = PN;
677      }
678  }
679
680  // don't revisit nodes
681  if (Visited.count(BB)) return;
682
683  // mark as visited
684  Visited.insert(BB);
685
686  for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II); ) {
687    Instruction *I = II++; // get the instruction, increment iterator
688
689    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
690      if (AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand())) {
691        std::map<AllocaInst*, unsigned>::iterator AI = AllocaLookup.find(Src);
692        if (AI != AllocaLookup.end()) {
693          Value *V = IncomingVals[AI->second];
694
695          // walk the use list of this load and replace all uses with r
696          LI->replaceAllUsesWith(V);
697          if (AST && isa<PointerType>(LI->getType()))
698            AST->deleteValue(LI);
699          BB->getInstList().erase(LI);
700        }
701      }
702    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
703      // Delete this instruction and mark the name as the current holder of the
704      // value
705      if (AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand())) {
706        std::map<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
707        if (ai != AllocaLookup.end()) {
708          // what value were we writing?
709          IncomingVals[ai->second] = SI->getOperand(0);
710          BB->getInstList().erase(SI);
711        }
712      }
713    }
714  }
715
716  // Recurse to our successors.
717  TerminatorInst *TI = BB->getTerminator();
718  for (unsigned i = 0; i != TI->getNumSuccessors(); i++) {
719    std::vector<Value*> OutgoingVals(IncomingVals);
720    RenamePass(TI->getSuccessor(i), BB, OutgoingVals);
721  }
722}
723
724/// PromoteMemToReg - Promote the specified list of alloca instructions into
725/// scalar registers, inserting PHI nodes as appropriate.  This function makes
726/// use of DominanceFrontier information.  This function does not modify the CFG
727/// of the function at all.  All allocas must be from the same function.
728///
729/// If AST is specified, the specified tracker is updated to reflect changes
730/// made to the IR.
731///
732void llvm::PromoteMemToReg(const std::vector<AllocaInst*> &Allocas,
733                           DominatorTree &DT, DominanceFrontier &DF,
734                           const TargetData &TD, AliasSetTracker *AST) {
735  // If there is nothing to do, bail out...
736  if (Allocas.empty()) return;
737
738  std::vector<AllocaInst*> RetryList;
739  PromoteMem2Reg(Allocas, RetryList, DT, DF, TD, AST).run();
740
741  // PromoteMem2Reg may not have been able to promote all of the allocas in one
742  // pass, run it again if needed.
743  while (!RetryList.empty()) {
744    // If we need to retry some allocas, this is due to there being no store
745    // before a read in a local block.  To counteract this, insert a store of
746    // undef into the alloca right after the alloca itself.
747    for (unsigned i = 0, e = RetryList.size(); i != e; ++i) {
748      BasicBlock::iterator BBI = RetryList[i];
749
750      new StoreInst(UndefValue::get(RetryList[i]->getAllocatedType()),
751                    RetryList[i], ++BBI);
752    }
753
754    std::vector<AllocaInst*> NewAllocas;
755    std::swap(NewAllocas, RetryList);
756    PromoteMem2Reg(NewAllocas, RetryList, DT, DF, TD, AST).run();
757  }
758}
759