PromoteMemoryToRegister.cpp revision 7e70829632f82de15db187845666aaca6e04b792
1//===- PromoteMemoryToRegister.cpp - Convert memory refs to regs ----------===//
2//
3// This pass is used to promote memory references to be register references.  A
4// simple example of the transformation performed by this pass is:
5//
6//        FROM CODE                           TO CODE
7//   %X = alloca int, uint 1                 ret int 42
8//   store int 42, int *%X
9//   %Y = load int* %X
10//   ret int %Y
11//
12// To do this transformation, a simple analysis is done to ensure it is safe.
13// Currently this just loops over all alloca instructions, looking for
14// instructions that are only used in simple load and stores.
15//
16// After this, the code is transformed by...something magical :)
17//
18//===----------------------------------------------------------------------===//
19
20#include "llvm/Transforms/Scalar.h"
21#include "llvm/Analysis/Dominators.h"
22#include "llvm/iMemory.h"
23#include "llvm/iPHINode.h"
24#include "llvm/iTerminators.h"
25#include "llvm/Function.h"
26#include "llvm/BasicBlock.h"
27#include "llvm/Constant.h"
28#include "llvm/Type.h"
29#include "Support/StatisticReporter.h"
30
31static Statistic<> NumPromoted("mem2reg\t\t- Number of alloca's promoted");
32
33using std::vector;
34using std::map;
35using std::set;
36
37namespace {
38  struct PromotePass : public FunctionPass {
39    vector<AllocaInst*>          Allocas;      // the alloca instruction..
40    map<Instruction*, unsigned>  AllocaLookup; // reverse mapping of above
41
42    vector<vector<BasicBlock*> > PhiNodes;     // index corresponds to Allocas
43
44    // List of instructions to remove at end of pass
45    vector<Instruction *>        KillList;
46
47    map<BasicBlock*,vector<PHINode*> > NewPhiNodes; // the PhiNodes we're adding
48
49  public:
50    const char *getPassName() const { return "Promote Memory to Register"; }
51
52    // runOnFunction - To run this pass, first we calculate the alloca
53    // instructions that are safe for promotion, then we promote each one.
54    //
55    virtual bool runOnFunction(Function &F);
56
57    // getAnalysisUsage - We need dominance frontiers
58    //
59    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
60      AU.addRequired(DominanceFrontier::ID);
61      AU.preservesCFG();
62    }
63
64  private:
65    void Traverse(BasicBlock *BB, BasicBlock *Pred, vector<Value*> &IncVals,
66                  set<BasicBlock*> &Visited);
67    bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx);
68    void FindSafeAllocas(Function &F);
69  };
70
71}  // end of anonymous namespace
72
73
74// isSafeAlloca - This predicate controls what types of alloca instructions are
75// allowed to be promoted...
76//
77static inline bool isSafeAlloca(const AllocaInst *AI) {
78  if (AI->isArrayAllocation()) return false;
79
80  for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
81       UI != UE; ++UI) {   // Loop over all of the uses of the alloca
82
83    // Only allow nonindexed memory access instructions...
84    if (MemAccessInst *MAI = dyn_cast<MemAccessInst>(*UI)) {
85      if (MAI->getPointerOperand() != (Value*)AI)
86        return false;  // Reject stores of alloca pointer into some other loc.
87
88      if (MAI->hasIndices()) {  // indexed?
89        // Allow the access if there is only one index and the index is
90        // zero.
91        if (*MAI->idx_begin() != Constant::getNullValue(Type::UIntTy) ||
92            MAI->idx_begin()+1 != MAI->idx_end())
93          return false;
94      }
95    } else {
96      return false;   // Not a load or store?
97    }
98  }
99
100  return true;
101}
102
103// FindSafeAllocas - Find allocas that are safe to promote
104//
105void PromotePass::FindSafeAllocas(Function &F) {
106  BasicBlock &BB = F.getEntryNode();  // Get the entry node for the function
107
108  // Look at all instructions in the entry node
109  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
110    if (AllocaInst *AI = dyn_cast<AllocaInst>(&*I))       // Is it an alloca?
111      if (isSafeAlloca(AI)) {   // If safe alloca, add alloca to safe list
112        AllocaLookup[AI] = Allocas.size();  // Keep reverse mapping
113        Allocas.push_back(AI);
114      }
115}
116
117
118
119bool PromotePass::runOnFunction(Function &F) {
120  // Calculate the set of safe allocas
121  FindSafeAllocas(F);
122
123  // If there is nothing to do, bail out...
124  if (Allocas.empty()) return false;
125
126  // Add each alloca to the KillList.  Note: KillList is destroyed MOST recently
127  // added to least recently.
128  KillList.assign(Allocas.begin(), Allocas.end());
129
130  // Calculate the set of write-locations for each alloca.  This is analogous to
131  // counting the number of 'redefinitions' of each variable.
132  vector<vector<BasicBlock*> > WriteSets;    // index corresponds to Allocas
133  WriteSets.resize(Allocas.size());
134  for (unsigned i = 0; i != Allocas.size(); ++i) {
135    AllocaInst *AI = Allocas[i];
136    for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E; ++U)
137      if (StoreInst *SI = dyn_cast<StoreInst>(*U))
138        // jot down the basic-block it came from
139        WriteSets[i].push_back(SI->getParent());
140  }
141
142  // Get dominance frontier information...
143  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
144
145  // Compute the locations where PhiNodes need to be inserted.  Look at the
146  // dominance frontier of EACH basic-block we have a write in
147  //
148  PhiNodes.resize(Allocas.size());
149  for (unsigned i = 0; i != Allocas.size(); ++i) {
150    for (unsigned j = 0; j != WriteSets[i].size(); j++) {
151      // Look up the DF for this write, add it to PhiNodes
152      DominanceFrontier::const_iterator it = DF.find(WriteSets[i][j]);
153      DominanceFrontier::DomSetType     S = it->second;
154      for (DominanceFrontier::DomSetType::iterator P = S.begin(), PE = S.end();
155           P != PE; ++P)
156        QueuePhiNode(*P, i);
157    }
158
159    // Perform iterative step
160    for (unsigned k = 0; k != PhiNodes[i].size(); k++) {
161      DominanceFrontier::const_iterator it = DF.find(PhiNodes[i][k]);
162      DominanceFrontier::DomSetType     S = it->second;
163      for (DominanceFrontier::DomSetType::iterator P = S.begin(), PE = S.end();
164           P != PE; ++P)
165        QueuePhiNode(*P, i);
166    }
167  }
168
169  // Set the incoming values for the basic block to be null values for all of
170  // the alloca's.  We do this in case there is a load of a value that has not
171  // been stored yet.  In this case, it will get this null value.
172  //
173  vector<Value *> Values(Allocas.size());
174  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
175    Values[i] = Constant::getNullValue(Allocas[i]->getAllocatedType());
176
177  // Walks all basic blocks in the function performing the SSA rename algorithm
178  // and inserting the phi nodes we marked as necessary
179  //
180  set<BasicBlock*> Visited;         // The basic blocks we've already visited
181  Traverse(F.begin(), 0, Values, Visited);
182
183  // Remove all instructions marked by being placed in the KillList...
184  //
185  while (!KillList.empty()) {
186    Instruction *I = KillList.back();
187    KillList.pop_back();
188
189    I->getParent()->getInstList().erase(I);
190  }
191
192  NumPromoted += Allocas.size();
193
194  // Purge data structurse so they are available the next iteration...
195  Allocas.clear();
196  AllocaLookup.clear();
197  PhiNodes.clear();
198  NewPhiNodes.clear();
199  return true;
200}
201
202
203// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
204// Alloca returns true if there wasn't already a phi-node for that variable
205//
206bool PromotePass::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo) {
207  // Look up the basic-block in question
208  vector<PHINode*> &BBPNs = NewPhiNodes[BB];
209  if (BBPNs.empty()) BBPNs.resize(Allocas.size());
210
211  // If the BB already has a phi node added for the i'th alloca then we're done!
212  if (BBPNs[AllocaNo]) return false;
213
214  // Create a PhiNode using the dereferenced type...
215  PHINode *PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
216                            Allocas[AllocaNo]->getName()+".mem2reg");
217  BBPNs[AllocaNo] = PN;
218
219  // Add the phi-node to the basic-block
220  BB->getInstList().push_front(PN);
221
222  PhiNodes[AllocaNo].push_back(BB);
223  return true;
224}
225
226void PromotePass::Traverse(BasicBlock *BB, BasicBlock *Pred,
227                           vector<Value*> &IncomingVals,
228                           set<BasicBlock*> &Visited) {
229  // If this is a BB needing a phi node, lookup/create the phinode for each
230  // variable we need phinodes for.
231  vector<PHINode *> &BBPNs = NewPhiNodes[BB];
232  for (unsigned k = 0; k != BBPNs.size(); ++k)
233    if (PHINode *PN = BBPNs[k]) {
234      // at this point we can assume that the array has phi nodes.. let's add
235      // the incoming data
236      PN->addIncoming(IncomingVals[k], Pred);
237
238      // also note that the active variable IS designated by the phi node
239      IncomingVals[k] = PN;
240    }
241
242  // don't revisit nodes
243  if (Visited.count(BB)) return;
244
245  // mark as visited
246  Visited.insert(BB);
247
248  // keep track of the value of each variable we're watching.. how?
249  for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) {
250    Instruction *I = II; // get the instruction
251
252    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
253      Value *Ptr = LI->getPointerOperand();
254
255      if (AllocaInst *Src = dyn_cast<AllocaInst>(Ptr)) {
256        map<Instruction*, unsigned>::iterator AI = AllocaLookup.find(Src);
257        if (AI != AllocaLookup.end()) {
258          Value *V = IncomingVals[AI->second];
259
260          // walk the use list of this load and replace all uses with r
261          LI->replaceAllUsesWith(V);
262          KillList.push_back(LI); // Mark the load to be deleted
263        }
264      }
265    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
266      // delete this instruction and mark the name as the current holder of the
267      // value
268      Value *Ptr = SI->getPointerOperand();
269      if (AllocaInst *Dest = dyn_cast<AllocaInst>(Ptr)) {
270        map<Instruction *, unsigned>::iterator ai = AllocaLookup.find(Dest);
271        if (ai != AllocaLookup.end()) {
272          // what value were we writing?
273          IncomingVals[ai->second] = SI->getOperand(0);
274          KillList.push_back(SI);  // Mark the store to be deleted
275        }
276      }
277
278    } else if (TerminatorInst *TI = dyn_cast<TerminatorInst>(I)) {
279      // Recurse across our successors
280      for (unsigned i = 0; i != TI->getNumSuccessors(); i++) {
281        vector<Value*> OutgoingVals(IncomingVals);
282        Traverse(TI->getSuccessor(i), BB, OutgoingVals, Visited);
283      }
284    }
285  }
286}
287
288
289// createPromoteMemoryToRegister - Provide an entry point to create this pass.
290//
291Pass *createPromoteMemoryToRegister() {
292  return new PromotePass();
293}
294