PromoteMemoryToRegister.cpp revision dce4a407a24b04eebc6a376f8e62b41aaa7b071f
1//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file promotes memory references to be register references.  It promotes
11// alloca instructions which only have loads and stores as uses.  An alloca is
12// transformed by using iterated dominator frontiers to place PHI nodes, then
13// traversing the function in depth-first order to rewrite loads and stores as
14// appropriate.
15//
16// The algorithm used here is based on:
17//
18//   Sreedhar and Gao. A linear time algorithm for placing phi-nodes.
19//   In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
20//   Programming Languages
21//   POPL '95. ACM, New York, NY, 62-73.
22//
23// It has been modified to not explicitly use the DJ graph data structure and to
24// directly compute pruned SSA using per-variable liveness information.
25//
26//===----------------------------------------------------------------------===//
27
28#include "llvm/Transforms/Utils/PromoteMemToReg.h"
29#include "llvm/ADT/ArrayRef.h"
30#include "llvm/ADT/DenseMap.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/Analysis/AliasSetTracker.h"
36#include "llvm/Analysis/InstructionSimplify.h"
37#include "llvm/Analysis/ValueTracking.h"
38#include "llvm/IR/CFG.h"
39#include "llvm/IR/Constants.h"
40#include "llvm/IR/DIBuilder.h"
41#include "llvm/IR/DebugInfo.h"
42#include "llvm/IR/DerivedTypes.h"
43#include "llvm/IR/Dominators.h"
44#include "llvm/IR/Function.h"
45#include "llvm/IR/Instructions.h"
46#include "llvm/IR/IntrinsicInst.h"
47#include "llvm/IR/Metadata.h"
48#include "llvm/Transforms/Utils/Local.h"
49#include <algorithm>
50#include <queue>
51using namespace llvm;
52
53#define DEBUG_TYPE "mem2reg"
54
55STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
56STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
57STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
58STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
59
60bool llvm::isAllocaPromotable(const AllocaInst *AI) {
61  // FIXME: If the memory unit is of pointer or integer type, we can permit
62  // assignments to subsections of the memory unit.
63  unsigned AS = AI->getType()->getAddressSpace();
64
65  // Only allow direct and non-volatile loads and stores...
66  for (const User *U : AI->users()) {
67    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
68      // Note that atomic loads can be transformed; atomic semantics do
69      // not have any meaning for a local alloca.
70      if (LI->isVolatile())
71        return false;
72    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
73      if (SI->getOperand(0) == AI)
74        return false; // Don't allow a store OF the AI, only INTO the AI.
75      // Note that atomic stores can be transformed; atomic semantics do
76      // not have any meaning for a local alloca.
77      if (SI->isVolatile())
78        return false;
79    } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
80      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
81          II->getIntrinsicID() != Intrinsic::lifetime_end)
82        return false;
83    } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
84      if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
85        return false;
86      if (!onlyUsedByLifetimeMarkers(BCI))
87        return false;
88    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
89      if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
90        return false;
91      if (!GEPI->hasAllZeroIndices())
92        return false;
93      if (!onlyUsedByLifetimeMarkers(GEPI))
94        return false;
95    } else {
96      return false;
97    }
98  }
99
100  return true;
101}
102
103namespace {
104
105struct AllocaInfo {
106  SmallVector<BasicBlock *, 32> DefiningBlocks;
107  SmallVector<BasicBlock *, 32> UsingBlocks;
108
109  StoreInst *OnlyStore;
110  BasicBlock *OnlyBlock;
111  bool OnlyUsedInOneBlock;
112
113  Value *AllocaPointerVal;
114  DbgDeclareInst *DbgDeclare;
115
116  void clear() {
117    DefiningBlocks.clear();
118    UsingBlocks.clear();
119    OnlyStore = nullptr;
120    OnlyBlock = nullptr;
121    OnlyUsedInOneBlock = true;
122    AllocaPointerVal = nullptr;
123    DbgDeclare = nullptr;
124  }
125
126  /// Scan the uses of the specified alloca, filling in the AllocaInfo used
127  /// by the rest of the pass to reason about the uses of this alloca.
128  void AnalyzeAlloca(AllocaInst *AI) {
129    clear();
130
131    // As we scan the uses of the alloca instruction, keep track of stores,
132    // and decide whether all of the loads and stores to the alloca are within
133    // the same basic block.
134    for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
135      Instruction *User = cast<Instruction>(*UI++);
136
137      if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
138        // Remember the basic blocks which define new values for the alloca
139        DefiningBlocks.push_back(SI->getParent());
140        AllocaPointerVal = SI->getOperand(0);
141        OnlyStore = SI;
142      } else {
143        LoadInst *LI = cast<LoadInst>(User);
144        // Otherwise it must be a load instruction, keep track of variable
145        // reads.
146        UsingBlocks.push_back(LI->getParent());
147        AllocaPointerVal = LI;
148      }
149
150      if (OnlyUsedInOneBlock) {
151        if (!OnlyBlock)
152          OnlyBlock = User->getParent();
153        else if (OnlyBlock != User->getParent())
154          OnlyUsedInOneBlock = false;
155      }
156    }
157
158    DbgDeclare = FindAllocaDbgDeclare(AI);
159  }
160};
161
162// Data package used by RenamePass()
163class RenamePassData {
164public:
165  typedef std::vector<Value *> ValVector;
166
167  RenamePassData() : BB(nullptr), Pred(nullptr), Values() {}
168  RenamePassData(BasicBlock *B, BasicBlock *P, const ValVector &V)
169      : BB(B), Pred(P), Values(V) {}
170  BasicBlock *BB;
171  BasicBlock *Pred;
172  ValVector Values;
173
174  void swap(RenamePassData &RHS) {
175    std::swap(BB, RHS.BB);
176    std::swap(Pred, RHS.Pred);
177    Values.swap(RHS.Values);
178  }
179};
180
181/// \brief This assigns and keeps a per-bb relative ordering of load/store
182/// instructions in the block that directly load or store an alloca.
183///
184/// This functionality is important because it avoids scanning large basic
185/// blocks multiple times when promoting many allocas in the same block.
186class LargeBlockInfo {
187  /// \brief For each instruction that we track, keep the index of the
188  /// instruction.
189  ///
190  /// The index starts out as the number of the instruction from the start of
191  /// the block.
192  DenseMap<const Instruction *, unsigned> InstNumbers;
193
194public:
195
196  /// This code only looks at accesses to allocas.
197  static bool isInterestingInstruction(const Instruction *I) {
198    return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
199           (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
200  }
201
202  /// Get or calculate the index of the specified instruction.
203  unsigned getInstructionIndex(const Instruction *I) {
204    assert(isInterestingInstruction(I) &&
205           "Not a load/store to/from an alloca?");
206
207    // If we already have this instruction number, return it.
208    DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
209    if (It != InstNumbers.end())
210      return It->second;
211
212    // Scan the whole block to get the instruction.  This accumulates
213    // information for every interesting instruction in the block, in order to
214    // avoid gratuitus rescans.
215    const BasicBlock *BB = I->getParent();
216    unsigned InstNo = 0;
217    for (BasicBlock::const_iterator BBI = BB->begin(), E = BB->end(); BBI != E;
218         ++BBI)
219      if (isInterestingInstruction(BBI))
220        InstNumbers[BBI] = InstNo++;
221    It = InstNumbers.find(I);
222
223    assert(It != InstNumbers.end() && "Didn't insert instruction?");
224    return It->second;
225  }
226
227  void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
228
229  void clear() { InstNumbers.clear(); }
230};
231
232struct PromoteMem2Reg {
233  /// The alloca instructions being promoted.
234  std::vector<AllocaInst *> Allocas;
235  DominatorTree &DT;
236  DIBuilder DIB;
237
238  /// An AliasSetTracker object to update.  If null, don't update it.
239  AliasSetTracker *AST;
240
241  /// Reverse mapping of Allocas.
242  DenseMap<AllocaInst *, unsigned> AllocaLookup;
243
244  /// \brief The PhiNodes we're adding.
245  ///
246  /// That map is used to simplify some Phi nodes as we iterate over it, so
247  /// it should have deterministic iterators.  We could use a MapVector, but
248  /// since we already maintain a map from BasicBlock* to a stable numbering
249  /// (BBNumbers), the DenseMap is more efficient (also supports removal).
250  DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
251
252  /// For each PHI node, keep track of which entry in Allocas it corresponds
253  /// to.
254  DenseMap<PHINode *, unsigned> PhiToAllocaMap;
255
256  /// If we are updating an AliasSetTracker, then for each alloca that is of
257  /// pointer type, we keep track of what to copyValue to the inserted PHI
258  /// nodes here.
259  std::vector<Value *> PointerAllocaValues;
260
261  /// For each alloca, we keep track of the dbg.declare intrinsic that
262  /// describes it, if any, so that we can convert it to a dbg.value
263  /// intrinsic if the alloca gets promoted.
264  SmallVector<DbgDeclareInst *, 8> AllocaDbgDeclares;
265
266  /// The set of basic blocks the renamer has already visited.
267  ///
268  SmallPtrSet<BasicBlock *, 16> Visited;
269
270  /// Contains a stable numbering of basic blocks to avoid non-determinstic
271  /// behavior.
272  DenseMap<BasicBlock *, unsigned> BBNumbers;
273
274  /// Maps DomTreeNodes to their level in the dominator tree.
275  DenseMap<DomTreeNode *, unsigned> DomLevels;
276
277  /// Lazily compute the number of predecessors a block has.
278  DenseMap<const BasicBlock *, unsigned> BBNumPreds;
279
280public:
281  PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
282                 AliasSetTracker *AST)
283      : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
284        DIB(*DT.getRoot()->getParent()->getParent()), AST(AST) {}
285
286  void run();
287
288private:
289  void RemoveFromAllocasList(unsigned &AllocaIdx) {
290    Allocas[AllocaIdx] = Allocas.back();
291    Allocas.pop_back();
292    --AllocaIdx;
293  }
294
295  unsigned getNumPreds(const BasicBlock *BB) {
296    unsigned &NP = BBNumPreds[BB];
297    if (NP == 0)
298      NP = std::distance(pred_begin(BB), pred_end(BB)) + 1;
299    return NP - 1;
300  }
301
302  void DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
303                               AllocaInfo &Info);
304  void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
305                           const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
306                           SmallPtrSet<BasicBlock *, 32> &LiveInBlocks);
307  void RenamePass(BasicBlock *BB, BasicBlock *Pred,
308                  RenamePassData::ValVector &IncVals,
309                  std::vector<RenamePassData> &Worklist);
310  bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
311};
312
313} // end of anonymous namespace
314
315static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
316  // Knowing that this alloca is promotable, we know that it's safe to kill all
317  // instructions except for load and store.
318
319  for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
320    Instruction *I = cast<Instruction>(*UI);
321    ++UI;
322    if (isa<LoadInst>(I) || isa<StoreInst>(I))
323      continue;
324
325    if (!I->getType()->isVoidTy()) {
326      // The only users of this bitcast/GEP instruction are lifetime intrinsics.
327      // Follow the use/def chain to erase them now instead of leaving it for
328      // dead code elimination later.
329      for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
330        Instruction *Inst = cast<Instruction>(*UUI);
331        ++UUI;
332        Inst->eraseFromParent();
333      }
334    }
335    I->eraseFromParent();
336  }
337}
338
339/// \brief Rewrite as many loads as possible given a single store.
340///
341/// When there is only a single store, we can use the domtree to trivially
342/// replace all of the dominated loads with the stored value. Do so, and return
343/// true if this has successfully promoted the alloca entirely. If this returns
344/// false there were some loads which were not dominated by the single store
345/// and thus must be phi-ed with undef. We fall back to the standard alloca
346/// promotion algorithm in that case.
347static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
348                                     LargeBlockInfo &LBI,
349                                     DominatorTree &DT,
350                                     AliasSetTracker *AST) {
351  StoreInst *OnlyStore = Info.OnlyStore;
352  bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
353  BasicBlock *StoreBB = OnlyStore->getParent();
354  int StoreIndex = -1;
355
356  // Clear out UsingBlocks.  We will reconstruct it here if needed.
357  Info.UsingBlocks.clear();
358
359  for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
360    Instruction *UserInst = cast<Instruction>(*UI++);
361    if (!isa<LoadInst>(UserInst)) {
362      assert(UserInst == OnlyStore && "Should only have load/stores");
363      continue;
364    }
365    LoadInst *LI = cast<LoadInst>(UserInst);
366
367    // Okay, if we have a load from the alloca, we want to replace it with the
368    // only value stored to the alloca.  We can do this if the value is
369    // dominated by the store.  If not, we use the rest of the mem2reg machinery
370    // to insert the phi nodes as needed.
371    if (!StoringGlobalVal) { // Non-instructions are always dominated.
372      if (LI->getParent() == StoreBB) {
373        // If we have a use that is in the same block as the store, compare the
374        // indices of the two instructions to see which one came first.  If the
375        // load came before the store, we can't handle it.
376        if (StoreIndex == -1)
377          StoreIndex = LBI.getInstructionIndex(OnlyStore);
378
379        if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
380          // Can't handle this load, bail out.
381          Info.UsingBlocks.push_back(StoreBB);
382          continue;
383        }
384
385      } else if (LI->getParent() != StoreBB &&
386                 !DT.dominates(StoreBB, LI->getParent())) {
387        // If the load and store are in different blocks, use BB dominance to
388        // check their relationships.  If the store doesn't dom the use, bail
389        // out.
390        Info.UsingBlocks.push_back(LI->getParent());
391        continue;
392      }
393    }
394
395    // Otherwise, we *can* safely rewrite this load.
396    Value *ReplVal = OnlyStore->getOperand(0);
397    // If the replacement value is the load, this must occur in unreachable
398    // code.
399    if (ReplVal == LI)
400      ReplVal = UndefValue::get(LI->getType());
401    LI->replaceAllUsesWith(ReplVal);
402    if (AST && LI->getType()->isPointerTy())
403      AST->deleteValue(LI);
404    LI->eraseFromParent();
405    LBI.deleteValue(LI);
406  }
407
408  // Finally, after the scan, check to see if the store is all that is left.
409  if (!Info.UsingBlocks.empty())
410    return false; // If not, we'll have to fall back for the remainder.
411
412  // Record debuginfo for the store and remove the declaration's
413  // debuginfo.
414  if (DbgDeclareInst *DDI = Info.DbgDeclare) {
415    DIBuilder DIB(*AI->getParent()->getParent()->getParent());
416    ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore, DIB);
417    DDI->eraseFromParent();
418    LBI.deleteValue(DDI);
419  }
420  // Remove the (now dead) store and alloca.
421  Info.OnlyStore->eraseFromParent();
422  LBI.deleteValue(Info.OnlyStore);
423
424  if (AST)
425    AST->deleteValue(AI);
426  AI->eraseFromParent();
427  LBI.deleteValue(AI);
428  return true;
429}
430
431/// Many allocas are only used within a single basic block.  If this is the
432/// case, avoid traversing the CFG and inserting a lot of potentially useless
433/// PHI nodes by just performing a single linear pass over the basic block
434/// using the Alloca.
435///
436/// If we cannot promote this alloca (because it is read before it is written),
437/// return true.  This is necessary in cases where, due to control flow, the
438/// alloca is potentially undefined on some control flow paths.  e.g. code like
439/// this is potentially correct:
440///
441///   for (...) { if (c) { A = undef; undef = B; } }
442///
443/// ... so long as A is not used before undef is set.
444static void promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
445                                     LargeBlockInfo &LBI,
446                                     AliasSetTracker *AST) {
447  // The trickiest case to handle is when we have large blocks. Because of this,
448  // this code is optimized assuming that large blocks happen.  This does not
449  // significantly pessimize the small block case.  This uses LargeBlockInfo to
450  // make it efficient to get the index of various operations in the block.
451
452  // Walk the use-def list of the alloca, getting the locations of all stores.
453  typedef SmallVector<std::pair<unsigned, StoreInst *>, 64> StoresByIndexTy;
454  StoresByIndexTy StoresByIndex;
455
456  for (User *U : AI->users())
457    if (StoreInst *SI = dyn_cast<StoreInst>(U))
458      StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
459
460  // Sort the stores by their index, making it efficient to do a lookup with a
461  // binary search.
462  std::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first());
463
464  // Walk all of the loads from this alloca, replacing them with the nearest
465  // store above them, if any.
466  for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
467    LoadInst *LI = dyn_cast<LoadInst>(*UI++);
468    if (!LI)
469      continue;
470
471    unsigned LoadIdx = LBI.getInstructionIndex(LI);
472
473    // Find the nearest store that has a lower index than this load.
474    StoresByIndexTy::iterator I =
475        std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
476                         std::make_pair(LoadIdx,
477                                        static_cast<StoreInst *>(nullptr)),
478                         less_first());
479
480    if (I == StoresByIndex.begin())
481      // If there is no store before this load, the load takes the undef value.
482      LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
483    else
484      // Otherwise, there was a store before this load, the load takes its value.
485      LI->replaceAllUsesWith(std::prev(I)->second->getOperand(0));
486
487    if (AST && LI->getType()->isPointerTy())
488      AST->deleteValue(LI);
489    LI->eraseFromParent();
490    LBI.deleteValue(LI);
491  }
492
493  // Remove the (now dead) stores and alloca.
494  while (!AI->use_empty()) {
495    StoreInst *SI = cast<StoreInst>(AI->user_back());
496    // Record debuginfo for the store before removing it.
497    if (DbgDeclareInst *DDI = Info.DbgDeclare) {
498      DIBuilder DIB(*AI->getParent()->getParent()->getParent());
499      ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
500    }
501    SI->eraseFromParent();
502    LBI.deleteValue(SI);
503  }
504
505  if (AST)
506    AST->deleteValue(AI);
507  AI->eraseFromParent();
508  LBI.deleteValue(AI);
509
510  // The alloca's debuginfo can be removed as well.
511  if (DbgDeclareInst *DDI = Info.DbgDeclare) {
512    DDI->eraseFromParent();
513    LBI.deleteValue(DDI);
514  }
515
516  ++NumLocalPromoted;
517}
518
519void PromoteMem2Reg::run() {
520  Function &F = *DT.getRoot()->getParent();
521
522  if (AST)
523    PointerAllocaValues.resize(Allocas.size());
524  AllocaDbgDeclares.resize(Allocas.size());
525
526  AllocaInfo Info;
527  LargeBlockInfo LBI;
528
529  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
530    AllocaInst *AI = Allocas[AllocaNum];
531
532    assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
533    assert(AI->getParent()->getParent() == &F &&
534           "All allocas should be in the same function, which is same as DF!");
535
536    removeLifetimeIntrinsicUsers(AI);
537
538    if (AI->use_empty()) {
539      // If there are no uses of the alloca, just delete it now.
540      if (AST)
541        AST->deleteValue(AI);
542      AI->eraseFromParent();
543
544      // Remove the alloca from the Allocas list, since it has been processed
545      RemoveFromAllocasList(AllocaNum);
546      ++NumDeadAlloca;
547      continue;
548    }
549
550    // Calculate the set of read and write-locations for each alloca.  This is
551    // analogous to finding the 'uses' and 'definitions' of each variable.
552    Info.AnalyzeAlloca(AI);
553
554    // If there is only a single store to this value, replace any loads of
555    // it that are directly dominated by the definition with the value stored.
556    if (Info.DefiningBlocks.size() == 1) {
557      if (rewriteSingleStoreAlloca(AI, Info, LBI, DT, AST)) {
558        // The alloca has been processed, move on.
559        RemoveFromAllocasList(AllocaNum);
560        ++NumSingleStore;
561        continue;
562      }
563    }
564
565    // If the alloca is only read and written in one basic block, just perform a
566    // linear sweep over the block to eliminate it.
567    if (Info.OnlyUsedInOneBlock) {
568      promoteSingleBlockAlloca(AI, Info, LBI, AST);
569
570      // The alloca has been processed, move on.
571      RemoveFromAllocasList(AllocaNum);
572      continue;
573    }
574
575    // If we haven't computed dominator tree levels, do so now.
576    if (DomLevels.empty()) {
577      SmallVector<DomTreeNode *, 32> Worklist;
578
579      DomTreeNode *Root = DT.getRootNode();
580      DomLevels[Root] = 0;
581      Worklist.push_back(Root);
582
583      while (!Worklist.empty()) {
584        DomTreeNode *Node = Worklist.pop_back_val();
585        unsigned ChildLevel = DomLevels[Node] + 1;
586        for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end();
587             CI != CE; ++CI) {
588          DomLevels[*CI] = ChildLevel;
589          Worklist.push_back(*CI);
590        }
591      }
592    }
593
594    // If we haven't computed a numbering for the BB's in the function, do so
595    // now.
596    if (BBNumbers.empty()) {
597      unsigned ID = 0;
598      for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
599        BBNumbers[I] = ID++;
600    }
601
602    // If we have an AST to keep updated, remember some pointer value that is
603    // stored into the alloca.
604    if (AST)
605      PointerAllocaValues[AllocaNum] = Info.AllocaPointerVal;
606
607    // Remember the dbg.declare intrinsic describing this alloca, if any.
608    if (Info.DbgDeclare)
609      AllocaDbgDeclares[AllocaNum] = Info.DbgDeclare;
610
611    // Keep the reverse mapping of the 'Allocas' array for the rename pass.
612    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
613
614    // At this point, we're committed to promoting the alloca using IDF's, and
615    // the standard SSA construction algorithm.  Determine which blocks need PHI
616    // nodes and see if we can optimize out some work by avoiding insertion of
617    // dead phi nodes.
618    DetermineInsertionPoint(AI, AllocaNum, Info);
619  }
620
621  if (Allocas.empty())
622    return; // All of the allocas must have been trivial!
623
624  LBI.clear();
625
626  // Set the incoming values for the basic block to be null values for all of
627  // the alloca's.  We do this in case there is a load of a value that has not
628  // been stored yet.  In this case, it will get this null value.
629  //
630  RenamePassData::ValVector Values(Allocas.size());
631  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
632    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
633
634  // Walks all basic blocks in the function performing the SSA rename algorithm
635  // and inserting the phi nodes we marked as necessary
636  //
637  std::vector<RenamePassData> RenamePassWorkList;
638  RenamePassWorkList.push_back(RenamePassData(F.begin(), nullptr, Values));
639  do {
640    RenamePassData RPD;
641    RPD.swap(RenamePassWorkList.back());
642    RenamePassWorkList.pop_back();
643    // RenamePass may add new worklist entries.
644    RenamePass(RPD.BB, RPD.Pred, RPD.Values, RenamePassWorkList);
645  } while (!RenamePassWorkList.empty());
646
647  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
648  Visited.clear();
649
650  // Remove the allocas themselves from the function.
651  for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
652    Instruction *A = Allocas[i];
653
654    // If there are any uses of the alloca instructions left, they must be in
655    // unreachable basic blocks that were not processed by walking the dominator
656    // tree. Just delete the users now.
657    if (!A->use_empty())
658      A->replaceAllUsesWith(UndefValue::get(A->getType()));
659    if (AST)
660      AST->deleteValue(A);
661    A->eraseFromParent();
662  }
663
664  // Remove alloca's dbg.declare instrinsics from the function.
665  for (unsigned i = 0, e = AllocaDbgDeclares.size(); i != e; ++i)
666    if (DbgDeclareInst *DDI = AllocaDbgDeclares[i])
667      DDI->eraseFromParent();
668
669  // Loop over all of the PHI nodes and see if there are any that we can get
670  // rid of because they merge all of the same incoming values.  This can
671  // happen due to undef values coming into the PHI nodes.  This process is
672  // iterative, because eliminating one PHI node can cause others to be removed.
673  bool EliminatedAPHI = true;
674  while (EliminatedAPHI) {
675    EliminatedAPHI = false;
676
677    // Iterating over NewPhiNodes is deterministic, so it is safe to try to
678    // simplify and RAUW them as we go.  If it was not, we could add uses to
679    // the values we replace with in a non-deterministic order, thus creating
680    // non-deterministic def->use chains.
681    for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
682             I = NewPhiNodes.begin(),
683             E = NewPhiNodes.end();
684         I != E;) {
685      PHINode *PN = I->second;
686
687      // If this PHI node merges one value and/or undefs, get the value.
688      if (Value *V = SimplifyInstruction(PN, nullptr, nullptr, &DT)) {
689        if (AST && PN->getType()->isPointerTy())
690          AST->deleteValue(PN);
691        PN->replaceAllUsesWith(V);
692        PN->eraseFromParent();
693        NewPhiNodes.erase(I++);
694        EliminatedAPHI = true;
695        continue;
696      }
697      ++I;
698    }
699  }
700
701  // At this point, the renamer has added entries to PHI nodes for all reachable
702  // code.  Unfortunately, there may be unreachable blocks which the renamer
703  // hasn't traversed.  If this is the case, the PHI nodes may not
704  // have incoming values for all predecessors.  Loop over all PHI nodes we have
705  // created, inserting undef values if they are missing any incoming values.
706  //
707  for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
708           I = NewPhiNodes.begin(),
709           E = NewPhiNodes.end();
710       I != E; ++I) {
711    // We want to do this once per basic block.  As such, only process a block
712    // when we find the PHI that is the first entry in the block.
713    PHINode *SomePHI = I->second;
714    BasicBlock *BB = SomePHI->getParent();
715    if (&BB->front() != SomePHI)
716      continue;
717
718    // Only do work here if there the PHI nodes are missing incoming values.  We
719    // know that all PHI nodes that were inserted in a block will have the same
720    // number of incoming values, so we can just check any of them.
721    if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
722      continue;
723
724    // Get the preds for BB.
725    SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
726
727    // Ok, now we know that all of the PHI nodes are missing entries for some
728    // basic blocks.  Start by sorting the incoming predecessors for efficient
729    // access.
730    std::sort(Preds.begin(), Preds.end());
731
732    // Now we loop through all BB's which have entries in SomePHI and remove
733    // them from the Preds list.
734    for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
735      // Do a log(n) search of the Preds list for the entry we want.
736      SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
737          Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i));
738      assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
739             "PHI node has entry for a block which is not a predecessor!");
740
741      // Remove the entry
742      Preds.erase(EntIt);
743    }
744
745    // At this point, the blocks left in the preds list must have dummy
746    // entries inserted into every PHI nodes for the block.  Update all the phi
747    // nodes in this block that we are inserting (there could be phis before
748    // mem2reg runs).
749    unsigned NumBadPreds = SomePHI->getNumIncomingValues();
750    BasicBlock::iterator BBI = BB->begin();
751    while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
752           SomePHI->getNumIncomingValues() == NumBadPreds) {
753      Value *UndefVal = UndefValue::get(SomePHI->getType());
754      for (unsigned pred = 0, e = Preds.size(); pred != e; ++pred)
755        SomePHI->addIncoming(UndefVal, Preds[pred]);
756    }
757  }
758
759  NewPhiNodes.clear();
760}
761
762/// \brief Determine which blocks the value is live in.
763///
764/// These are blocks which lead to uses.  Knowing this allows us to avoid
765/// inserting PHI nodes into blocks which don't lead to uses (thus, the
766/// inserted phi nodes would be dead).
767void PromoteMem2Reg::ComputeLiveInBlocks(
768    AllocaInst *AI, AllocaInfo &Info,
769    const SmallPtrSet<BasicBlock *, 32> &DefBlocks,
770    SmallPtrSet<BasicBlock *, 32> &LiveInBlocks) {
771
772  // To determine liveness, we must iterate through the predecessors of blocks
773  // where the def is live.  Blocks are added to the worklist if we need to
774  // check their predecessors.  Start with all the using blocks.
775  SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
776                                                    Info.UsingBlocks.end());
777
778  // If any of the using blocks is also a definition block, check to see if the
779  // definition occurs before or after the use.  If it happens before the use,
780  // the value isn't really live-in.
781  for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
782    BasicBlock *BB = LiveInBlockWorklist[i];
783    if (!DefBlocks.count(BB))
784      continue;
785
786    // Okay, this is a block that both uses and defines the value.  If the first
787    // reference to the alloca is a def (store), then we know it isn't live-in.
788    for (BasicBlock::iterator I = BB->begin();; ++I) {
789      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
790        if (SI->getOperand(1) != AI)
791          continue;
792
793        // We found a store to the alloca before a load.  The alloca is not
794        // actually live-in here.
795        LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
796        LiveInBlockWorklist.pop_back();
797        --i, --e;
798        break;
799      }
800
801      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
802        if (LI->getOperand(0) != AI)
803          continue;
804
805        // Okay, we found a load before a store to the alloca.  It is actually
806        // live into this block.
807        break;
808      }
809    }
810  }
811
812  // Now that we have a set of blocks where the phi is live-in, recursively add
813  // their predecessors until we find the full region the value is live.
814  while (!LiveInBlockWorklist.empty()) {
815    BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
816
817    // The block really is live in here, insert it into the set.  If already in
818    // the set, then it has already been processed.
819    if (!LiveInBlocks.insert(BB))
820      continue;
821
822    // Since the value is live into BB, it is either defined in a predecessor or
823    // live into it to.  Add the preds to the worklist unless they are a
824    // defining block.
825    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
826      BasicBlock *P = *PI;
827
828      // The value is not live into a predecessor if it defines the value.
829      if (DefBlocks.count(P))
830        continue;
831
832      // Otherwise it is, add to the worklist.
833      LiveInBlockWorklist.push_back(P);
834    }
835  }
836}
837
838/// At this point, we're committed to promoting the alloca using IDF's, and the
839/// standard SSA construction algorithm.  Determine which blocks need phi nodes
840/// and see if we can optimize out some work by avoiding insertion of dead phi
841/// nodes.
842void PromoteMem2Reg::DetermineInsertionPoint(AllocaInst *AI, unsigned AllocaNum,
843                                             AllocaInfo &Info) {
844  // Unique the set of defining blocks for efficient lookup.
845  SmallPtrSet<BasicBlock *, 32> DefBlocks;
846  DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
847
848  // Determine which blocks the value is live in.  These are blocks which lead
849  // to uses.
850  SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
851  ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
852
853  // Use a priority queue keyed on dominator tree level so that inserted nodes
854  // are handled from the bottom of the dominator tree upwards.
855  typedef std::pair<DomTreeNode *, unsigned> DomTreeNodePair;
856  typedef std::priority_queue<DomTreeNodePair, SmallVector<DomTreeNodePair, 32>,
857                              less_second> IDFPriorityQueue;
858  IDFPriorityQueue PQ;
859
860  for (SmallPtrSet<BasicBlock *, 32>::const_iterator I = DefBlocks.begin(),
861                                                     E = DefBlocks.end();
862       I != E; ++I) {
863    if (DomTreeNode *Node = DT.getNode(*I))
864      PQ.push(std::make_pair(Node, DomLevels[Node]));
865  }
866
867  SmallVector<std::pair<unsigned, BasicBlock *>, 32> DFBlocks;
868  SmallPtrSet<DomTreeNode *, 32> Visited;
869  SmallVector<DomTreeNode *, 32> Worklist;
870  while (!PQ.empty()) {
871    DomTreeNodePair RootPair = PQ.top();
872    PQ.pop();
873    DomTreeNode *Root = RootPair.first;
874    unsigned RootLevel = RootPair.second;
875
876    // Walk all dominator tree children of Root, inspecting their CFG edges with
877    // targets elsewhere on the dominator tree. Only targets whose level is at
878    // most Root's level are added to the iterated dominance frontier of the
879    // definition set.
880
881    Worklist.clear();
882    Worklist.push_back(Root);
883
884    while (!Worklist.empty()) {
885      DomTreeNode *Node = Worklist.pop_back_val();
886      BasicBlock *BB = Node->getBlock();
887
888      for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE;
889           ++SI) {
890        DomTreeNode *SuccNode = DT.getNode(*SI);
891
892        // Quickly skip all CFG edges that are also dominator tree edges instead
893        // of catching them below.
894        if (SuccNode->getIDom() == Node)
895          continue;
896
897        unsigned SuccLevel = DomLevels[SuccNode];
898        if (SuccLevel > RootLevel)
899          continue;
900
901        if (!Visited.insert(SuccNode))
902          continue;
903
904        BasicBlock *SuccBB = SuccNode->getBlock();
905        if (!LiveInBlocks.count(SuccBB))
906          continue;
907
908        DFBlocks.push_back(std::make_pair(BBNumbers[SuccBB], SuccBB));
909        if (!DefBlocks.count(SuccBB))
910          PQ.push(std::make_pair(SuccNode, SuccLevel));
911      }
912
913      for (DomTreeNode::iterator CI = Node->begin(), CE = Node->end(); CI != CE;
914           ++CI) {
915        if (!Visited.count(*CI))
916          Worklist.push_back(*CI);
917      }
918    }
919  }
920
921  if (DFBlocks.size() > 1)
922    std::sort(DFBlocks.begin(), DFBlocks.end());
923
924  unsigned CurrentVersion = 0;
925  for (unsigned i = 0, e = DFBlocks.size(); i != e; ++i)
926    QueuePhiNode(DFBlocks[i].second, AllocaNum, CurrentVersion);
927}
928
929/// \brief Queue a phi-node to be added to a basic-block for a specific Alloca.
930///
931/// Returns true if there wasn't already a phi-node for that variable
932bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
933                                  unsigned &Version) {
934  // Look up the basic-block in question.
935  PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
936
937  // If the BB already has a phi node added for the i'th alloca then we're done!
938  if (PN)
939    return false;
940
941  // Create a PhiNode using the dereferenced type... and add the phi-node to the
942  // BasicBlock.
943  PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
944                       Allocas[AllocaNo]->getName() + "." + Twine(Version++),
945                       BB->begin());
946  ++NumPHIInsert;
947  PhiToAllocaMap[PN] = AllocaNo;
948
949  if (AST && PN->getType()->isPointerTy())
950    AST->copyValue(PointerAllocaValues[AllocaNo], PN);
951
952  return true;
953}
954
955/// \brief Recursively traverse the CFG of the function, renaming loads and
956/// stores to the allocas which we are promoting.
957///
958/// IncomingVals indicates what value each Alloca contains on exit from the
959/// predecessor block Pred.
960void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
961                                RenamePassData::ValVector &IncomingVals,
962                                std::vector<RenamePassData> &Worklist) {
963NextIteration:
964  // If we are inserting any phi nodes into this BB, they will already be in the
965  // block.
966  if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
967    // If we have PHI nodes to update, compute the number of edges from Pred to
968    // BB.
969    if (PhiToAllocaMap.count(APN)) {
970      // We want to be able to distinguish between PHI nodes being inserted by
971      // this invocation of mem2reg from those phi nodes that already existed in
972      // the IR before mem2reg was run.  We determine that APN is being inserted
973      // because it is missing incoming edges.  All other PHI nodes being
974      // inserted by this pass of mem2reg will have the same number of incoming
975      // operands so far.  Remember this count.
976      unsigned NewPHINumOperands = APN->getNumOperands();
977
978      unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
979      assert(NumEdges && "Must be at least one edge from Pred to BB!");
980
981      // Add entries for all the phis.
982      BasicBlock::iterator PNI = BB->begin();
983      do {
984        unsigned AllocaNo = PhiToAllocaMap[APN];
985
986        // Add N incoming values to the PHI node.
987        for (unsigned i = 0; i != NumEdges; ++i)
988          APN->addIncoming(IncomingVals[AllocaNo], Pred);
989
990        // The currently active variable for this block is now the PHI.
991        IncomingVals[AllocaNo] = APN;
992
993        // Get the next phi node.
994        ++PNI;
995        APN = dyn_cast<PHINode>(PNI);
996        if (!APN)
997          break;
998
999        // Verify that it is missing entries.  If not, it is not being inserted
1000        // by this mem2reg invocation so we want to ignore it.
1001      } while (APN->getNumOperands() == NewPHINumOperands);
1002    }
1003  }
1004
1005  // Don't revisit blocks.
1006  if (!Visited.insert(BB))
1007    return;
1008
1009  for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) {
1010    Instruction *I = II++; // get the instruction, increment iterator
1011
1012    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1013      AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
1014      if (!Src)
1015        continue;
1016
1017      DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
1018      if (AI == AllocaLookup.end())
1019        continue;
1020
1021      Value *V = IncomingVals[AI->second];
1022
1023      // Anything using the load now uses the current value.
1024      LI->replaceAllUsesWith(V);
1025      if (AST && LI->getType()->isPointerTy())
1026        AST->deleteValue(LI);
1027      BB->getInstList().erase(LI);
1028    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1029      // Delete this instruction and mark the name as the current holder of the
1030      // value
1031      AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
1032      if (!Dest)
1033        continue;
1034
1035      DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
1036      if (ai == AllocaLookup.end())
1037        continue;
1038
1039      // what value were we writing?
1040      IncomingVals[ai->second] = SI->getOperand(0);
1041      // Record debuginfo for the store before removing it.
1042      if (DbgDeclareInst *DDI = AllocaDbgDeclares[ai->second])
1043        ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1044      BB->getInstList().erase(SI);
1045    }
1046  }
1047
1048  // 'Recurse' to our successors.
1049  succ_iterator I = succ_begin(BB), E = succ_end(BB);
1050  if (I == E)
1051    return;
1052
1053  // Keep track of the successors so we don't visit the same successor twice
1054  SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1055
1056  // Handle the first successor without using the worklist.
1057  VisitedSuccs.insert(*I);
1058  Pred = BB;
1059  BB = *I;
1060  ++I;
1061
1062  for (; I != E; ++I)
1063    if (VisitedSuccs.insert(*I))
1064      Worklist.push_back(RenamePassData(*I, Pred, IncomingVals));
1065
1066  goto NextIteration;
1067}
1068
1069void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1070                           AliasSetTracker *AST) {
1071  // If there is nothing to do, bail out...
1072  if (Allocas.empty())
1073    return;
1074
1075  PromoteMem2Reg(Allocas, DT, AST).run();
1076}
1077