SSAUpdater.cpp revision 2a6cbba2db261d2ee29a1373e195f95fd232e61b
1//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SSAUpdater class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "ssaupdater"
15#include "llvm/Transforms/Utils/SSAUpdater.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/TinyPtrVector.h"
18#include "llvm/Analysis/InstructionSimplify.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/Instructions.h"
21#include "llvm/IR/IntrinsicInst.h"
22#include "llvm/Support/AlignOf.h"
23#include "llvm/Support/Allocator.h"
24#include "llvm/Support/CFG.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/raw_ostream.h"
27#include "llvm/Transforms/Utils/BasicBlockUtils.h"
28#include "llvm/Transforms/Utils/Local.h"
29#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
30
31using namespace llvm;
32
33typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
34static AvailableValsTy &getAvailableVals(void *AV) {
35  return *static_cast<AvailableValsTy*>(AV);
36}
37
38SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
39  : AV(0), ProtoType(0), ProtoName(), InsertedPHIs(NewPHI) {}
40
41SSAUpdater::~SSAUpdater() {
42  delete static_cast<AvailableValsTy*>(AV);
43}
44
45void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
46  if (AV == 0)
47    AV = new AvailableValsTy();
48  else
49    getAvailableVals(AV).clear();
50  ProtoType = Ty;
51  ProtoName = Name;
52}
53
54bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
55  return getAvailableVals(AV).count(BB);
56}
57
58void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
59  assert(ProtoType != 0 && "Need to initialize SSAUpdater");
60  assert(ProtoType == V->getType() &&
61         "All rewritten values must have the same type");
62  getAvailableVals(AV)[BB] = V;
63}
64
65static bool IsEquivalentPHI(PHINode *PHI,
66                          SmallDenseMap<BasicBlock*, Value*, 8> &ValueMapping) {
67  unsigned PHINumValues = PHI->getNumIncomingValues();
68  if (PHINumValues != ValueMapping.size())
69    return false;
70
71  // Scan the phi to see if it matches.
72  for (unsigned i = 0, e = PHINumValues; i != e; ++i)
73    if (ValueMapping[PHI->getIncomingBlock(i)] !=
74        PHI->getIncomingValue(i)) {
75      return false;
76    }
77
78  return true;
79}
80
81Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
82  Value *Res = GetValueAtEndOfBlockInternal(BB);
83  return Res;
84}
85
86Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
87  // If there is no definition of the renamed variable in this block, just use
88  // GetValueAtEndOfBlock to do our work.
89  if (!HasValueForBlock(BB))
90    return GetValueAtEndOfBlock(BB);
91
92  // Otherwise, we have the hard case.  Get the live-in values for each
93  // predecessor.
94  SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
95  Value *SingularValue = 0;
96
97  // We can get our predecessor info by walking the pred_iterator list, but it
98  // is relatively slow.  If we already have PHI nodes in this block, walk one
99  // of them to get the predecessor list instead.
100  if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
101    for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
102      BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
103      Value *PredVal = GetValueAtEndOfBlock(PredBB);
104      PredValues.push_back(std::make_pair(PredBB, PredVal));
105
106      // Compute SingularValue.
107      if (i == 0)
108        SingularValue = PredVal;
109      else if (PredVal != SingularValue)
110        SingularValue = 0;
111    }
112  } else {
113    bool isFirstPred = true;
114    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
115      BasicBlock *PredBB = *PI;
116      Value *PredVal = GetValueAtEndOfBlock(PredBB);
117      PredValues.push_back(std::make_pair(PredBB, PredVal));
118
119      // Compute SingularValue.
120      if (isFirstPred) {
121        SingularValue = PredVal;
122        isFirstPred = false;
123      } else if (PredVal != SingularValue)
124        SingularValue = 0;
125    }
126  }
127
128  // If there are no predecessors, just return undef.
129  if (PredValues.empty())
130    return UndefValue::get(ProtoType);
131
132  // Otherwise, if all the merged values are the same, just use it.
133  if (SingularValue != 0)
134    return SingularValue;
135
136  // Otherwise, we do need a PHI: check to see if we already have one available
137  // in this block that produces the right value.
138  if (isa<PHINode>(BB->begin())) {
139    SmallDenseMap<BasicBlock*, Value*, 8> ValueMapping(PredValues.begin(),
140                                                       PredValues.end());
141    PHINode *SomePHI;
142    for (BasicBlock::iterator It = BB->begin();
143         (SomePHI = dyn_cast<PHINode>(It)); ++It) {
144      if (IsEquivalentPHI(SomePHI, ValueMapping))
145        return SomePHI;
146    }
147  }
148
149  // Ok, we have no way out, insert a new one now.
150  PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
151                                         ProtoName, &BB->front());
152
153  // Fill in all the predecessors of the PHI.
154  for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
155    InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
156
157  // See if the PHI node can be merged to a single value.  This can happen in
158  // loop cases when we get a PHI of itself and one other value.
159  if (Value *V = SimplifyInstruction(InsertedPHI)) {
160    InsertedPHI->eraseFromParent();
161    return V;
162  }
163
164  // Set the DebugLoc of the inserted PHI, if available.
165  DebugLoc DL;
166  if (const Instruction *I = BB->getFirstNonPHI())
167      DL = I->getDebugLoc();
168  InsertedPHI->setDebugLoc(DL);
169
170  // If the client wants to know about all new instructions, tell it.
171  if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
172
173  DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
174  return InsertedPHI;
175}
176
177void SSAUpdater::RewriteUse(Use &U) {
178  Instruction *User = cast<Instruction>(U.getUser());
179
180  Value *V;
181  if (PHINode *UserPN = dyn_cast<PHINode>(User))
182    V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
183  else
184    V = GetValueInMiddleOfBlock(User->getParent());
185
186  // Notify that users of the existing value that it is being replaced.
187  Value *OldVal = U.get();
188  if (OldVal != V && OldVal->hasValueHandle())
189    ValueHandleBase::ValueIsRAUWd(OldVal, V);
190
191  U.set(V);
192}
193
194void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
195  Instruction *User = cast<Instruction>(U.getUser());
196
197  Value *V;
198  if (PHINode *UserPN = dyn_cast<PHINode>(User))
199    V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
200  else
201    V = GetValueAtEndOfBlock(User->getParent());
202
203  U.set(V);
204}
205
206namespace llvm {
207template<>
208class SSAUpdaterTraits<SSAUpdater> {
209public:
210  typedef BasicBlock BlkT;
211  typedef Value *ValT;
212  typedef PHINode PhiT;
213
214  typedef succ_iterator BlkSucc_iterator;
215  static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
216  static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
217
218  class PHI_iterator {
219  private:
220    PHINode *PHI;
221    unsigned idx;
222
223  public:
224    explicit PHI_iterator(PHINode *P) // begin iterator
225      : PHI(P), idx(0) {}
226    PHI_iterator(PHINode *P, bool) // end iterator
227      : PHI(P), idx(PHI->getNumIncomingValues()) {}
228
229    PHI_iterator &operator++() { ++idx; return *this; }
230    bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
231    bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
232    Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
233    BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
234  };
235
236  static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
237  static PHI_iterator PHI_end(PhiT *PHI) {
238    return PHI_iterator(PHI, true);
239  }
240
241  /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
242  /// vector, set Info->NumPreds, and allocate space in Info->Preds.
243  static void FindPredecessorBlocks(BasicBlock *BB,
244                                    SmallVectorImpl<BasicBlock*> *Preds) {
245    // We can get our predecessor info by walking the pred_iterator list,
246    // but it is relatively slow.  If we already have PHI nodes in this
247    // block, walk one of them to get the predecessor list instead.
248    if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
249      for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
250        Preds->push_back(SomePhi->getIncomingBlock(PI));
251    } else {
252      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
253        Preds->push_back(*PI);
254    }
255  }
256
257  /// GetUndefVal - Get an undefined value of the same type as the value
258  /// being handled.
259  static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
260    return UndefValue::get(Updater->ProtoType);
261  }
262
263  /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
264  /// Reserve space for the operands but do not fill them in yet.
265  static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
266                               SSAUpdater *Updater) {
267    PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
268                                   Updater->ProtoName, &BB->front());
269    return PHI;
270  }
271
272  /// AddPHIOperand - Add the specified value as an operand of the PHI for
273  /// the specified predecessor block.
274  static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
275    PHI->addIncoming(Val, Pred);
276  }
277
278  /// InstrIsPHI - Check if an instruction is a PHI.
279  ///
280  static PHINode *InstrIsPHI(Instruction *I) {
281    return dyn_cast<PHINode>(I);
282  }
283
284  /// ValueIsPHI - Check if a value is a PHI.
285  ///
286  static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
287    return dyn_cast<PHINode>(Val);
288  }
289
290  /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
291  /// operands, i.e., it was just added.
292  static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
293    PHINode *PHI = ValueIsPHI(Val, Updater);
294    if (PHI && PHI->getNumIncomingValues() == 0)
295      return PHI;
296    return 0;
297  }
298
299  /// GetPHIValue - For the specified PHI instruction, return the value
300  /// that it defines.
301  static Value *GetPHIValue(PHINode *PHI) {
302    return PHI;
303  }
304};
305
306} // End llvm namespace
307
308/// Check to see if AvailableVals has an entry for the specified BB and if so,
309/// return it.  If not, construct SSA form by first calculating the required
310/// placement of PHIs and then inserting new PHIs where needed.
311Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
312  AvailableValsTy &AvailableVals = getAvailableVals(AV);
313  if (Value *V = AvailableVals[BB])
314    return V;
315
316  SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
317  return Impl.GetValue(BB);
318}
319
320//===----------------------------------------------------------------------===//
321// LoadAndStorePromoter Implementation
322//===----------------------------------------------------------------------===//
323
324LoadAndStorePromoter::
325LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts,
326                     SSAUpdater &S, StringRef BaseName) : SSA(S) {
327  if (Insts.empty()) return;
328
329  Value *SomeVal;
330  if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
331    SomeVal = LI;
332  else
333    SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
334
335  if (BaseName.empty())
336    BaseName = SomeVal->getName();
337  SSA.Initialize(SomeVal->getType(), BaseName);
338}
339
340
341void LoadAndStorePromoter::
342run(const SmallVectorImpl<Instruction*> &Insts) const {
343
344  // First step: bucket up uses of the alloca by the block they occur in.
345  // This is important because we have to handle multiple defs/uses in a block
346  // ourselves: SSAUpdater is purely for cross-block references.
347  DenseMap<BasicBlock*, TinyPtrVector<Instruction*> > UsesByBlock;
348
349  for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
350    Instruction *User = Insts[i];
351    UsesByBlock[User->getParent()].push_back(User);
352  }
353
354  // Okay, now we can iterate over all the blocks in the function with uses,
355  // processing them.  Keep track of which loads are loading a live-in value.
356  // Walk the uses in the use-list order to be determinstic.
357  SmallVector<LoadInst*, 32> LiveInLoads;
358  DenseMap<Value*, Value*> ReplacedLoads;
359
360  for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
361    Instruction *User = Insts[i];
362    BasicBlock *BB = User->getParent();
363    TinyPtrVector<Instruction*> &BlockUses = UsesByBlock[BB];
364
365    // If this block has already been processed, ignore this repeat use.
366    if (BlockUses.empty()) continue;
367
368    // Okay, this is the first use in the block.  If this block just has a
369    // single user in it, we can rewrite it trivially.
370    if (BlockUses.size() == 1) {
371      // If it is a store, it is a trivial def of the value in the block.
372      if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
373        updateDebugInfo(SI);
374        SSA.AddAvailableValue(BB, SI->getOperand(0));
375      } else
376        // Otherwise it is a load, queue it to rewrite as a live-in load.
377        LiveInLoads.push_back(cast<LoadInst>(User));
378      BlockUses.clear();
379      continue;
380    }
381
382    // Otherwise, check to see if this block is all loads.
383    bool HasStore = false;
384    for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
385      if (isa<StoreInst>(BlockUses[i])) {
386        HasStore = true;
387        break;
388      }
389    }
390
391    // If so, we can queue them all as live in loads.  We don't have an
392    // efficient way to tell which on is first in the block and don't want to
393    // scan large blocks, so just add all loads as live ins.
394    if (!HasStore) {
395      for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
396        LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
397      BlockUses.clear();
398      continue;
399    }
400
401    // Otherwise, we have mixed loads and stores (or just a bunch of stores).
402    // Since SSAUpdater is purely for cross-block values, we need to determine
403    // the order of these instructions in the block.  If the first use in the
404    // block is a load, then it uses the live in value.  The last store defines
405    // the live out value.  We handle this by doing a linear scan of the block.
406    Value *StoredValue = 0;
407    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
408      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
409        // If this is a load from an unrelated pointer, ignore it.
410        if (!isInstInList(L, Insts)) continue;
411
412        // If we haven't seen a store yet, this is a live in use, otherwise
413        // use the stored value.
414        if (StoredValue) {
415          replaceLoadWithValue(L, StoredValue);
416          L->replaceAllUsesWith(StoredValue);
417          ReplacedLoads[L] = StoredValue;
418        } else {
419          LiveInLoads.push_back(L);
420        }
421        continue;
422      }
423
424      if (StoreInst *SI = dyn_cast<StoreInst>(II)) {
425        // If this is a store to an unrelated pointer, ignore it.
426        if (!isInstInList(SI, Insts)) continue;
427        updateDebugInfo(SI);
428
429        // Remember that this is the active value in the block.
430        StoredValue = SI->getOperand(0);
431      }
432    }
433
434    // The last stored value that happened is the live-out for the block.
435    assert(StoredValue && "Already checked that there is a store in block");
436    SSA.AddAvailableValue(BB, StoredValue);
437    BlockUses.clear();
438  }
439
440  // Okay, now we rewrite all loads that use live-in values in the loop,
441  // inserting PHI nodes as necessary.
442  for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
443    LoadInst *ALoad = LiveInLoads[i];
444    Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
445    replaceLoadWithValue(ALoad, NewVal);
446
447    // Avoid assertions in unreachable code.
448    if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
449    ALoad->replaceAllUsesWith(NewVal);
450    ReplacedLoads[ALoad] = NewVal;
451  }
452
453  // Allow the client to do stuff before we start nuking things.
454  doExtraRewritesBeforeFinalDeletion();
455
456  // Now that everything is rewritten, delete the old instructions from the
457  // function.  They should all be dead now.
458  for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
459    Instruction *User = Insts[i];
460
461    // If this is a load that still has uses, then the load must have been added
462    // as a live value in the SSAUpdate data structure for a block (e.g. because
463    // the loaded value was stored later).  In this case, we need to recursively
464    // propagate the updates until we get to the real value.
465    if (!User->use_empty()) {
466      Value *NewVal = ReplacedLoads[User];
467      assert(NewVal && "not a replaced load?");
468
469      // Propagate down to the ultimate replacee.  The intermediately loads
470      // could theoretically already have been deleted, so we don't want to
471      // dereference the Value*'s.
472      DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
473      while (RLI != ReplacedLoads.end()) {
474        NewVal = RLI->second;
475        RLI = ReplacedLoads.find(NewVal);
476      }
477
478      replaceLoadWithValue(cast<LoadInst>(User), NewVal);
479      User->replaceAllUsesWith(NewVal);
480    }
481
482    instructionDeleted(User);
483    User->eraseFromParent();
484  }
485}
486
487bool
488LoadAndStorePromoter::isInstInList(Instruction *I,
489                                   const SmallVectorImpl<Instruction*> &Insts)
490                                   const {
491  return std::find(Insts.begin(), Insts.end(), I) != Insts.end();
492}
493