SSAUpdater.cpp revision 4d588bceb035589ade874f432d70a41bb7ec6273
1//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SSAUpdater class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "ssaupdater"
15#include "llvm/Instructions.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/Support/AlignOf.h"
18#include "llvm/Support/Allocator.h"
19#include "llvm/Support/CFG.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Support/raw_ostream.h"
22#include "llvm/Transforms/Utils/SSAUpdater.h"
23#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
24using namespace llvm;
25
26typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
27static AvailableValsTy &getAvailableVals(void *AV) {
28  return *static_cast<AvailableValsTy*>(AV);
29}
30
31SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
32  : AV(0), ProtoType(0), ProtoName(), InsertedPHIs(NewPHI) {}
33
34SSAUpdater::~SSAUpdater() {
35  delete &getAvailableVals(AV);
36}
37
38/// Initialize - Reset this object to get ready for a new set of SSA
39/// updates with type 'Ty'.  PHI nodes get a name based on 'Name'.
40void SSAUpdater::Initialize(const Type *Ty, StringRef Name) {
41  if (AV == 0)
42    AV = new AvailableValsTy();
43  else
44    getAvailableVals(AV).clear();
45  ProtoType = Ty;
46  ProtoName = Name;
47}
48
49/// HasValueForBlock - Return true if the SSAUpdater already has a value for
50/// the specified block.
51bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
52  return getAvailableVals(AV).count(BB);
53}
54
55/// AddAvailableValue - Indicate that a rewritten value is available in the
56/// specified block with the specified value.
57void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
58  assert(ProtoType != 0 && "Need to initialize SSAUpdater");
59  assert(ProtoType == V->getType() &&
60         "All rewritten values must have the same type");
61  getAvailableVals(AV)[BB] = V;
62}
63
64/// IsEquivalentPHI - Check if PHI has the same incoming value as specified
65/// in ValueMapping for each predecessor block.
66static bool IsEquivalentPHI(PHINode *PHI,
67                            DenseMap<BasicBlock*, Value*> &ValueMapping) {
68  unsigned PHINumValues = PHI->getNumIncomingValues();
69  if (PHINumValues != ValueMapping.size())
70    return false;
71
72  // Scan the phi to see if it matches.
73  for (unsigned i = 0, e = PHINumValues; i != e; ++i)
74    if (ValueMapping[PHI->getIncomingBlock(i)] !=
75        PHI->getIncomingValue(i)) {
76      return false;
77    }
78
79  return true;
80}
81
82/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
83/// live at the end of the specified block.
84Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
85  Value *Res = GetValueAtEndOfBlockInternal(BB);
86  return Res;
87}
88
89/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
90/// is live in the middle of the specified block.
91///
92/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
93/// important case: if there is a definition of the rewritten value after the
94/// 'use' in BB.  Consider code like this:
95///
96///      X1 = ...
97///   SomeBB:
98///      use(X)
99///      X2 = ...
100///      br Cond, SomeBB, OutBB
101///
102/// In this case, there are two values (X1 and X2) added to the AvailableVals
103/// set by the client of the rewriter, and those values are both live out of
104/// their respective blocks.  However, the use of X happens in the *middle* of
105/// a block.  Because of this, we need to insert a new PHI node in SomeBB to
106/// merge the appropriate values, and this value isn't live out of the block.
107///
108Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
109  // If there is no definition of the renamed variable in this block, just use
110  // GetValueAtEndOfBlock to do our work.
111  if (!HasValueForBlock(BB))
112    return GetValueAtEndOfBlock(BB);
113
114  // Otherwise, we have the hard case.  Get the live-in values for each
115  // predecessor.
116  SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
117  Value *SingularValue = 0;
118
119  // We can get our predecessor info by walking the pred_iterator list, but it
120  // is relatively slow.  If we already have PHI nodes in this block, walk one
121  // of them to get the predecessor list instead.
122  if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
123    for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
124      BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
125      Value *PredVal = GetValueAtEndOfBlock(PredBB);
126      PredValues.push_back(std::make_pair(PredBB, PredVal));
127
128      // Compute SingularValue.
129      if (i == 0)
130        SingularValue = PredVal;
131      else if (PredVal != SingularValue)
132        SingularValue = 0;
133    }
134  } else {
135    bool isFirstPred = true;
136    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
137      BasicBlock *PredBB = *PI;
138      Value *PredVal = GetValueAtEndOfBlock(PredBB);
139      PredValues.push_back(std::make_pair(PredBB, PredVal));
140
141      // Compute SingularValue.
142      if (isFirstPred) {
143        SingularValue = PredVal;
144        isFirstPred = false;
145      } else if (PredVal != SingularValue)
146        SingularValue = 0;
147    }
148  }
149
150  // If there are no predecessors, just return undef.
151  if (PredValues.empty())
152    return UndefValue::get(ProtoType);
153
154  // Otherwise, if all the merged values are the same, just use it.
155  if (SingularValue != 0)
156    return SingularValue;
157
158  // Otherwise, we do need a PHI: check to see if we already have one available
159  // in this block that produces the right value.
160  if (isa<PHINode>(BB->begin())) {
161    DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(),
162                                               PredValues.end());
163    PHINode *SomePHI;
164    for (BasicBlock::iterator It = BB->begin();
165         (SomePHI = dyn_cast<PHINode>(It)); ++It) {
166      if (IsEquivalentPHI(SomePHI, ValueMapping))
167        return SomePHI;
168    }
169  }
170
171  // Ok, we have no way out, insert a new one now.
172  PHINode *InsertedPHI = PHINode::Create(ProtoType, ProtoName, &BB->front());
173  InsertedPHI->reserveOperandSpace(PredValues.size());
174
175  // Fill in all the predecessors of the PHI.
176  for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
177    InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
178
179  // See if the PHI node can be merged to a single value.  This can happen in
180  // loop cases when we get a PHI of itself and one other value.
181  if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
182    InsertedPHI->eraseFromParent();
183    return ConstVal;
184  }
185
186  // If the client wants to know about all new instructions, tell it.
187  if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
188
189  DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
190  return InsertedPHI;
191}
192
193/// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
194/// which use their value in the corresponding predecessor.
195void SSAUpdater::RewriteUse(Use &U) {
196  Instruction *User = cast<Instruction>(U.getUser());
197
198  Value *V;
199  if (PHINode *UserPN = dyn_cast<PHINode>(User))
200    V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
201  else
202    V = GetValueInMiddleOfBlock(User->getParent());
203
204  U.set(V);
205}
206
207/// RewriteUseAfterInsertions - Rewrite a use, just like RewriteUse.  However,
208/// this version of the method can rewrite uses in the same block as a
209/// definition, because it assumes that all uses of a value are below any
210/// inserted values.
211void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
212  Instruction *User = cast<Instruction>(U.getUser());
213
214  Value *V;
215  if (PHINode *UserPN = dyn_cast<PHINode>(User))
216    V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
217  else
218    V = GetValueAtEndOfBlock(User->getParent());
219
220  U.set(V);
221}
222
223/// PHIiter - Iterator for PHI operands.  This is used for the PHI_iterator
224/// in the SSAUpdaterImpl template.
225namespace {
226  class PHIiter {
227  private:
228    PHINode *PHI;
229    unsigned idx;
230
231  public:
232    explicit PHIiter(PHINode *P) // begin iterator
233      : PHI(P), idx(0) {}
234    PHIiter(PHINode *P, bool) // end iterator
235      : PHI(P), idx(PHI->getNumIncomingValues()) {}
236
237    PHIiter &operator++() { ++idx; return *this; }
238    bool operator==(const PHIiter& x) const { return idx == x.idx; }
239    bool operator!=(const PHIiter& x) const { return !operator==(x); }
240    Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
241    BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
242  };
243}
244
245/// SSAUpdaterTraits<SSAUpdater> - Traits for the SSAUpdaterImpl template,
246/// specialized for SSAUpdater.
247namespace llvm {
248template<>
249class SSAUpdaterTraits<SSAUpdater> {
250public:
251  typedef BasicBlock BlkT;
252  typedef Value *ValT;
253  typedef PHINode PhiT;
254
255  typedef succ_iterator BlkSucc_iterator;
256  static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
257  static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
258
259  typedef PHIiter PHI_iterator;
260  static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
261  static inline PHI_iterator PHI_end(PhiT *PHI) {
262    return PHI_iterator(PHI, true);
263  }
264
265  /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
266  /// vector, set Info->NumPreds, and allocate space in Info->Preds.
267  static void FindPredecessorBlocks(BasicBlock *BB,
268                                    SmallVectorImpl<BasicBlock*> *Preds) {
269    // We can get our predecessor info by walking the pred_iterator list,
270    // but it is relatively slow.  If we already have PHI nodes in this
271    // block, walk one of them to get the predecessor list instead.
272    if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
273      for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
274        Preds->push_back(SomePhi->getIncomingBlock(PI));
275    } else {
276      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
277        Preds->push_back(*PI);
278    }
279  }
280
281  /// GetUndefVal - Get an undefined value of the same type as the value
282  /// being handled.
283  static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
284    return UndefValue::get(Updater->ProtoType);
285  }
286
287  /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
288  /// Reserve space for the operands but do not fill them in yet.
289  static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
290                               SSAUpdater *Updater) {
291    PHINode *PHI = PHINode::Create(Updater->ProtoType, Updater->ProtoName,
292                                   &BB->front());
293    PHI->reserveOperandSpace(NumPreds);
294    return PHI;
295  }
296
297  /// AddPHIOperand - Add the specified value as an operand of the PHI for
298  /// the specified predecessor block.
299  static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
300    PHI->addIncoming(Val, Pred);
301  }
302
303  /// InstrIsPHI - Check if an instruction is a PHI.
304  ///
305  static PHINode *InstrIsPHI(Instruction *I) {
306    return dyn_cast<PHINode>(I);
307  }
308
309  /// ValueIsPHI - Check if a value is a PHI.
310  ///
311  static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
312    return dyn_cast<PHINode>(Val);
313  }
314
315  /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
316  /// operands, i.e., it was just added.
317  static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
318    PHINode *PHI = ValueIsPHI(Val, Updater);
319    if (PHI && PHI->getNumIncomingValues() == 0)
320      return PHI;
321    return 0;
322  }
323
324  /// GetPHIValue - For the specified PHI instruction, return the value
325  /// that it defines.
326  static Value *GetPHIValue(PHINode *PHI) {
327    return PHI;
328  }
329};
330
331} // End llvm namespace
332
333/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
334/// for the specified BB and if so, return it.  If not, construct SSA form by
335/// first calculating the required placement of PHIs and then inserting new
336/// PHIs where needed.
337Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
338  AvailableValsTy &AvailableVals = getAvailableVals(AV);
339  if (Value *V = AvailableVals[BB])
340    return V;
341
342  SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
343  return Impl.GetValue(BB);
344}
345