SSAUpdater.cpp revision 562b84b3aea359d1f918184e355da82bf05eb290
1//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SSAUpdater class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "ssaupdater"
15#include "llvm/Constants.h"
16#include "llvm/Instructions.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/Analysis/InstructionSimplify.h"
19#include "llvm/Support/AlignOf.h"
20#include "llvm/Support/Allocator.h"
21#include "llvm/Support/CFG.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/raw_ostream.h"
24#include "llvm/Transforms/Utils/SSAUpdater.h"
25#include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
26using namespace llvm;
27
28typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
29static AvailableValsTy &getAvailableVals(void *AV) {
30  return *static_cast<AvailableValsTy*>(AV);
31}
32
33SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
34  : AV(0), ProtoType(0), ProtoName(), InsertedPHIs(NewPHI) {}
35
36SSAUpdater::~SSAUpdater() {
37  delete &getAvailableVals(AV);
38}
39
40/// Initialize - Reset this object to get ready for a new set of SSA
41/// updates with type 'Ty'.  PHI nodes get a name based on 'Name'.
42void SSAUpdater::Initialize(const Type *Ty, StringRef Name) {
43  if (AV == 0)
44    AV = new AvailableValsTy();
45  else
46    getAvailableVals(AV).clear();
47  ProtoType = Ty;
48  ProtoName = Name;
49}
50
51/// HasValueForBlock - Return true if the SSAUpdater already has a value for
52/// the specified block.
53bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
54  return getAvailableVals(AV).count(BB);
55}
56
57/// AddAvailableValue - Indicate that a rewritten value is available in the
58/// specified block with the specified value.
59void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
60  assert(ProtoType != 0 && "Need to initialize SSAUpdater");
61  assert(ProtoType == V->getType() &&
62         "All rewritten values must have the same type");
63  getAvailableVals(AV)[BB] = V;
64}
65
66/// IsEquivalentPHI - Check if PHI has the same incoming value as specified
67/// in ValueMapping for each predecessor block.
68static bool IsEquivalentPHI(PHINode *PHI,
69                            DenseMap<BasicBlock*, Value*> &ValueMapping) {
70  unsigned PHINumValues = PHI->getNumIncomingValues();
71  if (PHINumValues != ValueMapping.size())
72    return false;
73
74  // Scan the phi to see if it matches.
75  for (unsigned i = 0, e = PHINumValues; i != e; ++i)
76    if (ValueMapping[PHI->getIncomingBlock(i)] !=
77        PHI->getIncomingValue(i)) {
78      return false;
79    }
80
81  return true;
82}
83
84/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
85/// live at the end of the specified block.
86Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
87  Value *Res = GetValueAtEndOfBlockInternal(BB);
88  return Res;
89}
90
91/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
92/// is live in the middle of the specified block.
93///
94/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
95/// important case: if there is a definition of the rewritten value after the
96/// 'use' in BB.  Consider code like this:
97///
98///      X1 = ...
99///   SomeBB:
100///      use(X)
101///      X2 = ...
102///      br Cond, SomeBB, OutBB
103///
104/// In this case, there are two values (X1 and X2) added to the AvailableVals
105/// set by the client of the rewriter, and those values are both live out of
106/// their respective blocks.  However, the use of X happens in the *middle* of
107/// a block.  Because of this, we need to insert a new PHI node in SomeBB to
108/// merge the appropriate values, and this value isn't live out of the block.
109///
110Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
111  // If there is no definition of the renamed variable in this block, just use
112  // GetValueAtEndOfBlock to do our work.
113  if (!HasValueForBlock(BB))
114    return GetValueAtEndOfBlock(BB);
115
116  // Otherwise, we have the hard case.  Get the live-in values for each
117  // predecessor.
118  SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
119  Value *SingularValue = 0;
120
121  // We can get our predecessor info by walking the pred_iterator list, but it
122  // is relatively slow.  If we already have PHI nodes in this block, walk one
123  // of them to get the predecessor list instead.
124  if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
125    for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
126      BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
127      Value *PredVal = GetValueAtEndOfBlock(PredBB);
128      PredValues.push_back(std::make_pair(PredBB, PredVal));
129
130      // Compute SingularValue.
131      if (i == 0)
132        SingularValue = PredVal;
133      else if (PredVal != SingularValue)
134        SingularValue = 0;
135    }
136  } else {
137    bool isFirstPred = true;
138    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
139      BasicBlock *PredBB = *PI;
140      Value *PredVal = GetValueAtEndOfBlock(PredBB);
141      PredValues.push_back(std::make_pair(PredBB, PredVal));
142
143      // Compute SingularValue.
144      if (isFirstPred) {
145        SingularValue = PredVal;
146        isFirstPred = false;
147      } else if (PredVal != SingularValue)
148        SingularValue = 0;
149    }
150  }
151
152  // If there are no predecessors, just return undef.
153  if (PredValues.empty())
154    return UndefValue::get(ProtoType);
155
156  // Otherwise, if all the merged values are the same, just use it.
157  if (SingularValue != 0)
158    return SingularValue;
159
160  // Otherwise, we do need a PHI: check to see if we already have one available
161  // in this block that produces the right value.
162  if (isa<PHINode>(BB->begin())) {
163    DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(),
164                                               PredValues.end());
165    PHINode *SomePHI;
166    for (BasicBlock::iterator It = BB->begin();
167         (SomePHI = dyn_cast<PHINode>(It)); ++It) {
168      if (IsEquivalentPHI(SomePHI, ValueMapping))
169        return SomePHI;
170    }
171  }
172
173  // Ok, we have no way out, insert a new one now.
174  PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
175                                         ProtoName, &BB->front());
176
177  // Fill in all the predecessors of the PHI.
178  for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
179    InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
180
181  // See if the PHI node can be merged to a single value.  This can happen in
182  // loop cases when we get a PHI of itself and one other value.
183  if (Value *V = SimplifyInstruction(InsertedPHI)) {
184    InsertedPHI->eraseFromParent();
185    return V;
186  }
187
188  // If the client wants to know about all new instructions, tell it.
189  if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
190
191  DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
192  return InsertedPHI;
193}
194
195/// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
196/// which use their value in the corresponding predecessor.
197void SSAUpdater::RewriteUse(Use &U) {
198  Instruction *User = cast<Instruction>(U.getUser());
199
200  Value *V;
201  if (PHINode *UserPN = dyn_cast<PHINode>(User))
202    V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
203  else
204    V = GetValueInMiddleOfBlock(User->getParent());
205
206  U.set(V);
207}
208
209/// RewriteUseAfterInsertions - Rewrite a use, just like RewriteUse.  However,
210/// this version of the method can rewrite uses in the same block as a
211/// definition, because it assumes that all uses of a value are below any
212/// inserted values.
213void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
214  Instruction *User = cast<Instruction>(U.getUser());
215
216  Value *V;
217  if (PHINode *UserPN = dyn_cast<PHINode>(User))
218    V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
219  else
220    V = GetValueAtEndOfBlock(User->getParent());
221
222  U.set(V);
223}
224
225/// PHIiter - Iterator for PHI operands.  This is used for the PHI_iterator
226/// in the SSAUpdaterImpl template.
227namespace {
228  class PHIiter {
229  private:
230    PHINode *PHI;
231    unsigned idx;
232
233  public:
234    explicit PHIiter(PHINode *P) // begin iterator
235      : PHI(P), idx(0) {}
236    PHIiter(PHINode *P, bool) // end iterator
237      : PHI(P), idx(PHI->getNumIncomingValues()) {}
238
239    PHIiter &operator++() { ++idx; return *this; }
240    bool operator==(const PHIiter& x) const { return idx == x.idx; }
241    bool operator!=(const PHIiter& x) const { return !operator==(x); }
242    Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
243    BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
244  };
245}
246
247/// SSAUpdaterTraits<SSAUpdater> - Traits for the SSAUpdaterImpl template,
248/// specialized for SSAUpdater.
249namespace llvm {
250template<>
251class SSAUpdaterTraits<SSAUpdater> {
252public:
253  typedef BasicBlock BlkT;
254  typedef Value *ValT;
255  typedef PHINode PhiT;
256
257  typedef succ_iterator BlkSucc_iterator;
258  static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
259  static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
260
261  typedef PHIiter PHI_iterator;
262  static inline PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
263  static inline PHI_iterator PHI_end(PhiT *PHI) {
264    return PHI_iterator(PHI, true);
265  }
266
267  /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
268  /// vector, set Info->NumPreds, and allocate space in Info->Preds.
269  static void FindPredecessorBlocks(BasicBlock *BB,
270                                    SmallVectorImpl<BasicBlock*> *Preds) {
271    // We can get our predecessor info by walking the pred_iterator list,
272    // but it is relatively slow.  If we already have PHI nodes in this
273    // block, walk one of them to get the predecessor list instead.
274    if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
275      for (unsigned PI = 0, E = SomePhi->getNumIncomingValues(); PI != E; ++PI)
276        Preds->push_back(SomePhi->getIncomingBlock(PI));
277    } else {
278      for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
279        Preds->push_back(*PI);
280    }
281  }
282
283  /// GetUndefVal - Get an undefined value of the same type as the value
284  /// being handled.
285  static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
286    return UndefValue::get(Updater->ProtoType);
287  }
288
289  /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
290  /// Reserve space for the operands but do not fill them in yet.
291  static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
292                               SSAUpdater *Updater) {
293    PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
294                                   Updater->ProtoName, &BB->front());
295    return PHI;
296  }
297
298  /// AddPHIOperand - Add the specified value as an operand of the PHI for
299  /// the specified predecessor block.
300  static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
301    PHI->addIncoming(Val, Pred);
302  }
303
304  /// InstrIsPHI - Check if an instruction is a PHI.
305  ///
306  static PHINode *InstrIsPHI(Instruction *I) {
307    return dyn_cast<PHINode>(I);
308  }
309
310  /// ValueIsPHI - Check if a value is a PHI.
311  ///
312  static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
313    return dyn_cast<PHINode>(Val);
314  }
315
316  /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
317  /// operands, i.e., it was just added.
318  static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
319    PHINode *PHI = ValueIsPHI(Val, Updater);
320    if (PHI && PHI->getNumIncomingValues() == 0)
321      return PHI;
322    return 0;
323  }
324
325  /// GetPHIValue - For the specified PHI instruction, return the value
326  /// that it defines.
327  static Value *GetPHIValue(PHINode *PHI) {
328    return PHI;
329  }
330};
331
332} // End llvm namespace
333
334/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
335/// for the specified BB and if so, return it.  If not, construct SSA form by
336/// first calculating the required placement of PHIs and then inserting new
337/// PHIs where needed.
338Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
339  AvailableValsTy &AvailableVals = getAvailableVals(AV);
340  if (Value *V = AvailableVals[BB])
341    return V;
342
343  SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
344  return Impl.GetValue(BB);
345}
346
347//===----------------------------------------------------------------------===//
348// LoadAndStorePromoter Implementation
349//===----------------------------------------------------------------------===//
350
351LoadAndStorePromoter::
352LoadAndStorePromoter(const SmallVectorImpl<Instruction*> &Insts,
353                     SSAUpdater &S, StringRef BaseName) : SSA(S) {
354  if (Insts.empty()) return;
355
356  Value *SomeVal;
357  if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
358    SomeVal = LI;
359  else
360    SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
361
362  if (BaseName.empty())
363    BaseName = SomeVal->getName();
364  SSA.Initialize(SomeVal->getType(), BaseName);
365}
366
367
368void LoadAndStorePromoter::
369run(const SmallVectorImpl<Instruction*> &Insts) const {
370
371  // First step: bucket up uses of the alloca by the block they occur in.
372  // This is important because we have to handle multiple defs/uses in a block
373  // ourselves: SSAUpdater is purely for cross-block references.
374  // FIXME: Want a TinyVector<Instruction*> since there is often 0/1 element.
375  DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock;
376
377  for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
378    Instruction *User = Insts[i];
379    UsesByBlock[User->getParent()].push_back(User);
380  }
381
382  // Okay, now we can iterate over all the blocks in the function with uses,
383  // processing them.  Keep track of which loads are loading a live-in value.
384  // Walk the uses in the use-list order to be determinstic.
385  SmallVector<LoadInst*, 32> LiveInLoads;
386  DenseMap<Value*, Value*> ReplacedLoads;
387
388  for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
389    Instruction *User = Insts[i];
390    BasicBlock *BB = User->getParent();
391    std::vector<Instruction*> &BlockUses = UsesByBlock[BB];
392
393    // If this block has already been processed, ignore this repeat use.
394    if (BlockUses.empty()) continue;
395
396    // Okay, this is the first use in the block.  If this block just has a
397    // single user in it, we can rewrite it trivially.
398    if (BlockUses.size() == 1) {
399      // If it is a store, it is a trivial def of the value in the block.
400      if (StoreInst *SI = dyn_cast<StoreInst>(User))
401        SSA.AddAvailableValue(BB, SI->getOperand(0));
402      else
403        // Otherwise it is a load, queue it to rewrite as a live-in load.
404        LiveInLoads.push_back(cast<LoadInst>(User));
405      BlockUses.clear();
406      continue;
407    }
408
409    // Otherwise, check to see if this block is all loads.
410    bool HasStore = false;
411    for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
412      if (isa<StoreInst>(BlockUses[i])) {
413        HasStore = true;
414        break;
415      }
416    }
417
418    // If so, we can queue them all as live in loads.  We don't have an
419    // efficient way to tell which on is first in the block and don't want to
420    // scan large blocks, so just add all loads as live ins.
421    if (!HasStore) {
422      for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
423        LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
424      BlockUses.clear();
425      continue;
426    }
427
428    // Otherwise, we have mixed loads and stores (or just a bunch of stores).
429    // Since SSAUpdater is purely for cross-block values, we need to determine
430    // the order of these instructions in the block.  If the first use in the
431    // block is a load, then it uses the live in value.  The last store defines
432    // the live out value.  We handle this by doing a linear scan of the block.
433    Value *StoredValue = 0;
434    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
435      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
436        // If this is a load from an unrelated pointer, ignore it.
437        if (!isInstInList(L, Insts)) continue;
438
439        // If we haven't seen a store yet, this is a live in use, otherwise
440        // use the stored value.
441        if (StoredValue) {
442          replaceLoadWithValue(L, StoredValue);
443          L->replaceAllUsesWith(StoredValue);
444          ReplacedLoads[L] = StoredValue;
445        } else {
446          LiveInLoads.push_back(L);
447        }
448        continue;
449      }
450
451      if (StoreInst *S = dyn_cast<StoreInst>(II)) {
452        // If this is a store to an unrelated pointer, ignore it.
453        if (!isInstInList(S, Insts)) continue;
454
455        // Remember that this is the active value in the block.
456        StoredValue = S->getOperand(0);
457      }
458    }
459
460    // The last stored value that happened is the live-out for the block.
461    assert(StoredValue && "Already checked that there is a store in block");
462    SSA.AddAvailableValue(BB, StoredValue);
463    BlockUses.clear();
464  }
465
466  // Okay, now we rewrite all loads that use live-in values in the loop,
467  // inserting PHI nodes as necessary.
468  for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
469    LoadInst *ALoad = LiveInLoads[i];
470    Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
471    replaceLoadWithValue(ALoad, NewVal);
472
473    // Avoid assertions in unreachable code.
474    if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
475    ALoad->replaceAllUsesWith(NewVal);
476    ReplacedLoads[ALoad] = NewVal;
477  }
478
479  // Allow the client to do stuff before we start nuking things.
480  doExtraRewritesBeforeFinalDeletion();
481
482  // Now that everything is rewritten, delete the old instructions from the
483  // function.  They should all be dead now.
484  for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
485    Instruction *User = Insts[i];
486
487    // If this is a load that still has uses, then the load must have been added
488    // as a live value in the SSAUpdate data structure for a block (e.g. because
489    // the loaded value was stored later).  In this case, we need to recursively
490    // propagate the updates until we get to the real value.
491    if (!User->use_empty()) {
492      Value *NewVal = ReplacedLoads[User];
493      assert(NewVal && "not a replaced load?");
494
495      // Propagate down to the ultimate replacee.  The intermediately loads
496      // could theoretically already have been deleted, so we don't want to
497      // dereference the Value*'s.
498      DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
499      while (RLI != ReplacedLoads.end()) {
500        NewVal = RLI->second;
501        RLI = ReplacedLoads.find(NewVal);
502      }
503
504      replaceLoadWithValue(cast<LoadInst>(User), NewVal);
505      User->replaceAllUsesWith(NewVal);
506    }
507
508    instructionDeleted(User);
509    User->eraseFromParent();
510  }
511}
512