SSAUpdater.cpp revision 6f69035970fa24380f94c668b3e549cc83c4db4b
1//===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SSAUpdater class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/SSAUpdater.h"
15#include "llvm/Instructions.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/Support/AlignOf.h"
18#include "llvm/Support/Allocator.h"
19#include "llvm/Support/CFG.h"
20#include "llvm/Support/Debug.h"
21#include "llvm/Support/raw_ostream.h"
22using namespace llvm;
23
24/// BBInfo - Per-basic block information used internally by SSAUpdater.
25/// The predecessors of each block are cached here since pred_iterator is
26/// slow and we need to iterate over the blocks at least a few times.
27class SSAUpdater::BBInfo {
28public:
29  Value *AvailableVal; // Value to use in this block.
30  BasicBlock *DefBB;   // Block that defines the available value.
31  unsigned NumPreds;   // Number of predecessor blocks.
32  BasicBlock **Preds;  // Array[NumPreds] of predecessor blocks.
33  unsigned Counter;    // Marker to identify blocks already visited.
34  PHINode *PHITag;     // Marker for existing PHIs that match.
35
36  BBInfo(BasicBlock *BB, Value *V, BumpPtrAllocator *Allocator);
37};
38typedef DenseMap<BasicBlock*, SSAUpdater::BBInfo*> BBMapTy;
39
40SSAUpdater::BBInfo::BBInfo(BasicBlock *BB, Value *V,
41                           BumpPtrAllocator *Allocator)
42  : AvailableVal(V), DefBB(0), NumPreds(0), Preds(0), Counter(0), PHITag(0) {
43  // If this block has a known value, don't bother finding its predecessors.
44  if (V) {
45    DefBB = BB;
46    return;
47  }
48
49  // We can get our predecessor info by walking the pred_iterator list, but it
50  // is relatively slow.  If we already have PHI nodes in this block, walk one
51  // of them to get the predecessor list instead.
52  if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
53    NumPreds = SomePhi->getNumIncomingValues();
54    Preds = static_cast<BasicBlock**>
55      (Allocator->Allocate(NumPreds * sizeof(BasicBlock*),
56                           AlignOf<BasicBlock*>::Alignment));
57    for (unsigned pi = 0; pi != NumPreds; ++pi)
58      Preds[pi] = SomePhi->getIncomingBlock(pi);
59    return;
60  }
61
62  // Stash the predecessors in a temporary vector until we know how much space
63  // to allocate for them.
64  SmallVector<BasicBlock*, 10> TmpPreds;
65  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
66    TmpPreds.push_back(*PI);
67    ++NumPreds;
68  }
69  Preds = static_cast<BasicBlock**>
70    (Allocator->Allocate(NumPreds * sizeof(BasicBlock*),
71                         AlignOf<BasicBlock*>::Alignment));
72  memcpy(Preds, TmpPreds.data(), NumPreds * sizeof(BasicBlock*));
73}
74
75typedef DenseMap<BasicBlock*, Value*> AvailableValsTy;
76static AvailableValsTy &getAvailableVals(void *AV) {
77  return *static_cast<AvailableValsTy*>(AV);
78}
79
80static BBMapTy *getBBMap(void *BM) {
81  return static_cast<BBMapTy*>(BM);
82}
83
84static BumpPtrAllocator *getAllocator(void *BPA) {
85  return static_cast<BumpPtrAllocator*>(BPA);
86}
87
88SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode*> *NewPHI)
89  : AV(0), PrototypeValue(0), BM(0), BPA(0), InsertedPHIs(NewPHI) {}
90
91SSAUpdater::~SSAUpdater() {
92  delete &getAvailableVals(AV);
93}
94
95/// Initialize - Reset this object to get ready for a new set of SSA
96/// updates.  ProtoValue is the value used to name PHI nodes.
97void SSAUpdater::Initialize(Value *ProtoValue) {
98  if (AV == 0)
99    AV = new AvailableValsTy();
100  else
101    getAvailableVals(AV).clear();
102  PrototypeValue = ProtoValue;
103}
104
105/// HasValueForBlock - Return true if the SSAUpdater already has a value for
106/// the specified block.
107bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
108  return getAvailableVals(AV).count(BB);
109}
110
111/// AddAvailableValue - Indicate that a rewritten value is available in the
112/// specified block with the specified value.
113void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
114  assert(PrototypeValue != 0 && "Need to initialize SSAUpdater");
115  assert(PrototypeValue->getType() == V->getType() &&
116         "All rewritten values must have the same type");
117  getAvailableVals(AV)[BB] = V;
118}
119
120/// IsEquivalentPHI - Check if PHI has the same incoming value as specified
121/// in ValueMapping for each predecessor block.
122static bool IsEquivalentPHI(PHINode *PHI,
123                            DenseMap<BasicBlock*, Value*> &ValueMapping) {
124  unsigned PHINumValues = PHI->getNumIncomingValues();
125  if (PHINumValues != ValueMapping.size())
126    return false;
127
128  // Scan the phi to see if it matches.
129  for (unsigned i = 0, e = PHINumValues; i != e; ++i)
130    if (ValueMapping[PHI->getIncomingBlock(i)] !=
131        PHI->getIncomingValue(i)) {
132      return false;
133    }
134
135  return true;
136}
137
138/// GetValueAtEndOfBlock - Construct SSA form, materializing a value that is
139/// live at the end of the specified block.
140Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
141  assert(BM == 0 && BPA == 0 && "Unexpected Internal State");
142  Value *Res = GetValueAtEndOfBlockInternal(BB);
143  assert(BM == 0 && BPA == 0 && "Unexpected Internal State");
144  return Res;
145}
146
147/// GetValueInMiddleOfBlock - Construct SSA form, materializing a value that
148/// is live in the middle of the specified block.
149///
150/// GetValueInMiddleOfBlock is the same as GetValueAtEndOfBlock except in one
151/// important case: if there is a definition of the rewritten value after the
152/// 'use' in BB.  Consider code like this:
153///
154///      X1 = ...
155///   SomeBB:
156///      use(X)
157///      X2 = ...
158///      br Cond, SomeBB, OutBB
159///
160/// In this case, there are two values (X1 and X2) added to the AvailableVals
161/// set by the client of the rewriter, and those values are both live out of
162/// their respective blocks.  However, the use of X happens in the *middle* of
163/// a block.  Because of this, we need to insert a new PHI node in SomeBB to
164/// merge the appropriate values, and this value isn't live out of the block.
165///
166Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
167  // If there is no definition of the renamed variable in this block, just use
168  // GetValueAtEndOfBlock to do our work.
169  if (!HasValueForBlock(BB))
170    return GetValueAtEndOfBlock(BB);
171
172  // Otherwise, we have the hard case.  Get the live-in values for each
173  // predecessor.
174  SmallVector<std::pair<BasicBlock*, Value*>, 8> PredValues;
175  Value *SingularValue = 0;
176
177  // We can get our predecessor info by walking the pred_iterator list, but it
178  // is relatively slow.  If we already have PHI nodes in this block, walk one
179  // of them to get the predecessor list instead.
180  if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
181    for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
182      BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
183      Value *PredVal = GetValueAtEndOfBlock(PredBB);
184      PredValues.push_back(std::make_pair(PredBB, PredVal));
185
186      // Compute SingularValue.
187      if (i == 0)
188        SingularValue = PredVal;
189      else if (PredVal != SingularValue)
190        SingularValue = 0;
191    }
192  } else {
193    bool isFirstPred = true;
194    for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
195      BasicBlock *PredBB = *PI;
196      Value *PredVal = GetValueAtEndOfBlock(PredBB);
197      PredValues.push_back(std::make_pair(PredBB, PredVal));
198
199      // Compute SingularValue.
200      if (isFirstPred) {
201        SingularValue = PredVal;
202        isFirstPred = false;
203      } else if (PredVal != SingularValue)
204        SingularValue = 0;
205    }
206  }
207
208  // If there are no predecessors, just return undef.
209  if (PredValues.empty())
210    return UndefValue::get(PrototypeValue->getType());
211
212  // Otherwise, if all the merged values are the same, just use it.
213  if (SingularValue != 0)
214    return SingularValue;
215
216  // Otherwise, we do need a PHI: check to see if we already have one available
217  // in this block that produces the right value.
218  if (isa<PHINode>(BB->begin())) {
219    DenseMap<BasicBlock*, Value*> ValueMapping(PredValues.begin(),
220                                               PredValues.end());
221    PHINode *SomePHI;
222    for (BasicBlock::iterator It = BB->begin();
223         (SomePHI = dyn_cast<PHINode>(It)); ++It) {
224      if (IsEquivalentPHI(SomePHI, ValueMapping))
225        return SomePHI;
226    }
227  }
228
229  // Ok, we have no way out, insert a new one now.
230  PHINode *InsertedPHI = PHINode::Create(PrototypeValue->getType(),
231                                         PrototypeValue->getName(),
232                                         &BB->front());
233  InsertedPHI->reserveOperandSpace(PredValues.size());
234
235  // Fill in all the predecessors of the PHI.
236  for (unsigned i = 0, e = PredValues.size(); i != e; ++i)
237    InsertedPHI->addIncoming(PredValues[i].second, PredValues[i].first);
238
239  // See if the PHI node can be merged to a single value.  This can happen in
240  // loop cases when we get a PHI of itself and one other value.
241  if (Value *ConstVal = InsertedPHI->hasConstantValue()) {
242    InsertedPHI->eraseFromParent();
243    return ConstVal;
244  }
245
246  // If the client wants to know about all new instructions, tell it.
247  if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
248
249  DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n");
250  return InsertedPHI;
251}
252
253/// RewriteUse - Rewrite a use of the symbolic value.  This handles PHI nodes,
254/// which use their value in the corresponding predecessor.
255void SSAUpdater::RewriteUse(Use &U) {
256  Instruction *User = cast<Instruction>(U.getUser());
257
258  Value *V;
259  if (PHINode *UserPN = dyn_cast<PHINode>(User))
260    V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
261  else
262    V = GetValueInMiddleOfBlock(User->getParent());
263
264  U.set(V);
265}
266
267/// GetValueAtEndOfBlockInternal - Check to see if AvailableVals has an entry
268/// for the specified BB and if so, return it.  If not, construct SSA form by
269/// first calculating the required placement of PHIs and then inserting new
270/// PHIs where needed.
271Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
272  AvailableValsTy &AvailableVals = getAvailableVals(AV);
273  if (Value *V = AvailableVals[BB])
274    return V;
275
276  // Pool allocation used internally by GetValueAtEndOfBlock.
277  BumpPtrAllocator AllocatorObj;
278  BBMapTy BBMapObj;
279  BPA = &AllocatorObj;
280  BM = &BBMapObj;
281
282  BBInfo *Info = new (AllocatorObj) BBInfo(BB, 0, &AllocatorObj);
283  BBMapObj[BB] = Info;
284
285  bool Changed;
286  unsigned Counter = 1;
287  do {
288    Changed = false;
289    FindPHIPlacement(BB, Info, Changed, Counter);
290    ++Counter;
291  } while (Changed);
292
293  FindAvailableVal(BB, Info, Counter);
294
295  BPA = 0;
296  BM = 0;
297  return Info->AvailableVal;
298}
299
300/// FindPHIPlacement - Recursively visit the predecessors of a block to find
301/// the reaching definition for each predecessor and then determine whether
302/// a PHI is needed in this block.
303void SSAUpdater::FindPHIPlacement(BasicBlock *BB, BBInfo *Info, bool &Changed,
304                                  unsigned Counter) {
305  AvailableValsTy &AvailableVals = getAvailableVals(AV);
306  BBMapTy *BBMap = getBBMap(BM);
307  BumpPtrAllocator *Allocator = getAllocator(BPA);
308  bool BBNeedsPHI = false;
309  BasicBlock *SamePredDefBB = 0;
310
311  // If there are no predecessors, then we must have found an unreachable
312  // block.  Treat it as a definition with 'undef'.
313  if (Info->NumPreds == 0) {
314    Info->AvailableVal = UndefValue::get(PrototypeValue->getType());
315    Info->DefBB = BB;
316    return;
317  }
318
319  Info->Counter = Counter;
320  for (unsigned pi = 0; pi != Info->NumPreds; ++pi) {
321    BasicBlock *Pred = Info->Preds[pi];
322    BBMapTy::value_type &BBMapBucket = BBMap->FindAndConstruct(Pred);
323    if (!BBMapBucket.second) {
324      Value *PredVal = AvailableVals.lookup(Pred);
325      BBMapBucket.second = new (*Allocator) BBInfo(Pred, PredVal, Allocator);
326    }
327    BBInfo *PredInfo = BBMapBucket.second;
328    BasicBlock *DefBB = 0;
329    if (!PredInfo->AvailableVal) {
330      if (PredInfo->Counter != Counter)
331        FindPHIPlacement(Pred, PredInfo, Changed, Counter);
332
333      // Ignore back edges where the value is not yet known.
334      if (!PredInfo->DefBB)
335        continue;
336    }
337    DefBB = PredInfo->DefBB;
338
339    if (!SamePredDefBB)
340      SamePredDefBB = DefBB;
341    else if (DefBB != SamePredDefBB)
342      BBNeedsPHI = true;
343  }
344
345  BasicBlock *NewDefBB = (BBNeedsPHI ? BB : SamePredDefBB);
346  if (Info->DefBB != NewDefBB) {
347    Changed = true;
348    Info->DefBB = NewDefBB;
349  }
350}
351
352/// FindAvailableVal - If this block requires a PHI, first check if an existing
353/// PHI matches the PHI placement and reaching definitions computed earlier,
354/// and if not, create a new PHI.  Visit all the block's predecessors to
355/// calculate the available value for each one and fill in the incoming values
356/// for a new PHI.
357void SSAUpdater::FindAvailableVal(BasicBlock *BB, BBInfo *Info,
358                                  unsigned Counter) {
359  if (Info->AvailableVal || Info->Counter == Counter)
360    return;
361
362  AvailableValsTy &AvailableVals = getAvailableVals(AV);
363  BBMapTy *BBMap = getBBMap(BM);
364
365  // Check if there needs to be a PHI in BB.
366  PHINode *NewPHI = 0;
367  if (Info->DefBB == BB) {
368    // Look for an existing PHI.
369    FindExistingPHI(BB);
370    if (!Info->AvailableVal) {
371      NewPHI = PHINode::Create(PrototypeValue->getType(),
372                               PrototypeValue->getName(), &BB->front());
373      NewPHI->reserveOperandSpace(Info->NumPreds);
374      Info->AvailableVal = NewPHI;
375      AvailableVals[BB] = NewPHI;
376    }
377  }
378
379  // Iterate through the block's predecessors.
380  Info->Counter = Counter;
381  for (unsigned pi = 0; pi != Info->NumPreds; ++pi) {
382    BasicBlock *Pred = Info->Preds[pi];
383    BBInfo *PredInfo = (*BBMap)[Pred];
384    FindAvailableVal(Pred, PredInfo, Counter);
385    if (NewPHI) {
386      // Skip to the nearest preceding definition.
387      if (PredInfo->DefBB != Pred)
388        PredInfo = (*BBMap)[PredInfo->DefBB];
389      NewPHI->addIncoming(PredInfo->AvailableVal, Pred);
390    } else if (!Info->AvailableVal)
391      Info->AvailableVal = PredInfo->AvailableVal;
392  }
393
394  if (NewPHI) {
395    DEBUG(dbgs() << "  Inserted PHI: " << *NewPHI << "\n");
396
397    // If the client wants to know about all new instructions, tell it.
398    if (InsertedPHIs) InsertedPHIs->push_back(NewPHI);
399  }
400}
401
402/// FindExistingPHI - Look through the PHI nodes in a block to see if any of
403/// them match what is needed.
404void SSAUpdater::FindExistingPHI(BasicBlock *BB) {
405  PHINode *SomePHI;
406  for (BasicBlock::iterator It = BB->begin();
407       (SomePHI = dyn_cast<PHINode>(It)); ++It) {
408    if (CheckIfPHIMatches(SomePHI)) {
409      RecordMatchingPHI(SomePHI);
410      break;
411    }
412    ClearPHITags(SomePHI);
413  }
414}
415
416/// CheckIfPHIMatches - Check if a PHI node matches the placement and values
417/// in the BBMap.
418bool SSAUpdater::CheckIfPHIMatches(PHINode *PHI) {
419  BBMapTy *BBMap = getBBMap(BM);
420  SmallVector<PHINode*, 20> WorkList;
421  WorkList.push_back(PHI);
422
423  // Mark that the block containing this PHI has been visited.
424  (*BBMap)[PHI->getParent()]->PHITag = PHI;
425
426  while (!WorkList.empty()) {
427    PHI = WorkList.pop_back_val();
428
429    // Iterate through the PHI's incoming values.
430    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
431      Value *IncomingVal = PHI->getIncomingValue(i);
432      BasicBlock *Pred = PHI->getIncomingBlock(i);
433      BBInfo *PredInfo = (*BBMap)[Pred];
434      // Skip to the nearest preceding definition.
435      if (PredInfo->DefBB != Pred) {
436        Pred = PredInfo->DefBB;
437        PredInfo = (*BBMap)[Pred];
438      }
439
440      // Check if it matches the expected value.
441      if (PredInfo->AvailableVal) {
442        if (IncomingVal == PredInfo->AvailableVal)
443          continue;
444        return false;
445      }
446
447      // Check if the value is a PHI in the correct block.
448      PHINode *IncomingPHIVal = dyn_cast<PHINode>(IncomingVal);
449      if (!IncomingPHIVal || IncomingPHIVal->getParent() != Pred)
450        return false;
451
452      // If this block has already been visited, check if this PHI matches.
453      if (PredInfo->PHITag) {
454        if (IncomingPHIVal == PredInfo->PHITag)
455          continue;
456        return false;
457      }
458      PredInfo->PHITag = IncomingPHIVal;
459
460      WorkList.push_back(IncomingPHIVal);
461    }
462  }
463  return true;
464}
465
466/// RecordMatchingPHI - For a PHI node that matches, record it and its input
467/// PHIs in both the BBMap and the AvailableVals mapping.
468void SSAUpdater::RecordMatchingPHI(PHINode *PHI) {
469  BBMapTy *BBMap = getBBMap(BM);
470  AvailableValsTy &AvailableVals = getAvailableVals(AV);
471  SmallVector<PHINode*, 20> WorkList;
472  WorkList.push_back(PHI);
473
474  while (!WorkList.empty()) {
475    PHI = WorkList.pop_back_val();
476    BasicBlock *BB = PHI->getParent();
477    BBInfo *Info = (*BBMap)[BB];
478    if (!Info || Info->AvailableVal)
479      return;
480
481    // Record the PHI.
482    AvailableVals[BB] = PHI;
483    Info->AvailableVal = PHI;
484
485    // Iterate through the PHI's incoming values.
486    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
487      PHINode *IncomingVal = dyn_cast<PHINode>(PHI->getIncomingValue(i));
488      if (!IncomingVal) continue;
489      WorkList.push_back(IncomingVal);
490    }
491  }
492}
493
494/// ClearPHITags - When one of the existing PHI nodes fails to match, clear
495/// the PHITag values that were stored in the BBMap when checking to see if
496/// it matched.
497void SSAUpdater::ClearPHITags(PHINode *PHI) {
498  BBMapTy *BBMap = getBBMap(BM);
499  SmallVector<PHINode*, 20> WorkList;
500  WorkList.push_back(PHI);
501
502  while (!WorkList.empty()) {
503    PHI = WorkList.pop_back_val();
504    BasicBlock *BB = PHI->getParent();
505    BBInfo *Info = (*BBMap)[BB];
506    if (!Info || Info->AvailableVal || !Info->PHITag)
507      continue;
508
509    // Clear the tag.
510    Info->PHITag = 0;
511
512    // Iterate through the PHI's incoming values.
513    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
514      PHINode *IncomingVal = dyn_cast<PHINode>(PHI->getIncomingValue(i));
515      if (!IncomingVal) continue;
516      WorkList.push_back(IncomingVal);
517    }
518  }
519}
520