1//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/Local.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/Analysis/ValueTracking.h"
25#include "llvm/IR/CFG.h"
26#include "llvm/IR/ConstantRange.h"
27#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/GlobalVariable.h"
31#include "llvm/IR/IRBuilder.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/LLVMContext.h"
35#include "llvm/IR/MDBuilder.h"
36#include "llvm/IR/Metadata.h"
37#include "llvm/IR/Module.h"
38#include "llvm/IR/NoFolder.h"
39#include "llvm/IR/Operator.h"
40#include "llvm/IR/PatternMatch.h"
41#include "llvm/IR/Type.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include <algorithm>
47#include <map>
48#include <set>
49using namespace llvm;
50using namespace PatternMatch;
51
52#define DEBUG_TYPE "simplifycfg"
53
54static cl::opt<unsigned>
55PHINodeFoldingThreshold("phi-node-folding-threshold", cl::Hidden, cl::init(1),
56   cl::desc("Control the amount of phi node folding to perform (default = 1)"));
57
58static cl::opt<bool>
59DupRet("simplifycfg-dup-ret", cl::Hidden, cl::init(false),
60       cl::desc("Duplicate return instructions into unconditional branches"));
61
62static cl::opt<bool>
63SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
64       cl::desc("Sink common instructions down to the end block"));
65
66static cl::opt<bool> HoistCondStores(
67    "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
68    cl::desc("Hoist conditional stores if an unconditional store precedes"));
69
70STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
71STATISTIC(NumLookupTables, "Number of switch instructions turned into lookup tables");
72STATISTIC(NumLookupTablesHoles, "Number of switch instructions turned into lookup tables (holes checked)");
73STATISTIC(NumSinkCommons, "Number of common instructions sunk down to the end block");
74STATISTIC(NumSpeculations, "Number of speculative executed instructions");
75
76namespace {
77  /// ValueEqualityComparisonCase - Represents a case of a switch.
78  struct ValueEqualityComparisonCase {
79    ConstantInt *Value;
80    BasicBlock *Dest;
81
82    ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
83      : Value(Value), Dest(Dest) {}
84
85    bool operator<(ValueEqualityComparisonCase RHS) const {
86      // Comparing pointers is ok as we only rely on the order for uniquing.
87      return Value < RHS.Value;
88    }
89
90    bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
91  };
92
93class SimplifyCFGOpt {
94  const TargetTransformInfo &TTI;
95  const DataLayout *const DL;
96  Value *isValueEqualityComparison(TerminatorInst *TI);
97  BasicBlock *GetValueEqualityComparisonCases(TerminatorInst *TI,
98                               std::vector<ValueEqualityComparisonCase> &Cases);
99  bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
100                                                     BasicBlock *Pred,
101                                                     IRBuilder<> &Builder);
102  bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
103                                           IRBuilder<> &Builder);
104
105  bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
106  bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
107  bool SimplifyUnreachable(UnreachableInst *UI);
108  bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
109  bool SimplifyIndirectBr(IndirectBrInst *IBI);
110  bool SimplifyUncondBranch(BranchInst *BI, IRBuilder <> &Builder);
111  bool SimplifyCondBranch(BranchInst *BI, IRBuilder <>&Builder);
112
113public:
114  SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout *DL)
115      : TTI(TTI), DL(DL) {}
116  bool run(BasicBlock *BB);
117};
118}
119
120/// SafeToMergeTerminators - Return true if it is safe to merge these two
121/// terminator instructions together.
122///
123static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
124  if (SI1 == SI2) return false;  // Can't merge with self!
125
126  // It is not safe to merge these two switch instructions if they have a common
127  // successor, and if that successor has a PHI node, and if *that* PHI node has
128  // conflicting incoming values from the two switch blocks.
129  BasicBlock *SI1BB = SI1->getParent();
130  BasicBlock *SI2BB = SI2->getParent();
131  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
132
133  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
134    if (SI1Succs.count(*I))
135      for (BasicBlock::iterator BBI = (*I)->begin();
136           isa<PHINode>(BBI); ++BBI) {
137        PHINode *PN = cast<PHINode>(BBI);
138        if (PN->getIncomingValueForBlock(SI1BB) !=
139            PN->getIncomingValueForBlock(SI2BB))
140          return false;
141      }
142
143  return true;
144}
145
146/// isProfitableToFoldUnconditional - Return true if it is safe and profitable
147/// to merge these two terminator instructions together, where SI1 is an
148/// unconditional branch. PhiNodes will store all PHI nodes in common
149/// successors.
150///
151static bool isProfitableToFoldUnconditional(BranchInst *SI1,
152                                          BranchInst *SI2,
153                                          Instruction *Cond,
154                                          SmallVectorImpl<PHINode*> &PhiNodes) {
155  if (SI1 == SI2) return false;  // Can't merge with self!
156  assert(SI1->isUnconditional() && SI2->isConditional());
157
158  // We fold the unconditional branch if we can easily update all PHI nodes in
159  // common successors:
160  // 1> We have a constant incoming value for the conditional branch;
161  // 2> We have "Cond" as the incoming value for the unconditional branch;
162  // 3> SI2->getCondition() and Cond have same operands.
163  CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
164  if (!Ci2) return false;
165  if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
166        Cond->getOperand(1) == Ci2->getOperand(1)) &&
167      !(Cond->getOperand(0) == Ci2->getOperand(1) &&
168        Cond->getOperand(1) == Ci2->getOperand(0)))
169    return false;
170
171  BasicBlock *SI1BB = SI1->getParent();
172  BasicBlock *SI2BB = SI2->getParent();
173  SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
174  for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
175    if (SI1Succs.count(*I))
176      for (BasicBlock::iterator BBI = (*I)->begin();
177           isa<PHINode>(BBI); ++BBI) {
178        PHINode *PN = cast<PHINode>(BBI);
179        if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
180            !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
181          return false;
182        PhiNodes.push_back(PN);
183      }
184  return true;
185}
186
187/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
188/// now be entries in it from the 'NewPred' block.  The values that will be
189/// flowing into the PHI nodes will be the same as those coming in from
190/// ExistPred, an existing predecessor of Succ.
191static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
192                                  BasicBlock *ExistPred) {
193  if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
194
195  PHINode *PN;
196  for (BasicBlock::iterator I = Succ->begin();
197       (PN = dyn_cast<PHINode>(I)); ++I)
198    PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
199}
200
201/// ComputeSpeculationCost - Compute an abstract "cost" of speculating the
202/// given instruction, which is assumed to be safe to speculate. 1 means
203/// cheap, 2 means less cheap, and UINT_MAX means prohibitively expensive.
204static unsigned ComputeSpeculationCost(const User *I, const DataLayout *DL) {
205  assert(isSafeToSpeculativelyExecute(I, DL) &&
206         "Instruction is not safe to speculatively execute!");
207  switch (Operator::getOpcode(I)) {
208  default:
209    // In doubt, be conservative.
210    return UINT_MAX;
211  case Instruction::GetElementPtr:
212    // GEPs are cheap if all indices are constant.
213    if (!cast<GEPOperator>(I)->hasAllConstantIndices())
214      return UINT_MAX;
215    return 1;
216  case Instruction::ExtractValue:
217  case Instruction::Load:
218  case Instruction::Add:
219  case Instruction::Sub:
220  case Instruction::And:
221  case Instruction::Or:
222  case Instruction::Xor:
223  case Instruction::Shl:
224  case Instruction::LShr:
225  case Instruction::AShr:
226  case Instruction::ICmp:
227  case Instruction::Trunc:
228  case Instruction::ZExt:
229  case Instruction::SExt:
230  case Instruction::BitCast:
231  case Instruction::ExtractElement:
232  case Instruction::InsertElement:
233    return 1; // These are all cheap.
234
235  case Instruction::Call:
236  case Instruction::Select:
237    return 2;
238  }
239}
240
241/// DominatesMergePoint - If we have a merge point of an "if condition" as
242/// accepted above, return true if the specified value dominates the block.  We
243/// don't handle the true generality of domination here, just a special case
244/// which works well enough for us.
245///
246/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
247/// see if V (which must be an instruction) and its recursive operands
248/// that do not dominate BB have a combined cost lower than CostRemaining and
249/// are non-trapping.  If both are true, the instruction is inserted into the
250/// set and true is returned.
251///
252/// The cost for most non-trapping instructions is defined as 1 except for
253/// Select whose cost is 2.
254///
255/// After this function returns, CostRemaining is decreased by the cost of
256/// V plus its non-dominating operands.  If that cost is greater than
257/// CostRemaining, false is returned and CostRemaining is undefined.
258static bool DominatesMergePoint(Value *V, BasicBlock *BB,
259                                SmallPtrSet<Instruction*, 4> *AggressiveInsts,
260                                unsigned &CostRemaining,
261                                const DataLayout *DL) {
262  Instruction *I = dyn_cast<Instruction>(V);
263  if (!I) {
264    // Non-instructions all dominate instructions, but not all constantexprs
265    // can be executed unconditionally.
266    if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
267      if (C->canTrap())
268        return false;
269    return true;
270  }
271  BasicBlock *PBB = I->getParent();
272
273  // We don't want to allow weird loops that might have the "if condition" in
274  // the bottom of this block.
275  if (PBB == BB) return false;
276
277  // If this instruction is defined in a block that contains an unconditional
278  // branch to BB, then it must be in the 'conditional' part of the "if
279  // statement".  If not, it definitely dominates the region.
280  BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
281  if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
282    return true;
283
284  // If we aren't allowing aggressive promotion anymore, then don't consider
285  // instructions in the 'if region'.
286  if (!AggressiveInsts) return false;
287
288  // If we have seen this instruction before, don't count it again.
289  if (AggressiveInsts->count(I)) return true;
290
291  // Okay, it looks like the instruction IS in the "condition".  Check to
292  // see if it's a cheap instruction to unconditionally compute, and if it
293  // only uses stuff defined outside of the condition.  If so, hoist it out.
294  if (!isSafeToSpeculativelyExecute(I, DL))
295    return false;
296
297  unsigned Cost = ComputeSpeculationCost(I, DL);
298
299  if (Cost > CostRemaining)
300    return false;
301
302  CostRemaining -= Cost;
303
304  // Okay, we can only really hoist these out if their operands do
305  // not take us over the cost threshold.
306  for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
307    if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, DL))
308      return false;
309  // Okay, it's safe to do this!  Remember this instruction.
310  AggressiveInsts->insert(I);
311  return true;
312}
313
314/// GetConstantInt - Extract ConstantInt from value, looking through IntToPtr
315/// and PointerNullValue. Return NULL if value is not a constant int.
316static ConstantInt *GetConstantInt(Value *V, const DataLayout *DL) {
317  // Normal constant int.
318  ConstantInt *CI = dyn_cast<ConstantInt>(V);
319  if (CI || !DL || !isa<Constant>(V) || !V->getType()->isPointerTy())
320    return CI;
321
322  // This is some kind of pointer constant. Turn it into a pointer-sized
323  // ConstantInt if possible.
324  IntegerType *PtrTy = cast<IntegerType>(DL->getIntPtrType(V->getType()));
325
326  // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
327  if (isa<ConstantPointerNull>(V))
328    return ConstantInt::get(PtrTy, 0);
329
330  // IntToPtr const int.
331  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
332    if (CE->getOpcode() == Instruction::IntToPtr)
333      if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
334        // The constant is very likely to have the right type already.
335        if (CI->getType() == PtrTy)
336          return CI;
337        else
338          return cast<ConstantInt>
339            (ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
340      }
341  return nullptr;
342}
343
344/// GatherConstantCompares - Given a potentially 'or'd or 'and'd together
345/// collection of icmp eq/ne instructions that compare a value against a
346/// constant, return the value being compared, and stick the constant into the
347/// Values vector.
348static Value *
349GatherConstantCompares(Value *V, std::vector<ConstantInt*> &Vals, Value *&Extra,
350                       const DataLayout *DL, bool isEQ, unsigned &UsedICmps) {
351  Instruction *I = dyn_cast<Instruction>(V);
352  if (!I) return nullptr;
353
354  // If this is an icmp against a constant, handle this as one of the cases.
355  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) {
356    if (ConstantInt *C = GetConstantInt(I->getOperand(1), DL)) {
357      Value *RHSVal;
358      ConstantInt *RHSC;
359
360      if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ:ICmpInst::ICMP_NE)) {
361        // (x & ~2^x) == y --> x == y || x == y|2^x
362        // This undoes a transformation done by instcombine to fuse 2 compares.
363        if (match(ICI->getOperand(0),
364                  m_And(m_Value(RHSVal), m_ConstantInt(RHSC)))) {
365          APInt Not = ~RHSC->getValue();
366          if (Not.isPowerOf2()) {
367            Vals.push_back(C);
368            Vals.push_back(
369                ConstantInt::get(C->getContext(), C->getValue() | Not));
370            UsedICmps++;
371            return RHSVal;
372          }
373        }
374
375        UsedICmps++;
376        Vals.push_back(C);
377        return I->getOperand(0);
378      }
379
380      // If we have "x ult 3" comparison, for example, then we can add 0,1,2 to
381      // the set.
382      ConstantRange Span =
383        ConstantRange::makeICmpRegion(ICI->getPredicate(), C->getValue());
384
385      // Shift the range if the compare is fed by an add. This is the range
386      // compare idiom as emitted by instcombine.
387      bool hasAdd =
388          match(I->getOperand(0), m_Add(m_Value(RHSVal), m_ConstantInt(RHSC)));
389      if (hasAdd)
390        Span = Span.subtract(RHSC->getValue());
391
392      // If this is an and/!= check then we want to optimize "x ugt 2" into
393      // x != 0 && x != 1.
394      if (!isEQ)
395        Span = Span.inverse();
396
397      // If there are a ton of values, we don't want to make a ginormous switch.
398      if (Span.getSetSize().ugt(8) || Span.isEmptySet())
399        return nullptr;
400
401      for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
402        Vals.push_back(ConstantInt::get(V->getContext(), Tmp));
403      UsedICmps++;
404      return hasAdd ? RHSVal : I->getOperand(0);
405    }
406    return nullptr;
407  }
408
409  // Otherwise, we can only handle an | or &, depending on isEQ.
410  if (I->getOpcode() != (isEQ ? Instruction::Or : Instruction::And))
411    return nullptr;
412
413  unsigned NumValsBeforeLHS = Vals.size();
414  unsigned UsedICmpsBeforeLHS = UsedICmps;
415  if (Value *LHS = GatherConstantCompares(I->getOperand(0), Vals, Extra, DL,
416                                          isEQ, UsedICmps)) {
417    unsigned NumVals = Vals.size();
418    unsigned UsedICmpsBeforeRHS = UsedICmps;
419    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL,
420                                            isEQ, UsedICmps)) {
421      if (LHS == RHS)
422        return LHS;
423      Vals.resize(NumVals);
424      UsedICmps = UsedICmpsBeforeRHS;
425    }
426
427    // The RHS of the or/and can't be folded in and we haven't used "Extra" yet,
428    // set it and return success.
429    if (Extra == nullptr || Extra == I->getOperand(1)) {
430      Extra = I->getOperand(1);
431      return LHS;
432    }
433
434    Vals.resize(NumValsBeforeLHS);
435    UsedICmps = UsedICmpsBeforeLHS;
436    return nullptr;
437  }
438
439  // If the LHS can't be folded in, but Extra is available and RHS can, try to
440  // use LHS as Extra.
441  if (Extra == nullptr || Extra == I->getOperand(0)) {
442    Value *OldExtra = Extra;
443    Extra = I->getOperand(0);
444    if (Value *RHS = GatherConstantCompares(I->getOperand(1), Vals, Extra, DL,
445                                            isEQ, UsedICmps))
446      return RHS;
447    assert(Vals.size() == NumValsBeforeLHS);
448    Extra = OldExtra;
449  }
450
451  return nullptr;
452}
453
454static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
455  Instruction *Cond = nullptr;
456  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
457    Cond = dyn_cast<Instruction>(SI->getCondition());
458  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
459    if (BI->isConditional())
460      Cond = dyn_cast<Instruction>(BI->getCondition());
461  } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
462    Cond = dyn_cast<Instruction>(IBI->getAddress());
463  }
464
465  TI->eraseFromParent();
466  if (Cond) RecursivelyDeleteTriviallyDeadInstructions(Cond);
467}
468
469/// isValueEqualityComparison - Return true if the specified terminator checks
470/// to see if a value is equal to constant integer value.
471Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
472  Value *CV = nullptr;
473  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
474    // Do not permit merging of large switch instructions into their
475    // predecessors unless there is only one predecessor.
476    if (SI->getNumSuccessors()*std::distance(pred_begin(SI->getParent()),
477                                             pred_end(SI->getParent())) <= 128)
478      CV = SI->getCondition();
479  } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
480    if (BI->isConditional() && BI->getCondition()->hasOneUse())
481      if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
482        if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
483          CV = ICI->getOperand(0);
484
485  // Unwrap any lossless ptrtoint cast.
486  if (DL && CV) {
487    if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
488      Value *Ptr = PTII->getPointerOperand();
489      if (PTII->getType() == DL->getIntPtrType(Ptr->getType()))
490        CV = Ptr;
491    }
492  }
493  return CV;
494}
495
496/// GetValueEqualityComparisonCases - Given a value comparison instruction,
497/// decode all of the 'cases' that it represents and return the 'default' block.
498BasicBlock *SimplifyCFGOpt::
499GetValueEqualityComparisonCases(TerminatorInst *TI,
500                                std::vector<ValueEqualityComparisonCase>
501                                                                       &Cases) {
502  if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
503    Cases.reserve(SI->getNumCases());
504    for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i)
505      Cases.push_back(ValueEqualityComparisonCase(i.getCaseValue(),
506                                                  i.getCaseSuccessor()));
507    return SI->getDefaultDest();
508  }
509
510  BranchInst *BI = cast<BranchInst>(TI);
511  ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
512  BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
513  Cases.push_back(ValueEqualityComparisonCase(GetConstantInt(ICI->getOperand(1),
514                                                             DL),
515                                              Succ));
516  return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
517}
518
519
520/// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
521/// in the list that match the specified block.
522static void EliminateBlockCases(BasicBlock *BB,
523                              std::vector<ValueEqualityComparisonCase> &Cases) {
524  Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
525}
526
527/// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
528/// well.
529static bool
530ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
531              std::vector<ValueEqualityComparisonCase > &C2) {
532  std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
533
534  // Make V1 be smaller than V2.
535  if (V1->size() > V2->size())
536    std::swap(V1, V2);
537
538  if (V1->size() == 0) return false;
539  if (V1->size() == 1) {
540    // Just scan V2.
541    ConstantInt *TheVal = (*V1)[0].Value;
542    for (unsigned i = 0, e = V2->size(); i != e; ++i)
543      if (TheVal == (*V2)[i].Value)
544        return true;
545  }
546
547  // Otherwise, just sort both lists and compare element by element.
548  array_pod_sort(V1->begin(), V1->end());
549  array_pod_sort(V2->begin(), V2->end());
550  unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
551  while (i1 != e1 && i2 != e2) {
552    if ((*V1)[i1].Value == (*V2)[i2].Value)
553      return true;
554    if ((*V1)[i1].Value < (*V2)[i2].Value)
555      ++i1;
556    else
557      ++i2;
558  }
559  return false;
560}
561
562/// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
563/// terminator instruction and its block is known to only have a single
564/// predecessor block, check to see if that predecessor is also a value
565/// comparison with the same value, and if that comparison determines the
566/// outcome of this comparison.  If so, simplify TI.  This does a very limited
567/// form of jump threading.
568bool SimplifyCFGOpt::
569SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
570                                              BasicBlock *Pred,
571                                              IRBuilder<> &Builder) {
572  Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
573  if (!PredVal) return false;  // Not a value comparison in predecessor.
574
575  Value *ThisVal = isValueEqualityComparison(TI);
576  assert(ThisVal && "This isn't a value comparison!!");
577  if (ThisVal != PredVal) return false;  // Different predicates.
578
579  // TODO: Preserve branch weight metadata, similarly to how
580  // FoldValueComparisonIntoPredecessors preserves it.
581
582  // Find out information about when control will move from Pred to TI's block.
583  std::vector<ValueEqualityComparisonCase> PredCases;
584  BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
585                                                        PredCases);
586  EliminateBlockCases(PredDef, PredCases);  // Remove default from cases.
587
588  // Find information about how control leaves this block.
589  std::vector<ValueEqualityComparisonCase> ThisCases;
590  BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
591  EliminateBlockCases(ThisDef, ThisCases);  // Remove default from cases.
592
593  // If TI's block is the default block from Pred's comparison, potentially
594  // simplify TI based on this knowledge.
595  if (PredDef == TI->getParent()) {
596    // If we are here, we know that the value is none of those cases listed in
597    // PredCases.  If there are any cases in ThisCases that are in PredCases, we
598    // can simplify TI.
599    if (!ValuesOverlap(PredCases, ThisCases))
600      return false;
601
602    if (isa<BranchInst>(TI)) {
603      // Okay, one of the successors of this condbr is dead.  Convert it to a
604      // uncond br.
605      assert(ThisCases.size() == 1 && "Branch can only have one case!");
606      // Insert the new branch.
607      Instruction *NI = Builder.CreateBr(ThisDef);
608      (void) NI;
609
610      // Remove PHI node entries for the dead edge.
611      ThisCases[0].Dest->removePredecessor(TI->getParent());
612
613      DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
614           << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
615
616      EraseTerminatorInstAndDCECond(TI);
617      return true;
618    }
619
620    SwitchInst *SI = cast<SwitchInst>(TI);
621    // Okay, TI has cases that are statically dead, prune them away.
622    SmallPtrSet<Constant*, 16> DeadCases;
623    for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
624      DeadCases.insert(PredCases[i].Value);
625
626    DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
627                 << "Through successor TI: " << *TI);
628
629    // Collect branch weights into a vector.
630    SmallVector<uint32_t, 8> Weights;
631    MDNode* MD = SI->getMetadata(LLVMContext::MD_prof);
632    bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
633    if (HasWeight)
634      for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
635           ++MD_i) {
636        ConstantInt* CI = dyn_cast<ConstantInt>(MD->getOperand(MD_i));
637        assert(CI);
638        Weights.push_back(CI->getValue().getZExtValue());
639      }
640    for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
641      --i;
642      if (DeadCases.count(i.getCaseValue())) {
643        if (HasWeight) {
644          std::swap(Weights[i.getCaseIndex()+1], Weights.back());
645          Weights.pop_back();
646        }
647        i.getCaseSuccessor()->removePredecessor(TI->getParent());
648        SI->removeCase(i);
649      }
650    }
651    if (HasWeight && Weights.size() >= 2)
652      SI->setMetadata(LLVMContext::MD_prof,
653                      MDBuilder(SI->getParent()->getContext()).
654                      createBranchWeights(Weights));
655
656    DEBUG(dbgs() << "Leaving: " << *TI << "\n");
657    return true;
658  }
659
660  // Otherwise, TI's block must correspond to some matched value.  Find out
661  // which value (or set of values) this is.
662  ConstantInt *TIV = nullptr;
663  BasicBlock *TIBB = TI->getParent();
664  for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
665    if (PredCases[i].Dest == TIBB) {
666      if (TIV)
667        return false;  // Cannot handle multiple values coming to this block.
668      TIV = PredCases[i].Value;
669    }
670  assert(TIV && "No edge from pred to succ?");
671
672  // Okay, we found the one constant that our value can be if we get into TI's
673  // BB.  Find out which successor will unconditionally be branched to.
674  BasicBlock *TheRealDest = nullptr;
675  for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
676    if (ThisCases[i].Value == TIV) {
677      TheRealDest = ThisCases[i].Dest;
678      break;
679    }
680
681  // If not handled by any explicit cases, it is handled by the default case.
682  if (!TheRealDest) TheRealDest = ThisDef;
683
684  // Remove PHI node entries for dead edges.
685  BasicBlock *CheckEdge = TheRealDest;
686  for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
687    if (*SI != CheckEdge)
688      (*SI)->removePredecessor(TIBB);
689    else
690      CheckEdge = nullptr;
691
692  // Insert the new branch.
693  Instruction *NI = Builder.CreateBr(TheRealDest);
694  (void) NI;
695
696  DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
697            << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n");
698
699  EraseTerminatorInstAndDCECond(TI);
700  return true;
701}
702
703namespace {
704  /// ConstantIntOrdering - This class implements a stable ordering of constant
705  /// integers that does not depend on their address.  This is important for
706  /// applications that sort ConstantInt's to ensure uniqueness.
707  struct ConstantIntOrdering {
708    bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
709      return LHS->getValue().ult(RHS->getValue());
710    }
711  };
712}
713
714static int ConstantIntSortPredicate(ConstantInt *const *P1,
715                                    ConstantInt *const *P2) {
716  const ConstantInt *LHS = *P1;
717  const ConstantInt *RHS = *P2;
718  if (LHS->getValue().ult(RHS->getValue()))
719    return 1;
720  if (LHS->getValue() == RHS->getValue())
721    return 0;
722  return -1;
723}
724
725static inline bool HasBranchWeights(const Instruction* I) {
726  MDNode* ProfMD = I->getMetadata(LLVMContext::MD_prof);
727  if (ProfMD && ProfMD->getOperand(0))
728    if (MDString* MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
729      return MDS->getString().equals("branch_weights");
730
731  return false;
732}
733
734/// Get Weights of a given TerminatorInst, the default weight is at the front
735/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
736/// metadata.
737static void GetBranchWeights(TerminatorInst *TI,
738                             SmallVectorImpl<uint64_t> &Weights) {
739  MDNode* MD = TI->getMetadata(LLVMContext::MD_prof);
740  assert(MD);
741  for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
742    ConstantInt *CI = cast<ConstantInt>(MD->getOperand(i));
743    Weights.push_back(CI->getValue().getZExtValue());
744  }
745
746  // If TI is a conditional eq, the default case is the false case,
747  // and the corresponding branch-weight data is at index 2. We swap the
748  // default weight to be the first entry.
749  if (BranchInst* BI = dyn_cast<BranchInst>(TI)) {
750    assert(Weights.size() == 2);
751    ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
752    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
753      std::swap(Weights.front(), Weights.back());
754  }
755}
756
757/// Keep halving the weights until all can fit in uint32_t.
758static void FitWeights(MutableArrayRef<uint64_t> Weights) {
759  uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
760  if (Max > UINT_MAX) {
761    unsigned Offset = 32 - countLeadingZeros(Max);
762    for (uint64_t &I : Weights)
763      I >>= Offset;
764  }
765}
766
767/// FoldValueComparisonIntoPredecessors - The specified terminator is a value
768/// equality comparison instruction (either a switch or a branch on "X == c").
769/// See if any of the predecessors of the terminator block are value comparisons
770/// on the same value.  If so, and if safe to do so, fold them together.
771bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
772                                                         IRBuilder<> &Builder) {
773  BasicBlock *BB = TI->getParent();
774  Value *CV = isValueEqualityComparison(TI);  // CondVal
775  assert(CV && "Not a comparison?");
776  bool Changed = false;
777
778  SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
779  while (!Preds.empty()) {
780    BasicBlock *Pred = Preds.pop_back_val();
781
782    // See if the predecessor is a comparison with the same value.
783    TerminatorInst *PTI = Pred->getTerminator();
784    Value *PCV = isValueEqualityComparison(PTI);  // PredCondVal
785
786    if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
787      // Figure out which 'cases' to copy from SI to PSI.
788      std::vector<ValueEqualityComparisonCase> BBCases;
789      BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
790
791      std::vector<ValueEqualityComparisonCase> PredCases;
792      BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
793
794      // Based on whether the default edge from PTI goes to BB or not, fill in
795      // PredCases and PredDefault with the new switch cases we would like to
796      // build.
797      SmallVector<BasicBlock*, 8> NewSuccessors;
798
799      // Update the branch weight metadata along the way
800      SmallVector<uint64_t, 8> Weights;
801      bool PredHasWeights = HasBranchWeights(PTI);
802      bool SuccHasWeights = HasBranchWeights(TI);
803
804      if (PredHasWeights) {
805        GetBranchWeights(PTI, Weights);
806        // branch-weight metadata is inconsistent here.
807        if (Weights.size() != 1 + PredCases.size())
808          PredHasWeights = SuccHasWeights = false;
809      } else if (SuccHasWeights)
810        // If there are no predecessor weights but there are successor weights,
811        // populate Weights with 1, which will later be scaled to the sum of
812        // successor's weights
813        Weights.assign(1 + PredCases.size(), 1);
814
815      SmallVector<uint64_t, 8> SuccWeights;
816      if (SuccHasWeights) {
817        GetBranchWeights(TI, SuccWeights);
818        // branch-weight metadata is inconsistent here.
819        if (SuccWeights.size() != 1 + BBCases.size())
820          PredHasWeights = SuccHasWeights = false;
821      } else if (PredHasWeights)
822        SuccWeights.assign(1 + BBCases.size(), 1);
823
824      if (PredDefault == BB) {
825        // If this is the default destination from PTI, only the edges in TI
826        // that don't occur in PTI, or that branch to BB will be activated.
827        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
828        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
829          if (PredCases[i].Dest != BB)
830            PTIHandled.insert(PredCases[i].Value);
831          else {
832            // The default destination is BB, we don't need explicit targets.
833            std::swap(PredCases[i], PredCases.back());
834
835            if (PredHasWeights || SuccHasWeights) {
836              // Increase weight for the default case.
837              Weights[0] += Weights[i+1];
838              std::swap(Weights[i+1], Weights.back());
839              Weights.pop_back();
840            }
841
842            PredCases.pop_back();
843            --i; --e;
844          }
845
846        // Reconstruct the new switch statement we will be building.
847        if (PredDefault != BBDefault) {
848          PredDefault->removePredecessor(Pred);
849          PredDefault = BBDefault;
850          NewSuccessors.push_back(BBDefault);
851        }
852
853        unsigned CasesFromPred = Weights.size();
854        uint64_t ValidTotalSuccWeight = 0;
855        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
856          if (!PTIHandled.count(BBCases[i].Value) &&
857              BBCases[i].Dest != BBDefault) {
858            PredCases.push_back(BBCases[i]);
859            NewSuccessors.push_back(BBCases[i].Dest);
860            if (SuccHasWeights || PredHasWeights) {
861              // The default weight is at index 0, so weight for the ith case
862              // should be at index i+1. Scale the cases from successor by
863              // PredDefaultWeight (Weights[0]).
864              Weights.push_back(Weights[0] * SuccWeights[i+1]);
865              ValidTotalSuccWeight += SuccWeights[i+1];
866            }
867          }
868
869        if (SuccHasWeights || PredHasWeights) {
870          ValidTotalSuccWeight += SuccWeights[0];
871          // Scale the cases from predecessor by ValidTotalSuccWeight.
872          for (unsigned i = 1; i < CasesFromPred; ++i)
873            Weights[i] *= ValidTotalSuccWeight;
874          // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
875          Weights[0] *= SuccWeights[0];
876        }
877      } else {
878        // If this is not the default destination from PSI, only the edges
879        // in SI that occur in PSI with a destination of BB will be
880        // activated.
881        std::set<ConstantInt*, ConstantIntOrdering> PTIHandled;
882        std::map<ConstantInt*, uint64_t> WeightsForHandled;
883        for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
884          if (PredCases[i].Dest == BB) {
885            PTIHandled.insert(PredCases[i].Value);
886
887            if (PredHasWeights || SuccHasWeights) {
888              WeightsForHandled[PredCases[i].Value] = Weights[i+1];
889              std::swap(Weights[i+1], Weights.back());
890              Weights.pop_back();
891            }
892
893            std::swap(PredCases[i], PredCases.back());
894            PredCases.pop_back();
895            --i; --e;
896          }
897
898        // Okay, now we know which constants were sent to BB from the
899        // predecessor.  Figure out where they will all go now.
900        for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
901          if (PTIHandled.count(BBCases[i].Value)) {
902            // If this is one we are capable of getting...
903            if (PredHasWeights || SuccHasWeights)
904              Weights.push_back(WeightsForHandled[BBCases[i].Value]);
905            PredCases.push_back(BBCases[i]);
906            NewSuccessors.push_back(BBCases[i].Dest);
907            PTIHandled.erase(BBCases[i].Value);// This constant is taken care of
908          }
909
910        // If there are any constants vectored to BB that TI doesn't handle,
911        // they must go to the default destination of TI.
912        for (std::set<ConstantInt*, ConstantIntOrdering>::iterator I =
913                                    PTIHandled.begin(),
914               E = PTIHandled.end(); I != E; ++I) {
915          if (PredHasWeights || SuccHasWeights)
916            Weights.push_back(WeightsForHandled[*I]);
917          PredCases.push_back(ValueEqualityComparisonCase(*I, BBDefault));
918          NewSuccessors.push_back(BBDefault);
919        }
920      }
921
922      // Okay, at this point, we know which new successor Pred will get.  Make
923      // sure we update the number of entries in the PHI nodes for these
924      // successors.
925      for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
926        AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
927
928      Builder.SetInsertPoint(PTI);
929      // Convert pointer to int before we switch.
930      if (CV->getType()->isPointerTy()) {
931        assert(DL && "Cannot switch on pointer without DataLayout");
932        CV = Builder.CreatePtrToInt(CV, DL->getIntPtrType(CV->getType()),
933                                    "magicptr");
934      }
935
936      // Now that the successors are updated, create the new Switch instruction.
937      SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault,
938                                               PredCases.size());
939      NewSI->setDebugLoc(PTI->getDebugLoc());
940      for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
941        NewSI->addCase(PredCases[i].Value, PredCases[i].Dest);
942
943      if (PredHasWeights || SuccHasWeights) {
944        // Halve the weights if any of them cannot fit in an uint32_t
945        FitWeights(Weights);
946
947        SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
948
949        NewSI->setMetadata(LLVMContext::MD_prof,
950                           MDBuilder(BB->getContext()).
951                           createBranchWeights(MDWeights));
952      }
953
954      EraseTerminatorInstAndDCECond(PTI);
955
956      // Okay, last check.  If BB is still a successor of PSI, then we must
957      // have an infinite loop case.  If so, add an infinitely looping block
958      // to handle the case to preserve the behavior of the code.
959      BasicBlock *InfLoopBlock = nullptr;
960      for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
961        if (NewSI->getSuccessor(i) == BB) {
962          if (!InfLoopBlock) {
963            // Insert it at the end of the function, because it's either code,
964            // or it won't matter if it's hot. :)
965            InfLoopBlock = BasicBlock::Create(BB->getContext(),
966                                              "infloop", BB->getParent());
967            BranchInst::Create(InfLoopBlock, InfLoopBlock);
968          }
969          NewSI->setSuccessor(i, InfLoopBlock);
970        }
971
972      Changed = true;
973    }
974  }
975  return Changed;
976}
977
978// isSafeToHoistInvoke - If we would need to insert a select that uses the
979// value of this invoke (comments in HoistThenElseCodeToIf explain why we
980// would need to do this), we can't hoist the invoke, as there is nowhere
981// to put the select in this case.
982static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
983                                Instruction *I1, Instruction *I2) {
984  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
985    PHINode *PN;
986    for (BasicBlock::iterator BBI = SI->begin();
987         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
988      Value *BB1V = PN->getIncomingValueForBlock(BB1);
989      Value *BB2V = PN->getIncomingValueForBlock(BB2);
990      if (BB1V != BB2V && (BB1V==I1 || BB2V==I2)) {
991        return false;
992      }
993    }
994  }
995  return true;
996}
997
998/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
999/// BB2, hoist any common code in the two blocks up into the branch block.  The
1000/// caller of this function guarantees that BI's block dominates BB1 and BB2.
1001static bool HoistThenElseCodeToIf(BranchInst *BI, const DataLayout *DL) {
1002  // This does very trivial matching, with limited scanning, to find identical
1003  // instructions in the two blocks.  In particular, we don't want to get into
1004  // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1005  // such, we currently just scan for obviously identical instructions in an
1006  // identical order.
1007  BasicBlock *BB1 = BI->getSuccessor(0);  // The true destination.
1008  BasicBlock *BB2 = BI->getSuccessor(1);  // The false destination
1009
1010  BasicBlock::iterator BB1_Itr = BB1->begin();
1011  BasicBlock::iterator BB2_Itr = BB2->begin();
1012
1013  Instruction *I1 = BB1_Itr++, *I2 = BB2_Itr++;
1014  // Skip debug info if it is not identical.
1015  DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1016  DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1017  if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1018    while (isa<DbgInfoIntrinsic>(I1))
1019      I1 = BB1_Itr++;
1020    while (isa<DbgInfoIntrinsic>(I2))
1021      I2 = BB2_Itr++;
1022  }
1023  if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1024      (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1025    return false;
1026
1027  BasicBlock *BIParent = BI->getParent();
1028
1029  bool Changed = false;
1030  do {
1031    // If we are hoisting the terminator instruction, don't move one (making a
1032    // broken BB), instead clone it, and remove BI.
1033    if (isa<TerminatorInst>(I1))
1034      goto HoistTerminator;
1035
1036    // For a normal instruction, we just move one to right before the branch,
1037    // then replace all uses of the other with the first.  Finally, we remove
1038    // the now redundant second instruction.
1039    BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
1040    if (!I2->use_empty())
1041      I2->replaceAllUsesWith(I1);
1042    I1->intersectOptionalDataWith(I2);
1043    I2->eraseFromParent();
1044    Changed = true;
1045
1046    I1 = BB1_Itr++;
1047    I2 = BB2_Itr++;
1048    // Skip debug info if it is not identical.
1049    DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1050    DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1051    if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1052      while (isa<DbgInfoIntrinsic>(I1))
1053        I1 = BB1_Itr++;
1054      while (isa<DbgInfoIntrinsic>(I2))
1055        I2 = BB2_Itr++;
1056    }
1057  } while (I1->isIdenticalToWhenDefined(I2));
1058
1059  return true;
1060
1061HoistTerminator:
1062  // It may not be possible to hoist an invoke.
1063  if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1064    return Changed;
1065
1066  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1067    PHINode *PN;
1068    for (BasicBlock::iterator BBI = SI->begin();
1069         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1070      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1071      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1072      if (BB1V == BB2V)
1073        continue;
1074
1075      if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V, DL))
1076        return Changed;
1077      if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V, DL))
1078        return Changed;
1079    }
1080  }
1081
1082  // Okay, it is safe to hoist the terminator.
1083  Instruction *NT = I1->clone();
1084  BIParent->getInstList().insert(BI, NT);
1085  if (!NT->getType()->isVoidTy()) {
1086    I1->replaceAllUsesWith(NT);
1087    I2->replaceAllUsesWith(NT);
1088    NT->takeName(I1);
1089  }
1090
1091  IRBuilder<true, NoFolder> Builder(NT);
1092  // Hoisting one of the terminators from our successor is a great thing.
1093  // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1094  // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1095  // nodes, so we insert select instruction to compute the final result.
1096  std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
1097  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
1098    PHINode *PN;
1099    for (BasicBlock::iterator BBI = SI->begin();
1100         (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1101      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1102      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1103      if (BB1V == BB2V) continue;
1104
1105      // These values do not agree.  Insert a select instruction before NT
1106      // that determines the right value.
1107      SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1108      if (!SI)
1109        SI = cast<SelectInst>
1110          (Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1111                                BB1V->getName()+"."+BB2V->getName()));
1112
1113      // Make the PHI node use the select for all incoming values for BB1/BB2
1114      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1115        if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1116          PN->setIncomingValue(i, SI);
1117    }
1118  }
1119
1120  // Update any PHI nodes in our new successors.
1121  for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
1122    AddPredecessorToBlock(*SI, BIParent, BB1);
1123
1124  EraseTerminatorInstAndDCECond(BI);
1125  return true;
1126}
1127
1128/// SinkThenElseCodeToEnd - Given an unconditional branch that goes to BBEnd,
1129/// check whether BBEnd has only two predecessors and the other predecessor
1130/// ends with an unconditional branch. If it is true, sink any common code
1131/// in the two predecessors to BBEnd.
1132static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1133  assert(BI1->isUnconditional());
1134  BasicBlock *BB1 = BI1->getParent();
1135  BasicBlock *BBEnd = BI1->getSuccessor(0);
1136
1137  // Check that BBEnd has two predecessors and the other predecessor ends with
1138  // an unconditional branch.
1139  pred_iterator PI = pred_begin(BBEnd), PE = pred_end(BBEnd);
1140  BasicBlock *Pred0 = *PI++;
1141  if (PI == PE) // Only one predecessor.
1142    return false;
1143  BasicBlock *Pred1 = *PI++;
1144  if (PI != PE) // More than two predecessors.
1145    return false;
1146  BasicBlock *BB2 = (Pred0 == BB1) ? Pred1 : Pred0;
1147  BranchInst *BI2 = dyn_cast<BranchInst>(BB2->getTerminator());
1148  if (!BI2 || !BI2->isUnconditional())
1149    return false;
1150
1151  // Gather the PHI nodes in BBEnd.
1152  std::map<Value*, std::pair<Value*, PHINode*> > MapValueFromBB1ToBB2;
1153  Instruction *FirstNonPhiInBBEnd = nullptr;
1154  for (BasicBlock::iterator I = BBEnd->begin(), E = BBEnd->end();
1155       I != E; ++I) {
1156    if (PHINode *PN = dyn_cast<PHINode>(I)) {
1157      Value *BB1V = PN->getIncomingValueForBlock(BB1);
1158      Value *BB2V = PN->getIncomingValueForBlock(BB2);
1159      MapValueFromBB1ToBB2[BB1V] = std::make_pair(BB2V, PN);
1160    } else {
1161      FirstNonPhiInBBEnd = &*I;
1162      break;
1163    }
1164  }
1165  if (!FirstNonPhiInBBEnd)
1166    return false;
1167
1168
1169  // This does very trivial matching, with limited scanning, to find identical
1170  // instructions in the two blocks.  We scan backward for obviously identical
1171  // instructions in an identical order.
1172  BasicBlock::InstListType::reverse_iterator RI1 = BB1->getInstList().rbegin(),
1173      RE1 = BB1->getInstList().rend(), RI2 = BB2->getInstList().rbegin(),
1174      RE2 = BB2->getInstList().rend();
1175  // Skip debug info.
1176  while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1177  if (RI1 == RE1)
1178    return false;
1179  while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1180  if (RI2 == RE2)
1181    return false;
1182  // Skip the unconditional branches.
1183  ++RI1;
1184  ++RI2;
1185
1186  bool Changed = false;
1187  while (RI1 != RE1 && RI2 != RE2) {
1188    // Skip debug info.
1189    while (RI1 != RE1 && isa<DbgInfoIntrinsic>(&*RI1)) ++RI1;
1190    if (RI1 == RE1)
1191      return Changed;
1192    while (RI2 != RE2 && isa<DbgInfoIntrinsic>(&*RI2)) ++RI2;
1193    if (RI2 == RE2)
1194      return Changed;
1195
1196    Instruction *I1 = &*RI1, *I2 = &*RI2;
1197    // I1 and I2 should have a single use in the same PHI node, and they
1198    // perform the same operation.
1199    // Cannot move control-flow-involving, volatile loads, vaarg, etc.
1200    if (isa<PHINode>(I1) || isa<PHINode>(I2) ||
1201        isa<TerminatorInst>(I1) || isa<TerminatorInst>(I2) ||
1202        isa<LandingPadInst>(I1) || isa<LandingPadInst>(I2) ||
1203        isa<AllocaInst>(I1) || isa<AllocaInst>(I2) ||
1204        I1->mayHaveSideEffects() || I2->mayHaveSideEffects() ||
1205        I1->mayReadOrWriteMemory() || I2->mayReadOrWriteMemory() ||
1206        !I1->hasOneUse() || !I2->hasOneUse() ||
1207        MapValueFromBB1ToBB2.find(I1) == MapValueFromBB1ToBB2.end() ||
1208        MapValueFromBB1ToBB2[I1].first != I2)
1209      return Changed;
1210
1211    // Check whether we should swap the operands of ICmpInst.
1212    ICmpInst *ICmp1 = dyn_cast<ICmpInst>(I1), *ICmp2 = dyn_cast<ICmpInst>(I2);
1213    bool SwapOpnds = false;
1214    if (ICmp1 && ICmp2 &&
1215        ICmp1->getOperand(0) != ICmp2->getOperand(0) &&
1216        ICmp1->getOperand(1) != ICmp2->getOperand(1) &&
1217        (ICmp1->getOperand(0) == ICmp2->getOperand(1) ||
1218         ICmp1->getOperand(1) == ICmp2->getOperand(0))) {
1219      ICmp2->swapOperands();
1220      SwapOpnds = true;
1221    }
1222    if (!I1->isSameOperationAs(I2)) {
1223      if (SwapOpnds)
1224        ICmp2->swapOperands();
1225      return Changed;
1226    }
1227
1228    // The operands should be either the same or they need to be generated
1229    // with a PHI node after sinking. We only handle the case where there is
1230    // a single pair of different operands.
1231    Value *DifferentOp1 = nullptr, *DifferentOp2 = nullptr;
1232    unsigned Op1Idx = 0;
1233    for (unsigned I = 0, E = I1->getNumOperands(); I != E; ++I) {
1234      if (I1->getOperand(I) == I2->getOperand(I))
1235        continue;
1236      // Early exit if we have more-than one pair of different operands or
1237      // the different operand is already in MapValueFromBB1ToBB2.
1238      // Early exit if we need a PHI node to replace a constant.
1239      if (DifferentOp1 ||
1240          MapValueFromBB1ToBB2.find(I1->getOperand(I)) !=
1241          MapValueFromBB1ToBB2.end() ||
1242          isa<Constant>(I1->getOperand(I)) ||
1243          isa<Constant>(I2->getOperand(I))) {
1244        // If we can't sink the instructions, undo the swapping.
1245        if (SwapOpnds)
1246          ICmp2->swapOperands();
1247        return Changed;
1248      }
1249      DifferentOp1 = I1->getOperand(I);
1250      Op1Idx = I;
1251      DifferentOp2 = I2->getOperand(I);
1252    }
1253
1254    // We insert the pair of different operands to MapValueFromBB1ToBB2 and
1255    // remove (I1, I2) from MapValueFromBB1ToBB2.
1256    if (DifferentOp1) {
1257      PHINode *NewPN = PHINode::Create(DifferentOp1->getType(), 2,
1258                                       DifferentOp1->getName() + ".sink",
1259                                       BBEnd->begin());
1260      MapValueFromBB1ToBB2[DifferentOp1] = std::make_pair(DifferentOp2, NewPN);
1261      // I1 should use NewPN instead of DifferentOp1.
1262      I1->setOperand(Op1Idx, NewPN);
1263      NewPN->addIncoming(DifferentOp1, BB1);
1264      NewPN->addIncoming(DifferentOp2, BB2);
1265      DEBUG(dbgs() << "Create PHI node " << *NewPN << "\n";);
1266    }
1267    PHINode *OldPN = MapValueFromBB1ToBB2[I1].second;
1268    MapValueFromBB1ToBB2.erase(I1);
1269
1270    DEBUG(dbgs() << "SINK common instructions " << *I1 << "\n";);
1271    DEBUG(dbgs() << "                         " << *I2 << "\n";);
1272    // We need to update RE1 and RE2 if we are going to sink the first
1273    // instruction in the basic block down.
1274    bool UpdateRE1 = (I1 == BB1->begin()), UpdateRE2 = (I2 == BB2->begin());
1275    // Sink the instruction.
1276    BBEnd->getInstList().splice(FirstNonPhiInBBEnd, BB1->getInstList(), I1);
1277    if (!OldPN->use_empty())
1278      OldPN->replaceAllUsesWith(I1);
1279    OldPN->eraseFromParent();
1280
1281    if (!I2->use_empty())
1282      I2->replaceAllUsesWith(I1);
1283    I1->intersectOptionalDataWith(I2);
1284    I2->eraseFromParent();
1285
1286    if (UpdateRE1)
1287      RE1 = BB1->getInstList().rend();
1288    if (UpdateRE2)
1289      RE2 = BB2->getInstList().rend();
1290    FirstNonPhiInBBEnd = I1;
1291    NumSinkCommons++;
1292    Changed = true;
1293  }
1294  return Changed;
1295}
1296
1297/// \brief Determine if we can hoist sink a sole store instruction out of a
1298/// conditional block.
1299///
1300/// We are looking for code like the following:
1301///   BrBB:
1302///     store i32 %add, i32* %arrayidx2
1303///     ... // No other stores or function calls (we could be calling a memory
1304///     ... // function).
1305///     %cmp = icmp ult %x, %y
1306///     br i1 %cmp, label %EndBB, label %ThenBB
1307///   ThenBB:
1308///     store i32 %add5, i32* %arrayidx2
1309///     br label EndBB
1310///   EndBB:
1311///     ...
1312///   We are going to transform this into:
1313///   BrBB:
1314///     store i32 %add, i32* %arrayidx2
1315///     ... //
1316///     %cmp = icmp ult %x, %y
1317///     %add.add5 = select i1 %cmp, i32 %add, %add5
1318///     store i32 %add.add5, i32* %arrayidx2
1319///     ...
1320///
1321/// \return The pointer to the value of the previous store if the store can be
1322///         hoisted into the predecessor block. 0 otherwise.
1323static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1324                                     BasicBlock *StoreBB, BasicBlock *EndBB) {
1325  StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1326  if (!StoreToHoist)
1327    return nullptr;
1328
1329  // Volatile or atomic.
1330  if (!StoreToHoist->isSimple())
1331    return nullptr;
1332
1333  Value *StorePtr = StoreToHoist->getPointerOperand();
1334
1335  // Look for a store to the same pointer in BrBB.
1336  unsigned MaxNumInstToLookAt = 10;
1337  for (BasicBlock::reverse_iterator RI = BrBB->rbegin(),
1338       RE = BrBB->rend(); RI != RE && (--MaxNumInstToLookAt); ++RI) {
1339    Instruction *CurI = &*RI;
1340
1341    // Could be calling an instruction that effects memory like free().
1342    if (CurI->mayHaveSideEffects() && !isa<StoreInst>(CurI))
1343      return nullptr;
1344
1345    StoreInst *SI = dyn_cast<StoreInst>(CurI);
1346    // Found the previous store make sure it stores to the same location.
1347    if (SI && SI->getPointerOperand() == StorePtr)
1348      // Found the previous store, return its value operand.
1349      return SI->getValueOperand();
1350    else if (SI)
1351      return nullptr; // Unknown store.
1352  }
1353
1354  return nullptr;
1355}
1356
1357/// \brief Speculate a conditional basic block flattening the CFG.
1358///
1359/// Note that this is a very risky transform currently. Speculating
1360/// instructions like this is most often not desirable. Instead, there is an MI
1361/// pass which can do it with full awareness of the resource constraints.
1362/// However, some cases are "obvious" and we should do directly. An example of
1363/// this is speculating a single, reasonably cheap instruction.
1364///
1365/// There is only one distinct advantage to flattening the CFG at the IR level:
1366/// it makes very common but simplistic optimizations such as are common in
1367/// instcombine and the DAG combiner more powerful by removing CFG edges and
1368/// modeling their effects with easier to reason about SSA value graphs.
1369///
1370///
1371/// An illustration of this transform is turning this IR:
1372/// \code
1373///   BB:
1374///     %cmp = icmp ult %x, %y
1375///     br i1 %cmp, label %EndBB, label %ThenBB
1376///   ThenBB:
1377///     %sub = sub %x, %y
1378///     br label BB2
1379///   EndBB:
1380///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1381///     ...
1382/// \endcode
1383///
1384/// Into this IR:
1385/// \code
1386///   BB:
1387///     %cmp = icmp ult %x, %y
1388///     %sub = sub %x, %y
1389///     %cond = select i1 %cmp, 0, %sub
1390///     ...
1391/// \endcode
1392///
1393/// \returns true if the conditional block is removed.
1394static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1395                                   const DataLayout *DL) {
1396  // Be conservative for now. FP select instruction can often be expensive.
1397  Value *BrCond = BI->getCondition();
1398  if (isa<FCmpInst>(BrCond))
1399    return false;
1400
1401  BasicBlock *BB = BI->getParent();
1402  BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1403
1404  // If ThenBB is actually on the false edge of the conditional branch, remember
1405  // to swap the select operands later.
1406  bool Invert = false;
1407  if (ThenBB != BI->getSuccessor(0)) {
1408    assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1409    Invert = true;
1410  }
1411  assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1412
1413  // Keep a count of how many times instructions are used within CondBB when
1414  // they are candidates for sinking into CondBB. Specifically:
1415  // - They are defined in BB, and
1416  // - They have no side effects, and
1417  // - All of their uses are in CondBB.
1418  SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1419
1420  unsigned SpeculationCost = 0;
1421  Value *SpeculatedStoreValue = nullptr;
1422  StoreInst *SpeculatedStore = nullptr;
1423  for (BasicBlock::iterator BBI = ThenBB->begin(),
1424                            BBE = std::prev(ThenBB->end());
1425       BBI != BBE; ++BBI) {
1426    Instruction *I = BBI;
1427    // Skip debug info.
1428    if (isa<DbgInfoIntrinsic>(I))
1429      continue;
1430
1431    // Only speculatively execution a single instruction (not counting the
1432    // terminator) for now.
1433    ++SpeculationCost;
1434    if (SpeculationCost > 1)
1435      return false;
1436
1437    // Don't hoist the instruction if it's unsafe or expensive.
1438    if (!isSafeToSpeculativelyExecute(I, DL) &&
1439        !(HoistCondStores &&
1440          (SpeculatedStoreValue = isSafeToSpeculateStore(I, BB, ThenBB,
1441                                                         EndBB))))
1442      return false;
1443    if (!SpeculatedStoreValue &&
1444        ComputeSpeculationCost(I, DL) > PHINodeFoldingThreshold)
1445      return false;
1446
1447    // Store the store speculation candidate.
1448    if (SpeculatedStoreValue)
1449      SpeculatedStore = cast<StoreInst>(I);
1450
1451    // Do not hoist the instruction if any of its operands are defined but not
1452    // used in BB. The transformation will prevent the operand from
1453    // being sunk into the use block.
1454    for (User::op_iterator i = I->op_begin(), e = I->op_end();
1455         i != e; ++i) {
1456      Instruction *OpI = dyn_cast<Instruction>(*i);
1457      if (!OpI || OpI->getParent() != BB ||
1458          OpI->mayHaveSideEffects())
1459        continue; // Not a candidate for sinking.
1460
1461      ++SinkCandidateUseCounts[OpI];
1462    }
1463  }
1464
1465  // Consider any sink candidates which are only used in CondBB as costs for
1466  // speculation. Note, while we iterate over a DenseMap here, we are summing
1467  // and so iteration order isn't significant.
1468  for (SmallDenseMap<Instruction *, unsigned, 4>::iterator I =
1469           SinkCandidateUseCounts.begin(), E = SinkCandidateUseCounts.end();
1470       I != E; ++I)
1471    if (I->first->getNumUses() == I->second) {
1472      ++SpeculationCost;
1473      if (SpeculationCost > 1)
1474        return false;
1475    }
1476
1477  // Check that the PHI nodes can be converted to selects.
1478  bool HaveRewritablePHIs = false;
1479  for (BasicBlock::iterator I = EndBB->begin();
1480       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1481    Value *OrigV = PN->getIncomingValueForBlock(BB);
1482    Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
1483
1484    // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
1485    // Skip PHIs which are trivial.
1486    if (ThenV == OrigV)
1487      continue;
1488
1489    HaveRewritablePHIs = true;
1490    ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
1491    ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
1492    if (!OrigCE && !ThenCE)
1493      continue; // Known safe and cheap.
1494
1495    if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE, DL)) ||
1496        (OrigCE && !isSafeToSpeculativelyExecute(OrigCE, DL)))
1497      return false;
1498    unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, DL) : 0;
1499    unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, DL) : 0;
1500    if (OrigCost + ThenCost > 2 * PHINodeFoldingThreshold)
1501      return false;
1502
1503    // Account for the cost of an unfolded ConstantExpr which could end up
1504    // getting expanded into Instructions.
1505    // FIXME: This doesn't account for how many operations are combined in the
1506    // constant expression.
1507    ++SpeculationCost;
1508    if (SpeculationCost > 1)
1509      return false;
1510  }
1511
1512  // If there are no PHIs to process, bail early. This helps ensure idempotence
1513  // as well.
1514  if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
1515    return false;
1516
1517  // If we get here, we can hoist the instruction and if-convert.
1518  DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
1519
1520  // Insert a select of the value of the speculated store.
1521  if (SpeculatedStoreValue) {
1522    IRBuilder<true, NoFolder> Builder(BI);
1523    Value *TrueV = SpeculatedStore->getValueOperand();
1524    Value *FalseV = SpeculatedStoreValue;
1525    if (Invert)
1526      std::swap(TrueV, FalseV);
1527    Value *S = Builder.CreateSelect(BrCond, TrueV, FalseV, TrueV->getName() +
1528                                    "." + FalseV->getName());
1529    SpeculatedStore->setOperand(0, S);
1530  }
1531
1532  // Hoist the instructions.
1533  BB->getInstList().splice(BI, ThenBB->getInstList(), ThenBB->begin(),
1534                           std::prev(ThenBB->end()));
1535
1536  // Insert selects and rewrite the PHI operands.
1537  IRBuilder<true, NoFolder> Builder(BI);
1538  for (BasicBlock::iterator I = EndBB->begin();
1539       PHINode *PN = dyn_cast<PHINode>(I); ++I) {
1540    unsigned OrigI = PN->getBasicBlockIndex(BB);
1541    unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
1542    Value *OrigV = PN->getIncomingValue(OrigI);
1543    Value *ThenV = PN->getIncomingValue(ThenI);
1544
1545    // Skip PHIs which are trivial.
1546    if (OrigV == ThenV)
1547      continue;
1548
1549    // Create a select whose true value is the speculatively executed value and
1550    // false value is the preexisting value. Swap them if the branch
1551    // destinations were inverted.
1552    Value *TrueV = ThenV, *FalseV = OrigV;
1553    if (Invert)
1554      std::swap(TrueV, FalseV);
1555    Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV,
1556                                    TrueV->getName() + "." + FalseV->getName());
1557    PN->setIncomingValue(OrigI, V);
1558    PN->setIncomingValue(ThenI, V);
1559  }
1560
1561  ++NumSpeculations;
1562  return true;
1563}
1564
1565/// \returns True if this block contains a CallInst with the NoDuplicate
1566/// attribute.
1567static bool HasNoDuplicateCall(const BasicBlock *BB) {
1568  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1569    const CallInst *CI = dyn_cast<CallInst>(I);
1570    if (!CI)
1571      continue;
1572    if (CI->cannotDuplicate())
1573      return true;
1574  }
1575  return false;
1576}
1577
1578/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1579/// across this block.
1580static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1581  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1582  unsigned Size = 0;
1583
1584  for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1585    if (isa<DbgInfoIntrinsic>(BBI))
1586      continue;
1587    if (Size > 10) return false;  // Don't clone large BB's.
1588    ++Size;
1589
1590    // We can only support instructions that do not define values that are
1591    // live outside of the current basic block.
1592    for (User *U : BBI->users()) {
1593      Instruction *UI = cast<Instruction>(U);
1594      if (UI->getParent() != BB || isa<PHINode>(UI)) return false;
1595    }
1596
1597    // Looks ok, continue checking.
1598  }
1599
1600  return true;
1601}
1602
1603/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1604/// that is defined in the same block as the branch and if any PHI entries are
1605/// constants, thread edges corresponding to that entry to be branches to their
1606/// ultimate destination.
1607static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout *DL) {
1608  BasicBlock *BB = BI->getParent();
1609  PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1610  // NOTE: we currently cannot transform this case if the PHI node is used
1611  // outside of the block.
1612  if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1613    return false;
1614
1615  // Degenerate case of a single entry PHI.
1616  if (PN->getNumIncomingValues() == 1) {
1617    FoldSingleEntryPHINodes(PN->getParent());
1618    return true;
1619  }
1620
1621  // Now we know that this block has multiple preds and two succs.
1622  if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1623
1624  if (HasNoDuplicateCall(BB)) return false;
1625
1626  // Okay, this is a simple enough basic block.  See if any phi values are
1627  // constants.
1628  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1629    ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
1630    if (!CB || !CB->getType()->isIntegerTy(1)) continue;
1631
1632    // Okay, we now know that all edges from PredBB should be revectored to
1633    // branch to RealDest.
1634    BasicBlock *PredBB = PN->getIncomingBlock(i);
1635    BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1636
1637    if (RealDest == BB) continue;  // Skip self loops.
1638    // Skip if the predecessor's terminator is an indirect branch.
1639    if (isa<IndirectBrInst>(PredBB->getTerminator())) continue;
1640
1641    // The dest block might have PHI nodes, other predecessors and other
1642    // difficult cases.  Instead of being smart about this, just insert a new
1643    // block that jumps to the destination block, effectively splitting
1644    // the edge we are about to create.
1645    BasicBlock *EdgeBB = BasicBlock::Create(BB->getContext(),
1646                                            RealDest->getName()+".critedge",
1647                                            RealDest->getParent(), RealDest);
1648    BranchInst::Create(RealDest, EdgeBB);
1649
1650    // Update PHI nodes.
1651    AddPredecessorToBlock(RealDest, EdgeBB, BB);
1652
1653    // BB may have instructions that are being threaded over.  Clone these
1654    // instructions into EdgeBB.  We know that there will be no uses of the
1655    // cloned instructions outside of EdgeBB.
1656    BasicBlock::iterator InsertPt = EdgeBB->begin();
1657    DenseMap<Value*, Value*> TranslateMap;  // Track translated values.
1658    for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1659      if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1660        TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1661        continue;
1662      }
1663      // Clone the instruction.
1664      Instruction *N = BBI->clone();
1665      if (BBI->hasName()) N->setName(BBI->getName()+".c");
1666
1667      // Update operands due to translation.
1668      for (User::op_iterator i = N->op_begin(), e = N->op_end();
1669           i != e; ++i) {
1670        DenseMap<Value*, Value*>::iterator PI = TranslateMap.find(*i);
1671        if (PI != TranslateMap.end())
1672          *i = PI->second;
1673      }
1674
1675      // Check for trivial simplification.
1676      if (Value *V = SimplifyInstruction(N, DL)) {
1677        TranslateMap[BBI] = V;
1678        delete N;   // Instruction folded away, don't need actual inst
1679      } else {
1680        // Insert the new instruction into its new home.
1681        EdgeBB->getInstList().insert(InsertPt, N);
1682        if (!BBI->use_empty())
1683          TranslateMap[BBI] = N;
1684      }
1685    }
1686
1687    // Loop over all of the edges from PredBB to BB, changing them to branch
1688    // to EdgeBB instead.
1689    TerminatorInst *PredBBTI = PredBB->getTerminator();
1690    for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1691      if (PredBBTI->getSuccessor(i) == BB) {
1692        BB->removePredecessor(PredBB);
1693        PredBBTI->setSuccessor(i, EdgeBB);
1694      }
1695
1696    // Recurse, simplifying any other constants.
1697    return FoldCondBranchOnPHI(BI, DL) | true;
1698  }
1699
1700  return false;
1701}
1702
1703/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1704/// PHI node, see if we can eliminate it.
1705static bool FoldTwoEntryPHINode(PHINode *PN, const DataLayout *DL) {
1706  // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
1707  // statement", which has a very simple dominance structure.  Basically, we
1708  // are trying to find the condition that is being branched on, which
1709  // subsequently causes this merge to happen.  We really want control
1710  // dependence information for this check, but simplifycfg can't keep it up
1711  // to date, and this catches most of the cases we care about anyway.
1712  BasicBlock *BB = PN->getParent();
1713  BasicBlock *IfTrue, *IfFalse;
1714  Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1715  if (!IfCond ||
1716      // Don't bother if the branch will be constant folded trivially.
1717      isa<ConstantInt>(IfCond))
1718    return false;
1719
1720  // Okay, we found that we can merge this two-entry phi node into a select.
1721  // Doing so would require us to fold *all* two entry phi nodes in this block.
1722  // At some point this becomes non-profitable (particularly if the target
1723  // doesn't support cmov's).  Only do this transformation if there are two or
1724  // fewer PHI nodes in this block.
1725  unsigned NumPhis = 0;
1726  for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1727    if (NumPhis > 2)
1728      return false;
1729
1730  // Loop over the PHI's seeing if we can promote them all to select
1731  // instructions.  While we are at it, keep track of the instructions
1732  // that need to be moved to the dominating block.
1733  SmallPtrSet<Instruction*, 4> AggressiveInsts;
1734  unsigned MaxCostVal0 = PHINodeFoldingThreshold,
1735           MaxCostVal1 = PHINodeFoldingThreshold;
1736
1737  for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
1738    PHINode *PN = cast<PHINode>(II++);
1739    if (Value *V = SimplifyInstruction(PN, DL)) {
1740      PN->replaceAllUsesWith(V);
1741      PN->eraseFromParent();
1742      continue;
1743    }
1744
1745    if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
1746                             MaxCostVal0, DL) ||
1747        !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
1748                             MaxCostVal1, DL))
1749      return false;
1750  }
1751
1752  // If we folded the first phi, PN dangles at this point.  Refresh it.  If
1753  // we ran out of PHIs then we simplified them all.
1754  PN = dyn_cast<PHINode>(BB->begin());
1755  if (!PN) return true;
1756
1757  // Don't fold i1 branches on PHIs which contain binary operators.  These can
1758  // often be turned into switches and other things.
1759  if (PN->getType()->isIntegerTy(1) &&
1760      (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
1761       isa<BinaryOperator>(PN->getIncomingValue(1)) ||
1762       isa<BinaryOperator>(IfCond)))
1763    return false;
1764
1765  // If we all PHI nodes are promotable, check to make sure that all
1766  // instructions in the predecessor blocks can be promoted as well.  If
1767  // not, we won't be able to get rid of the control flow, so it's not
1768  // worth promoting to select instructions.
1769  BasicBlock *DomBlock = nullptr;
1770  BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
1771  BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
1772  if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
1773    IfBlock1 = nullptr;
1774  } else {
1775    DomBlock = *pred_begin(IfBlock1);
1776    for (BasicBlock::iterator I = IfBlock1->begin();!isa<TerminatorInst>(I);++I)
1777      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1778        // This is not an aggressive instruction that we can promote.
1779        // Because of this, we won't be able to get rid of the control
1780        // flow, so the xform is not worth it.
1781        return false;
1782      }
1783  }
1784
1785  if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
1786    IfBlock2 = nullptr;
1787  } else {
1788    DomBlock = *pred_begin(IfBlock2);
1789    for (BasicBlock::iterator I = IfBlock2->begin();!isa<TerminatorInst>(I);++I)
1790      if (!AggressiveInsts.count(I) && !isa<DbgInfoIntrinsic>(I)) {
1791        // This is not an aggressive instruction that we can promote.
1792        // Because of this, we won't be able to get rid of the control
1793        // flow, so the xform is not worth it.
1794        return false;
1795      }
1796  }
1797
1798  DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
1799               << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
1800
1801  // If we can still promote the PHI nodes after this gauntlet of tests,
1802  // do all of the PHI's now.
1803  Instruction *InsertPt = DomBlock->getTerminator();
1804  IRBuilder<true, NoFolder> Builder(InsertPt);
1805
1806  // Move all 'aggressive' instructions, which are defined in the
1807  // conditional parts of the if's up to the dominating block.
1808  if (IfBlock1)
1809    DomBlock->getInstList().splice(InsertPt,
1810                                   IfBlock1->getInstList(), IfBlock1->begin(),
1811                                   IfBlock1->getTerminator());
1812  if (IfBlock2)
1813    DomBlock->getInstList().splice(InsertPt,
1814                                   IfBlock2->getInstList(), IfBlock2->begin(),
1815                                   IfBlock2->getTerminator());
1816
1817  while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1818    // Change the PHI node into a select instruction.
1819    Value *TrueVal  = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1820    Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1821
1822    SelectInst *NV =
1823      cast<SelectInst>(Builder.CreateSelect(IfCond, TrueVal, FalseVal, ""));
1824    PN->replaceAllUsesWith(NV);
1825    NV->takeName(PN);
1826    PN->eraseFromParent();
1827  }
1828
1829  // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
1830  // has been flattened.  Change DomBlock to jump directly to our new block to
1831  // avoid other simplifycfg's kicking in on the diamond.
1832  TerminatorInst *OldTI = DomBlock->getTerminator();
1833  Builder.SetInsertPoint(OldTI);
1834  Builder.CreateBr(BB);
1835  OldTI->eraseFromParent();
1836  return true;
1837}
1838
1839/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1840/// to two returning blocks, try to merge them together into one return,
1841/// introducing a select if the return values disagree.
1842static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
1843                                           IRBuilder<> &Builder) {
1844  assert(BI->isConditional() && "Must be a conditional branch");
1845  BasicBlock *TrueSucc = BI->getSuccessor(0);
1846  BasicBlock *FalseSucc = BI->getSuccessor(1);
1847  ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1848  ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1849
1850  // Check to ensure both blocks are empty (just a return) or optionally empty
1851  // with PHI nodes.  If there are other instructions, merging would cause extra
1852  // computation on one path or the other.
1853  if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
1854    return false;
1855  if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
1856    return false;
1857
1858  Builder.SetInsertPoint(BI);
1859  // Okay, we found a branch that is going to two return nodes.  If
1860  // there is no return value for this function, just change the
1861  // branch into a return.
1862  if (FalseRet->getNumOperands() == 0) {
1863    TrueSucc->removePredecessor(BI->getParent());
1864    FalseSucc->removePredecessor(BI->getParent());
1865    Builder.CreateRetVoid();
1866    EraseTerminatorInstAndDCECond(BI);
1867    return true;
1868  }
1869
1870  // Otherwise, figure out what the true and false return values are
1871  // so we can insert a new select instruction.
1872  Value *TrueValue = TrueRet->getReturnValue();
1873  Value *FalseValue = FalseRet->getReturnValue();
1874
1875  // Unwrap any PHI nodes in the return blocks.
1876  if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1877    if (TVPN->getParent() == TrueSucc)
1878      TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1879  if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1880    if (FVPN->getParent() == FalseSucc)
1881      FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1882
1883  // In order for this transformation to be safe, we must be able to
1884  // unconditionally execute both operands to the return.  This is
1885  // normally the case, but we could have a potentially-trapping
1886  // constant expression that prevents this transformation from being
1887  // safe.
1888  if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1889    if (TCV->canTrap())
1890      return false;
1891  if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1892    if (FCV->canTrap())
1893      return false;
1894
1895  // Okay, we collected all the mapped values and checked them for sanity, and
1896  // defined to really do this transformation.  First, update the CFG.
1897  TrueSucc->removePredecessor(BI->getParent());
1898  FalseSucc->removePredecessor(BI->getParent());
1899
1900  // Insert select instructions where needed.
1901  Value *BrCond = BI->getCondition();
1902  if (TrueValue) {
1903    // Insert a select if the results differ.
1904    if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1905    } else if (isa<UndefValue>(TrueValue)) {
1906      TrueValue = FalseValue;
1907    } else {
1908      TrueValue = Builder.CreateSelect(BrCond, TrueValue,
1909                                       FalseValue, "retval");
1910    }
1911  }
1912
1913  Value *RI = !TrueValue ?
1914    Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
1915
1916  (void) RI;
1917
1918  DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1919               << "\n  " << *BI << "NewRet = " << *RI
1920               << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc);
1921
1922  EraseTerminatorInstAndDCECond(BI);
1923
1924  return true;
1925}
1926
1927/// ExtractBranchMetadata - Given a conditional BranchInstruction, retrieve the
1928/// probabilities of the branch taking each edge. Fills in the two APInt
1929/// parameters and return true, or returns false if no or invalid metadata was
1930/// found.
1931static bool ExtractBranchMetadata(BranchInst *BI,
1932                                  uint64_t &ProbTrue, uint64_t &ProbFalse) {
1933  assert(BI->isConditional() &&
1934         "Looking for probabilities on unconditional branch?");
1935  MDNode *ProfileData = BI->getMetadata(LLVMContext::MD_prof);
1936  if (!ProfileData || ProfileData->getNumOperands() != 3) return false;
1937  ConstantInt *CITrue = dyn_cast<ConstantInt>(ProfileData->getOperand(1));
1938  ConstantInt *CIFalse = dyn_cast<ConstantInt>(ProfileData->getOperand(2));
1939  if (!CITrue || !CIFalse) return false;
1940  ProbTrue = CITrue->getValue().getZExtValue();
1941  ProbFalse = CIFalse->getValue().getZExtValue();
1942  return true;
1943}
1944
1945/// checkCSEInPredecessor - Return true if the given instruction is available
1946/// in its predecessor block. If yes, the instruction will be removed.
1947///
1948static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
1949  if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
1950    return false;
1951  for (BasicBlock::iterator I = PB->begin(), E = PB->end(); I != E; I++) {
1952    Instruction *PBI = &*I;
1953    // Check whether Inst and PBI generate the same value.
1954    if (Inst->isIdenticalTo(PBI)) {
1955      Inst->replaceAllUsesWith(PBI);
1956      Inst->eraseFromParent();
1957      return true;
1958    }
1959  }
1960  return false;
1961}
1962
1963/// FoldBranchToCommonDest - If this basic block is simple enough, and if a
1964/// predecessor branches to us and one of our successors, fold the block into
1965/// the predecessor and use logical operations to pick the right destination.
1966bool llvm::FoldBranchToCommonDest(BranchInst *BI, const DataLayout *DL) {
1967  BasicBlock *BB = BI->getParent();
1968
1969  Instruction *Cond = nullptr;
1970  if (BI->isConditional())
1971    Cond = dyn_cast<Instruction>(BI->getCondition());
1972  else {
1973    // For unconditional branch, check for a simple CFG pattern, where
1974    // BB has a single predecessor and BB's successor is also its predecessor's
1975    // successor. If such pattern exisits, check for CSE between BB and its
1976    // predecessor.
1977    if (BasicBlock *PB = BB->getSinglePredecessor())
1978      if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
1979        if (PBI->isConditional() &&
1980            (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
1981             BI->getSuccessor(0) == PBI->getSuccessor(1))) {
1982          for (BasicBlock::iterator I = BB->begin(), E = BB->end();
1983               I != E; ) {
1984            Instruction *Curr = I++;
1985            if (isa<CmpInst>(Curr)) {
1986              Cond = Curr;
1987              break;
1988            }
1989            // Quit if we can't remove this instruction.
1990            if (!checkCSEInPredecessor(Curr, PB))
1991              return false;
1992          }
1993        }
1994
1995    if (!Cond)
1996      return false;
1997  }
1998
1999  if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2000      Cond->getParent() != BB || !Cond->hasOneUse())
2001  return false;
2002
2003  // Only allow this if the condition is a simple instruction that can be
2004  // executed unconditionally.  It must be in the same block as the branch, and
2005  // must be at the front of the block.
2006  BasicBlock::iterator FrontIt = BB->front();
2007
2008  // Ignore dbg intrinsics.
2009  while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
2010
2011  // Allow a single instruction to be hoisted in addition to the compare
2012  // that feeds the branch.  We later ensure that any values that _it_ uses
2013  // were also live in the predecessor, so that we don't unnecessarily create
2014  // register pressure or inhibit out-of-order execution.
2015  Instruction *BonusInst = nullptr;
2016  if (&*FrontIt != Cond &&
2017      FrontIt->hasOneUse() && FrontIt->user_back() == Cond &&
2018      isSafeToSpeculativelyExecute(FrontIt, DL)) {
2019    BonusInst = &*FrontIt;
2020    ++FrontIt;
2021
2022    // Ignore dbg intrinsics.
2023    while (isa<DbgInfoIntrinsic>(FrontIt)) ++FrontIt;
2024  }
2025
2026  // Only a single bonus inst is allowed.
2027  if (&*FrontIt != Cond)
2028    return false;
2029
2030  // Make sure the instruction after the condition is the cond branch.
2031  BasicBlock::iterator CondIt = Cond; ++CondIt;
2032
2033  // Ignore dbg intrinsics.
2034  while (isa<DbgInfoIntrinsic>(CondIt)) ++CondIt;
2035
2036  if (&*CondIt != BI)
2037    return false;
2038
2039  // Cond is known to be a compare or binary operator.  Check to make sure that
2040  // neither operand is a potentially-trapping constant expression.
2041  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2042    if (CE->canTrap())
2043      return false;
2044  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2045    if (CE->canTrap())
2046      return false;
2047
2048  // Finally, don't infinitely unroll conditional loops.
2049  BasicBlock *TrueDest  = BI->getSuccessor(0);
2050  BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2051  if (TrueDest == BB || FalseDest == BB)
2052    return false;
2053
2054  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2055    BasicBlock *PredBlock = *PI;
2056    BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2057
2058    // Check that we have two conditional branches.  If there is a PHI node in
2059    // the common successor, verify that the same value flows in from both
2060    // blocks.
2061    SmallVector<PHINode*, 4> PHIs;
2062    if (!PBI || PBI->isUnconditional() ||
2063        (BI->isConditional() &&
2064         !SafeToMergeTerminators(BI, PBI)) ||
2065        (!BI->isConditional() &&
2066         !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2067      continue;
2068
2069    // Determine if the two branches share a common destination.
2070    Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2071    bool InvertPredCond = false;
2072
2073    if (BI->isConditional()) {
2074      if (PBI->getSuccessor(0) == TrueDest)
2075        Opc = Instruction::Or;
2076      else if (PBI->getSuccessor(1) == FalseDest)
2077        Opc = Instruction::And;
2078      else if (PBI->getSuccessor(0) == FalseDest)
2079        Opc = Instruction::And, InvertPredCond = true;
2080      else if (PBI->getSuccessor(1) == TrueDest)
2081        Opc = Instruction::Or, InvertPredCond = true;
2082      else
2083        continue;
2084    } else {
2085      if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2086        continue;
2087    }
2088
2089    // Ensure that any values used in the bonus instruction are also used
2090    // by the terminator of the predecessor.  This means that those values
2091    // must already have been resolved, so we won't be inhibiting the
2092    // out-of-order core by speculating them earlier. We also allow
2093    // instructions that are used by the terminator's condition because it
2094    // exposes more merging opportunities.
2095    bool UsedByBranch = (BonusInst && BonusInst->hasOneUse() &&
2096                         BonusInst->user_back() == Cond);
2097
2098    if (BonusInst && !UsedByBranch) {
2099      // Collect the values used by the bonus inst
2100      SmallPtrSet<Value*, 4> UsedValues;
2101      for (Instruction::op_iterator OI = BonusInst->op_begin(),
2102           OE = BonusInst->op_end(); OI != OE; ++OI) {
2103        Value *V = *OI;
2104        if (!isa<Constant>(V) && !isa<Argument>(V))
2105          UsedValues.insert(V);
2106      }
2107
2108      SmallVector<std::pair<Value*, unsigned>, 4> Worklist;
2109      Worklist.push_back(std::make_pair(PBI->getOperand(0), 0));
2110
2111      // Walk up to four levels back up the use-def chain of the predecessor's
2112      // terminator to see if all those values were used.  The choice of four
2113      // levels is arbitrary, to provide a compile-time-cost bound.
2114      while (!Worklist.empty()) {
2115        std::pair<Value*, unsigned> Pair = Worklist.back();
2116        Worklist.pop_back();
2117
2118        if (Pair.second >= 4) continue;
2119        UsedValues.erase(Pair.first);
2120        if (UsedValues.empty()) break;
2121
2122        if (Instruction *I = dyn_cast<Instruction>(Pair.first)) {
2123          for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
2124               OI != OE; ++OI)
2125            Worklist.push_back(std::make_pair(OI->get(), Pair.second+1));
2126        }
2127      }
2128
2129      if (!UsedValues.empty()) return false;
2130    }
2131
2132    DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2133    IRBuilder<> Builder(PBI);
2134
2135    // If we need to invert the condition in the pred block to match, do so now.
2136    if (InvertPredCond) {
2137      Value *NewCond = PBI->getCondition();
2138
2139      if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2140        CmpInst *CI = cast<CmpInst>(NewCond);
2141        CI->setPredicate(CI->getInversePredicate());
2142      } else {
2143        NewCond = Builder.CreateNot(NewCond,
2144                                    PBI->getCondition()->getName()+".not");
2145      }
2146
2147      PBI->setCondition(NewCond);
2148      PBI->swapSuccessors();
2149    }
2150
2151    // If we have a bonus inst, clone it into the predecessor block.
2152    Instruction *NewBonus = nullptr;
2153    if (BonusInst) {
2154      NewBonus = BonusInst->clone();
2155
2156      // If we moved a load, we cannot any longer claim any knowledge about
2157      // its potential value. The previous information might have been valid
2158      // only given the branch precondition.
2159      // For an analogous reason, we must also drop all the metadata whose
2160      // semantics we don't understand.
2161      NewBonus->dropUnknownMetadata(LLVMContext::MD_dbg);
2162
2163      PredBlock->getInstList().insert(PBI, NewBonus);
2164      NewBonus->takeName(BonusInst);
2165      BonusInst->setName(BonusInst->getName()+".old");
2166    }
2167
2168    // Clone Cond into the predecessor basic block, and or/and the
2169    // two conditions together.
2170    Instruction *New = Cond->clone();
2171    if (BonusInst) New->replaceUsesOfWith(BonusInst, NewBonus);
2172    PredBlock->getInstList().insert(PBI, New);
2173    New->takeName(Cond);
2174    Cond->setName(New->getName()+".old");
2175
2176    if (BI->isConditional()) {
2177      Instruction *NewCond =
2178        cast<Instruction>(Builder.CreateBinOp(Opc, PBI->getCondition(),
2179                                            New, "or.cond"));
2180      PBI->setCondition(NewCond);
2181
2182      uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2183      bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2184                                                  PredFalseWeight);
2185      bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2186                                                  SuccFalseWeight);
2187      SmallVector<uint64_t, 8> NewWeights;
2188
2189      if (PBI->getSuccessor(0) == BB) {
2190        if (PredHasWeights && SuccHasWeights) {
2191          // PBI: br i1 %x, BB, FalseDest
2192          // BI:  br i1 %y, TrueDest, FalseDest
2193          //TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2194          NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2195          //FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2196          //               TrueWeight for PBI * FalseWeight for BI.
2197          // We assume that total weights of a BranchInst can fit into 32 bits.
2198          // Therefore, we will not have overflow using 64-bit arithmetic.
2199          NewWeights.push_back(PredFalseWeight * (SuccFalseWeight +
2200               SuccTrueWeight) + PredTrueWeight * SuccFalseWeight);
2201        }
2202        AddPredecessorToBlock(TrueDest, PredBlock, BB);
2203        PBI->setSuccessor(0, TrueDest);
2204      }
2205      if (PBI->getSuccessor(1) == BB) {
2206        if (PredHasWeights && SuccHasWeights) {
2207          // PBI: br i1 %x, TrueDest, BB
2208          // BI:  br i1 %y, TrueDest, FalseDest
2209          //TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2210          //              FalseWeight for PBI * TrueWeight for BI.
2211          NewWeights.push_back(PredTrueWeight * (SuccFalseWeight +
2212              SuccTrueWeight) + PredFalseWeight * SuccTrueWeight);
2213          //FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2214          NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2215        }
2216        AddPredecessorToBlock(FalseDest, PredBlock, BB);
2217        PBI->setSuccessor(1, FalseDest);
2218      }
2219      if (NewWeights.size() == 2) {
2220        // Halve the weights if any of them cannot fit in an uint32_t
2221        FitWeights(NewWeights);
2222
2223        SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),NewWeights.end());
2224        PBI->setMetadata(LLVMContext::MD_prof,
2225                         MDBuilder(BI->getContext()).
2226                         createBranchWeights(MDWeights));
2227      } else
2228        PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2229    } else {
2230      // Update PHI nodes in the common successors.
2231      for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2232        ConstantInt *PBI_C = cast<ConstantInt>(
2233          PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2234        assert(PBI_C->getType()->isIntegerTy(1));
2235        Instruction *MergedCond = nullptr;
2236        if (PBI->getSuccessor(0) == TrueDest) {
2237          // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2238          // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2239          //       is false: !PBI_Cond and BI_Value
2240          Instruction *NotCond =
2241            cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2242                                "not.cond"));
2243          MergedCond =
2244            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2245                                NotCond, New,
2246                                "and.cond"));
2247          if (PBI_C->isOne())
2248            MergedCond =
2249              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2250                                  PBI->getCondition(), MergedCond,
2251                                  "or.cond"));
2252        } else {
2253          // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2254          // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2255          //       is false: PBI_Cond and BI_Value
2256          MergedCond =
2257            cast<Instruction>(Builder.CreateBinOp(Instruction::And,
2258                                PBI->getCondition(), New,
2259                                "and.cond"));
2260          if (PBI_C->isOne()) {
2261            Instruction *NotCond =
2262              cast<Instruction>(Builder.CreateNot(PBI->getCondition(),
2263                                  "not.cond"));
2264            MergedCond =
2265              cast<Instruction>(Builder.CreateBinOp(Instruction::Or,
2266                                  NotCond, MergedCond,
2267                                  "or.cond"));
2268          }
2269        }
2270        // Update PHI Node.
2271        PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2272                                  MergedCond);
2273      }
2274      // Change PBI from Conditional to Unconditional.
2275      BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2276      EraseTerminatorInstAndDCECond(PBI);
2277      PBI = New_PBI;
2278    }
2279
2280    // TODO: If BB is reachable from all paths through PredBlock, then we
2281    // could replace PBI's branch probabilities with BI's.
2282
2283    // Copy any debug value intrinsics into the end of PredBlock.
2284    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
2285      if (isa<DbgInfoIntrinsic>(*I))
2286        I->clone()->insertBefore(PBI);
2287
2288    return true;
2289  }
2290  return false;
2291}
2292
2293/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
2294/// predecessor of another block, this function tries to simplify it.  We know
2295/// that PBI and BI are both conditional branches, and BI is in one of the
2296/// successor blocks of PBI - PBI branches to BI.
2297static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
2298  assert(PBI->isConditional() && BI->isConditional());
2299  BasicBlock *BB = BI->getParent();
2300
2301  // If this block ends with a branch instruction, and if there is a
2302  // predecessor that ends on a branch of the same condition, make
2303  // this conditional branch redundant.
2304  if (PBI->getCondition() == BI->getCondition() &&
2305      PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2306    // Okay, the outcome of this conditional branch is statically
2307    // knowable.  If this block had a single pred, handle specially.
2308    if (BB->getSinglePredecessor()) {
2309      // Turn this into a branch on constant.
2310      bool CondIsTrue = PBI->getSuccessor(0) == BB;
2311      BI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2312                                        CondIsTrue));
2313      return true;  // Nuke the branch on constant.
2314    }
2315
2316    // Otherwise, if there are multiple predecessors, insert a PHI that merges
2317    // in the constant and simplify the block result.  Subsequent passes of
2318    // simplifycfg will thread the block.
2319    if (BlockIsSimpleEnoughToThreadThrough(BB)) {
2320      pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
2321      PHINode *NewPN = PHINode::Create(Type::getInt1Ty(BB->getContext()),
2322                                       std::distance(PB, PE),
2323                                       BI->getCondition()->getName() + ".pr",
2324                                       BB->begin());
2325      // Okay, we're going to insert the PHI node.  Since PBI is not the only
2326      // predecessor, compute the PHI'd conditional value for all of the preds.
2327      // Any predecessor where the condition is not computable we keep symbolic.
2328      for (pred_iterator PI = PB; PI != PE; ++PI) {
2329        BasicBlock *P = *PI;
2330        if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) &&
2331            PBI != BI && PBI->isConditional() &&
2332            PBI->getCondition() == BI->getCondition() &&
2333            PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
2334          bool CondIsTrue = PBI->getSuccessor(0) == BB;
2335          NewPN->addIncoming(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
2336                                              CondIsTrue), P);
2337        } else {
2338          NewPN->addIncoming(BI->getCondition(), P);
2339        }
2340      }
2341
2342      BI->setCondition(NewPN);
2343      return true;
2344    }
2345  }
2346
2347  // If this is a conditional branch in an empty block, and if any
2348  // predecessors are a conditional branch to one of our destinations,
2349  // fold the conditions into logical ops and one cond br.
2350  BasicBlock::iterator BBI = BB->begin();
2351  // Ignore dbg intrinsics.
2352  while (isa<DbgInfoIntrinsic>(BBI))
2353    ++BBI;
2354  if (&*BBI != BI)
2355    return false;
2356
2357
2358  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
2359    if (CE->canTrap())
2360      return false;
2361
2362  int PBIOp, BIOp;
2363  if (PBI->getSuccessor(0) == BI->getSuccessor(0))
2364    PBIOp = BIOp = 0;
2365  else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
2366    PBIOp = 0, BIOp = 1;
2367  else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
2368    PBIOp = 1, BIOp = 0;
2369  else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
2370    PBIOp = BIOp = 1;
2371  else
2372    return false;
2373
2374  // Check to make sure that the other destination of this branch
2375  // isn't BB itself.  If so, this is an infinite loop that will
2376  // keep getting unwound.
2377  if (PBI->getSuccessor(PBIOp) == BB)
2378    return false;
2379
2380  // Do not perform this transformation if it would require
2381  // insertion of a large number of select instructions. For targets
2382  // without predication/cmovs, this is a big pessimization.
2383
2384  // Also do not perform this transformation if any phi node in the common
2385  // destination block can trap when reached by BB or PBB (PR17073). In that
2386  // case, it would be unsafe to hoist the operation into a select instruction.
2387
2388  BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
2389  unsigned NumPhis = 0;
2390  for (BasicBlock::iterator II = CommonDest->begin();
2391       isa<PHINode>(II); ++II, ++NumPhis) {
2392    if (NumPhis > 2) // Disable this xform.
2393      return false;
2394
2395    PHINode *PN = cast<PHINode>(II);
2396    Value *BIV = PN->getIncomingValueForBlock(BB);
2397    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
2398      if (CE->canTrap())
2399        return false;
2400
2401    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2402    Value *PBIV = PN->getIncomingValue(PBBIdx);
2403    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
2404      if (CE->canTrap())
2405        return false;
2406  }
2407
2408  // Finally, if everything is ok, fold the branches to logical ops.
2409  BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
2410
2411  DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
2412               << "AND: " << *BI->getParent());
2413
2414
2415  // If OtherDest *is* BB, then BB is a basic block with a single conditional
2416  // branch in it, where one edge (OtherDest) goes back to itself but the other
2417  // exits.  We don't *know* that the program avoids the infinite loop
2418  // (even though that seems likely).  If we do this xform naively, we'll end up
2419  // recursively unpeeling the loop.  Since we know that (after the xform is
2420  // done) that the block *is* infinite if reached, we just make it an obviously
2421  // infinite loop with no cond branch.
2422  if (OtherDest == BB) {
2423    // Insert it at the end of the function, because it's either code,
2424    // or it won't matter if it's hot. :)
2425    BasicBlock *InfLoopBlock = BasicBlock::Create(BB->getContext(),
2426                                                  "infloop", BB->getParent());
2427    BranchInst::Create(InfLoopBlock, InfLoopBlock);
2428    OtherDest = InfLoopBlock;
2429  }
2430
2431  DEBUG(dbgs() << *PBI->getParent()->getParent());
2432
2433  // BI may have other predecessors.  Because of this, we leave
2434  // it alone, but modify PBI.
2435
2436  // Make sure we get to CommonDest on True&True directions.
2437  Value *PBICond = PBI->getCondition();
2438  IRBuilder<true, NoFolder> Builder(PBI);
2439  if (PBIOp)
2440    PBICond = Builder.CreateNot(PBICond, PBICond->getName()+".not");
2441
2442  Value *BICond = BI->getCondition();
2443  if (BIOp)
2444    BICond = Builder.CreateNot(BICond, BICond->getName()+".not");
2445
2446  // Merge the conditions.
2447  Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
2448
2449  // Modify PBI to branch on the new condition to the new dests.
2450  PBI->setCondition(Cond);
2451  PBI->setSuccessor(0, CommonDest);
2452  PBI->setSuccessor(1, OtherDest);
2453
2454  // Update branch weight for PBI.
2455  uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2456  bool PredHasWeights = ExtractBranchMetadata(PBI, PredTrueWeight,
2457                                              PredFalseWeight);
2458  bool SuccHasWeights = ExtractBranchMetadata(BI, SuccTrueWeight,
2459                                              SuccFalseWeight);
2460  if (PredHasWeights && SuccHasWeights) {
2461    uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
2462    uint64_t PredOther = PBIOp ?PredTrueWeight : PredFalseWeight;
2463    uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
2464    uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
2465    // The weight to CommonDest should be PredCommon * SuccTotal +
2466    //                                    PredOther * SuccCommon.
2467    // The weight to OtherDest should be PredOther * SuccOther.
2468    SmallVector<uint64_t, 2> NewWeights;
2469    NewWeights.push_back(PredCommon * (SuccCommon + SuccOther) +
2470                         PredOther * SuccCommon);
2471    NewWeights.push_back(PredOther * SuccOther);
2472    // Halve the weights if any of them cannot fit in an uint32_t
2473    FitWeights(NewWeights);
2474
2475    SmallVector<uint32_t, 2> MDWeights(NewWeights.begin(),NewWeights.end());
2476    PBI->setMetadata(LLVMContext::MD_prof,
2477                     MDBuilder(BI->getContext()).
2478                     createBranchWeights(MDWeights));
2479  }
2480
2481  // OtherDest may have phi nodes.  If so, add an entry from PBI's
2482  // block that are identical to the entries for BI's block.
2483  AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
2484
2485  // We know that the CommonDest already had an edge from PBI to
2486  // it.  If it has PHIs though, the PHIs may have different
2487  // entries for BB and PBI's BB.  If so, insert a select to make
2488  // them agree.
2489  PHINode *PN;
2490  for (BasicBlock::iterator II = CommonDest->begin();
2491       (PN = dyn_cast<PHINode>(II)); ++II) {
2492    Value *BIV = PN->getIncomingValueForBlock(BB);
2493    unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
2494    Value *PBIV = PN->getIncomingValue(PBBIdx);
2495    if (BIV != PBIV) {
2496      // Insert a select in PBI to pick the right value.
2497      Value *NV = cast<SelectInst>
2498        (Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName()+".mux"));
2499      PN->setIncomingValue(PBBIdx, NV);
2500    }
2501  }
2502
2503  DEBUG(dbgs() << "INTO: " << *PBI->getParent());
2504  DEBUG(dbgs() << *PBI->getParent()->getParent());
2505
2506  // This basic block is probably dead.  We know it has at least
2507  // one fewer predecessor.
2508  return true;
2509}
2510
2511// SimplifyTerminatorOnSelect - Simplifies a terminator by replacing it with a
2512// branch to TrueBB if Cond is true or to FalseBB if Cond is false.
2513// Takes care of updating the successors and removing the old terminator.
2514// Also makes sure not to introduce new successors by assuming that edges to
2515// non-successor TrueBBs and FalseBBs aren't reachable.
2516static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
2517                                       BasicBlock *TrueBB, BasicBlock *FalseBB,
2518                                       uint32_t TrueWeight,
2519                                       uint32_t FalseWeight){
2520  // Remove any superfluous successor edges from the CFG.
2521  // First, figure out which successors to preserve.
2522  // If TrueBB and FalseBB are equal, only try to preserve one copy of that
2523  // successor.
2524  BasicBlock *KeepEdge1 = TrueBB;
2525  BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
2526
2527  // Then remove the rest.
2528  for (unsigned I = 0, E = OldTerm->getNumSuccessors(); I != E; ++I) {
2529    BasicBlock *Succ = OldTerm->getSuccessor(I);
2530    // Make sure only to keep exactly one copy of each edge.
2531    if (Succ == KeepEdge1)
2532      KeepEdge1 = nullptr;
2533    else if (Succ == KeepEdge2)
2534      KeepEdge2 = nullptr;
2535    else
2536      Succ->removePredecessor(OldTerm->getParent());
2537  }
2538
2539  IRBuilder<> Builder(OldTerm);
2540  Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
2541
2542  // Insert an appropriate new terminator.
2543  if (!KeepEdge1 && !KeepEdge2) {
2544    if (TrueBB == FalseBB)
2545      // We were only looking for one successor, and it was present.
2546      // Create an unconditional branch to it.
2547      Builder.CreateBr(TrueBB);
2548    else {
2549      // We found both of the successors we were looking for.
2550      // Create a conditional branch sharing the condition of the select.
2551      BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
2552      if (TrueWeight != FalseWeight)
2553        NewBI->setMetadata(LLVMContext::MD_prof,
2554                           MDBuilder(OldTerm->getContext()).
2555                           createBranchWeights(TrueWeight, FalseWeight));
2556    }
2557  } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
2558    // Neither of the selected blocks were successors, so this
2559    // terminator must be unreachable.
2560    new UnreachableInst(OldTerm->getContext(), OldTerm);
2561  } else {
2562    // One of the selected values was a successor, but the other wasn't.
2563    // Insert an unconditional branch to the one that was found;
2564    // the edge to the one that wasn't must be unreachable.
2565    if (!KeepEdge1)
2566      // Only TrueBB was found.
2567      Builder.CreateBr(TrueBB);
2568    else
2569      // Only FalseBB was found.
2570      Builder.CreateBr(FalseBB);
2571  }
2572
2573  EraseTerminatorInstAndDCECond(OldTerm);
2574  return true;
2575}
2576
2577// SimplifySwitchOnSelect - Replaces
2578//   (switch (select cond, X, Y)) on constant X, Y
2579// with a branch - conditional if X and Y lead to distinct BBs,
2580// unconditional otherwise.
2581static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
2582  // Check for constant integer values in the select.
2583  ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
2584  ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
2585  if (!TrueVal || !FalseVal)
2586    return false;
2587
2588  // Find the relevant condition and destinations.
2589  Value *Condition = Select->getCondition();
2590  BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
2591  BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
2592
2593  // Get weight for TrueBB and FalseBB.
2594  uint32_t TrueWeight = 0, FalseWeight = 0;
2595  SmallVector<uint64_t, 8> Weights;
2596  bool HasWeights = HasBranchWeights(SI);
2597  if (HasWeights) {
2598    GetBranchWeights(SI, Weights);
2599    if (Weights.size() == 1 + SI->getNumCases()) {
2600      TrueWeight = (uint32_t)Weights[SI->findCaseValue(TrueVal).
2601                                     getSuccessorIndex()];
2602      FalseWeight = (uint32_t)Weights[SI->findCaseValue(FalseVal).
2603                                      getSuccessorIndex()];
2604    }
2605  }
2606
2607  // Perform the actual simplification.
2608  return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB,
2609                                    TrueWeight, FalseWeight);
2610}
2611
2612// SimplifyIndirectBrOnSelect - Replaces
2613//   (indirectbr (select cond, blockaddress(@fn, BlockA),
2614//                             blockaddress(@fn, BlockB)))
2615// with
2616//   (br cond, BlockA, BlockB).
2617static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
2618  // Check that both operands of the select are block addresses.
2619  BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
2620  BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
2621  if (!TBA || !FBA)
2622    return false;
2623
2624  // Extract the actual blocks.
2625  BasicBlock *TrueBB = TBA->getBasicBlock();
2626  BasicBlock *FalseBB = FBA->getBasicBlock();
2627
2628  // Perform the actual simplification.
2629  return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB,
2630                                    0, 0);
2631}
2632
2633/// TryToSimplifyUncondBranchWithICmpInIt - This is called when we find an icmp
2634/// instruction (a seteq/setne with a constant) as the only instruction in a
2635/// block that ends with an uncond branch.  We are looking for a very specific
2636/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
2637/// this case, we merge the first two "or's of icmp" into a switch, but then the
2638/// default value goes to an uncond block with a seteq in it, we get something
2639/// like:
2640///
2641///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
2642/// DEFAULT:
2643///   %tmp = icmp eq i8 %A, 92
2644///   br label %end
2645/// end:
2646///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
2647///
2648/// We prefer to split the edge to 'end' so that there is a true/false entry to
2649/// the PHI, merging the third icmp into the switch.
2650static bool TryToSimplifyUncondBranchWithICmpInIt(
2651    ICmpInst *ICI, IRBuilder<> &Builder, const TargetTransformInfo &TTI,
2652    const DataLayout *DL) {
2653  BasicBlock *BB = ICI->getParent();
2654
2655  // If the block has any PHIs in it or the icmp has multiple uses, it is too
2656  // complex.
2657  if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) return false;
2658
2659  Value *V = ICI->getOperand(0);
2660  ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
2661
2662  // The pattern we're looking for is where our only predecessor is a switch on
2663  // 'V' and this block is the default case for the switch.  In this case we can
2664  // fold the compared value into the switch to simplify things.
2665  BasicBlock *Pred = BB->getSinglePredecessor();
2666  if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) return false;
2667
2668  SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
2669  if (SI->getCondition() != V)
2670    return false;
2671
2672  // If BB is reachable on a non-default case, then we simply know the value of
2673  // V in this block.  Substitute it and constant fold the icmp instruction
2674  // away.
2675  if (SI->getDefaultDest() != BB) {
2676    ConstantInt *VVal = SI->findCaseDest(BB);
2677    assert(VVal && "Should have a unique destination value");
2678    ICI->setOperand(0, VVal);
2679
2680    if (Value *V = SimplifyInstruction(ICI, DL)) {
2681      ICI->replaceAllUsesWith(V);
2682      ICI->eraseFromParent();
2683    }
2684    // BB is now empty, so it is likely to simplify away.
2685    return SimplifyCFG(BB, TTI, DL) | true;
2686  }
2687
2688  // Ok, the block is reachable from the default dest.  If the constant we're
2689  // comparing exists in one of the other edges, then we can constant fold ICI
2690  // and zap it.
2691  if (SI->findCaseValue(Cst) != SI->case_default()) {
2692    Value *V;
2693    if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2694      V = ConstantInt::getFalse(BB->getContext());
2695    else
2696      V = ConstantInt::getTrue(BB->getContext());
2697
2698    ICI->replaceAllUsesWith(V);
2699    ICI->eraseFromParent();
2700    // BB is now empty, so it is likely to simplify away.
2701    return SimplifyCFG(BB, TTI, DL) | true;
2702  }
2703
2704  // The use of the icmp has to be in the 'end' block, by the only PHI node in
2705  // the block.
2706  BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
2707  PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
2708  if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
2709      isa<PHINode>(++BasicBlock::iterator(PHIUse)))
2710    return false;
2711
2712  // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
2713  // true in the PHI.
2714  Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
2715  Constant *NewCst     = ConstantInt::getFalse(BB->getContext());
2716
2717  if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
2718    std::swap(DefaultCst, NewCst);
2719
2720  // Replace ICI (which is used by the PHI for the default value) with true or
2721  // false depending on if it is EQ or NE.
2722  ICI->replaceAllUsesWith(DefaultCst);
2723  ICI->eraseFromParent();
2724
2725  // Okay, the switch goes to this block on a default value.  Add an edge from
2726  // the switch to the merge point on the compared value.
2727  BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "switch.edge",
2728                                         BB->getParent(), BB);
2729  SmallVector<uint64_t, 8> Weights;
2730  bool HasWeights = HasBranchWeights(SI);
2731  if (HasWeights) {
2732    GetBranchWeights(SI, Weights);
2733    if (Weights.size() == 1 + SI->getNumCases()) {
2734      // Split weight for default case to case for "Cst".
2735      Weights[0] = (Weights[0]+1) >> 1;
2736      Weights.push_back(Weights[0]);
2737
2738      SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
2739      SI->setMetadata(LLVMContext::MD_prof,
2740                      MDBuilder(SI->getContext()).
2741                      createBranchWeights(MDWeights));
2742    }
2743  }
2744  SI->addCase(Cst, NewBB);
2745
2746  // NewBB branches to the phi block, add the uncond branch and the phi entry.
2747  Builder.SetInsertPoint(NewBB);
2748  Builder.SetCurrentDebugLocation(SI->getDebugLoc());
2749  Builder.CreateBr(SuccBlock);
2750  PHIUse->addIncoming(NewCst, NewBB);
2751  return true;
2752}
2753
2754/// SimplifyBranchOnICmpChain - The specified branch is a conditional branch.
2755/// Check to see if it is branching on an or/and chain of icmp instructions, and
2756/// fold it into a switch instruction if so.
2757static bool SimplifyBranchOnICmpChain(BranchInst *BI, const DataLayout *DL,
2758                                      IRBuilder<> &Builder) {
2759  Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
2760  if (!Cond) return false;
2761
2762
2763  // Change br (X == 0 | X == 1), T, F into a switch instruction.
2764  // If this is a bunch of seteq's or'd together, or if it's a bunch of
2765  // 'setne's and'ed together, collect them.
2766  Value *CompVal = nullptr;
2767  std::vector<ConstantInt*> Values;
2768  bool TrueWhenEqual = true;
2769  Value *ExtraCase = nullptr;
2770  unsigned UsedICmps = 0;
2771
2772  if (Cond->getOpcode() == Instruction::Or) {
2773    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, true,
2774                                     UsedICmps);
2775  } else if (Cond->getOpcode() == Instruction::And) {
2776    CompVal = GatherConstantCompares(Cond, Values, ExtraCase, DL, false,
2777                                     UsedICmps);
2778    TrueWhenEqual = false;
2779  }
2780
2781  // If we didn't have a multiply compared value, fail.
2782  if (!CompVal) return false;
2783
2784  // Avoid turning single icmps into a switch.
2785  if (UsedICmps <= 1)
2786    return false;
2787
2788  // There might be duplicate constants in the list, which the switch
2789  // instruction can't handle, remove them now.
2790  array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
2791  Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2792
2793  // If Extra was used, we require at least two switch values to do the
2794  // transformation.  A switch with one value is just an cond branch.
2795  if (ExtraCase && Values.size() < 2) return false;
2796
2797  // TODO: Preserve branch weight metadata, similarly to how
2798  // FoldValueComparisonIntoPredecessors preserves it.
2799
2800  // Figure out which block is which destination.
2801  BasicBlock *DefaultBB = BI->getSuccessor(1);
2802  BasicBlock *EdgeBB    = BI->getSuccessor(0);
2803  if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2804
2805  BasicBlock *BB = BI->getParent();
2806
2807  DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
2808               << " cases into SWITCH.  BB is:\n" << *BB);
2809
2810  // If there are any extra values that couldn't be folded into the switch
2811  // then we evaluate them with an explicit branch first.  Split the block
2812  // right before the condbr to handle it.
2813  if (ExtraCase) {
2814    BasicBlock *NewBB = BB->splitBasicBlock(BI, "switch.early.test");
2815    // Remove the uncond branch added to the old block.
2816    TerminatorInst *OldTI = BB->getTerminator();
2817    Builder.SetInsertPoint(OldTI);
2818
2819    if (TrueWhenEqual)
2820      Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
2821    else
2822      Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
2823
2824    OldTI->eraseFromParent();
2825
2826    // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
2827    // for the edge we just added.
2828    AddPredecessorToBlock(EdgeBB, BB, NewBB);
2829
2830    DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
2831          << "\nEXTRABB = " << *BB);
2832    BB = NewBB;
2833  }
2834
2835  Builder.SetInsertPoint(BI);
2836  // Convert pointer to int before we switch.
2837  if (CompVal->getType()->isPointerTy()) {
2838    assert(DL && "Cannot switch on pointer without DataLayout");
2839    CompVal = Builder.CreatePtrToInt(CompVal,
2840                                     DL->getIntPtrType(CompVal->getType()),
2841                                     "magicptr");
2842  }
2843
2844  // Create the new switch instruction now.
2845  SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
2846
2847  // Add all of the 'cases' to the switch instruction.
2848  for (unsigned i = 0, e = Values.size(); i != e; ++i)
2849    New->addCase(Values[i], EdgeBB);
2850
2851  // We added edges from PI to the EdgeBB.  As such, if there were any
2852  // PHI nodes in EdgeBB, they need entries to be added corresponding to
2853  // the number of edges added.
2854  for (BasicBlock::iterator BBI = EdgeBB->begin();
2855       isa<PHINode>(BBI); ++BBI) {
2856    PHINode *PN = cast<PHINode>(BBI);
2857    Value *InVal = PN->getIncomingValueForBlock(BB);
2858    for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2859      PN->addIncoming(InVal, BB);
2860  }
2861
2862  // Erase the old branch instruction.
2863  EraseTerminatorInstAndDCECond(BI);
2864
2865  DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
2866  return true;
2867}
2868
2869bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
2870  // If this is a trivial landing pad that just continues unwinding the caught
2871  // exception then zap the landing pad, turning its invokes into calls.
2872  BasicBlock *BB = RI->getParent();
2873  LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
2874  if (RI->getValue() != LPInst)
2875    // Not a landing pad, or the resume is not unwinding the exception that
2876    // caused control to branch here.
2877    return false;
2878
2879  // Check that there are no other instructions except for debug intrinsics.
2880  BasicBlock::iterator I = LPInst, E = RI;
2881  while (++I != E)
2882    if (!isa<DbgInfoIntrinsic>(I))
2883      return false;
2884
2885  // Turn all invokes that unwind here into calls and delete the basic block.
2886  bool InvokeRequiresTableEntry = false;
2887  bool Changed = false;
2888  for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
2889    InvokeInst *II = cast<InvokeInst>((*PI++)->getTerminator());
2890
2891    if (II->hasFnAttr(Attribute::UWTable)) {
2892      // Don't remove an `invoke' instruction if the ABI requires an entry into
2893      // the table.
2894      InvokeRequiresTableEntry = true;
2895      continue;
2896    }
2897
2898    SmallVector<Value*, 8> Args(II->op_begin(), II->op_end() - 3);
2899
2900    // Insert a call instruction before the invoke.
2901    CallInst *Call = CallInst::Create(II->getCalledValue(), Args, "", II);
2902    Call->takeName(II);
2903    Call->setCallingConv(II->getCallingConv());
2904    Call->setAttributes(II->getAttributes());
2905    Call->setDebugLoc(II->getDebugLoc());
2906
2907    // Anything that used the value produced by the invoke instruction now uses
2908    // the value produced by the call instruction.  Note that we do this even
2909    // for void functions and calls with no uses so that the callgraph edge is
2910    // updated.
2911    II->replaceAllUsesWith(Call);
2912    BB->removePredecessor(II->getParent());
2913
2914    // Insert a branch to the normal destination right before the invoke.
2915    BranchInst::Create(II->getNormalDest(), II);
2916
2917    // Finally, delete the invoke instruction!
2918    II->eraseFromParent();
2919    Changed = true;
2920  }
2921
2922  if (!InvokeRequiresTableEntry)
2923    // The landingpad is now unreachable.  Zap it.
2924    BB->eraseFromParent();
2925
2926  return Changed;
2927}
2928
2929bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
2930  BasicBlock *BB = RI->getParent();
2931  if (!BB->getFirstNonPHIOrDbg()->isTerminator()) return false;
2932
2933  // Find predecessors that end with branches.
2934  SmallVector<BasicBlock*, 8> UncondBranchPreds;
2935  SmallVector<BranchInst*, 8> CondBranchPreds;
2936  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2937    BasicBlock *P = *PI;
2938    TerminatorInst *PTI = P->getTerminator();
2939    if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
2940      if (BI->isUnconditional())
2941        UncondBranchPreds.push_back(P);
2942      else
2943        CondBranchPreds.push_back(BI);
2944    }
2945  }
2946
2947  // If we found some, do the transformation!
2948  if (!UncondBranchPreds.empty() && DupRet) {
2949    while (!UncondBranchPreds.empty()) {
2950      BasicBlock *Pred = UncondBranchPreds.pop_back_val();
2951      DEBUG(dbgs() << "FOLDING: " << *BB
2952            << "INTO UNCOND BRANCH PRED: " << *Pred);
2953      (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
2954    }
2955
2956    // If we eliminated all predecessors of the block, delete the block now.
2957    if (pred_begin(BB) == pred_end(BB))
2958      // We know there are no successors, so just nuke the block.
2959      BB->eraseFromParent();
2960
2961    return true;
2962  }
2963
2964  // Check out all of the conditional branches going to this return
2965  // instruction.  If any of them just select between returns, change the
2966  // branch itself into a select/return pair.
2967  while (!CondBranchPreds.empty()) {
2968    BranchInst *BI = CondBranchPreds.pop_back_val();
2969
2970    // Check to see if the non-BB successor is also a return block.
2971    if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
2972        isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
2973        SimplifyCondBranchToTwoReturns(BI, Builder))
2974      return true;
2975  }
2976  return false;
2977}
2978
2979bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
2980  BasicBlock *BB = UI->getParent();
2981
2982  bool Changed = false;
2983
2984  // If there are any instructions immediately before the unreachable that can
2985  // be removed, do so.
2986  while (UI != BB->begin()) {
2987    BasicBlock::iterator BBI = UI;
2988    --BBI;
2989    // Do not delete instructions that can have side effects which might cause
2990    // the unreachable to not be reachable; specifically, calls and volatile
2991    // operations may have this effect.
2992    if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) break;
2993
2994    if (BBI->mayHaveSideEffects()) {
2995      if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
2996        if (SI->isVolatile())
2997          break;
2998      } else if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
2999        if (LI->isVolatile())
3000          break;
3001      } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
3002        if (RMWI->isVolatile())
3003          break;
3004      } else if (AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
3005        if (CXI->isVolatile())
3006          break;
3007      } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
3008                 !isa<LandingPadInst>(BBI)) {
3009        break;
3010      }
3011      // Note that deleting LandingPad's here is in fact okay, although it
3012      // involves a bit of subtle reasoning. If this inst is a LandingPad,
3013      // all the predecessors of this block will be the unwind edges of Invokes,
3014      // and we can therefore guarantee this block will be erased.
3015    }
3016
3017    // Delete this instruction (any uses are guaranteed to be dead)
3018    if (!BBI->use_empty())
3019      BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
3020    BBI->eraseFromParent();
3021    Changed = true;
3022  }
3023
3024  // If the unreachable instruction is the first in the block, take a gander
3025  // at all of the predecessors of this instruction, and simplify them.
3026  if (&BB->front() != UI) return Changed;
3027
3028  SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
3029  for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
3030    TerminatorInst *TI = Preds[i]->getTerminator();
3031    IRBuilder<> Builder(TI);
3032    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3033      if (BI->isUnconditional()) {
3034        if (BI->getSuccessor(0) == BB) {
3035          new UnreachableInst(TI->getContext(), TI);
3036          TI->eraseFromParent();
3037          Changed = true;
3038        }
3039      } else {
3040        if (BI->getSuccessor(0) == BB) {
3041          Builder.CreateBr(BI->getSuccessor(1));
3042          EraseTerminatorInstAndDCECond(BI);
3043        } else if (BI->getSuccessor(1) == BB) {
3044          Builder.CreateBr(BI->getSuccessor(0));
3045          EraseTerminatorInstAndDCECond(BI);
3046          Changed = true;
3047        }
3048      }
3049    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3050      for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3051           i != e; ++i)
3052        if (i.getCaseSuccessor() == BB) {
3053          BB->removePredecessor(SI->getParent());
3054          SI->removeCase(i);
3055          --i; --e;
3056          Changed = true;
3057        }
3058      // If the default value is unreachable, figure out the most popular
3059      // destination and make it the default.
3060      if (SI->getDefaultDest() == BB) {
3061        std::map<BasicBlock*, std::pair<unsigned, unsigned> > Popularity;
3062        for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3063             i != e; ++i) {
3064          std::pair<unsigned, unsigned> &entry =
3065              Popularity[i.getCaseSuccessor()];
3066          if (entry.first == 0) {
3067            entry.first = 1;
3068            entry.second = i.getCaseIndex();
3069          } else {
3070            entry.first++;
3071          }
3072        }
3073
3074        // Find the most popular block.
3075        unsigned MaxPop = 0;
3076        unsigned MaxIndex = 0;
3077        BasicBlock *MaxBlock = nullptr;
3078        for (std::map<BasicBlock*, std::pair<unsigned, unsigned> >::iterator
3079             I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
3080          if (I->second.first > MaxPop ||
3081              (I->second.first == MaxPop && MaxIndex > I->second.second)) {
3082            MaxPop = I->second.first;
3083            MaxIndex = I->second.second;
3084            MaxBlock = I->first;
3085          }
3086        }
3087        if (MaxBlock) {
3088          // Make this the new default, allowing us to delete any explicit
3089          // edges to it.
3090          SI->setDefaultDest(MaxBlock);
3091          Changed = true;
3092
3093          // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
3094          // it.
3095          if (isa<PHINode>(MaxBlock->begin()))
3096            for (unsigned i = 0; i != MaxPop-1; ++i)
3097              MaxBlock->removePredecessor(SI->getParent());
3098
3099          for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
3100               i != e; ++i)
3101            if (i.getCaseSuccessor() == MaxBlock) {
3102              SI->removeCase(i);
3103              --i; --e;
3104            }
3105        }
3106      }
3107    } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
3108      if (II->getUnwindDest() == BB) {
3109        // Convert the invoke to a call instruction.  This would be a good
3110        // place to note that the call does not throw though.
3111        BranchInst *BI = Builder.CreateBr(II->getNormalDest());
3112        II->removeFromParent();   // Take out of symbol table
3113
3114        // Insert the call now...
3115        SmallVector<Value*, 8> Args(II->op_begin(), II->op_end()-3);
3116        Builder.SetInsertPoint(BI);
3117        CallInst *CI = Builder.CreateCall(II->getCalledValue(),
3118                                          Args, II->getName());
3119        CI->setCallingConv(II->getCallingConv());
3120        CI->setAttributes(II->getAttributes());
3121        // If the invoke produced a value, the call does now instead.
3122        II->replaceAllUsesWith(CI);
3123        delete II;
3124        Changed = true;
3125      }
3126    }
3127  }
3128
3129  // If this block is now dead, remove it.
3130  if (pred_begin(BB) == pred_end(BB) &&
3131      BB != &BB->getParent()->getEntryBlock()) {
3132    // We know there are no successors, so just nuke the block.
3133    BB->eraseFromParent();
3134    return true;
3135  }
3136
3137  return Changed;
3138}
3139
3140/// TurnSwitchRangeIntoICmp - Turns a switch with that contains only a
3141/// integer range comparison into a sub, an icmp and a branch.
3142static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
3143  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3144
3145  // Make sure all cases point to the same destination and gather the values.
3146  SmallVector<ConstantInt *, 16> Cases;
3147  SwitchInst::CaseIt I = SI->case_begin();
3148  Cases.push_back(I.getCaseValue());
3149  SwitchInst::CaseIt PrevI = I++;
3150  for (SwitchInst::CaseIt E = SI->case_end(); I != E; PrevI = I++) {
3151    if (PrevI.getCaseSuccessor() != I.getCaseSuccessor())
3152      return false;
3153    Cases.push_back(I.getCaseValue());
3154  }
3155  assert(Cases.size() == SI->getNumCases() && "Not all cases gathered");
3156
3157  // Sort the case values, then check if they form a range we can transform.
3158  array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
3159  for (unsigned I = 1, E = Cases.size(); I != E; ++I) {
3160    if (Cases[I-1]->getValue() != Cases[I]->getValue()+1)
3161      return false;
3162  }
3163
3164  Constant *Offset = ConstantExpr::getNeg(Cases.back());
3165  Constant *NumCases = ConstantInt::get(Offset->getType(), SI->getNumCases());
3166
3167  Value *Sub = SI->getCondition();
3168  if (!Offset->isNullValue())
3169    Sub = Builder.CreateAdd(Sub, Offset, Sub->getName()+".off");
3170  Value *Cmp;
3171  // If NumCases overflowed, then all possible values jump to the successor.
3172  if (NumCases->isNullValue() && SI->getNumCases() != 0)
3173    Cmp = ConstantInt::getTrue(SI->getContext());
3174  else
3175    Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
3176  BranchInst *NewBI = Builder.CreateCondBr(
3177      Cmp, SI->case_begin().getCaseSuccessor(), SI->getDefaultDest());
3178
3179  // Update weight for the newly-created conditional branch.
3180  SmallVector<uint64_t, 8> Weights;
3181  bool HasWeights = HasBranchWeights(SI);
3182  if (HasWeights) {
3183    GetBranchWeights(SI, Weights);
3184    if (Weights.size() == 1 + SI->getNumCases()) {
3185      // Combine all weights for the cases to be the true weight of NewBI.
3186      // We assume that the sum of all weights for a Terminator can fit into 32
3187      // bits.
3188      uint32_t NewTrueWeight = 0;
3189      for (unsigned I = 1, E = Weights.size(); I != E; ++I)
3190        NewTrueWeight += (uint32_t)Weights[I];
3191      NewBI->setMetadata(LLVMContext::MD_prof,
3192                         MDBuilder(SI->getContext()).
3193                         createBranchWeights(NewTrueWeight,
3194                                             (uint32_t)Weights[0]));
3195    }
3196  }
3197
3198  // Prune obsolete incoming values off the successor's PHI nodes.
3199  for (BasicBlock::iterator BBI = SI->case_begin().getCaseSuccessor()->begin();
3200       isa<PHINode>(BBI); ++BBI) {
3201    for (unsigned I = 0, E = SI->getNumCases()-1; I != E; ++I)
3202      cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
3203  }
3204  SI->eraseFromParent();
3205
3206  return true;
3207}
3208
3209/// EliminateDeadSwitchCases - Compute masked bits for the condition of a switch
3210/// and use it to remove dead cases.
3211static bool EliminateDeadSwitchCases(SwitchInst *SI) {
3212  Value *Cond = SI->getCondition();
3213  unsigned Bits = Cond->getType()->getIntegerBitWidth();
3214  APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
3215  computeKnownBits(Cond, KnownZero, KnownOne);
3216
3217  // Gather dead cases.
3218  SmallVector<ConstantInt*, 8> DeadCases;
3219  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3220    if ((I.getCaseValue()->getValue() & KnownZero) != 0 ||
3221        (I.getCaseValue()->getValue() & KnownOne) != KnownOne) {
3222      DeadCases.push_back(I.getCaseValue());
3223      DEBUG(dbgs() << "SimplifyCFG: switch case '"
3224                   << I.getCaseValue() << "' is dead.\n");
3225    }
3226  }
3227
3228  SmallVector<uint64_t, 8> Weights;
3229  bool HasWeight = HasBranchWeights(SI);
3230  if (HasWeight) {
3231    GetBranchWeights(SI, Weights);
3232    HasWeight = (Weights.size() == 1 + SI->getNumCases());
3233  }
3234
3235  // Remove dead cases from the switch.
3236  for (unsigned I = 0, E = DeadCases.size(); I != E; ++I) {
3237    SwitchInst::CaseIt Case = SI->findCaseValue(DeadCases[I]);
3238    assert(Case != SI->case_default() &&
3239           "Case was not found. Probably mistake in DeadCases forming.");
3240    if (HasWeight) {
3241      std::swap(Weights[Case.getCaseIndex()+1], Weights.back());
3242      Weights.pop_back();
3243    }
3244
3245    // Prune unused values from PHI nodes.
3246    Case.getCaseSuccessor()->removePredecessor(SI->getParent());
3247    SI->removeCase(Case);
3248  }
3249  if (HasWeight && Weights.size() >= 2) {
3250    SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3251    SI->setMetadata(LLVMContext::MD_prof,
3252                    MDBuilder(SI->getParent()->getContext()).
3253                    createBranchWeights(MDWeights));
3254  }
3255
3256  return !DeadCases.empty();
3257}
3258
3259/// FindPHIForConditionForwarding - If BB would be eligible for simplification
3260/// by TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
3261/// by an unconditional branch), look at the phi node for BB in the successor
3262/// block and see if the incoming value is equal to CaseValue. If so, return
3263/// the phi node, and set PhiIndex to BB's index in the phi node.
3264static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
3265                                              BasicBlock *BB,
3266                                              int *PhiIndex) {
3267  if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
3268    return nullptr; // BB must be empty to be a candidate for simplification.
3269  if (!BB->getSinglePredecessor())
3270    return nullptr; // BB must be dominated by the switch.
3271
3272  BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
3273  if (!Branch || !Branch->isUnconditional())
3274    return nullptr; // Terminator must be unconditional branch.
3275
3276  BasicBlock *Succ = Branch->getSuccessor(0);
3277
3278  BasicBlock::iterator I = Succ->begin();
3279  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3280    int Idx = PHI->getBasicBlockIndex(BB);
3281    assert(Idx >= 0 && "PHI has no entry for predecessor?");
3282
3283    Value *InValue = PHI->getIncomingValue(Idx);
3284    if (InValue != CaseValue) continue;
3285
3286    *PhiIndex = Idx;
3287    return PHI;
3288  }
3289
3290  return nullptr;
3291}
3292
3293/// ForwardSwitchConditionToPHI - Try to forward the condition of a switch
3294/// instruction to a phi node dominated by the switch, if that would mean that
3295/// some of the destination blocks of the switch can be folded away.
3296/// Returns true if a change is made.
3297static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
3298  typedef DenseMap<PHINode*, SmallVector<int,4> > ForwardingNodesMap;
3299  ForwardingNodesMap ForwardingNodes;
3300
3301  for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E; ++I) {
3302    ConstantInt *CaseValue = I.getCaseValue();
3303    BasicBlock *CaseDest = I.getCaseSuccessor();
3304
3305    int PhiIndex;
3306    PHINode *PHI = FindPHIForConditionForwarding(CaseValue, CaseDest,
3307                                                 &PhiIndex);
3308    if (!PHI) continue;
3309
3310    ForwardingNodes[PHI].push_back(PhiIndex);
3311  }
3312
3313  bool Changed = false;
3314
3315  for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
3316       E = ForwardingNodes.end(); I != E; ++I) {
3317    PHINode *Phi = I->first;
3318    SmallVectorImpl<int> &Indexes = I->second;
3319
3320    if (Indexes.size() < 2) continue;
3321
3322    for (size_t I = 0, E = Indexes.size(); I != E; ++I)
3323      Phi->setIncomingValue(Indexes[I], SI->getCondition());
3324    Changed = true;
3325  }
3326
3327  return Changed;
3328}
3329
3330/// ValidLookupTableConstant - Return true if the backend will be able to handle
3331/// initializing an array of constants like C.
3332static bool ValidLookupTableConstant(Constant *C) {
3333  if (C->isThreadDependent())
3334    return false;
3335  if (C->isDLLImportDependent())
3336    return false;
3337
3338  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
3339    return CE->isGEPWithNoNotionalOverIndexing();
3340
3341  return isa<ConstantFP>(C) ||
3342      isa<ConstantInt>(C) ||
3343      isa<ConstantPointerNull>(C) ||
3344      isa<GlobalValue>(C) ||
3345      isa<UndefValue>(C);
3346}
3347
3348/// LookupConstant - If V is a Constant, return it. Otherwise, try to look up
3349/// its constant value in ConstantPool, returning 0 if it's not there.
3350static Constant *LookupConstant(Value *V,
3351                         const SmallDenseMap<Value*, Constant*>& ConstantPool) {
3352  if (Constant *C = dyn_cast<Constant>(V))
3353    return C;
3354  return ConstantPool.lookup(V);
3355}
3356
3357/// ConstantFold - Try to fold instruction I into a constant. This works for
3358/// simple instructions such as binary operations where both operands are
3359/// constant or can be replaced by constants from the ConstantPool. Returns the
3360/// resulting constant on success, 0 otherwise.
3361static Constant *
3362ConstantFold(Instruction *I,
3363             const SmallDenseMap<Value *, Constant *> &ConstantPool,
3364             const DataLayout *DL) {
3365  if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
3366    Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
3367    if (!A)
3368      return nullptr;
3369    if (A->isAllOnesValue())
3370      return LookupConstant(Select->getTrueValue(), ConstantPool);
3371    if (A->isNullValue())
3372      return LookupConstant(Select->getFalseValue(), ConstantPool);
3373    return nullptr;
3374  }
3375
3376  SmallVector<Constant *, 4> COps;
3377  for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
3378    if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
3379      COps.push_back(A);
3380    else
3381      return nullptr;
3382  }
3383
3384  if (CmpInst *Cmp = dyn_cast<CmpInst>(I))
3385    return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
3386                                           COps[1], DL);
3387
3388  return ConstantFoldInstOperands(I->getOpcode(), I->getType(), COps, DL);
3389}
3390
3391/// GetCaseResults - Try to determine the resulting constant values in phi nodes
3392/// at the common destination basic block, *CommonDest, for one of the case
3393/// destionations CaseDest corresponding to value CaseVal (0 for the default
3394/// case), of a switch instruction SI.
3395static bool
3396GetCaseResults(SwitchInst *SI,
3397               ConstantInt *CaseVal,
3398               BasicBlock *CaseDest,
3399               BasicBlock **CommonDest,
3400               SmallVectorImpl<std::pair<PHINode *, Constant *> > &Res,
3401               const DataLayout *DL) {
3402  // The block from which we enter the common destination.
3403  BasicBlock *Pred = SI->getParent();
3404
3405  // If CaseDest is empty except for some side-effect free instructions through
3406  // which we can constant-propagate the CaseVal, continue to its successor.
3407  SmallDenseMap<Value*, Constant*> ConstantPool;
3408  ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
3409  for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
3410       ++I) {
3411    if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
3412      // If the terminator is a simple branch, continue to the next block.
3413      if (T->getNumSuccessors() != 1)
3414        return false;
3415      Pred = CaseDest;
3416      CaseDest = T->getSuccessor(0);
3417    } else if (isa<DbgInfoIntrinsic>(I)) {
3418      // Skip debug intrinsic.
3419      continue;
3420    } else if (Constant *C = ConstantFold(I, ConstantPool, DL)) {
3421      // Instruction is side-effect free and constant.
3422      ConstantPool.insert(std::make_pair(I, C));
3423    } else {
3424      break;
3425    }
3426  }
3427
3428  // If we did not have a CommonDest before, use the current one.
3429  if (!*CommonDest)
3430    *CommonDest = CaseDest;
3431  // If the destination isn't the common one, abort.
3432  if (CaseDest != *CommonDest)
3433    return false;
3434
3435  // Get the values for this case from phi nodes in the destination block.
3436  BasicBlock::iterator I = (*CommonDest)->begin();
3437  while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
3438    int Idx = PHI->getBasicBlockIndex(Pred);
3439    if (Idx == -1)
3440      continue;
3441
3442    Constant *ConstVal = LookupConstant(PHI->getIncomingValue(Idx),
3443                                        ConstantPool);
3444    if (!ConstVal)
3445      return false;
3446
3447    // Note: If the constant comes from constant-propagating the case value
3448    // through the CaseDest basic block, it will be safe to remove the
3449    // instructions in that block. They cannot be used (except in the phi nodes
3450    // we visit) outside CaseDest, because that block does not dominate its
3451    // successor. If it did, we would not be in this phi node.
3452
3453    // Be conservative about which kinds of constants we support.
3454    if (!ValidLookupTableConstant(ConstVal))
3455      return false;
3456
3457    Res.push_back(std::make_pair(PHI, ConstVal));
3458  }
3459
3460  return Res.size() > 0;
3461}
3462
3463namespace {
3464  /// SwitchLookupTable - This class represents a lookup table that can be used
3465  /// to replace a switch.
3466  class SwitchLookupTable {
3467  public:
3468    /// SwitchLookupTable - Create a lookup table to use as a switch replacement
3469    /// with the contents of Values, using DefaultValue to fill any holes in the
3470    /// table.
3471    SwitchLookupTable(Module &M,
3472                      uint64_t TableSize,
3473                      ConstantInt *Offset,
3474             const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
3475                      Constant *DefaultValue,
3476                      const DataLayout *DL);
3477
3478    /// BuildLookup - Build instructions with Builder to retrieve the value at
3479    /// the position given by Index in the lookup table.
3480    Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
3481
3482    /// WouldFitInRegister - Return true if a table with TableSize elements of
3483    /// type ElementType would fit in a target-legal register.
3484    static bool WouldFitInRegister(const DataLayout *DL,
3485                                   uint64_t TableSize,
3486                                   const Type *ElementType);
3487
3488  private:
3489    // Depending on the contents of the table, it can be represented in
3490    // different ways.
3491    enum {
3492      // For tables where each element contains the same value, we just have to
3493      // store that single value and return it for each lookup.
3494      SingleValueKind,
3495
3496      // For small tables with integer elements, we can pack them into a bitmap
3497      // that fits into a target-legal register. Values are retrieved by
3498      // shift and mask operations.
3499      BitMapKind,
3500
3501      // The table is stored as an array of values. Values are retrieved by load
3502      // instructions from the table.
3503      ArrayKind
3504    } Kind;
3505
3506    // For SingleValueKind, this is the single value.
3507    Constant *SingleValue;
3508
3509    // For BitMapKind, this is the bitmap.
3510    ConstantInt *BitMap;
3511    IntegerType *BitMapElementTy;
3512
3513    // For ArrayKind, this is the array.
3514    GlobalVariable *Array;
3515  };
3516}
3517
3518SwitchLookupTable::SwitchLookupTable(Module &M,
3519                                     uint64_t TableSize,
3520                                     ConstantInt *Offset,
3521             const SmallVectorImpl<std::pair<ConstantInt*, Constant*> >& Values,
3522                                     Constant *DefaultValue,
3523                                     const DataLayout *DL)
3524    : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
3525      Array(nullptr) {
3526  assert(Values.size() && "Can't build lookup table without values!");
3527  assert(TableSize >= Values.size() && "Can't fit values in table!");
3528
3529  // If all values in the table are equal, this is that value.
3530  SingleValue = Values.begin()->second;
3531
3532  Type *ValueType = Values.begin()->second->getType();
3533
3534  // Build up the table contents.
3535  SmallVector<Constant*, 64> TableContents(TableSize);
3536  for (size_t I = 0, E = Values.size(); I != E; ++I) {
3537    ConstantInt *CaseVal = Values[I].first;
3538    Constant *CaseRes = Values[I].second;
3539    assert(CaseRes->getType() == ValueType);
3540
3541    uint64_t Idx = (CaseVal->getValue() - Offset->getValue())
3542                   .getLimitedValue();
3543    TableContents[Idx] = CaseRes;
3544
3545    if (CaseRes != SingleValue)
3546      SingleValue = nullptr;
3547  }
3548
3549  // Fill in any holes in the table with the default result.
3550  if (Values.size() < TableSize) {
3551    assert(DefaultValue &&
3552           "Need a default value to fill the lookup table holes.");
3553    assert(DefaultValue->getType() == ValueType);
3554    for (uint64_t I = 0; I < TableSize; ++I) {
3555      if (!TableContents[I])
3556        TableContents[I] = DefaultValue;
3557    }
3558
3559    if (DefaultValue != SingleValue)
3560      SingleValue = nullptr;
3561  }
3562
3563  // If each element in the table contains the same value, we only need to store
3564  // that single value.
3565  if (SingleValue) {
3566    Kind = SingleValueKind;
3567    return;
3568  }
3569
3570  // If the type is integer and the table fits in a register, build a bitmap.
3571  if (WouldFitInRegister(DL, TableSize, ValueType)) {
3572    IntegerType *IT = cast<IntegerType>(ValueType);
3573    APInt TableInt(TableSize * IT->getBitWidth(), 0);
3574    for (uint64_t I = TableSize; I > 0; --I) {
3575      TableInt <<= IT->getBitWidth();
3576      // Insert values into the bitmap. Undef values are set to zero.
3577      if (!isa<UndefValue>(TableContents[I - 1])) {
3578        ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
3579        TableInt |= Val->getValue().zext(TableInt.getBitWidth());
3580      }
3581    }
3582    BitMap = ConstantInt::get(M.getContext(), TableInt);
3583    BitMapElementTy = IT;
3584    Kind = BitMapKind;
3585    ++NumBitMaps;
3586    return;
3587  }
3588
3589  // Store the table in an array.
3590  ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
3591  Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
3592
3593  Array = new GlobalVariable(M, ArrayTy, /*constant=*/ true,
3594                             GlobalVariable::PrivateLinkage,
3595                             Initializer,
3596                             "switch.table");
3597  Array->setUnnamedAddr(true);
3598  Kind = ArrayKind;
3599}
3600
3601Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
3602  switch (Kind) {
3603    case SingleValueKind:
3604      return SingleValue;
3605    case BitMapKind: {
3606      // Type of the bitmap (e.g. i59).
3607      IntegerType *MapTy = BitMap->getType();
3608
3609      // Cast Index to the same type as the bitmap.
3610      // Note: The Index is <= the number of elements in the table, so
3611      // truncating it to the width of the bitmask is safe.
3612      Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
3613
3614      // Multiply the shift amount by the element width.
3615      ShiftAmt = Builder.CreateMul(ShiftAmt,
3616                      ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
3617                                   "switch.shiftamt");
3618
3619      // Shift down.
3620      Value *DownShifted = Builder.CreateLShr(BitMap, ShiftAmt,
3621                                              "switch.downshift");
3622      // Mask off.
3623      return Builder.CreateTrunc(DownShifted, BitMapElementTy,
3624                                 "switch.masked");
3625    }
3626    case ArrayKind: {
3627      Value *GEPIndices[] = { Builder.getInt32(0), Index };
3628      Value *GEP = Builder.CreateInBoundsGEP(Array, GEPIndices,
3629                                             "switch.gep");
3630      return Builder.CreateLoad(GEP, "switch.load");
3631    }
3632  }
3633  llvm_unreachable("Unknown lookup table kind!");
3634}
3635
3636bool SwitchLookupTable::WouldFitInRegister(const DataLayout *DL,
3637                                           uint64_t TableSize,
3638                                           const Type *ElementType) {
3639  if (!DL)
3640    return false;
3641  const IntegerType *IT = dyn_cast<IntegerType>(ElementType);
3642  if (!IT)
3643    return false;
3644  // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
3645  // are <= 15, we could try to narrow the type.
3646
3647  // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
3648  if (TableSize >= UINT_MAX/IT->getBitWidth())
3649    return false;
3650  return DL->fitsInLegalInteger(TableSize * IT->getBitWidth());
3651}
3652
3653/// ShouldBuildLookupTable - Determine whether a lookup table should be built
3654/// for this switch, based on the number of cases, size of the table and the
3655/// types of the results.
3656static bool ShouldBuildLookupTable(SwitchInst *SI,
3657                                   uint64_t TableSize,
3658                                   const TargetTransformInfo &TTI,
3659                                   const DataLayout *DL,
3660                            const SmallDenseMap<PHINode*, Type*>& ResultTypes) {
3661  if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
3662    return false; // TableSize overflowed, or mul below might overflow.
3663
3664  bool AllTablesFitInRegister = true;
3665  bool HasIllegalType = false;
3666  for (SmallDenseMap<PHINode*, Type*>::const_iterator I = ResultTypes.begin(),
3667       E = ResultTypes.end(); I != E; ++I) {
3668    Type *Ty = I->second;
3669
3670    // Saturate this flag to true.
3671    HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
3672
3673    // Saturate this flag to false.
3674    AllTablesFitInRegister = AllTablesFitInRegister &&
3675      SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
3676
3677    // If both flags saturate, we're done. NOTE: This *only* works with
3678    // saturating flags, and all flags have to saturate first due to the
3679    // non-deterministic behavior of iterating over a dense map.
3680    if (HasIllegalType && !AllTablesFitInRegister)
3681      break;
3682  }
3683
3684  // If each table would fit in a register, we should build it anyway.
3685  if (AllTablesFitInRegister)
3686    return true;
3687
3688  // Don't build a table that doesn't fit in-register if it has illegal types.
3689  if (HasIllegalType)
3690    return false;
3691
3692  // The table density should be at least 40%. This is the same criterion as for
3693  // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
3694  // FIXME: Find the best cut-off.
3695  return SI->getNumCases() * 10 >= TableSize * 4;
3696}
3697
3698/// SwitchToLookupTable - If the switch is only used to initialize one or more
3699/// phi nodes in a common successor block with different constant values,
3700/// replace the switch with lookup tables.
3701static bool SwitchToLookupTable(SwitchInst *SI,
3702                                IRBuilder<> &Builder,
3703                                const TargetTransformInfo &TTI,
3704                                const DataLayout* DL) {
3705  assert(SI->getNumCases() > 1 && "Degenerate switch?");
3706
3707  // Only build lookup table when we have a target that supports it.
3708  if (!TTI.shouldBuildLookupTables())
3709    return false;
3710
3711  // FIXME: If the switch is too sparse for a lookup table, perhaps we could
3712  // split off a dense part and build a lookup table for that.
3713
3714  // FIXME: This creates arrays of GEPs to constant strings, which means each
3715  // GEP needs a runtime relocation in PIC code. We should just build one big
3716  // string and lookup indices into that.
3717
3718  // Ignore switches with less than three cases. Lookup tables will not make them
3719  // faster, so we don't analyze them.
3720  if (SI->getNumCases() < 3)
3721    return false;
3722
3723  // Figure out the corresponding result for each case value and phi node in the
3724  // common destination, as well as the the min and max case values.
3725  assert(SI->case_begin() != SI->case_end());
3726  SwitchInst::CaseIt CI = SI->case_begin();
3727  ConstantInt *MinCaseVal = CI.getCaseValue();
3728  ConstantInt *MaxCaseVal = CI.getCaseValue();
3729
3730  BasicBlock *CommonDest = nullptr;
3731  typedef SmallVector<std::pair<ConstantInt*, Constant*>, 4> ResultListTy;
3732  SmallDenseMap<PHINode*, ResultListTy> ResultLists;
3733  SmallDenseMap<PHINode*, Constant*> DefaultResults;
3734  SmallDenseMap<PHINode*, Type*> ResultTypes;
3735  SmallVector<PHINode*, 4> PHIs;
3736
3737  for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
3738    ConstantInt *CaseVal = CI.getCaseValue();
3739    if (CaseVal->getValue().slt(MinCaseVal->getValue()))
3740      MinCaseVal = CaseVal;
3741    if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
3742      MaxCaseVal = CaseVal;
3743
3744    // Resulting value at phi nodes for this case value.
3745    typedef SmallVector<std::pair<PHINode*, Constant*>, 4> ResultsTy;
3746    ResultsTy Results;
3747    if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
3748                        Results, DL))
3749      return false;
3750
3751    // Append the result from this case to the list for each phi.
3752    for (ResultsTy::iterator I = Results.begin(), E = Results.end(); I!=E; ++I) {
3753      if (!ResultLists.count(I->first))
3754        PHIs.push_back(I->first);
3755      ResultLists[I->first].push_back(std::make_pair(CaseVal, I->second));
3756    }
3757  }
3758
3759  // Keep track of the result types.
3760  for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
3761    PHINode *PHI = PHIs[I];
3762    ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
3763  }
3764
3765  uint64_t NumResults = ResultLists[PHIs[0]].size();
3766  APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
3767  uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
3768  bool TableHasHoles = (NumResults < TableSize);
3769
3770  // If the table has holes, we need a constant result for the default case
3771  // or a bitmask that fits in a register.
3772  SmallVector<std::pair<PHINode*, Constant*>, 4> DefaultResultsList;
3773  bool HasDefaultResults = false;
3774  if (TableHasHoles) {
3775    HasDefaultResults = GetCaseResults(SI, nullptr, SI->getDefaultDest(),
3776                                       &CommonDest, DefaultResultsList, DL);
3777  }
3778  bool NeedMask = (TableHasHoles && !HasDefaultResults);
3779  if (NeedMask) {
3780    // As an extra penalty for the validity test we require more cases.
3781    if (SI->getNumCases() < 4)  // FIXME: Find best threshold value (benchmark).
3782      return false;
3783    if (!(DL && DL->fitsInLegalInteger(TableSize)))
3784      return false;
3785  }
3786
3787  for (size_t I = 0, E = DefaultResultsList.size(); I != E; ++I) {
3788    PHINode *PHI = DefaultResultsList[I].first;
3789    Constant *Result = DefaultResultsList[I].second;
3790    DefaultResults[PHI] = Result;
3791  }
3792
3793  if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
3794    return false;
3795
3796  // Create the BB that does the lookups.
3797  Module &Mod = *CommonDest->getParent()->getParent();
3798  BasicBlock *LookupBB = BasicBlock::Create(Mod.getContext(),
3799                                            "switch.lookup",
3800                                            CommonDest->getParent(),
3801                                            CommonDest);
3802
3803  // Compute the table index value.
3804  Builder.SetInsertPoint(SI);
3805  Value *TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
3806                                        "switch.tableidx");
3807
3808  // Compute the maximum table size representable by the integer type we are
3809  // switching upon.
3810  unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
3811  uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
3812  assert(MaxTableSize >= TableSize &&
3813         "It is impossible for a switch to have more entries than the max "
3814         "representable value of its input integer type's size.");
3815
3816  // If we have a fully covered lookup table, unconditionally branch to the
3817  // lookup table BB. Otherwise, check if the condition value is within the case
3818  // range. If it is so, branch to the new BB. Otherwise branch to SI's default
3819  // destination.
3820  const bool GeneratingCoveredLookupTable = MaxTableSize == TableSize;
3821  if (GeneratingCoveredLookupTable) {
3822    Builder.CreateBr(LookupBB);
3823    SI->getDefaultDest()->removePredecessor(SI->getParent());
3824  } else {
3825    Value *Cmp = Builder.CreateICmpULT(TableIndex, ConstantInt::get(
3826                                         MinCaseVal->getType(), TableSize));
3827    Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
3828  }
3829
3830  // Populate the BB that does the lookups.
3831  Builder.SetInsertPoint(LookupBB);
3832
3833  if (NeedMask) {
3834    // Before doing the lookup we do the hole check.
3835    // The LookupBB is therefore re-purposed to do the hole check
3836    // and we create a new LookupBB.
3837    BasicBlock *MaskBB = LookupBB;
3838    MaskBB->setName("switch.hole_check");
3839    LookupBB = BasicBlock::Create(Mod.getContext(),
3840                                  "switch.lookup",
3841                                  CommonDest->getParent(),
3842                                  CommonDest);
3843
3844    // Build bitmask; fill in a 1 bit for every case.
3845    APInt MaskInt(TableSize, 0);
3846    APInt One(TableSize, 1);
3847    const ResultListTy &ResultList = ResultLists[PHIs[0]];
3848    for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
3849      uint64_t Idx = (ResultList[I].first->getValue() -
3850                      MinCaseVal->getValue()).getLimitedValue();
3851      MaskInt |= One << Idx;
3852    }
3853    ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
3854
3855    // Get the TableIndex'th bit of the bitmask.
3856    // If this bit is 0 (meaning hole) jump to the default destination,
3857    // else continue with table lookup.
3858    IntegerType *MapTy = TableMask->getType();
3859    Value *MaskIndex = Builder.CreateZExtOrTrunc(TableIndex, MapTy,
3860                                                 "switch.maskindex");
3861    Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex,
3862                                        "switch.shifted");
3863    Value *LoBit = Builder.CreateTrunc(Shifted,
3864                                       Type::getInt1Ty(Mod.getContext()),
3865                                       "switch.lobit");
3866    Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
3867
3868    Builder.SetInsertPoint(LookupBB);
3869    AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
3870  }
3871
3872  bool ReturnedEarly = false;
3873  for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
3874    PHINode *PHI = PHIs[I];
3875
3876    // If using a bitmask, use any value to fill the lookup table holes.
3877    Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
3878    SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultLists[PHI],
3879                            DV, DL);
3880
3881    Value *Result = Table.BuildLookup(TableIndex, Builder);
3882
3883    // If the result is used to return immediately from the function, we want to
3884    // do that right here.
3885    if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
3886        PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
3887      Builder.CreateRet(Result);
3888      ReturnedEarly = true;
3889      break;
3890    }
3891
3892    PHI->addIncoming(Result, LookupBB);
3893  }
3894
3895  if (!ReturnedEarly)
3896    Builder.CreateBr(CommonDest);
3897
3898  // Remove the switch.
3899  for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
3900    BasicBlock *Succ = SI->getSuccessor(i);
3901
3902    if (Succ == SI->getDefaultDest())
3903      continue;
3904    Succ->removePredecessor(SI->getParent());
3905  }
3906  SI->eraseFromParent();
3907
3908  ++NumLookupTables;
3909  if (NeedMask)
3910    ++NumLookupTablesHoles;
3911  return true;
3912}
3913
3914bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
3915  BasicBlock *BB = SI->getParent();
3916
3917  if (isValueEqualityComparison(SI)) {
3918    // If we only have one predecessor, and if it is a branch on this value,
3919    // see if that predecessor totally determines the outcome of this switch.
3920    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
3921      if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
3922        return SimplifyCFG(BB, TTI, DL) | true;
3923
3924    Value *Cond = SI->getCondition();
3925    if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
3926      if (SimplifySwitchOnSelect(SI, Select))
3927        return SimplifyCFG(BB, TTI, DL) | true;
3928
3929    // If the block only contains the switch, see if we can fold the block
3930    // away into any preds.
3931    BasicBlock::iterator BBI = BB->begin();
3932    // Ignore dbg intrinsics.
3933    while (isa<DbgInfoIntrinsic>(BBI))
3934      ++BBI;
3935    if (SI == &*BBI)
3936      if (FoldValueComparisonIntoPredecessors(SI, Builder))
3937        return SimplifyCFG(BB, TTI, DL) | true;
3938  }
3939
3940  // Try to transform the switch into an icmp and a branch.
3941  if (TurnSwitchRangeIntoICmp(SI, Builder))
3942    return SimplifyCFG(BB, TTI, DL) | true;
3943
3944  // Remove unreachable cases.
3945  if (EliminateDeadSwitchCases(SI))
3946    return SimplifyCFG(BB, TTI, DL) | true;
3947
3948  if (ForwardSwitchConditionToPHI(SI))
3949    return SimplifyCFG(BB, TTI, DL) | true;
3950
3951  if (SwitchToLookupTable(SI, Builder, TTI, DL))
3952    return SimplifyCFG(BB, TTI, DL) | true;
3953
3954  return false;
3955}
3956
3957bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
3958  BasicBlock *BB = IBI->getParent();
3959  bool Changed = false;
3960
3961  // Eliminate redundant destinations.
3962  SmallPtrSet<Value *, 8> Succs;
3963  for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
3964    BasicBlock *Dest = IBI->getDestination(i);
3965    if (!Dest->hasAddressTaken() || !Succs.insert(Dest)) {
3966      Dest->removePredecessor(BB);
3967      IBI->removeDestination(i);
3968      --i; --e;
3969      Changed = true;
3970    }
3971  }
3972
3973  if (IBI->getNumDestinations() == 0) {
3974    // If the indirectbr has no successors, change it to unreachable.
3975    new UnreachableInst(IBI->getContext(), IBI);
3976    EraseTerminatorInstAndDCECond(IBI);
3977    return true;
3978  }
3979
3980  if (IBI->getNumDestinations() == 1) {
3981    // If the indirectbr has one successor, change it to a direct branch.
3982    BranchInst::Create(IBI->getDestination(0), IBI);
3983    EraseTerminatorInstAndDCECond(IBI);
3984    return true;
3985  }
3986
3987  if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
3988    if (SimplifyIndirectBrOnSelect(IBI, SI))
3989      return SimplifyCFG(BB, TTI, DL) | true;
3990  }
3991  return Changed;
3992}
3993
3994bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder){
3995  BasicBlock *BB = BI->getParent();
3996
3997  if (SinkCommon && SinkThenElseCodeToEnd(BI))
3998    return true;
3999
4000  // If the Terminator is the only non-phi instruction, simplify the block.
4001  BasicBlock::iterator I = BB->getFirstNonPHIOrDbgOrLifetime();
4002  if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
4003      TryToSimplifyUncondBranchFromEmptyBlock(BB))
4004    return true;
4005
4006  // If the only instruction in the block is a seteq/setne comparison
4007  // against a constant, try to simplify the block.
4008  if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
4009    if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
4010      for (++I; isa<DbgInfoIntrinsic>(I); ++I)
4011        ;
4012      if (I->isTerminator() &&
4013          TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, TTI, DL))
4014        return true;
4015    }
4016
4017  // If this basic block is ONLY a compare and a branch, and if a predecessor
4018  // branches to us and our successor, fold the comparison into the
4019  // predecessor and use logical operations to update the incoming value
4020  // for PHI nodes in common successor.
4021  if (FoldBranchToCommonDest(BI, DL))
4022    return SimplifyCFG(BB, TTI, DL) | true;
4023  return false;
4024}
4025
4026
4027bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
4028  BasicBlock *BB = BI->getParent();
4029
4030  // Conditional branch
4031  if (isValueEqualityComparison(BI)) {
4032    // If we only have one predecessor, and if it is a branch on this value,
4033    // see if that predecessor totally determines the outcome of this
4034    // switch.
4035    if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
4036      if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
4037        return SimplifyCFG(BB, TTI, DL) | true;
4038
4039    // This block must be empty, except for the setcond inst, if it exists.
4040    // Ignore dbg intrinsics.
4041    BasicBlock::iterator I = BB->begin();
4042    // Ignore dbg intrinsics.
4043    while (isa<DbgInfoIntrinsic>(I))
4044      ++I;
4045    if (&*I == BI) {
4046      if (FoldValueComparisonIntoPredecessors(BI, Builder))
4047        return SimplifyCFG(BB, TTI, DL) | true;
4048    } else if (&*I == cast<Instruction>(BI->getCondition())){
4049      ++I;
4050      // Ignore dbg intrinsics.
4051      while (isa<DbgInfoIntrinsic>(I))
4052        ++I;
4053      if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
4054        return SimplifyCFG(BB, TTI, DL) | true;
4055    }
4056  }
4057
4058  // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
4059  if (SimplifyBranchOnICmpChain(BI, DL, Builder))
4060    return true;
4061
4062  // If this basic block is ONLY a compare and a branch, and if a predecessor
4063  // branches to us and one of our successors, fold the comparison into the
4064  // predecessor and use logical operations to pick the right destination.
4065  if (FoldBranchToCommonDest(BI, DL))
4066    return SimplifyCFG(BB, TTI, DL) | true;
4067
4068  // We have a conditional branch to two blocks that are only reachable
4069  // from BI.  We know that the condbr dominates the two blocks, so see if
4070  // there is any identical code in the "then" and "else" blocks.  If so, we
4071  // can hoist it up to the branching block.
4072  if (BI->getSuccessor(0)->getSinglePredecessor()) {
4073    if (BI->getSuccessor(1)->getSinglePredecessor()) {
4074      if (HoistThenElseCodeToIf(BI, DL))
4075        return SimplifyCFG(BB, TTI, DL) | true;
4076    } else {
4077      // If Successor #1 has multiple preds, we may be able to conditionally
4078      // execute Successor #0 if it branches to Successor #1.
4079      TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
4080      if (Succ0TI->getNumSuccessors() == 1 &&
4081          Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
4082        if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), DL))
4083          return SimplifyCFG(BB, TTI, DL) | true;
4084    }
4085  } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
4086    // If Successor #0 has multiple preds, we may be able to conditionally
4087    // execute Successor #1 if it branches to Successor #0.
4088    TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
4089    if (Succ1TI->getNumSuccessors() == 1 &&
4090        Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
4091      if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), DL))
4092        return SimplifyCFG(BB, TTI, DL) | true;
4093  }
4094
4095  // If this is a branch on a phi node in the current block, thread control
4096  // through this block if any PHI node entries are constants.
4097  if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
4098    if (PN->getParent() == BI->getParent())
4099      if (FoldCondBranchOnPHI(BI, DL))
4100        return SimplifyCFG(BB, TTI, DL) | true;
4101
4102  // Scan predecessor blocks for conditional branches.
4103  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
4104    if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
4105      if (PBI != BI && PBI->isConditional())
4106        if (SimplifyCondBranchToCondBranch(PBI, BI))
4107          return SimplifyCFG(BB, TTI, DL) | true;
4108
4109  return false;
4110}
4111
4112/// Check if passing a value to an instruction will cause undefined behavior.
4113static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
4114  Constant *C = dyn_cast<Constant>(V);
4115  if (!C)
4116    return false;
4117
4118  if (I->use_empty())
4119    return false;
4120
4121  if (C->isNullValue()) {
4122    // Only look at the first use, avoid hurting compile time with long uselists
4123    User *Use = *I->user_begin();
4124
4125    // Now make sure that there are no instructions in between that can alter
4126    // control flow (eg. calls)
4127    for (BasicBlock::iterator i = ++BasicBlock::iterator(I); &*i != Use; ++i)
4128      if (i == I->getParent()->end() || i->mayHaveSideEffects())
4129        return false;
4130
4131    // Look through GEPs. A load from a GEP derived from NULL is still undefined
4132    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
4133      if (GEP->getPointerOperand() == I)
4134        return passingValueIsAlwaysUndefined(V, GEP);
4135
4136    // Look through bitcasts.
4137    if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
4138      return passingValueIsAlwaysUndefined(V, BC);
4139
4140    // Load from null is undefined.
4141    if (LoadInst *LI = dyn_cast<LoadInst>(Use))
4142      if (!LI->isVolatile())
4143        return LI->getPointerAddressSpace() == 0;
4144
4145    // Store to null is undefined.
4146    if (StoreInst *SI = dyn_cast<StoreInst>(Use))
4147      if (!SI->isVolatile())
4148        return SI->getPointerAddressSpace() == 0 && SI->getPointerOperand() == I;
4149  }
4150  return false;
4151}
4152
4153/// If BB has an incoming value that will always trigger undefined behavior
4154/// (eg. null pointer dereference), remove the branch leading here.
4155static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
4156  for (BasicBlock::iterator i = BB->begin();
4157       PHINode *PHI = dyn_cast<PHINode>(i); ++i)
4158    for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
4159      if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
4160        TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
4161        IRBuilder<> Builder(T);
4162        if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
4163          BB->removePredecessor(PHI->getIncomingBlock(i));
4164          // Turn uncoditional branches into unreachables and remove the dead
4165          // destination from conditional branches.
4166          if (BI->isUnconditional())
4167            Builder.CreateUnreachable();
4168          else
4169            Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) :
4170                                                         BI->getSuccessor(0));
4171          BI->eraseFromParent();
4172          return true;
4173        }
4174        // TODO: SwitchInst.
4175      }
4176
4177  return false;
4178}
4179
4180bool SimplifyCFGOpt::run(BasicBlock *BB) {
4181  bool Changed = false;
4182
4183  assert(BB && BB->getParent() && "Block not embedded in function!");
4184  assert(BB->getTerminator() && "Degenerate basic block encountered!");
4185
4186  // Remove basic blocks that have no predecessors (except the entry block)...
4187  // or that just have themself as a predecessor.  These are unreachable.
4188  if ((pred_begin(BB) == pred_end(BB) &&
4189       BB != &BB->getParent()->getEntryBlock()) ||
4190      BB->getSinglePredecessor() == BB) {
4191    DEBUG(dbgs() << "Removing BB: \n" << *BB);
4192    DeleteDeadBlock(BB);
4193    return true;
4194  }
4195
4196  // Check to see if we can constant propagate this terminator instruction
4197  // away...
4198  Changed |= ConstantFoldTerminator(BB, true);
4199
4200  // Check for and eliminate duplicate PHI nodes in this block.
4201  Changed |= EliminateDuplicatePHINodes(BB);
4202
4203  // Check for and remove branches that will always cause undefined behavior.
4204  Changed |= removeUndefIntroducingPredecessor(BB);
4205
4206  // Merge basic blocks into their predecessor if there is only one distinct
4207  // pred, and if there is only one distinct successor of the predecessor, and
4208  // if there are no PHI nodes.
4209  //
4210  if (MergeBlockIntoPredecessor(BB))
4211    return true;
4212
4213  IRBuilder<> Builder(BB);
4214
4215  // If there is a trivial two-entry PHI node in this basic block, and we can
4216  // eliminate it, do so now.
4217  if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
4218    if (PN->getNumIncomingValues() == 2)
4219      Changed |= FoldTwoEntryPHINode(PN, DL);
4220
4221  Builder.SetInsertPoint(BB->getTerminator());
4222  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
4223    if (BI->isUnconditional()) {
4224      if (SimplifyUncondBranch(BI, Builder)) return true;
4225    } else {
4226      if (SimplifyCondBranch(BI, Builder)) return true;
4227    }
4228  } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
4229    if (SimplifyReturn(RI, Builder)) return true;
4230  } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
4231    if (SimplifyResume(RI, Builder)) return true;
4232  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
4233    if (SimplifySwitch(SI, Builder)) return true;
4234  } else if (UnreachableInst *UI =
4235               dyn_cast<UnreachableInst>(BB->getTerminator())) {
4236    if (SimplifyUnreachable(UI)) return true;
4237  } else if (IndirectBrInst *IBI =
4238               dyn_cast<IndirectBrInst>(BB->getTerminator())) {
4239    if (SimplifyIndirectBr(IBI)) return true;
4240  }
4241
4242  return Changed;
4243}
4244
4245/// SimplifyCFG - This function is used to do simplification of a CFG.  For
4246/// example, it adjusts branches to branches to eliminate the extra hop, it
4247/// eliminates unreachable basic blocks, and does other "peephole" optimization
4248/// of the CFG.  It returns true if a modification was made.
4249///
4250bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
4251                       const DataLayout *DL) {
4252  return SimplifyCFGOpt(TTI, DL).run(BB);
4253}
4254