BBVectorize.cpp revision 3574eca1b02600bac4e625297f4ecf745f4c4f32
1de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
2de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//
3de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//                     The LLVM Compiler Infrastructure
4de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//
5de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// This file is distributed under the University of Illinois Open Source
6de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// License. See LICENSE.TXT for details.
7de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//
8de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//===----------------------------------------------------------------------===//
9de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//
10de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// This file implements a basic-block vectorization pass. The algorithm was
11de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
12de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// et al. It works by looking for chains of pairable operations and then
13de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// pairing them.
14de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//
15de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//===----------------------------------------------------------------------===//
16de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
17de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#define BBV_NAME "bb-vectorize"
18de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#define DEBUG_TYPE BBV_NAME
19de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Constants.h"
20de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/DerivedTypes.h"
21de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Function.h"
22de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Instructions.h"
23de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/IntrinsicInst.h"
24de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Intrinsics.h"
25de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/LLVMContext.h"
26ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel#include "llvm/Metadata.h"
27de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Pass.h"
28de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Type.h"
29de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/DenseMap.h"
30de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/DenseSet.h"
31de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/SmallVector.h"
32de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/Statistic.h"
33de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/STLExtras.h"
34de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/StringExtras.h"
35de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Analysis/AliasAnalysis.h"
36de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Analysis/AliasSetTracker.h"
37de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Analysis/ScalarEvolution.h"
38de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Analysis/ScalarEvolutionExpressions.h"
39de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Analysis/ValueTracking.h"
40de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Support/CommandLine.h"
41de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Support/Debug.h"
42de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Support/raw_ostream.h"
43de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Support/ValueHandle.h"
443574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmow#include "llvm/DataLayout.h"
4564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel#include "llvm/Transforms/Utils/Local.h"
46de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Transforms/Vectorize.h"
47de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include <algorithm>
48de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include <map>
49de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelusing namespace llvm;
50de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
51de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<unsigned>
52de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
53de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("The required chain depth for vectorization"));
54de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
55de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<unsigned>
56de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelSearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
57de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("The maximum search distance for instruction pairs"));
58de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
59de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
60de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelSplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
61de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Replicating one element to a pair breaks the chain"));
62de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
63de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<unsigned>
64de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelVectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
65de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("The size of the native vector registers"));
66de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
67de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<unsigned>
68de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelMaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
69de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("The maximum number of pairing iterations"));
70de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
7164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkelstatic cl::opt<bool>
7264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal FinkelPow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden,
7364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel  cl::desc("Don't try to form non-2^n-length vectors"));
7464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
75de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<unsigned>
765d4e18bc39fea892f523d960213906d296d3cb38Hal FinkelMaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
775d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel  cl::desc("The maximum number of pairable instructions per group"));
785d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
795d4e18bc39fea892f523d960213906d296d3cb38Hal Finkelstatic cl::opt<unsigned>
80de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelMaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
81de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
82de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       " a full cycle check"));
83de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
84de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
85768edf3cd037aab10391abc279f71470df8e3156Hal FinkelNoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden,
86768edf3cd037aab10391abc279f71470df8e3156Hal Finkel  cl::desc("Don't try to vectorize boolean (i1) values"));
87768edf3cd037aab10391abc279f71470df8e3156Hal Finkel
88768edf3cd037aab10391abc279f71470df8e3156Hal Finkelstatic cl::opt<bool>
89de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
90de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize integer values"));
91de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
92de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
93de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
94de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize floating-point values"));
95de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
96de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
97f3f5a1e6f77a842ccb24cc81766437da5197d712Hal FinkelNoPointers("bb-vectorize-no-pointers", cl::init(false), cl::Hidden,
98f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel  cl::desc("Don't try to vectorize pointer values"));
99f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel
100f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkelstatic cl::opt<bool>
101de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
102de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize casting (conversion) operations"));
103de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
104de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
105de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
106de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize floating-point math intrinsics"));
107de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
108de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
109de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
110de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
111de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
112de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
113fc3665c87519850f629c9565535e3be447e10addHal FinkelNoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
114fc3665c87519850f629c9565535e3be447e10addHal Finkel  cl::desc("Don't try to vectorize select instructions"));
115fc3665c87519850f629c9565535e3be447e10addHal Finkel
116fc3665c87519850f629c9565535e3be447e10addHal Finkelstatic cl::opt<bool>
117e415f96b6a43ac8861148a11a4258bc38c247e8fHal FinkelNoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden,
118e415f96b6a43ac8861148a11a4258bc38c247e8fHal Finkel  cl::desc("Don't try to vectorize comparison instructions"));
119e415f96b6a43ac8861148a11a4258bc38c247e8fHal Finkel
120e415f96b6a43ac8861148a11a4258bc38c247e8fHal Finkelstatic cl::opt<bool>
121f3f5a1e6f77a842ccb24cc81766437da5197d712Hal FinkelNoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
122f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel  cl::desc("Don't try to vectorize getelementptr instructions"));
123f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel
124f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkelstatic cl::opt<bool>
125de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
126de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize loads and stores"));
127de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
128de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
129de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelAlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
130de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Only generate aligned loads and stores"));
131de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
132de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
133edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal FinkelNoMemOpBoost("bb-vectorize-no-mem-op-boost",
134edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel  cl::init(false), cl::Hidden,
135edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel  cl::desc("Don't boost the chain-depth contribution of loads and stores"));
136edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel
137edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkelstatic cl::opt<bool>
138de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelFastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
139de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Use a fast instruction dependency analysis"));
140de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
141de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#ifndef NDEBUG
142de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
143de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelDebugInstructionExamination("bb-vectorize-debug-instruction-examination",
144de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::init(false), cl::Hidden,
145de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("When debugging is enabled, output information on the"
146de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           " instruction-examination process"));
147de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
148de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelDebugCandidateSelection("bb-vectorize-debug-candidate-selection",
149de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::init(false), cl::Hidden,
150de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("When debugging is enabled, output information on the"
151de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           " candidate-selection process"));
152de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
153de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelDebugPairSelection("bb-vectorize-debug-pair-selection",
154de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::init(false), cl::Hidden,
155de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("When debugging is enabled, output information on the"
156de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           " pair-selection process"));
157de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
158de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelDebugCycleCheck("bb-vectorize-debug-cycle-check",
159de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::init(false), cl::Hidden,
160de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("When debugging is enabled, output information on the"
161de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           " cycle-checking process"));
162de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#endif
163de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
164de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelSTATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
165de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
166de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelnamespace {
167de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  struct BBVectorize : public BasicBlockPass {
168de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    static char ID; // Pass identification, replacement for typeid
169bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng
170940371bc65570ec0add1ede4f4d9f0a41ba25e09Hongbin Zheng    const VectorizeConfig Config;
171bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng
172bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng    BBVectorize(const VectorizeConfig &C = VectorizeConfig())
173bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      : BasicBlockPass(ID), Config(C) {
174de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      initializeBBVectorizePass(*PassRegistry::getPassRegistry());
175de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
176de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
177bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng    BBVectorize(Pass *P, const VectorizeConfig &C)
178bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      : BasicBlockPass(ID), Config(C) {
17987825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng      AA = &P->getAnalysis<AliasAnalysis>();
18087825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng      SE = &P->getAnalysis<ScalarEvolution>();
1813574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmow      TD = P->getAnalysisIfAvailable<DataLayout>();
18287825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng    }
18387825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng
184de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    typedef std::pair<Value *, Value *> ValuePair;
185de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
186de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
187de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    typedef std::pair<std::multimap<Value *, Value *>::iterator,
188de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              std::multimap<Value *, Value *>::iterator> VPIteratorPair;
189de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
190de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              std::multimap<ValuePair, ValuePair>::iterator>
191de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                VPPIteratorPair;
192de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
193de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    AliasAnalysis *AA;
194de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    ScalarEvolution *SE;
1953574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmow    DataLayout *TD;
196de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
197de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // FIXME: const correct?
198de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
19964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false);
200de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2015d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    bool getCandidatePairs(BasicBlock &BB,
2025d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel                       BasicBlock::iterator &Start,
203de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<Value *, Value *> &CandidatePairs,
20464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                       std::vector<Value *> &PairableInsts, bool NonPow2Len);
205de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
206de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
207de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::vector<Value *> &PairableInsts,
208de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<ValuePair, ValuePair> &ConnectedPairs);
209de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
210de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void buildDepMap(BasicBlock &BB,
211de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<Value *, Value *> &CandidatePairs,
212de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::vector<Value *> &PairableInsts,
213de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       DenseSet<ValuePair> &PairableInstUsers);
214de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
215de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
216de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        std::vector<Value *> &PairableInsts,
217de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        std::multimap<ValuePair, ValuePair> &ConnectedPairs,
218de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        DenseSet<ValuePair> &PairableInstUsers,
219de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        DenseMap<Value *, Value *>& ChosenPairs);
220de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
221de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void fuseChosenPairs(BasicBlock &BB,
222de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::vector<Value *> &PairableInsts,
223de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *>& ChosenPairs);
224de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
225de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
226de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
227de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool areInstsCompatible(Instruction *I, Instruction *J,
22864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                       bool IsSimpleLoadStore, bool NonPow2Len);
229de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
230de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool trackUsesOfI(DenseSet<Value *> &Users,
231de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      AliasSetTracker &WriteSet, Instruction *I,
232de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      Instruction *J, bool UpdateUsers = true,
233de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> *LoadMoveSet = 0);
2341230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop
235de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void computePairsConnectedTo(
236de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
237de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
238de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
239de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      ValuePair P);
240de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
241de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool pairsConflict(ValuePair P, ValuePair Q,
242de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                 DenseSet<ValuePair> &PairableInstUsers,
243de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                 std::multimap<ValuePair, ValuePair> *PairableInstUserMap = 0);
244de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
245de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool pairWillFormCycle(ValuePair P,
246de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<ValuePair, ValuePair> &PairableInstUsers,
247de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       DenseSet<ValuePair> &CurrentPairs);
248de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
249de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void pruneTreeFor(
250de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
251de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
252de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
253de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
254de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
255de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
256de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<ValuePair, size_t> &Tree,
257de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
258de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      bool UseCycleCheck);
259de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
260de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void buildInitialTreeFor(
261de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
262de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
263de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
264de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
265de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
266de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<ValuePair, size_t> &Tree, ValuePair J);
267de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
268de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void findBestTreeFor(
269de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
270de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
271de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
272de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
273de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
274de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
275de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
276de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      size_t &BestEffSize, VPIteratorPair ChoiceRange,
277de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      bool UseCycleCheck);
278de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
279de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
280282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                     Instruction *J, unsigned o, bool FlipMemInputs);
281de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
282de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
28364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                     unsigned MaskOffset, unsigned NumInElem,
28464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                     unsigned NumInElem1, unsigned IdxOffset,
28564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                     std::vector<Constant*> &Mask);
286de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
287de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
288de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J);
289de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
29064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J,
29164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                       unsigned o, Value *&LOp, unsigned numElemL,
29264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                       Type *ArgTypeL, Type *ArgTypeR,
29364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                       unsigned IdxOff = 0);
29464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
295de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *getReplacementInput(LLVMContext& Context, Instruction *I,
296de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J, unsigned o, bool FlipMemInputs);
297de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
298de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
299de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J, SmallVector<Value *, 3> &ReplacedOperands,
300282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                     bool FlipMemInputs);
301de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
302de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
303de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J, Instruction *K,
304de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *&InsertionPt, Instruction *&K1,
305282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                     Instruction *&K2, bool FlipMemInputs);
306de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
307de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void collectPairLoadMoveSet(BasicBlock &BB,
308de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *> &ChosenPairs,
309de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
310de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I);
311de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
312de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void collectLoadMoveSet(BasicBlock &BB,
313de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::vector<Value *> &PairableInsts,
314de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *> &ChosenPairs,
315de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet);
316de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
317282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel    void collectPtrInfo(std::vector<Value *> &PairableInsts,
318282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                        DenseMap<Value *, Value *> &ChosenPairs,
319282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                        DenseSet<Value *> &LowPtrInsts);
320282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
321de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool canMoveUsesOfIAfterJ(BasicBlock &BB,
322de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
323de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J);
324de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
325de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void moveUsesOfIAfterJ(BasicBlock &BB,
326de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
327de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *&InsertionPt,
328de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J);
329de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
330ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel    void combineMetadata(Instruction *K, const Instruction *J);
331ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel
33287825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng    bool vectorizeBB(BasicBlock &BB) {
333de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      bool changed = false;
334de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Iterate a sufficient number of times to merge types of size 1 bit,
335de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // then 2 bits, then 4, etc. up to half of the target vector width of the
336de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // target vector register.
33764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      unsigned n = 1;
33864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      for (unsigned v = 2;
339bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng           v <= Config.VectorBits && (!Config.MaxIter || n <= Config.MaxIter);
340de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           v *= 2, ++n) {
341bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        DEBUG(dbgs() << "BBV: fusing loop #" << n <<
342de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              " for " << BB.getName() << " in " <<
343de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              BB.getParent()->getName() << "...\n");
344de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (vectorizePairs(BB))
345de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          changed = true;
346de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        else
347de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          break;
348de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
349de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
35064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (changed && !Pow2LenOnly) {
35164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        ++n;
35264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        for (; !Config.MaxIter || n <= Config.MaxIter; ++n) {
35364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " <<
35464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                n << " for " << BB.getName() << " in " <<
35564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                BB.getParent()->getName() << "...\n");
35664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          if (!vectorizePairs(BB, true)) break;
35764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
35864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
35964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
360de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(dbgs() << "BBV: done!\n");
361de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return changed;
362de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
363de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
36487825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng    virtual bool runOnBasicBlock(BasicBlock &BB) {
36587825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng      AA = &getAnalysis<AliasAnalysis>();
36687825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng      SE = &getAnalysis<ScalarEvolution>();
3673574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmow      TD = getAnalysisIfAvailable<DataLayout>();
36887825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng
36987825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng      return vectorizeBB(BB);
37087825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng    }
37187825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng
372de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
373de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      BasicBlockPass::getAnalysisUsage(AU);
374de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AU.addRequired<AliasAnalysis>();
375de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AU.addRequired<ScalarEvolution>();
376de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AU.addPreserved<AliasAnalysis>();
377de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AU.addPreserved<ScalarEvolution>();
3787e004d177fe76145f75a9417ed2e281f1b9abaf7Hal Finkel      AU.setPreservesCFG();
379de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
380de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
38164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) {
38264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() &&
38364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel             "Cannot form vector from incompatible scalar types");
38464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      Type *STy = ElemTy->getScalarType();
38564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
38664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      unsigned numElem;
387de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
38864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        numElem = VTy->getNumElements();
38964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } else {
39064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        numElem = 1;
39164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
39264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
39364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (VectorType *VTy = dyn_cast<VectorType>(Elem2Ty)) {
39464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        numElem += VTy->getNumElements();
39564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } else {
39664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        numElem += 1;
397de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
3987e004d177fe76145f75a9417ed2e281f1b9abaf7Hal Finkel
39964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      return VectorType::get(STy, numElem);
40064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    }
40164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
40264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    static inline void getInstructionTypes(Instruction *I,
40364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                           Type *&T1, Type *&T2) {
40464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (isa<StoreInst>(I)) {
40564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // For stores, it is the value type, not the pointer type that matters
40664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // because the value is what will come from a vector register.
40764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
40864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Value *IVal = cast<StoreInst>(I)->getValueOperand();
40964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        T1 = IVal->getType();
41064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } else {
41164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        T1 = I->getType();
41264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
41364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
41464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (I->isCast())
41564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        T2 = cast<CastInst>(I)->getSrcTy();
41664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      else
41764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        T2 = T1;
418de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
419de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
420de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Returns the weight associated with the provided value. A chain of
421de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // candidate pairs has a length given by the sum of the weights of its
422de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // members (one weight per pair; the weight of each member of the pair
423de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // is assumed to be the same). This length is then compared to the
424de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // chain-length threshold to determine if a given chain is significant
425de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // enough to be vectorized. The length is also used in comparing
426de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // candidate chains where longer chains are considered to be better.
427de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Note: when this function returns 0, the resulting instructions are
428de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // not actually fused.
429bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng    inline size_t getDepthFactor(Value *V) {
430de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // InsertElement and ExtractElement have a depth factor of zero. This is
431de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // for two reasons: First, they cannot be usefully fused. Second, because
432de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // the pass generates a lot of these, they can confuse the simple metric
433de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // used to compare the trees in the next iteration. Thus, giving them a
434de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // weight of zero allows the pass to essentially ignore them in
435de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // subsequent iterations when looking for vectorization opportunities
436de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // while still tracking dependency chains that flow through those
437de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // instructions.
438de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
439de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return 0;
440de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
441edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel      // Give a load or store half of the required depth so that load/store
442edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel      // pairs will vectorize.
443bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
444bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        return Config.ReqChainDepth/2;
445edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel
446de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return 1;
447de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
448de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
449de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // This determines the relative offset of two loads or stores, returning
450de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // true if the offset could be determined to be some constant value.
451de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // For example, if OffsetInElmts == 1, then J accesses the memory directly
452de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // after I; if OffsetInElmts == -1 then I accesses the memory
45364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // directly after J.
454de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool getPairPtrInfo(Instruction *I, Instruction *J,
455de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
456de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        int64_t &OffsetInElmts) {
457de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      OffsetInElmts = 0;
458de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (isa<LoadInst>(I)) {
459de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        IPtr = cast<LoadInst>(I)->getPointerOperand();
460de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        JPtr = cast<LoadInst>(J)->getPointerOperand();
461de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        IAlignment = cast<LoadInst>(I)->getAlignment();
462de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        JAlignment = cast<LoadInst>(J)->getAlignment();
463de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
464de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        IPtr = cast<StoreInst>(I)->getPointerOperand();
465de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        JPtr = cast<StoreInst>(J)->getPointerOperand();
466de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        IAlignment = cast<StoreInst>(I)->getAlignment();
467de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        JAlignment = cast<StoreInst>(J)->getAlignment();
468de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
469de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
470de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
471de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
472de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
473de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // If this is a trivial offset, then we'll get something like
474de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // 1*sizeof(type). With target data, which we need anyway, this will get
475de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // constant folded into a number.
476de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
477de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (const SCEVConstant *ConstOffSCEV =
478de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            dyn_cast<SCEVConstant>(OffsetSCEV)) {
479de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ConstantInt *IntOff = ConstOffSCEV->getValue();
480de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        int64_t Offset = IntOff->getSExtValue();
481de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
482de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Type *VTy = cast<PointerType>(IPtr->getType())->getElementType();
483de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
484de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
48564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Type *VTy2 = cast<PointerType>(JPtr->getType())->getElementType();
48664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (VTy != VTy2 && Offset < 0) {
48764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          int64_t VTy2TSS = (int64_t) TD->getTypeStoreSize(VTy2);
48864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          OffsetInElmts = Offset/VTy2TSS;
48964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          return (abs64(Offset) % VTy2TSS) == 0;
49064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
491de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
492de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        OffsetInElmts = Offset/VTyTSS;
493de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return (abs64(Offset) % VTyTSS) == 0;
494de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
495de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
496de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
497de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
498de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
499de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Returns true if the provided CallInst represents an intrinsic that can
500de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // be vectorized.
501de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool isVectorizableIntrinsic(CallInst* I) {
502de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Function *F = I->getCalledFunction();
503de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!F) return false;
504de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
505de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      unsigned IID = F->getIntrinsicID();
506de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!IID) return false;
507de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
508de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      switch(IID) {
509de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      default:
510de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
511de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::sqrt:
512de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::powi:
513de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::sin:
514de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::cos:
515de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::log:
516de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::log2:
517de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::log10:
518de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::exp:
519de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::exp2:
520de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::pow:
52186312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng        return Config.VectorizeMath;
522de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::fma:
52386312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng        return Config.VectorizeFMA;
524de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
525de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
526de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
527de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Returns true if J is the second element in some pair referenced by
528de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // some multimap pair iterator pair.
529de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    template <typename V>
530de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool isSecondInIteratorPair(V J, std::pair<
531de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           typename std::multimap<V, V>::iterator,
532de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           typename std::multimap<V, V>::iterator> PairRange) {
533de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (typename std::multimap<V, V>::iterator K = PairRange.first;
534de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           K != PairRange.second; ++K)
535de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (K->second == J) return true;
536de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
537de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
538de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
539de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  };
540de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
541de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function implements one vectorization iteration on the provided
542de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // basic block. It returns true if the block is changed.
54364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel  bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) {
5445d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    bool ShouldContinue;
5455d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    BasicBlock::iterator Start = BB.getFirstInsertionPt();
5465d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
5475d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    std::vector<Value *> AllPairableInsts;
5485d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    DenseMap<Value *, Value *> AllChosenPairs;
5495d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
5505d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    do {
5515d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      std::vector<Value *> PairableInsts;
5525d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      std::multimap<Value *, Value *> CandidatePairs;
5535d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
55464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                         PairableInsts, NonPow2Len);
5555d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      if (PairableInsts.empty()) continue;
5563706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
5575d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // Now we have a map of all of the pairable instructions and we need to
5585d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // select the best possible pairing. A good pairing is one such that the
5595d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // users of the pair are also paired. This defines a (directed) forest
56094c22716d60ff5edf6a98a3c67e0faa001be1142Sylvestre Ledru      // over the pairs such that two pairs are connected iff the second pair
5615d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // uses the first.
5623706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
5635d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // Note that it only matters that both members of the second pair use some
5645d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // element of the first pair (to allow for splatting).
5653706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
5665d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      std::multimap<ValuePair, ValuePair> ConnectedPairs;
5675d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs);
5685d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      if (ConnectedPairs.empty()) continue;
5693706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
5705d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // Build the pairable-instruction dependency map
5715d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      DenseSet<ValuePair> PairableInstUsers;
5725d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
5733706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
57435564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      // There is now a graph of the connected pairs. For each variable, pick
57535564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      // the pairing with the largest tree meeting the depth requirement on at
57635564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      // least one branch. Then select all pairings that are part of that tree
57735564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      // and remove them from the list of available pairings and pairable
57835564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      // variables.
5793706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
5805d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      DenseMap<Value *, Value *> ChosenPairs;
5815d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      choosePairs(CandidatePairs, PairableInsts, ConnectedPairs,
5825d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        PairableInstUsers, ChosenPairs);
5833706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
5845d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      if (ChosenPairs.empty()) continue;
5855d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
5865d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel                              PairableInsts.end());
5875d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
5885d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    } while (ShouldContinue);
5895d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
5905d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    if (AllChosenPairs.empty()) return false;
5915d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    NumFusedOps += AllChosenPairs.size();
5923706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
593de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // A set of pairs has now been selected. It is now necessary to replace the
594de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // paired instructions with vector instructions. For this procedure each
59543ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop    // operand must be replaced with a vector operand. This vector is formed
596de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // by using build_vector on the old operands. The replaced values are then
597de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // replaced with a vector_extract on the result.  Subsequent optimization
598de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // passes should coalesce the build/extract combinations.
5993706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
6005d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs);
60164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
60264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // It is important to cleanup here so that future iterations of this
60364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // function have less work to do.
6048e0d1c03ca7fd86e6879b4e37d0d7f0e982feef6Benjamin Kramer    (void) SimplifyInstructionsInBlock(&BB, TD, AA->getTargetLibraryInfo());
605de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return true;
606de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
607de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
608de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function returns true if the provided instruction is capable of being
609de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // fused into a vector instruction. This determination is based only on the
610de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // type and other attributes of the instruction.
611de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::isInstVectorizable(Instruction *I,
612de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                         bool &IsSimpleLoadStore) {
613de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    IsSimpleLoadStore = false;
614de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
615de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (CallInst *C = dyn_cast<CallInst>(I)) {
616de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!isVectorizableIntrinsic(C))
617de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
618de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
619de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Vectorize simple loads if possbile:
620de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      IsSimpleLoadStore = L->isSimple();
62186312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
622de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
623de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
624de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Vectorize simple stores if possbile:
625de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      IsSimpleLoadStore = S->isSimple();
62686312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
627de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
628de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else if (CastInst *C = dyn_cast<CastInst>(I)) {
629de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // We can vectorize casts, but not casts of pointer types, etc.
63086312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng      if (!Config.VectorizeCasts)
631de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
632de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
633de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Type *SrcTy = C->getSrcTy();
634f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      if (!SrcTy->isSingleValueType())
635de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
636de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
637de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Type *DestTy = C->getDestTy();
638f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      if (!DestTy->isSingleValueType())
639de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
640fc3665c87519850f629c9565535e3be447e10addHal Finkel    } else if (isa<SelectInst>(I)) {
641fc3665c87519850f629c9565535e3be447e10addHal Finkel      if (!Config.VectorizeSelect)
642fc3665c87519850f629c9565535e3be447e10addHal Finkel        return false;
643e415f96b6a43ac8861148a11a4258bc38c247e8fHal Finkel    } else if (isa<CmpInst>(I)) {
644e415f96b6a43ac8861148a11a4258bc38c247e8fHal Finkel      if (!Config.VectorizeCmp)
645e415f96b6a43ac8861148a11a4258bc38c247e8fHal Finkel        return false;
646f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
647f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      if (!Config.VectorizeGEP)
648f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel        return false;
649f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel
650f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      // Currently, vector GEPs exist only with one index.
651f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      if (G->getNumIndices() != 1)
652f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel        return false;
653de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
654de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
655de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
656de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
657de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
658de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // We can't vectorize memory operations without target data
659de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (TD == 0 && IsSimpleLoadStore)
660de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
661de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
662de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Type *T1, *T2;
66364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    getInstructionTypes(I, T1, T2);
664de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
665de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Not every type can be vectorized...
666de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
667de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
668de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
669de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
670768edf3cd037aab10391abc279f71470df8e3156Hal Finkel    if (T1->getScalarSizeInBits() == 1 && T2->getScalarSizeInBits() == 1) {
671768edf3cd037aab10391abc279f71470df8e3156Hal Finkel      if (!Config.VectorizeBools)
672768edf3cd037aab10391abc279f71470df8e3156Hal Finkel        return false;
673768edf3cd037aab10391abc279f71470df8e3156Hal Finkel    } else {
674768edf3cd037aab10391abc279f71470df8e3156Hal Finkel      if (!Config.VectorizeInts
675768edf3cd037aab10391abc279f71470df8e3156Hal Finkel          && (T1->isIntOrIntVectorTy() || T2->isIntOrIntVectorTy()))
676768edf3cd037aab10391abc279f71470df8e3156Hal Finkel        return false;
677768edf3cd037aab10391abc279f71470df8e3156Hal Finkel    }
678768edf3cd037aab10391abc279f71470df8e3156Hal Finkel
67986312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng    if (!Config.VectorizeFloats
68086312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng        && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
681de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
682de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
683e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel    // Don't vectorize target-specific types.
684e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel    if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy())
685e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel      return false;
686e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel    if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
687e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel      return false;
688e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel
68905bc5087a25bbcf59936d71ebfc878b545ef3e5cHal Finkel    if ((!Config.VectorizePointers || TD == 0) &&
69005bc5087a25bbcf59936d71ebfc878b545ef3e5cHal Finkel        (T1->getScalarType()->isPointerTy() ||
69105bc5087a25bbcf59936d71ebfc878b545ef3e5cHal Finkel         T2->getScalarType()->isPointerTy()))
692f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      return false;
693f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel
69464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    if (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
69564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        T2->getPrimitiveSizeInBits() >= Config.VectorBits)
696de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
697de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
698de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return true;
699de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
700de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
701de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function returns true if the two provided instructions are compatible
702de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // (meaning that they can be fused into a vector instruction). This assumes
703de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // that I has already been determined to be vectorizable and that J is not
704de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // in the use tree of I.
705de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
70664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                       bool IsSimpleLoadStore, bool NonPow2Len) {
707de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
708de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     " <-> " << *J << "\n");
709de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
710de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Loads and stores can be merged if they have different alignments,
711de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // but are otherwise the same.
71264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment |
71364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                      (NonPow2Len ? Instruction::CompareUsingScalarTypes : 0)))
71464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      return false;
71564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
71664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *IT1, *IT2, *JT1, *JT2;
71764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    getInstructionTypes(I, IT1, IT2);
71864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    getInstructionTypes(J, JT1, JT2);
71964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    unsigned MaxTypeBits = std::max(
72064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
72164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
72264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    if (MaxTypeBits > Config.VectorBits)
723de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
724ec4e85e3364f50802f2007e4b1e23661d4610366Hal Finkel
725de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // FIXME: handle addsub-type operations!
726de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
727de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (IsSimpleLoadStore) {
728de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Value *IPtr, *JPtr;
729de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      unsigned IAlignment, JAlignment;
730de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      int64_t OffsetInElmts = 0;
731de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
732de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            OffsetInElmts) && abs64(OffsetInElmts) == 1) {
733bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        if (Config.AlignedOnly) {
73464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Type *aTypeI = isa<StoreInst>(I) ?
735de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
73664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Type *aTypeJ = isa<StoreInst>(J) ?
73764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            cast<StoreInst>(J)->getValueOperand()->getType() : J->getType();
73864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
739de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // An aligned load or store is possible only if the instruction
740de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // with the lower offset has an alignment suitable for the
741de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // vector type.
7421230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop
743de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          unsigned BottomAlignment = IAlignment;
744de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (OffsetInElmts < 0) BottomAlignment = JAlignment;
7451230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop
74664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Type *VType = getVecTypeForPair(aTypeI, aTypeJ);
747de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
748de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (BottomAlignment < VecAlignment)
749de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            return false;
750de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
751de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
752de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
753de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
754de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
755de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
7566173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    // The powi intrinsic is special because only the first argument is
7576173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    // vectorized, the second arguments must be equal.
7586173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    CallInst *CI = dyn_cast<CallInst>(I);
7596173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    Function *FI;
7606173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    if (CI && (FI = CI->getCalledFunction()) &&
7616173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel        FI->getIntrinsicID() == Intrinsic::powi) {
7626173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel
7636173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel      Value *A1I = CI->getArgOperand(1),
7646173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel            *A1J = cast<CallInst>(J)->getArgOperand(1);
7656173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel      const SCEV *A1ISCEV = SE->getSCEV(A1I),
7666173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel                 *A1JSCEV = SE->getSCEV(A1J);
7676173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel      return (A1ISCEV == A1JSCEV);
7686173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    }
7696173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel
770de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return true;
771de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
772de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
773de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Figure out whether or not J uses I and update the users and write-set
774de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // structures associated with I. Specifically, Users represents the set of
775de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // instructions that depend on I. WriteSet represents the set
776de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // of memory locations that are dependent on I. If UpdateUsers is true,
777de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // and J uses I, then Users is updated to contain J and WriteSet is updated
778de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // to contain any memory locations to which J writes. The function returns
779de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // true if J uses I. By default, alias analysis is used to determine
780de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // whether J reads from memory that overlaps with a location in WriteSet.
781de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // If LoadMoveSet is not null, then it is a previously-computed multimap
782de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // where the key is the memory-based user instruction and the value is
783de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // the instruction to be compared with I. So, if LoadMoveSet is provided,
784de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // then the alias analysis is not used. This is necessary because this
785de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // function is called during the process of moving instructions during
786de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // vectorization and the results of the alias analysis are not stable during
787de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // that process.
788de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
789de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       AliasSetTracker &WriteSet, Instruction *I,
790de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       Instruction *J, bool UpdateUsers,
791de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<Value *, Value *> *LoadMoveSet) {
792de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool UsesI = false;
793de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
794de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // This instruction may already be marked as a user due, for example, to
795de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // being a member of a selected pair.
796de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (Users.count(J))
797de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      UsesI = true;
798de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
799de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (!UsesI)
8007e004d177fe76145f75a9417ed2e281f1b9abaf7Hal Finkel      for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
8017e004d177fe76145f75a9417ed2e281f1b9abaf7Hal Finkel           JU != JE; ++JU) {
802de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Value *V = *JU;
803de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (I == V || Users.count(V)) {
804de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          UsesI = true;
805de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          break;
806de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
807de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
808de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (!UsesI && J->mayReadFromMemory()) {
809de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (LoadMoveSet) {
810de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPIteratorPair JPairRange = LoadMoveSet->equal_range(J);
811de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        UsesI = isSecondInIteratorPair<Value*>(I, JPairRange);
812de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
813de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (AliasSetTracker::iterator W = WriteSet.begin(),
814de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             WE = WriteSet.end(); W != WE; ++W) {
81538a7f22445b8782682d1f8f253454ea0390d4ac5Hal Finkel          if (W->aliasesUnknownInst(J, *AA)) {
81638a7f22445b8782682d1f8f253454ea0390d4ac5Hal Finkel            UsesI = true;
81738a7f22445b8782682d1f8f253454ea0390d4ac5Hal Finkel            break;
818de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
819de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
820de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
821de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
822de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
823de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (UsesI && UpdateUsers) {
824de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (J->mayWriteToMemory()) WriteSet.add(J);
825de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Users.insert(J);
826de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
827de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
828de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return UsesI;
829de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
830de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
831de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function iterates over all instruction pairs in the provided
832de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // basic block and collects all candidate pairs for vectorization.
8335d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel  bool BBVectorize::getCandidatePairs(BasicBlock &BB,
8345d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel                       BasicBlock::iterator &Start,
835de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<Value *, Value *> &CandidatePairs,
83664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                       std::vector<Value *> &PairableInsts, bool NonPow2Len) {
837de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    BasicBlock::iterator E = BB.end();
8385d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    if (Start == E) return false;
8395d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
8405d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    bool ShouldContinue = false, IAfterStart = false;
8415d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    for (BasicBlock::iterator I = Start++; I != E; ++I) {
8425d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      if (I == Start) IAfterStart = true;
8435d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
844de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      bool IsSimpleLoadStore;
845de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
846de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
847de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Look for an instruction with which to pair instruction *I...
848de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseSet<Value *> Users;
849de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AliasSetTracker WriteSet(*AA);
8505d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      bool JAfterStart = IAfterStart;
8515d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      BasicBlock::iterator J = llvm::next(I);
852bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
8535d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        if (J == Start) JAfterStart = true;
8545d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
855de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Determine if J uses I, if so, exit the loop.
856bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
857bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        if (Config.FastDep) {
858de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // Note: For this heuristic to be effective, independent operations
859de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // must tend to be intermixed. This is likely to be true from some
860de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // kinds of grouped loop unrolling (but not the generic LLVM pass),
861de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // but otherwise may require some kind of reordering pass.
862de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
863de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // When using fast dependency analysis,
864de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // stop searching after first use:
865de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (UsesI) break;
866de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        } else {
867de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (UsesI) continue;
868de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
869de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
870de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // J does not use I, and comes before the first use of I, so it can be
871de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // merged with I if the instructions are compatible.
87264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len)) continue;
873de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
874de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // J is a candidate for merging with I.
875de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!PairableInsts.size() ||
876de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             PairableInsts[PairableInsts.size()-1] != I) {
877de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          PairableInsts.push_back(I);
878de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
8795d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
880de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        CandidatePairs.insert(ValuePair(I, J));
8815d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
8825d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        // The next call to this function must start after the last instruction
8835d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        // selected during this invocation.
8845d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        if (JAfterStart) {
8855d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel          Start = llvm::next(J);
8865d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel          IAfterStart = JAfterStart = false;
8875d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        }
8885d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
889de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
890de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     << *I << " <-> " << *J << "\n");
8915d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
8925d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        // If we have already found too many pairs, break here and this function
8935d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        // will be called again starting after the last instruction selected
8945d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        // during this invocation.
895bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        if (PairableInsts.size() >= Config.MaxInsts) {
8965d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel          ShouldContinue = true;
8975d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel          break;
8985d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        }
899de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
9005d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
9015d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      if (ShouldContinue)
9025d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        break;
903de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
904de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
905de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
906de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           << " instructions with candidate pairs\n");
9075d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
9085d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    return ShouldContinue;
909de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
910de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
911de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
912de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // it looks for pairs such that both members have an input which is an
913de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // output of PI or PJ.
914de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::computePairsConnectedTo(
915de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
916de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
917de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
918de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      ValuePair P) {
919bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel    StoreInst *SI, *SJ;
920bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
921de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // For each possible pairing for this variable, look at the uses of
922de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // the first value...
923de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (Value::use_iterator I = P.first->use_begin(),
924de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = P.first->use_end(); I != E; ++I) {
925bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel      if (isa<LoadInst>(*I)) {
926bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        // A pair cannot be connected to a load because the load only takes one
927bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        // operand (the address) and it is a scalar even after vectorization.
928bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        continue;
929bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel      } else if ((SI = dyn_cast<StoreInst>(*I)) &&
930bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel                 P.first == SI->getPointerOperand()) {
931bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        // Similarly, a pair cannot be connected to a store through its
932bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        // pointer operand.
933bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        continue;
934bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel      }
935bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
936de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
937de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
938de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // For each use of the first variable, look for uses of the second
939de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // variable...
940de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (Value::use_iterator J = P.second->use_begin(),
941de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           E2 = P.second->use_end(); J != E2; ++J) {
942bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        if ((SJ = dyn_cast<StoreInst>(*J)) &&
943bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel            P.second == SJ->getPointerOperand())
944bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel          continue;
945bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
946de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
947de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
948de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Look for <I, J>:
949de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
950de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
951de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
952de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Look for <J, I>:
953de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (isSecondInIteratorPair<Value*>(*I, JPairRange))
954de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          ConnectedPairs.insert(VPPair(P, ValuePair(*J, *I)));
955de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
956de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
957bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      if (Config.SplatBreaksChain) continue;
958de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Look for cases where just the first value in the pair is used by
959de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // both members of another pair (splatting).
960de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) {
961bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        if ((SJ = dyn_cast<StoreInst>(*J)) &&
962bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel            P.first == SJ->getPointerOperand())
963bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel          continue;
964bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
965de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
966de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
967de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
968de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
969de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
970bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng    if (Config.SplatBreaksChain) return;
971de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Look for cases where just the second value in the pair is used by
972de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // both members of another pair (splatting).
973de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (Value::use_iterator I = P.second->use_begin(),
974de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = P.second->use_end(); I != E; ++I) {
975bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel      if (isa<LoadInst>(*I))
976bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        continue;
977bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel      else if ((SI = dyn_cast<StoreInst>(*I)) &&
978bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel               P.second == SI->getPointerOperand())
979bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        continue;
980bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
981de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
982de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
983de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
984bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        if ((SJ = dyn_cast<StoreInst>(*J)) &&
985bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel            P.second == SJ->getPointerOperand())
986bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel          continue;
987bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
988de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
989de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
990de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
991de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
992de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
993de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
994de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function figures out which pairs are connected.  Two pairs are
995de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // connected if some output of the first pair forms an input to both members
996de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // of the second pair.
997de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::computeConnectedPairs(
998de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
999de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
1000de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs) {
1001de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1002de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
1003de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         PE = PairableInsts.end(); PI != PE; ++PI) {
1004de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI);
1005de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1006de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
1007de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           P != choiceRange.second; ++P)
1008de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        computePairsConnectedTo(CandidatePairs, PairableInsts,
1009de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                ConnectedPairs, *P);
1010de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1011de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1012de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
1013de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                 << " pair connections.\n");
1014de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1015de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1016de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function builds a set of use tuples such that <A, B> is in the set
1017de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // if B is in the use tree of A. If B is in the use tree of A, then B
1018de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // depends on the output of A.
1019de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::buildDepMap(
1020de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      BasicBlock &BB,
1021de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
1022de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
1023de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers) {
1024de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DenseSet<Value *> IsInPair;
1025de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::multimap<Value *, Value *>::iterator C = CandidatePairs.begin(),
1026de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = CandidatePairs.end(); C != E; ++C) {
1027de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      IsInPair.insert(C->first);
1028de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      IsInPair.insert(C->second);
1029de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1030de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1031de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Iterate through the basic block, recording all Users of each
1032de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // pairable instruction.
1033de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1034de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    BasicBlock::iterator E = BB.end();
1035de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
1036de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (IsInPair.find(I) == IsInPair.end()) continue;
1037de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1038de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseSet<Value *> Users;
1039de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AliasSetTracker WriteSet(*AA);
1040de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (BasicBlock::iterator J = llvm::next(I); J != E; ++J)
1041de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        (void) trackUsesOfI(Users, WriteSet, I, J);
1042de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1043de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
1044de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           U != E; ++U)
1045de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        PairableInstUsers.insert(ValuePair(I, *U));
1046de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1047de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1048de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1049de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Returns true if an input to pair P is an output of pair Q and also an
1050de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // input of pair Q is an output of pair P. If this is the case, then these
1051de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // two pairs cannot be simultaneously fused.
1052de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
1053de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseSet<ValuePair> &PairableInstUsers,
1054de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<ValuePair, ValuePair> *PairableInstUserMap) {
1055de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Two pairs are in conflict if they are mutual Users of eachother.
1056de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
1057de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
1058de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
1059de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(P.second, Q.second));
1060de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
1061de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
1062de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
1063de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(Q.second, P.second));
1064de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (PairableInstUserMap) {
1065de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // FIXME: The expensive part of the cycle check is not so much the cycle
1066de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // check itself but this edge insertion procedure. This needs some
1067de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // profiling and probably a different data structure (same is true of
1068de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // most uses of std::multimap).
1069de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (PUsesQ) {
1070de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q);
1071de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!isSecondInIteratorPair(P, QPairRange))
1072de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          PairableInstUserMap->insert(VPPair(Q, P));
1073de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1074de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (QUsesP) {
1075de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P);
1076de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!isSecondInIteratorPair(Q, PPairRange))
1077de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          PairableInstUserMap->insert(VPPair(P, Q));
1078de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1079de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1080de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1081de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return (QUsesP && PUsesQ);
1082de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1083de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1084de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function walks the use graph of current pairs to see if, starting
1085de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // from P, the walk returns to P.
1086de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::pairWillFormCycle(ValuePair P,
1087de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1088de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       DenseSet<ValuePair> &CurrentPairs) {
1089de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(if (DebugCycleCheck)
1090de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
1091de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                   << *P.second << "\n");
1092de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // A lookup table of visisted pairs is kept because the PairableInstUserMap
1093de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // contains non-direct associations.
1094de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DenseSet<ValuePair> Visited;
109535564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    SmallVector<ValuePair, 32> Q;
1096de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // General depth-first post-order traversal:
1097de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Q.push_back(P);
109835564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    do {
109935564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      ValuePair QTop = Q.pop_back_val();
1100de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Visited.insert(QTop);
1101de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1102de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(if (DebugCycleCheck)
1103de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
1104de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     << *QTop.second << "\n");
1105de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop);
1106de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (std::multimap<ValuePair, ValuePair>::iterator C = QPairRange.first;
1107de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           C != QPairRange.second; ++C) {
1108de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (C->second == P) {
1109de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          DEBUG(dbgs()
1110de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                 << "BBV: rejected to prevent non-trivial cycle formation: "
1111de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                 << *C->first.first << " <-> " << *C->first.second << "\n");
1112de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          return true;
1113de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1114de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
11150b2500c504156c45cd71817a9ef6749b6cde5703David Blaikie        if (CurrentPairs.count(C->second) && !Visited.count(C->second))
1116de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          Q.push_back(C->second);
1117de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
111835564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    } while (!Q.empty());
1119de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1120de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return false;
1121de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1122de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1123de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function builds the initial tree of connected pairs with the
1124de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // pair J at the root.
1125de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::buildInitialTreeFor(
1126de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
1127de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
1128de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1129de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
1130de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
1131de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<ValuePair, size_t> &Tree, ValuePair J) {
1132de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Each of these pairs is viewed as the root node of a Tree. The Tree
1133de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // is then walked (depth-first). As this happens, we keep track of
1134de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // the pairs that compose the Tree and the maximum depth of the Tree.
113535564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    SmallVector<ValuePairWithDepth, 32> Q;
1136de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // General depth-first post-order traversal:
1137de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
113835564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    do {
1139de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      ValuePairWithDepth QTop = Q.back();
1140de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1141de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Push each child onto the queue:
1142de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      bool MoreChildren = false;
1143de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      size_t MaxChildDepth = QTop.second;
1144de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first);
1145478eed85f96f0d93da43e26cfb7fc6dee981c9aaNAKAMURA Takumi      for (std::multimap<ValuePair, ValuePair>::iterator k = qtRange.first;
1146de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           k != qtRange.second; ++k) {
1147de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Make sure that this child pair is still a candidate:
1148de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        bool IsStillCand = false;
1149de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPIteratorPair checkRange =
1150de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          CandidatePairs.equal_range(k->second.first);
1151de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (std::multimap<Value *, Value *>::iterator m = checkRange.first;
1152de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             m != checkRange.second; ++m) {
1153de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (m->second == k->second.second) {
1154de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            IsStillCand = true;
1155de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            break;
1156de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1157de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1158de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1159de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (IsStillCand) {
1160de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          DenseMap<ValuePair, size_t>::iterator C = Tree.find(k->second);
1161de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (C == Tree.end()) {
1162de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            size_t d = getDepthFactor(k->second.first);
1163de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            Q.push_back(ValuePairWithDepth(k->second, QTop.second+d));
1164de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            MoreChildren = true;
1165de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          } else {
1166de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            MaxChildDepth = std::max(MaxChildDepth, C->second);
1167de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1168de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1169de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1170de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1171de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!MoreChildren) {
1172de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Record the current pair as part of the Tree:
1173de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
1174de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Q.pop_back();
1175de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
117635564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    } while (!Q.empty());
1177de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1178de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1179de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Given some initial tree, prune it by removing conflicting pairs (pairs
1180de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // that cannot be simultaneously chosen for vectorization).
1181de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::pruneTreeFor(
1182de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
1183de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
1184de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1185de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
1186de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1187de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
1188de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<ValuePair, size_t> &Tree,
1189de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
1190de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      bool UseCycleCheck) {
119135564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    SmallVector<ValuePairWithDepth, 32> Q;
1192de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // General depth-first post-order traversal:
1193de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
119435564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    do {
119535564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      ValuePairWithDepth QTop = Q.pop_back_val();
1196de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      PrunedTree.insert(QTop.first);
1197de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1198de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Visit each child, pruning as necessary...
119943ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop      DenseMap<ValuePair, size_t> BestChildren;
1200de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
1201478eed85f96f0d93da43e26cfb7fc6dee981c9aaNAKAMURA Takumi      for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first;
1202de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           K != QTopRange.second; ++K) {
1203de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DenseMap<ValuePair, size_t>::iterator C = Tree.find(K->second);
1204de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (C == Tree.end()) continue;
1205de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1206de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // This child is in the Tree, now we need to make sure it is the
1207de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // best of any conflicting children. There could be multiple
1208de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // conflicting children, so first, determine if we're keeping
1209de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // this child, then delete conflicting children as necessary.
1210de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1211de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // It is also necessary to guard against pairing-induced
1212de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // dependencies. Consider instructions a .. x .. y .. b
1213de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // such that (a,b) are to be fused and (x,y) are to be fused
1214de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // but a is an input to x and b is an output from y. This
1215de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // means that y cannot be moved after b but x must be moved
1216de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // after b for (a,b) to be fused. In other words, after
1217de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // fusing (a,b) we have y .. a/b .. x where y is an input
1218de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // to a/b and x is an output to a/b: x and y can no longer
1219de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // be legally fused. To prevent this condition, we must
1220de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // make sure that a child pair added to the Tree is not
1221de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // both an input and output of an already-selected pair.
1222de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1223de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Pairing-induced dependencies can also form from more complicated
1224de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // cycles. The pair vs. pair conflicts are easy to check, and so
1225de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // that is done explicitly for "fast rejection", and because for
1226de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // child vs. child conflicts, we may prefer to keep the current
1227de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // pair in preference to the already-selected child.
1228de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DenseSet<ValuePair> CurrentPairs;
1229de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1230de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        bool CanAdd = true;
1231de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (DenseMap<ValuePair, size_t>::iterator C2
123243ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop              = BestChildren.begin(), E2 = BestChildren.end();
1233de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             C2 != E2; ++C2) {
1234de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (C2->first.first == C->first.first ||
1235de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.first == C->first.second ||
1236de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.first ||
1237de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.second ||
1238de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              pairsConflict(C2->first, C->first, PairableInstUsers,
1239de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1240de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            if (C2->second >= C->second) {
1241de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              CanAdd = false;
1242de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              break;
1243de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            }
1244de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1245de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            CurrentPairs.insert(C2->first);
1246de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1247de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1248de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!CanAdd) continue;
1249de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1250de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Even worse, this child could conflict with another node already
1251de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // selected for the Tree. If that is the case, ignore this child.
1252de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (DenseSet<ValuePair>::iterator T = PrunedTree.begin(),
1253de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             E2 = PrunedTree.end(); T != E2; ++T) {
1254de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (T->first == C->first.first ||
1255de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              T->first == C->first.second ||
1256de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              T->second == C->first.first ||
1257de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              T->second == C->first.second ||
1258de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              pairsConflict(*T, C->first, PairableInstUsers,
1259de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1260de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            CanAdd = false;
1261de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            break;
1262de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1263de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1264de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          CurrentPairs.insert(*T);
1265de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1266de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!CanAdd) continue;
1267de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1268de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // And check the queue too...
126935564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel        for (SmallVector<ValuePairWithDepth, 32>::iterator C2 = Q.begin(),
1270de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             E2 = Q.end(); C2 != E2; ++C2) {
1271de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (C2->first.first == C->first.first ||
1272de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.first == C->first.second ||
1273de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.first ||
1274de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.second ||
1275de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              pairsConflict(C2->first, C->first, PairableInstUsers,
1276de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1277de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            CanAdd = false;
1278de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            break;
1279de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1280de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1281de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          CurrentPairs.insert(C2->first);
1282de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1283de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!CanAdd) continue;
1284de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1285de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Last but not least, check for a conflict with any of the
1286de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // already-chosen pairs.
1287de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (DenseMap<Value *, Value *>::iterator C2 =
1288de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              ChosenPairs.begin(), E2 = ChosenPairs.end();
1289de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             C2 != E2; ++C2) {
1290de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (pairsConflict(*C2, C->first, PairableInstUsers,
1291de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1292de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            CanAdd = false;
1293de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            break;
1294de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1295de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1296de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          CurrentPairs.insert(*C2);
1297de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1298de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!CanAdd) continue;
1299de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
13001230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop        // To check for non-trivial cycles formed by the addition of the
13011230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop        // current pair we've formed a list of all relevant pairs, now use a
13021230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop        // graph walk to check for a cycle. We start from the current pair and
13031230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop        // walk the use tree to see if we again reach the current pair. If we
13041230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop        // do, then the current pair is rejected.
1305de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1306de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // FIXME: It may be more efficient to use a topological-ordering
1307de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // algorithm to improve the cycle check. This should be investigated.
1308de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (UseCycleCheck &&
1309de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
1310de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          continue;
1311de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1312de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // This child can be added, but we may have chosen it in preference
1313de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // to an already-selected child. Check for this here, and if a
1314de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // conflict is found, then remove the previously-selected child
1315de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // before adding this one in its place.
1316de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (DenseMap<ValuePair, size_t>::iterator C2
131743ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop              = BestChildren.begin(); C2 != BestChildren.end();) {
1318de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (C2->first.first == C->first.first ||
1319de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.first == C->first.second ||
1320de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.first ||
1321de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.second ||
1322de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              pairsConflict(C2->first, C->first, PairableInstUsers))
132343ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop            BestChildren.erase(C2++);
1324de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          else
1325de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            ++C2;
1326de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1327de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
132843ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop        BestChildren.insert(ValuePairWithDepth(C->first, C->second));
1329de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1330de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1331de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (DenseMap<ValuePair, size_t>::iterator C
133243ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop            = BestChildren.begin(), E2 = BestChildren.end();
1333de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           C != E2; ++C) {
1334de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        size_t DepthF = getDepthFactor(C->first.first);
1335de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
1336de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
133735564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    } while (!Q.empty());
1338de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1339de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1340de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function finds the best tree of mututally-compatible connected
1341de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // pairs, given the choice of root pairs as an iterator range.
1342de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::findBestTreeFor(
1343de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
1344de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
1345de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1346de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
1347de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1348de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
1349de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
1350de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      size_t &BestEffSize, VPIteratorPair ChoiceRange,
1351de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      bool UseCycleCheck) {
1352de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
1353de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         J != ChoiceRange.second; ++J) {
1354de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1355de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Before going any further, make sure that this pair does not
1356de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // conflict with any already-selected pairs (see comment below
1357de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // near the Tree pruning for more details).
1358de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseSet<ValuePair> ChosenPairSet;
1359de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      bool DoesConflict = false;
1360de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
1361de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           E = ChosenPairs.end(); C != E; ++C) {
1362de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (pairsConflict(*C, *J, PairableInstUsers,
1363de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                          UseCycleCheck ? &PairableInstUserMap : 0)) {
1364de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          DoesConflict = true;
1365de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          break;
1366de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1367de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1368de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ChosenPairSet.insert(*C);
1369de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1370de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (DoesConflict) continue;
1371de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1372de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (UseCycleCheck &&
1373de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet))
1374de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
1375de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1376de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseMap<ValuePair, size_t> Tree;
1377de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1378de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                          PairableInstUsers, ChosenPairs, Tree, *J);
1379de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1380de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Because we'll keep the child with the largest depth, the largest
1381de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // depth is still the same in the unpruned Tree.
1382de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      size_t MaxDepth = Tree.lookup(*J);
1383de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1384de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {"
1385de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                   << *J->first << " <-> " << *J->second << "} of depth " <<
1386de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                   MaxDepth << " and size " << Tree.size() << "\n");
1387de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1388de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // At this point the Tree has been constructed, but, may contain
1389de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // contradictory children (meaning that different children of
1390de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // some tree node may be attempting to fuse the same instruction).
1391de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // So now we walk the tree again, in the case of a conflict,
1392de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // keep only the child with the largest depth. To break a tie,
1393de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // favor the first child.
1394de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1395de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseSet<ValuePair> PrunedTree;
1396de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1397de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                   PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
1398de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                   PrunedTree, *J, UseCycleCheck);
1399de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1400de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      size_t EffSize = 0;
1401de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
1402de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           E = PrunedTree.end(); S != E; ++S)
1403de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        EffSize += getDepthFactor(S->first);
1404de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1405de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(if (DebugPairSelection)
1406de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             dbgs() << "BBV: found pruned Tree for pair {"
1407de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             << *J->first << " <-> " << *J->second << "} of depth " <<
1408de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             MaxDepth << " and size " << PrunedTree.size() <<
1409de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            " (effective size: " << EffSize << ")\n");
1410bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      if (MaxDepth >= Config.ReqChainDepth && EffSize > BestEffSize) {
1411de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        BestMaxDepth = MaxDepth;
1412de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        BestEffSize = EffSize;
1413de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        BestTree = PrunedTree;
1414de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1415de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1416de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1417de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1418de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Given the list of candidate pairs, this function selects those
1419de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // that will be fused into vector instructions.
1420de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::choosePairs(
1421de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
1422de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
1423de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1424de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
1425de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *>& ChosenPairs) {
1426bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng    bool UseCycleCheck =
1427bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng     CandidatePairs.size() <= Config.MaxCandPairsForCycleCheck;
1428de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    std::multimap<ValuePair, ValuePair> PairableInstUserMap;
1429de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::vector<Value *>::iterator I = PairableInsts.begin(),
1430de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = PairableInsts.end(); I != E; ++I) {
1431de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // The number of possible pairings for this variable:
1432de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      size_t NumChoices = CandidatePairs.count(*I);
1433de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!NumChoices) continue;
1434de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1435de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
1436de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1437de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // The best pair to choose and its tree:
1438de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      size_t BestMaxDepth = 0, BestEffSize = 0;
1439de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseSet<ValuePair> BestTree;
1440de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      findBestTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1441de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      PairableInstUsers, PairableInstUserMap, ChosenPairs,
1442de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
1443de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      UseCycleCheck);
1444de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1445de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // A tree has been chosen (or not) at this point. If no tree was
1446de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // chosen, then this instruction, I, cannot be paired (and is no longer
1447de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // considered).
1448de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1449de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(if (BestTree.size() > 0)
1450de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              dbgs() << "BBV: selected pairs in the best tree for: "
1451de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     << *cast<Instruction>(*I) << "\n");
1452de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1453de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (DenseSet<ValuePair>::iterator S = BestTree.begin(),
1454de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           SE2 = BestTree.end(); S != SE2; ++S) {
1455de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Insert the members of this tree into the list of chosen pairs.
1456de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ChosenPairs.insert(ValuePair(S->first, S->second));
1457de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
1458de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel               *S->second << "\n");
1459de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1460de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Remove all candidate pairs that have values in the chosen tree.
1461de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (std::multimap<Value *, Value *>::iterator K =
1462de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel               CandidatePairs.begin(); K != CandidatePairs.end();) {
1463de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (K->first == S->first || K->second == S->first ||
1464de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              K->second == S->second || K->first == S->second) {
1465de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            // Don't remove the actual pair chosen so that it can be used
1466de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            // in subsequent tree selections.
1467de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            if (!(K->first == S->first && K->second == S->second))
1468de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              CandidatePairs.erase(K++);
1469de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            else
1470de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              ++K;
1471de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          } else {
1472de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            ++K;
1473de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1474de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1475de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1476de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1477de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1478de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
1479de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1480de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1481de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
1482de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     unsigned n = 0) {
1483de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (!I->hasName())
1484de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return "";
1485de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1486de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
1487de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             (n > 0 ? "." + utostr(n) : "")).str();
1488de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1489de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1490de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Returns the value that is to be used as the pointer input to the vector
1491de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // instruction that fuses I with J.
1492de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
1493de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J, unsigned o,
1494282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                     bool FlipMemInputs) {
1495de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *IPtr, *JPtr;
1496de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    unsigned IAlignment, JAlignment;
1497de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    int64_t OffsetInElmts;
1498282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
1499282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel    // Note: the analysis might fail here, that is why FlipMemInputs has
1500282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel    // been precomputed (OffsetInElmts must be unused here).
1501de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
1502de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                          OffsetInElmts);
1503de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1504de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // The pointer value is taken to be the one with the lowest offset.
1505de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *VPtr;
1506282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel    if (!FlipMemInputs) {
1507de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPtr = IPtr;
1508de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else {
1509de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPtr = JPtr;
1510de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1511de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
151264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *ArgTypeI = cast<PointerType>(IPtr->getType())->getElementType();
151364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *ArgTypeJ = cast<PointerType>(JPtr->getType())->getElementType();
151464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
1515de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Type *VArgPtrType = PointerType::get(VArgType,
1516de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      cast<PointerType>(IPtr->getType())->getAddressSpace());
1517de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
1518de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        /* insert before */ FlipMemInputs ? J : I);
1519de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1520de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1521de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
152264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                     unsigned MaskOffset, unsigned NumInElem,
152364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                     unsigned NumInElem1, unsigned IdxOffset,
152464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                     std::vector<Constant*> &Mask) {
152564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    unsigned NumElem1 = cast<VectorType>(J->getType())->getNumElements();
152664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    for (unsigned v = 0; v < NumElem1; ++v) {
1527de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
1528de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (m < 0) {
1529de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
1530de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
1531de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        unsigned mm = m + (int) IdxOffset;
153264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (m >= (int) NumInElem1)
1533de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          mm += (int) NumInElem;
1534de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1535de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Mask[v+MaskOffset] =
1536de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          ConstantInt::get(Type::getInt32Ty(Context), mm);
1537de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1538de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1539de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1540de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1541de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Returns the value that is to be used as the vector-shuffle mask to the
1542de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // vector instruction that fuses I with J.
1543de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
1544de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J) {
1545de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // This is the shuffle mask. We need to append the second
1546de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // mask to the first, and the numbers need to be adjusted.
1547de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
154864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *ArgTypeI = I->getType();
154964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *ArgTypeJ = J->getType();
155064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
155164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
155264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    unsigned NumElemI = cast<VectorType>(ArgTypeI)->getNumElements();
1553de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1554de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Get the total number of elements in the fused vector type.
1555de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // By definition, this must equal the number of elements in
1556de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // the final mask.
1557de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    unsigned NumElem = cast<VectorType>(VArgType)->getNumElements();
1558de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    std::vector<Constant*> Mask(NumElem);
1559de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
156064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *OpTypeI = I->getOperand(0)->getType();
156164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    unsigned NumInElemI = cast<VectorType>(OpTypeI)->getNumElements();
156264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *OpTypeJ = J->getOperand(0)->getType();
156364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    unsigned NumInElemJ = cast<VectorType>(OpTypeJ)->getNumElements();
156464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
156564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // The fused vector will be:
156664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // -----------------------------------------------------
156764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // | NumInElemI | NumInElemJ | NumInElemI | NumInElemJ |
156864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // -----------------------------------------------------
156964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // from which we'll extract NumElem total elements (where the first NumElemI
157064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // of them come from the mask in I and the remainder come from the mask
157164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // in J.
1572de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1573de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // For the mask from the first pair...
157464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    fillNewShuffleMask(Context, I, 0,        NumInElemJ, NumInElemI,
157564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                       0,          Mask);
1576de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1577de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // For the mask from the second pair...
157864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    fillNewShuffleMask(Context, J, NumElemI, NumInElemI, NumInElemJ,
157964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                       NumInElemI, Mask);
1580de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1581de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return ConstantVector::get(Mask);
1582de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1583de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
158464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel  bool BBVectorize::expandIEChain(LLVMContext& Context, Instruction *I,
158564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  Instruction *J, unsigned o, Value *&LOp,
158664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  unsigned numElemL,
158764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  Type *ArgTypeL, Type *ArgTypeH,
158864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  unsigned IdxOff) {
158964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    bool ExpandedIEChain = false;
159064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) {
159164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      // If we have a pure insertelement chain, then this can be rewritten
159264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      // into a chain that directly builds the larger type.
159364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      bool PureChain = true;
159464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      InsertElementInst *LIENext = LIE;
159564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      do {
159664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (!isa<UndefValue>(LIENext->getOperand(0)) &&
159764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            !isa<InsertElementInst>(LIENext->getOperand(0))) {
159864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          PureChain = false;
159964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          break;
160064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
160164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } while ((LIENext =
160264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                 dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
160364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
160464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (PureChain) {
160564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        SmallVector<Value *, 8> VectElemts(numElemL,
160664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          UndefValue::get(ArgTypeL->getScalarType()));
160764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        InsertElementInst *LIENext = LIE;
160864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        do {
160964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          unsigned Idx =
161064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            cast<ConstantInt>(LIENext->getOperand(2))->getSExtValue();
161164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          VectElemts[Idx] = LIENext->getOperand(1);
161264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        } while ((LIENext =
161364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                   dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
161464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
161564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        LIENext = 0;
161664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Value *LIEPrev = UndefValue::get(ArgTypeH);
161764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        for (unsigned i = 0; i < numElemL; ++i) {
161864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          if (isa<UndefValue>(VectElemts[i])) continue;
161964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i],
162064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                             ConstantInt::get(Type::getInt32Ty(Context),
162164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                              i + IdxOff),
162264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                             getReplacementName(I, true, o, i+1));
162364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          LIENext->insertBefore(J);
162464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          LIEPrev = LIENext;
162564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
162664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
162764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        LOp = LIENext ? (Value*) LIENext : UndefValue::get(ArgTypeH);
162864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        ExpandedIEChain = true;
162964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
163064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    }
163164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
163264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    return ExpandedIEChain;
163364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel  }
163464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
1635de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Returns the value to be used as the specified operand of the vector
1636de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // instruction that fuses I with J.
1637de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
1638de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J, unsigned o, bool FlipMemInputs) {
1639de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
1640de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
1641de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
164264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // Compute the fused vector type for this operand
164364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *ArgTypeI = I->getOperand(o)->getType();
164464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *ArgTypeJ = J->getOperand(o)->getType();
164564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    VectorType *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
1646de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1647de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Instruction *L = I, *H = J;
164864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ;
1649de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (FlipMemInputs) {
1650de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      L = J;
1651de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      H = I;
165264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      ArgTypeL = ArgTypeJ;
165364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      ArgTypeH = ArgTypeI;
1654de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1655de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
165664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    unsigned numElemL;
165764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    if (ArgTypeL->isVectorTy())
165864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      numElemL = cast<VectorType>(ArgTypeL)->getNumElements();
165964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    else
166064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      numElemL = 1;
1661de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
166264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    unsigned numElemH;
166364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    if (ArgTypeH->isVectorTy())
166464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      numElemH = cast<VectorType>(ArgTypeH)->getNumElements();
166564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    else
166664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      numElemH = 1;
166764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
166864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Value *LOp = L->getOperand(o);
166964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Value *HOp = H->getOperand(o);
167064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    unsigned numElem = VArgType->getNumElements();
167164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
167264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // First, we check if we can reuse the "original" vector outputs (if these
167364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // exist). We might need a shuffle.
167464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    ExtractElementInst *LEE = dyn_cast<ExtractElementInst>(LOp);
167564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    ExtractElementInst *HEE = dyn_cast<ExtractElementInst>(HOp);
167664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    ShuffleVectorInst *LSV = dyn_cast<ShuffleVectorInst>(LOp);
167764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    ShuffleVectorInst *HSV = dyn_cast<ShuffleVectorInst>(HOp);
167864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
167964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // FIXME: If we're fusing shuffle instructions, then we can't apply this
168064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // optimization. The input vectors to the shuffle might be a different
168164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // length from the shuffle outputs. Unfortunately, the replacement
168264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // shuffle mask has already been formed, and the mask entries are sensitive
168364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // to the sizes of the inputs.
168464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    bool IsSizeChangeShuffle =
168564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      isa<ShuffleVectorInst>(L) &&
168664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        (LOp->getType() != L->getType() || HOp->getType() != H->getType());
168764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
168864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) {
168964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      // We can have at most two unique vector inputs.
169064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      bool CanUseInputs = true;
169164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      Value *I1, *I2 = 0;
169264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (LEE) {
169364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        I1 = LEE->getOperand(0);
169464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } else {
169564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        I1 = LSV->getOperand(0);
169664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        I2 = LSV->getOperand(1);
169764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (I2 == I1 || isa<UndefValue>(I2))
169864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I2 = 0;
169964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
170064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
170164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (HEE) {
170264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Value *I3 = HEE->getOperand(0);
170364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (!I2 && I3 != I1)
170464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I2 = I3;
170564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        else if (I3 != I1 && I3 != I2)
170664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          CanUseInputs = false;
170764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } else {
170864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Value *I3 = HSV->getOperand(0);
170964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (!I2 && I3 != I1)
171064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I2 = I3;
171164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        else if (I3 != I1 && I3 != I2)
171264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          CanUseInputs = false;
171364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
171464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (CanUseInputs) {
171564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Value *I4 = HSV->getOperand(1);
171664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          if (!isa<UndefValue>(I4)) {
171764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            if (!I2 && I4 != I1)
171864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              I2 = I4;
171964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            else if (I4 != I1 && I4 != I2)
172064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              CanUseInputs = false;
172164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          }
172264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
172364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
172464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
172564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (CanUseInputs) {
172664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        unsigned LOpElem =
172764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          cast<VectorType>(cast<Instruction>(LOp)->getOperand(0)->getType())
172864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            ->getNumElements();
172964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        unsigned HOpElem =
173064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          cast<VectorType>(cast<Instruction>(HOp)->getOperand(0)->getType())
173164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            ->getNumElements();
173264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
173364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // We have one or two input vectors. We need to map each index of the
173464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // operands to the index of the original vector.
173564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        SmallVector<std::pair<int, int>, 8>  II(numElem);
173664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        for (unsigned i = 0; i < numElemL; ++i) {
173764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          int Idx, INum;
173864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          if (LEE) {
173964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Idx =
174064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              cast<ConstantInt>(LEE->getOperand(1))->getSExtValue();
174164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            INum = LEE->getOperand(0) == I1 ? 0 : 1;
174264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          } else {
174364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Idx = LSV->getMaskValue(i);
174464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            if (Idx < (int) LOpElem) {
174564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              INum = LSV->getOperand(0) == I1 ? 0 : 1;
174664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            } else {
174764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              Idx -= LOpElem;
174864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              INum = LSV->getOperand(1) == I1 ? 0 : 1;
174964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            }
175064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          }
175164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
175264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          II[i] = std::pair<int, int>(Idx, INum);
175364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
175464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        for (unsigned i = 0; i < numElemH; ++i) {
175564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          int Idx, INum;
175664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          if (HEE) {
175764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Idx =
175864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              cast<ConstantInt>(HEE->getOperand(1))->getSExtValue();
175964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            INum = HEE->getOperand(0) == I1 ? 0 : 1;
176064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          } else {
176164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Idx = HSV->getMaskValue(i);
176264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            if (Idx < (int) HOpElem) {
176364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              INum = HSV->getOperand(0) == I1 ? 0 : 1;
176464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            } else {
176564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              Idx -= HOpElem;
176664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              INum = HSV->getOperand(1) == I1 ? 0 : 1;
176764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            }
176864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          }
176964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
177064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          II[i + numElemL] = std::pair<int, int>(Idx, INum);
177164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
177264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
177364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // We now have an array which tells us from which index of which
177464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // input vector each element of the operand comes.
177564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        VectorType *I1T = cast<VectorType>(I1->getType());
177664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        unsigned I1Elem = I1T->getNumElements();
177764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
177864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (!I2) {
177964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          // In this case there is only one underlying vector input. Check for
178064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          // the trivial case where we can use the input directly.
178164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          if (I1Elem == numElem) {
178264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            bool ElemInOrder = true;
178364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            for (unsigned i = 0; i < numElem; ++i) {
178464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              if (II[i].first != (int) i && II[i].first != -1) {
178564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                ElemInOrder = false;
178664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                break;
178764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              }
178864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            }
178964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
179064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            if (ElemInOrder)
179164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              return I1;
179264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          }
179364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
179464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          // A shuffle is needed.
179564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          std::vector<Constant *> Mask(numElem);
179664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (unsigned i = 0; i < numElem; ++i) {
179764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            int Idx = II[i].first;
179864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            if (Idx == -1)
179964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              Mask[i] = UndefValue::get(Type::getInt32Ty(Context));
180064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            else
180164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              Mask[i] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
180264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          }
180364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
180464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Instruction *S =
180564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            new ShuffleVectorInst(I1, UndefValue::get(I1T),
180664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  ConstantVector::get(Mask),
180764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  getReplacementName(I, true, o));
180864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          S->insertBefore(J);
180964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          return S;
181064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
181164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
181264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        VectorType *I2T = cast<VectorType>(I2->getType());
181364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        unsigned I2Elem = I2T->getNumElements();
181464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
181564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // This input comes from two distinct vectors. The first step is to
181664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // make sure that both vectors are the same length. If not, the
181764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // smaller one will need to grow before they can be shuffled together.
181864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (I1Elem < I2Elem) {
181964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          std::vector<Constant *> Mask(I2Elem);
182064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          unsigned v = 0;
182164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (; v < I1Elem; ++v)
182264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
182364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (; v < I2Elem; ++v)
182464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
182564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
182664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Instruction *NewI1 =
182764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            new ShuffleVectorInst(I1, UndefValue::get(I1T),
182864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  ConstantVector::get(Mask),
182964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  getReplacementName(I, true, o, 1));
183064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          NewI1->insertBefore(J);
183164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I1 = NewI1;
183264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I1T = I2T;
183364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I1Elem = I2Elem;
183464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        } else if (I1Elem > I2Elem) {
183564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          std::vector<Constant *> Mask(I1Elem);
183664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          unsigned v = 0;
183764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (; v < I2Elem; ++v)
183864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
183964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (; v < I1Elem; ++v)
184064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
184164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
184264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Instruction *NewI2 =
184364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            new ShuffleVectorInst(I2, UndefValue::get(I2T),
184464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  ConstantVector::get(Mask),
184564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  getReplacementName(I, true, o, 1));
184664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          NewI2->insertBefore(J);
184764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I2 = NewI2;
184864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I2T = I1T;
184964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I2Elem = I1Elem;
185064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
185164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
185264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // Now that both I1 and I2 are the same length we can shuffle them
185364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // together (and use the result).
185464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        std::vector<Constant *> Mask(numElem);
185564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        for (unsigned v = 0; v < numElem; ++v) {
185664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          if (II[v].first == -1) {
185764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
185864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          } else {
185964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            int Idx = II[v].first + II[v].second * I1Elem;
186064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
186164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          }
186264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
186364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
186464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Instruction *NewOp =
186564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask),
186664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                getReplacementName(I, true, o));
186764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        NewOp->insertBefore(J);
186864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        return NewOp;
186964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
1870de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1871de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
187264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *ArgType = ArgTypeL;
187364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    if (numElemL < numElemH) {
187464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH,
187564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                         ArgTypeL, VArgType, 1)) {
187664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // This is another short-circuit case: we're combining a scalar into
187764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // a vector that is formed by an IE chain. We've just expanded the IE
187864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // chain, now insert the scalar and we're done.
187964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
188064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Instruction *S = InsertElementInst::Create(HOp, LOp, CV0,
188164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                               getReplacementName(I, true, o));
188264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        S->insertBefore(J);
188364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        return S;
188464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL,
188564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                ArgTypeH)) {
188664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // The two vector inputs to the shuffle must be the same length,
188764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // so extend the smaller vector to be the same length as the larger one.
188864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Instruction *NLOp;
188964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (numElemL > 1) {
189064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
189164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          std::vector<Constant *> Mask(numElemH);
189264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          unsigned v = 0;
189364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (; v < numElemL; ++v)
189464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
189564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (; v < numElemH; ++v)
189664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
189764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
189864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL),
189964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                       ConstantVector::get(Mask),
190064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                       getReplacementName(I, true, o, 1));
190164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        } else {
190264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0,
190364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                           getReplacementName(I, true, o, 1));
190464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
190564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
190664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        NLOp->insertBefore(J);
190764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        LOp = NLOp;
190864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
190964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
191064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      ArgType = ArgTypeH;
191164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    } else if (numElemL > numElemH) {
191264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL,
191364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                         ArgTypeH, VArgType)) {
191464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Instruction *S =
191564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          InsertElementInst::Create(LOp, HOp,
191664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                    ConstantInt::get(Type::getInt32Ty(Context),
191764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                                     numElemL),
191864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                    getReplacementName(I, true, o));
191964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        S->insertBefore(J);
192064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        return S;
192164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH,
192264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                ArgTypeL)) {
192364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Instruction *NHOp;
192464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (numElemH > 1) {
192564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          std::vector<Constant *> Mask(numElemL);
192664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          unsigned v = 0;
192764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (; v < numElemH; ++v)
192864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
192964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (; v < numElemL; ++v)
193064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
193164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
193264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH),
193364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                       ConstantVector::get(Mask),
193464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                       getReplacementName(I, true, o, 1));
193564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        } else {
193664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0,
193764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                           getReplacementName(I, true, o, 1));
193864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
193964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
194064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        NHOp->insertBefore(J);
194164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        HOp = NHOp;
1942de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
194364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    }
1944de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
194564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    if (ArgType->isVectorTy()) {
194664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      unsigned numElem = cast<VectorType>(VArgType)->getNumElements();
194764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      std::vector<Constant*> Mask(numElem);
194864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      for (unsigned v = 0; v < numElem; ++v) {
194964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        unsigned Idx = v;
195064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // If the low vector was expanded, we need to skip the extra
195164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // undefined entries.
195264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (v >= numElemL && numElemH > numElemL)
195364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Idx += (numElemH - numElemL);
195464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
195564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
1956de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
195764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      Instruction *BV = new ShuffleVectorInst(LOp, HOp,
195864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                              ConstantVector::get(Mask),
195964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                              getReplacementName(I, true, o));
1960de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      BV->insertBefore(J);
1961de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return BV;
1962de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1963de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1964de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Instruction *BV1 = InsertElementInst::Create(
196564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                          UndefValue::get(VArgType), LOp, CV0,
1966de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          getReplacementName(I, true, o, 1));
1967de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    BV1->insertBefore(I);
196864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1,
1969de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          getReplacementName(I, true, o, 2));
1970de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    BV2->insertBefore(J);
1971de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return BV2;
1972de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1973de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1974de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function creates an array of values that will be used as the inputs
1975de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // to the vector instruction that fuses I with J.
1976de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
1977de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J,
1978de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     SmallVector<Value *, 3> &ReplacedOperands,
1979282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                     bool FlipMemInputs) {
1980de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    unsigned NumOperands = I->getNumOperands();
1981de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1982de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
1983de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Iterate backward so that we look at the store pointer
1984de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // first and know whether or not we need to flip the inputs.
1985de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1986de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
1987de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // This is the pointer for a load/store instruction.
1988de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o,
1989de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                FlipMemInputs);
1990de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
19916173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel      } else if (isa<CallInst>(I)) {
1992de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Function *F = cast<CallInst>(I)->getCalledFunction();
1993de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        unsigned IID = F->getIntrinsicID();
19946173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel        if (o == NumOperands-1) {
19956173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          BasicBlock &BB = *I->getParent();
1996bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng
19976173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          Module *M = BB.getParent()->getParent();
199864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Type *ArgTypeI = I->getType();
199964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Type *ArgTypeJ = J->getType();
200064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2001bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng
20026173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          ReplacedOperands[o] = Intrinsic::getDeclaration(M,
20036173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel            (Intrinsic::ID) IID, VArgType);
20046173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          continue;
20056173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel        } else if (IID == Intrinsic::powi && o == 1) {
20066173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          // The second argument of powi is a single integer and we've already
20076173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          // checked that both arguments are equal. As a result, we just keep
20086173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          // I's second argument.
20096173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          ReplacedOperands[o] = I->getOperand(o);
20106173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          continue;
20116173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel        }
2012de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
2013de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
2014de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
2015de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2016de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2017de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      ReplacedOperands[o] =
2018de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        getReplacementInput(Context, I, J, o, FlipMemInputs);
2019de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
2020de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
2021de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2022de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function creates two values that represent the outputs of the
2023de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // original I and J instructions. These are generally vector shuffles
2024de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // or extracts. In many cases, these will end up being unused and, thus,
2025de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // eliminated by later passes.
2026de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
2027de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J, Instruction *K,
2028de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *&InsertionPt,
2029de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *&K1, Instruction *&K2,
2030282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                     bool FlipMemInputs) {
2031de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (isa<StoreInst>(I)) {
2032de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AA->replaceWithNewValue(I, K);
2033de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AA->replaceWithNewValue(J, K);
2034de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else {
2035de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Type *IType = I->getType();
203664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      Type *JType = J->getType();
203764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
203864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      VectorType *VType = getVecTypeForPair(IType, JType);
203964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      unsigned numElem = VType->getNumElements();
204064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
204164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      unsigned numElemI, numElemJ;
204264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (IType->isVectorTy())
204364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        numElemI = cast<VectorType>(IType)->getNumElements();
204464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      else
204564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        numElemI = 1;
204664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
204764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (JType->isVectorTy())
204864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        numElemJ = cast<VectorType>(JType)->getNumElements();
204964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      else
205064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        numElemJ = 1;
2051de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2052de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (IType->isVectorTy()) {
205364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        std::vector<Constant*> Mask1(numElemI), Mask2(numElemI);
205464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        for (unsigned v = 0; v < numElemI; ++v) {
205564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
205664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemJ+v);
205764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
2058de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
205964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
206064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                   ConstantVector::get(
206164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                     FlipMemInputs ? Mask2 : Mask1),
206264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                   getReplacementName(K, false, 1));
2063de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
206464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
206564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
2066de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        K1 = ExtractElementInst::Create(K, FlipMemInputs ? CV1 : CV0,
2067de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          getReplacementName(K, false, 1));
206864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
206964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
207064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (JType->isVectorTy()) {
207164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        std::vector<Constant*> Mask1(numElemJ), Mask2(numElemJ);
207264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        for (unsigned v = 0; v < numElemJ; ++v) {
207364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
207464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemI+v);
207564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
207664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
207764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
207864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                   ConstantVector::get(
207964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                     FlipMemInputs ? Mask1 : Mask2),
208064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                   getReplacementName(K, false, 2));
208164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } else {
208264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
208364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
2084de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        K2 = ExtractElementInst::Create(K, FlipMemInputs ? CV0 : CV1,
2085de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          getReplacementName(K, false, 2));
2086de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2087de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2088de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      K1->insertAfter(K);
2089de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      K2->insertAfter(K1);
2090de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      InsertionPt = K2;
2091de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
2092de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
2093de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2094de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Move all uses of the function I (including pairing-induced uses) after J.
2095de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
2096de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
2097de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J) {
2098de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Skip to the first instruction past I.
2099ded681d2725907c7de9db53d59cee0c51fad6fcbBenjamin Kramer    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2100de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2101de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DenseSet<Value *> Users;
2102de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    AliasSetTracker WriteSet(*AA);
2103de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (; cast<Instruction>(L) != J; ++L)
2104de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet);
2105de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2106de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    assert(cast<Instruction>(L) == J &&
2107de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      "Tracking has not proceeded far enough to check for dependencies");
2108de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // If J is now in the use set of I, then trackUsesOfI will return true
2109de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // and we have a dependency cycle (and the fusing operation must abort).
2110de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet);
2111de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
2112de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2113de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Move all uses of the function I (including pairing-induced uses) after J.
2114de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
2115de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
2116de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *&InsertionPt,
2117de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J) {
2118de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Skip to the first instruction past I.
2119ded681d2725907c7de9db53d59cee0c51fad6fcbBenjamin Kramer    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2120de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2121de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DenseSet<Value *> Users;
2122de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    AliasSetTracker WriteSet(*AA);
2123de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (; cast<Instruction>(L) != J;) {
2124de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) {
2125de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Move this instruction
2126de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Instruction *InstToMove = L; ++L;
2127de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2128de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
2129de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        " to after " << *InsertionPt << "\n");
2130de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        InstToMove->removeFromParent();
2131de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        InstToMove->insertAfter(InsertionPt);
2132de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        InsertionPt = InstToMove;
2133de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
2134de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ++L;
2135de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2136de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
2137de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
2138de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2139de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Collect all load instruction that are in the move set of a given first
2140de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // pair member.  These loads depend on the first instruction, I, and so need
2141de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // to be moved after J (the second instruction) when the pair is fused.
2142de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
2143de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *> &ChosenPairs,
2144de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
2145de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I) {
2146de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Skip to the first instruction past I.
2147ded681d2725907c7de9db53d59cee0c51fad6fcbBenjamin Kramer    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2148de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2149de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DenseSet<Value *> Users;
2150de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    AliasSetTracker WriteSet(*AA);
2151de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2152de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Note: We cannot end the loop when we reach J because J could be moved
2153de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // farther down the use chain by another instruction pairing. Also, J
2154de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // could be before I if this is an inverted input.
2155de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
2156de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (trackUsesOfI(Users, WriteSet, I, L)) {
2157de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (L->mayReadFromMemory())
2158de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          LoadMoveSet.insert(ValuePair(L, I));
2159de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2160de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
2161de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
2162de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2163de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // In cases where both load/stores and the computation of their pointers
2164de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // are chosen for vectorization, we can end up in a situation where the
2165de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // aliasing analysis starts returning different query results as the
2166de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // process of fusing instruction pairs continues. Because the algorithm
2167de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // relies on finding the same use trees here as were found earlier, we'll
2168de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // need to precompute the necessary aliasing information here and then
2169de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // manually update it during the fusion process.
2170de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
2171de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::vector<Value *> &PairableInsts,
2172de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *> &ChosenPairs,
2173de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet) {
2174de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
2175de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         PIE = PairableInsts.end(); PI != PIE; ++PI) {
2176de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
2177de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (P == ChosenPairs.end()) continue;
2178de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2179de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Instruction *I = cast<Instruction>(P->first);
2180de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I);
2181de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
2182de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
2183de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2184282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel  // As with the aliasing information, SCEV can also change because of
2185282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel  // vectorization. This information is used to compute relative pointer
2186282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel  // offsets; the necessary information will be cached here prior to
2187282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel  // fusion.
2188282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel  void BBVectorize::collectPtrInfo(std::vector<Value *> &PairableInsts,
2189282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                                   DenseMap<Value *, Value *> &ChosenPairs,
2190282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                                   DenseSet<Value *> &LowPtrInsts) {
2191282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
2192282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      PIE = PairableInsts.end(); PI != PIE; ++PI) {
2193282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
2194282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      if (P == ChosenPairs.end()) continue;
2195282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
2196282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      Instruction *I = cast<Instruction>(P->first);
2197282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      Instruction *J = cast<Instruction>(P->second);
2198282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
2199282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2200282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel        continue;
2201282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
2202282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      Value *IPtr, *JPtr;
2203282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      unsigned IAlignment, JAlignment;
2204282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      int64_t OffsetInElmts;
2205282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      if (!getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
2206282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                          OffsetInElmts) || abs64(OffsetInElmts) != 1)
2207282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel        llvm_unreachable("Pre-fusion pointer analysis failed");
2208282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
2209282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      Value *LowPI = (OffsetInElmts > 0) ? I : J;
2210282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      LowPtrInsts.insert(LowPI);
2211282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel    }
2212282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel  }
2213282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
2214ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel  // When the first instruction in each pair is cloned, it will inherit its
2215ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel  // parent's metadata. This metadata must be combined with that of the other
2216ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel  // instruction in a safe way.
2217ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel  void BBVectorize::combineMetadata(Instruction *K, const Instruction *J) {
2218ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel    SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
2219ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel    K->getAllMetadataOtherThanDebugLoc(Metadata);
2220ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel    for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
2221ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      unsigned Kind = Metadata[i].first;
2222ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      MDNode *JMD = J->getMetadata(Kind);
2223ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      MDNode *KMD = Metadata[i].second;
2224ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel
2225ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      switch (Kind) {
2226ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      default:
2227ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel        K->setMetadata(Kind, 0); // Remove unknown metadata
2228ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel        break;
2229ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      case LLVMContext::MD_tbaa:
2230ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel        K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2231ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel        break;
2232ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      case LLVMContext::MD_fpmath:
2233ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel        K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2234ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel        break;
2235ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      }
2236ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel    }
2237ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel  }
2238ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel
2239de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function fuses the chosen instruction pairs into vector instructions,
2240de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // taking care preserve any needed scalar outputs and, then, it reorders the
2241de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // remaining instructions as needed (users of the first member of the pair
2242de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // need to be moved to after the location of the second member of the pair
2243de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // because the vector instruction is inserted in the location of the pair's
2244de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // second member).
2245de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::fuseChosenPairs(BasicBlock &BB,
2246de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::vector<Value *> &PairableInsts,
2247de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *> &ChosenPairs) {
2248de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    LLVMContext& Context = BB.getContext();
2249de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2250de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // During the vectorization process, the order of the pairs to be fused
2251de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
2252de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // list. After a pair is fused, the flipped pair is removed from the list.
2253de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    std::vector<ValuePair> FlippedPairs;
2254de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    FlippedPairs.reserve(ChosenPairs.size());
2255de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
2256de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = ChosenPairs.end(); P != E; ++P)
2257de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      FlippedPairs.push_back(ValuePair(P->second, P->first));
2258de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::vector<ValuePair>::iterator P = FlippedPairs.begin(),
2259de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = FlippedPairs.end(); P != E; ++P)
2260de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      ChosenPairs.insert(*P);
2261de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2262de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    std::multimap<Value *, Value *> LoadMoveSet;
2263de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
2264de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2265282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel    DenseSet<Value *> LowPtrInsts;
2266282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel    collectPtrInfo(PairableInsts, ChosenPairs, LowPtrInsts);
2267282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
2268de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
2269de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2270de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
2271de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
2272de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (P == ChosenPairs.end()) {
2273de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ++PI;
2274de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
2275de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2276de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2277de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (getDepthFactor(P->first) == 0) {
2278de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // These instructions are not really fused, but are tracked as though
2279de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // they are. Any case in which it would be interesting to fuse them
2280de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // will be taken care of by InstCombine.
2281de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        --NumFusedOps;
2282de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ++PI;
2283de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
2284de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2285de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2286de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Instruction *I = cast<Instruction>(P->first),
2287de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        *J = cast<Instruction>(P->second);
2288de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2289de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(dbgs() << "BBV: fusing: " << *I <<
2290de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             " <-> " << *J << "\n");
2291de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2292de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Remove the pair and flipped pair from the list.
2293de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
2294de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
2295de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      ChosenPairs.erase(FP);
2296de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      ChosenPairs.erase(P);
2297de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2298de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) {
2299de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DEBUG(dbgs() << "BBV: fusion of: " << *I <<
2300de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel               " <-> " << *J <<
2301de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel               " aborted because of non-trivial dependency cycle\n");
2302de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        --NumFusedOps;
2303de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ++PI;
2304de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
2305de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2306de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2307282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      bool FlipMemInputs = false;
2308282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      if (isa<LoadInst>(I) || isa<StoreInst>(I))
2309282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel        FlipMemInputs = (LowPtrInsts.find(I) == LowPtrInsts.end());
2310282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
2311de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      unsigned NumOperands = I->getNumOperands();
2312de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      SmallVector<Value *, 3> ReplacedOperands(NumOperands);
2313de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      getReplacementInputsForPair(Context, I, J, ReplacedOperands,
2314de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        FlipMemInputs);
2315de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2316de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Make a copy of the original operation, change its type to the vector
2317de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // type and replace its operands with the vector operands.
2318de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Instruction *K = I->clone();
2319de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (I->hasName()) K->takeName(I);
2320de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2321de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!isa<StoreInst>(K))
232264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        K->mutateType(getVecTypeForPair(I->getType(), J->getType()));
2323de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2324ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      combineMetadata(K, J);
2325ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel
2326de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (unsigned o = 0; o < NumOperands; ++o)
2327de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        K->setOperand(o, ReplacedOperands[o]);
2328de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2329de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // If we've flipped the memory inputs, make sure that we take the correct
2330de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // alignment.
2331de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (FlipMemInputs) {
2332de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (isa<StoreInst>(K))
2333de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          cast<StoreInst>(K)->setAlignment(cast<StoreInst>(J)->getAlignment());
2334de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        else
2335de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          cast<LoadInst>(K)->setAlignment(cast<LoadInst>(J)->getAlignment());
2336de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2337de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2338de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      K->insertAfter(J);
2339de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2340de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Instruction insertion point:
2341de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Instruction *InsertionPt = K;
2342de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Instruction *K1 = 0, *K2 = 0;
2343de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      replaceOutputsOfPair(Context, I, J, K, InsertionPt, K1, K2,
2344de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        FlipMemInputs);
2345de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2346de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // The use tree of the first original instruction must be moved to after
2347de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // the location of the second instruction. The entire use tree of the
2348de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // first instruction is disjoint from the input tree of the second
2349de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // (by definition), and so commutes with it.
2350de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2351de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
2352de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2353de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!isa<StoreInst>(I)) {
2354de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        I->replaceAllUsesWith(K1);
2355de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        J->replaceAllUsesWith(K2);
2356de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        AA->replaceWithNewValue(I, K1);
2357de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        AA->replaceWithNewValue(J, K2);
2358de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2359de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2360de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Instructions that may read from memory may be in the load move set.
2361de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Once an instruction is fused, we no longer need its move set, and so
2362de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // the values of the map never need to be updated. However, when a load
2363de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // is fused, we need to merge the entries from both instructions in the
2364de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // pair in case those instructions were in the move set of some other
2365de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // yet-to-be-fused pair. The loads in question are the keys of the map.
2366de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (I->mayReadFromMemory()) {
2367de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        std::vector<ValuePair> NewSetMembers;
2368de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPIteratorPair IPairRange = LoadMoveSet.equal_range(I);
2369de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPIteratorPair JPairRange = LoadMoveSet.equal_range(J);
2370de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (std::multimap<Value *, Value *>::iterator N = IPairRange.first;
2371de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             N != IPairRange.second; ++N)
2372de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          NewSetMembers.push_back(ValuePair(K, N->second));
2373de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (std::multimap<Value *, Value *>::iterator N = JPairRange.first;
2374de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             N != JPairRange.second; ++N)
2375de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          NewSetMembers.push_back(ValuePair(K, N->second));
2376de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
2377de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             AE = NewSetMembers.end(); A != AE; ++A)
2378de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          LoadMoveSet.insert(*A);
2379de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2380de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2381de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Before removing I, set the iterator to the next instruction.
2382de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      PI = llvm::next(BasicBlock::iterator(I));
2383de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (cast<Instruction>(PI) == J)
2384de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ++PI;
2385de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2386de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      SE->forgetValue(I);
2387de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      SE->forgetValue(J);
2388de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      I->eraseFromParent();
2389de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      J->eraseFromParent();
2390de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
2391de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2392de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
2393de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
2394de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel}
2395de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2396de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelchar BBVectorize::ID = 0;
2397de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic const char bb_vectorize_name[] = "Basic-Block Vectorization";
2398de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelINITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
2399de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelINITIALIZE_AG_DEPENDENCY(AliasAnalysis)
2400de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelINITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
2401de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelINITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
2402de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2403bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin ZhengBasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
2404bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  return new BBVectorize(C);
2405de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel}
2406de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2407bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zhengbool
2408bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zhengllvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
2409bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  BBVectorize BBVectorizer(P, C);
241087825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng  return BBVectorizer.vectorizeBB(BB);
241187825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng}
2412bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng
2413bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng//===----------------------------------------------------------------------===//
2414bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin ZhengVectorizeConfig::VectorizeConfig() {
2415bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  VectorBits = ::VectorBits;
2416768edf3cd037aab10391abc279f71470df8e3156Hal Finkel  VectorizeBools = !::NoBools;
241786312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeInts = !::NoInts;
241886312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeFloats = !::NoFloats;
2419f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel  VectorizePointers = !::NoPointers;
242086312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeCasts = !::NoCasts;
242186312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeMath = !::NoMath;
242286312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeFMA = !::NoFMA;
2423fc3665c87519850f629c9565535e3be447e10addHal Finkel  VectorizeSelect = !::NoSelect;
2424e415f96b6a43ac8861148a11a4258bc38c247e8fHal Finkel  VectorizeCmp = !::NoCmp;
2425f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel  VectorizeGEP = !::NoGEP;
242686312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeMemOps = !::NoMemOps;
2427bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  AlignedOnly = ::AlignedOnly;
2428bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  ReqChainDepth= ::ReqChainDepth;
2429bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  SearchLimit = ::SearchLimit;
2430bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
2431bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  SplatBreaksChain = ::SplatBreaksChain;
2432bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  MaxInsts = ::MaxInsts;
2433bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  MaxIter = ::MaxIter;
243464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel  Pow2LenOnly = ::Pow2LenOnly;
2435bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  NoMemOpBoost = ::NoMemOpBoost;
2436bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  FastDep = ::FastDep;
2437bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng}
2438