BBVectorize.cpp revision 822ab00847da841a63be4e3883cb5f442dc69069
1de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
2de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//
3de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//                     The LLVM Compiler Infrastructure
4de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//
5de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// This file is distributed under the University of Illinois Open Source
6de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// License. See LICENSE.TXT for details.
7de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//
8de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//===----------------------------------------------------------------------===//
9de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//
10de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// This file implements a basic-block vectorization pass. The algorithm was
11de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
12de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// et al. It works by looking for chains of pairable operations and then
13de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// pairing them.
14de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//
15de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//===----------------------------------------------------------------------===//
16de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
17de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#define BBV_NAME "bb-vectorize"
18de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#define DEBUG_TYPE BBV_NAME
19de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Constants.h"
20de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/DerivedTypes.h"
21de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Function.h"
22de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Instructions.h"
23de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/IntrinsicInst.h"
24de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Intrinsics.h"
25de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/LLVMContext.h"
26ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel#include "llvm/Metadata.h"
27de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Pass.h"
28de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Type.h"
29de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/DenseMap.h"
30de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/DenseSet.h"
31de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/SmallVector.h"
32de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/Statistic.h"
33de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/STLExtras.h"
34de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/StringExtras.h"
35de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Analysis/AliasAnalysis.h"
36de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Analysis/AliasSetTracker.h"
37e29c19091cca58db668407dfc5dd86c70e8b3d49Hal Finkel#include "llvm/Analysis/Dominators.h"
38de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Analysis/ScalarEvolution.h"
39de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Analysis/ScalarEvolutionExpressions.h"
40de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Analysis/ValueTracking.h"
41de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Support/CommandLine.h"
42de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Support/Debug.h"
43de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Support/raw_ostream.h"
44de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Support/ValueHandle.h"
453574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmow#include "llvm/DataLayout.h"
4665309660fa61a837cc05323f69c618a7d8134d56Hal Finkel#include "llvm/TargetTransformInfo.h"
4764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel#include "llvm/Transforms/Utils/Local.h"
48de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Transforms/Vectorize.h"
49de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include <algorithm>
50de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include <map>
51de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelusing namespace llvm;
52de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
5365309660fa61a837cc05323f69c618a7d8134d56Hal Finkelstatic cl::opt<bool>
5465309660fa61a837cc05323f69c618a7d8134d56Hal FinkelIgnoreTargetInfo("bb-vectorize-ignore-target-info",  cl::init(false),
5565309660fa61a837cc05323f69c618a7d8134d56Hal Finkel  cl::Hidden, cl::desc("Ignore target information"));
5665309660fa61a837cc05323f69c618a7d8134d56Hal Finkel
57de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<unsigned>
58de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
59de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("The required chain depth for vectorization"));
60de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
61de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<unsigned>
62de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelSearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
63de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("The maximum search distance for instruction pairs"));
64de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
65de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
66de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelSplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
67de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Replicating one element to a pair breaks the chain"));
68de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
69de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<unsigned>
70de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelVectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
71de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("The size of the native vector registers"));
72de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
73de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<unsigned>
74de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelMaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
75de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("The maximum number of pairing iterations"));
76de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
7764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkelstatic cl::opt<bool>
7864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal FinkelPow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden,
7964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel  cl::desc("Don't try to form non-2^n-length vectors"));
8064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
81de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<unsigned>
825d4e18bc39fea892f523d960213906d296d3cb38Hal FinkelMaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
835d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel  cl::desc("The maximum number of pairable instructions per group"));
845d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
855d4e18bc39fea892f523d960213906d296d3cb38Hal Finkelstatic cl::opt<unsigned>
86de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelMaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
87de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
88de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       " a full cycle check"));
89de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
90de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
91768edf3cd037aab10391abc279f71470df8e3156Hal FinkelNoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden,
92768edf3cd037aab10391abc279f71470df8e3156Hal Finkel  cl::desc("Don't try to vectorize boolean (i1) values"));
93768edf3cd037aab10391abc279f71470df8e3156Hal Finkel
94768edf3cd037aab10391abc279f71470df8e3156Hal Finkelstatic cl::opt<bool>
95de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
96de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize integer values"));
97de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
98de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
99de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
100de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize floating-point values"));
101de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
102822ab00847da841a63be4e3883cb5f442dc69069Hal Finkel// FIXME: This should default to false once pointer vector support works.
103de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
104822ab00847da841a63be4e3883cb5f442dc69069Hal FinkelNoPointers("bb-vectorize-no-pointers", cl::init(/*false*/ true), cl::Hidden,
105f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel  cl::desc("Don't try to vectorize pointer values"));
106f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel
107f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkelstatic cl::opt<bool>
108de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
109de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize casting (conversion) operations"));
110de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
111de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
112de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
113de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize floating-point math intrinsics"));
114de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
115de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
116de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
117de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
118de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
119de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
120fc3665c87519850f629c9565535e3be447e10addHal FinkelNoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
121fc3665c87519850f629c9565535e3be447e10addHal Finkel  cl::desc("Don't try to vectorize select instructions"));
122fc3665c87519850f629c9565535e3be447e10addHal Finkel
123fc3665c87519850f629c9565535e3be447e10addHal Finkelstatic cl::opt<bool>
124e415f96b6a43ac8861148a11a4258bc38c247e8fHal FinkelNoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden,
125e415f96b6a43ac8861148a11a4258bc38c247e8fHal Finkel  cl::desc("Don't try to vectorize comparison instructions"));
126e415f96b6a43ac8861148a11a4258bc38c247e8fHal Finkel
127e415f96b6a43ac8861148a11a4258bc38c247e8fHal Finkelstatic cl::opt<bool>
128f3f5a1e6f77a842ccb24cc81766437da5197d712Hal FinkelNoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
129f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel  cl::desc("Don't try to vectorize getelementptr instructions"));
130f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel
131f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkelstatic cl::opt<bool>
132de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
133de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize loads and stores"));
134de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
135de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
136de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelAlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
137de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Only generate aligned loads and stores"));
138de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
139de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
140edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal FinkelNoMemOpBoost("bb-vectorize-no-mem-op-boost",
141edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel  cl::init(false), cl::Hidden,
142edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel  cl::desc("Don't boost the chain-depth contribution of loads and stores"));
143edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel
144edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkelstatic cl::opt<bool>
145de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelFastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
146de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Use a fast instruction dependency analysis"));
147de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
148de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#ifndef NDEBUG
149de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
150de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelDebugInstructionExamination("bb-vectorize-debug-instruction-examination",
151de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::init(false), cl::Hidden,
152de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("When debugging is enabled, output information on the"
153de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           " instruction-examination process"));
154de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
155de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelDebugCandidateSelection("bb-vectorize-debug-candidate-selection",
156de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::init(false), cl::Hidden,
157de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("When debugging is enabled, output information on the"
158de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           " candidate-selection process"));
159de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
160de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelDebugPairSelection("bb-vectorize-debug-pair-selection",
161de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::init(false), cl::Hidden,
162de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("When debugging is enabled, output information on the"
163de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           " pair-selection process"));
164de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
165de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelDebugCycleCheck("bb-vectorize-debug-cycle-check",
166de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::init(false), cl::Hidden,
167de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("When debugging is enabled, output information on the"
168de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           " cycle-checking process"));
169de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#endif
170de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
171de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelSTATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
172de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
173de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelnamespace {
174de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  struct BBVectorize : public BasicBlockPass {
175de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    static char ID; // Pass identification, replacement for typeid
176bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng
177940371bc65570ec0add1ede4f4d9f0a41ba25e09Hongbin Zheng    const VectorizeConfig Config;
178bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng
179bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng    BBVectorize(const VectorizeConfig &C = VectorizeConfig())
180bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      : BasicBlockPass(ID), Config(C) {
181de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      initializeBBVectorizePass(*PassRegistry::getPassRegistry());
182de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
183de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
184bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng    BBVectorize(Pass *P, const VectorizeConfig &C)
185bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      : BasicBlockPass(ID), Config(C) {
18687825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng      AA = &P->getAnalysis<AliasAnalysis>();
187e29c19091cca58db668407dfc5dd86c70e8b3d49Hal Finkel      DT = &P->getAnalysis<DominatorTree>();
18887825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng      SE = &P->getAnalysis<ScalarEvolution>();
1893574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmow      TD = P->getAnalysisIfAvailable<DataLayout>();
19065309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      TTI = IgnoreTargetInfo ? 0 :
19165309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        P->getAnalysisIfAvailable<TargetTransformInfo>();
19265309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      VTTI = TTI ? TTI->getVectorTargetTransformInfo() : 0;
19387825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng    }
19487825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng
195de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    typedef std::pair<Value *, Value *> ValuePair;
19665309660fa61a837cc05323f69c618a7d8134d56Hal Finkel    typedef std::pair<ValuePair, int> ValuePairWithCost;
197de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
198de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
199de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    typedef std::pair<std::multimap<Value *, Value *>::iterator,
200de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              std::multimap<Value *, Value *>::iterator> VPIteratorPair;
201de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
202de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              std::multimap<ValuePair, ValuePair>::iterator>
203de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                VPPIteratorPair;
204de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
205de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    AliasAnalysis *AA;
206e29c19091cca58db668407dfc5dd86c70e8b3d49Hal Finkel    DominatorTree *DT;
207de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    ScalarEvolution *SE;
2083574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmow    DataLayout *TD;
20965309660fa61a837cc05323f69c618a7d8134d56Hal Finkel    TargetTransformInfo *TTI;
21065309660fa61a837cc05323f69c618a7d8134d56Hal Finkel    const VectorTargetTransformInfo *VTTI;
211de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
212de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // FIXME: const correct?
213de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
21464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false);
215de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2165d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    bool getCandidatePairs(BasicBlock &BB,
2175d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel                       BasicBlock::iterator &Start,
218de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<Value *, Value *> &CandidatePairs,
21965309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                       DenseMap<ValuePair, int> &CandidatePairCostSavings,
22064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                       std::vector<Value *> &PairableInsts, bool NonPow2Len);
221de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
222de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
223de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::vector<Value *> &PairableInsts,
224de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<ValuePair, ValuePair> &ConnectedPairs);
225de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
226de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void buildDepMap(BasicBlock &BB,
227de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<Value *, Value *> &CandidatePairs,
228de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::vector<Value *> &PairableInsts,
229de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       DenseSet<ValuePair> &PairableInstUsers);
230de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
231de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
23265309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                        DenseMap<ValuePair, int> &CandidatePairCostSavings,
233de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        std::vector<Value *> &PairableInsts,
234de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        std::multimap<ValuePair, ValuePair> &ConnectedPairs,
235de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        DenseSet<ValuePair> &PairableInstUsers,
236de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        DenseMap<Value *, Value *>& ChosenPairs);
237de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
238de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void fuseChosenPairs(BasicBlock &BB,
239de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::vector<Value *> &PairableInsts,
240de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *>& ChosenPairs);
241de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
242de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
243de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
244de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool areInstsCompatible(Instruction *I, Instruction *J,
24565309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                       bool IsSimpleLoadStore, bool NonPow2Len,
24665309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                       int &CostSavings);
247de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
248de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool trackUsesOfI(DenseSet<Value *> &Users,
249de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      AliasSetTracker &WriteSet, Instruction *I,
250de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      Instruction *J, bool UpdateUsers = true,
251de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> *LoadMoveSet = 0);
2521230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop
253de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void computePairsConnectedTo(
254de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
255de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
256de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
257de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      ValuePair P);
258de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
259de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool pairsConflict(ValuePair P, ValuePair Q,
260de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                 DenseSet<ValuePair> &PairableInstUsers,
261de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                 std::multimap<ValuePair, ValuePair> *PairableInstUserMap = 0);
262de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
263de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool pairWillFormCycle(ValuePair P,
264de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<ValuePair, ValuePair> &PairableInstUsers,
265de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       DenseSet<ValuePair> &CurrentPairs);
266de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
267de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void pruneTreeFor(
268de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
269de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
270de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
271de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
272de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
273de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
274de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<ValuePair, size_t> &Tree,
275de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
276de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      bool UseCycleCheck);
277de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
278de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void buildInitialTreeFor(
279de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
280de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
281de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
282de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
283de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
284de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<ValuePair, size_t> &Tree, ValuePair J);
285de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
286de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void findBestTreeFor(
287de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
28865309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                      DenseMap<ValuePair, int> &CandidatePairCostSavings,
289de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
290de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
291de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
292de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
293de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
294de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
29565309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                      int &BestEffSize, VPIteratorPair ChoiceRange,
296de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      bool UseCycleCheck);
297de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
298de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
299282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                     Instruction *J, unsigned o, bool FlipMemInputs);
300de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
301de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
30264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                     unsigned MaskOffset, unsigned NumInElem,
30364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                     unsigned NumInElem1, unsigned IdxOffset,
30464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                     std::vector<Constant*> &Mask);
305de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
306de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
307de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J);
308de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
30964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J,
31064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                       unsigned o, Value *&LOp, unsigned numElemL,
31164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                       Type *ArgTypeL, Type *ArgTypeR,
31264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                       unsigned IdxOff = 0);
31364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
314de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *getReplacementInput(LLVMContext& Context, Instruction *I,
315de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J, unsigned o, bool FlipMemInputs);
316de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
317de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
318de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J, SmallVector<Value *, 3> &ReplacedOperands,
319282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                     bool FlipMemInputs);
320de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
321de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
322de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J, Instruction *K,
323de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *&InsertionPt, Instruction *&K1,
324282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                     Instruction *&K2, bool FlipMemInputs);
325de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
326de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void collectPairLoadMoveSet(BasicBlock &BB,
327de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *> &ChosenPairs,
328de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
329de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I);
330de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
331de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void collectLoadMoveSet(BasicBlock &BB,
332de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::vector<Value *> &PairableInsts,
333de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *> &ChosenPairs,
334de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet);
335de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
336282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel    void collectPtrInfo(std::vector<Value *> &PairableInsts,
337282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                        DenseMap<Value *, Value *> &ChosenPairs,
338282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                        DenseSet<Value *> &LowPtrInsts);
339282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
340de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool canMoveUsesOfIAfterJ(BasicBlock &BB,
341de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
342de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J);
343de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
344de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void moveUsesOfIAfterJ(BasicBlock &BB,
345de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
346de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *&InsertionPt,
347de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J);
348de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
349ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel    void combineMetadata(Instruction *K, const Instruction *J);
350ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel
35187825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng    bool vectorizeBB(BasicBlock &BB) {
352e29c19091cca58db668407dfc5dd86c70e8b3d49Hal Finkel      if (!DT->isReachableFromEntry(&BB)) {
353e29c19091cca58db668407dfc5dd86c70e8b3d49Hal Finkel        DEBUG(dbgs() << "BBV: skipping unreachable " << BB.getName() <<
354e29c19091cca58db668407dfc5dd86c70e8b3d49Hal Finkel              " in " << BB.getParent()->getName() << "\n");
355e29c19091cca58db668407dfc5dd86c70e8b3d49Hal Finkel        return false;
356e29c19091cca58db668407dfc5dd86c70e8b3d49Hal Finkel      }
357e29c19091cca58db668407dfc5dd86c70e8b3d49Hal Finkel
35865309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      DEBUG(if (VTTI) dbgs() << "BBV: using target information\n");
35965309660fa61a837cc05323f69c618a7d8134d56Hal Finkel
360de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      bool changed = false;
361de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Iterate a sufficient number of times to merge types of size 1 bit,
362de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // then 2 bits, then 4, etc. up to half of the target vector width of the
363de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // target vector register.
36464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      unsigned n = 1;
36564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      for (unsigned v = 2;
36665309660fa61a837cc05323f69c618a7d8134d56Hal Finkel           (VTTI || v <= Config.VectorBits) &&
36765309660fa61a837cc05323f69c618a7d8134d56Hal Finkel           (!Config.MaxIter || n <= Config.MaxIter);
368de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           v *= 2, ++n) {
369bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        DEBUG(dbgs() << "BBV: fusing loop #" << n <<
370de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              " for " << BB.getName() << " in " <<
371de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              BB.getParent()->getName() << "...\n");
372de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (vectorizePairs(BB))
373de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          changed = true;
374de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        else
375de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          break;
376de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
377de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
37864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (changed && !Pow2LenOnly) {
37964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        ++n;
38064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        for (; !Config.MaxIter || n <= Config.MaxIter; ++n) {
38164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " <<
38264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                n << " for " << BB.getName() << " in " <<
38364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                BB.getParent()->getName() << "...\n");
38464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          if (!vectorizePairs(BB, true)) break;
38564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
38664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
38764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
388de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(dbgs() << "BBV: done!\n");
389de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return changed;
390de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
391de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
39287825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng    virtual bool runOnBasicBlock(BasicBlock &BB) {
39387825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng      AA = &getAnalysis<AliasAnalysis>();
394e29c19091cca58db668407dfc5dd86c70e8b3d49Hal Finkel      DT = &getAnalysis<DominatorTree>();
39587825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng      SE = &getAnalysis<ScalarEvolution>();
3963574eca1b02600bac4e625297f4ecf745f4c4f32Micah Villmow      TD = getAnalysisIfAvailable<DataLayout>();
39765309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      TTI = IgnoreTargetInfo ? 0 :
39865309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        getAnalysisIfAvailable<TargetTransformInfo>();
39965309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      VTTI = TTI ? TTI->getVectorTargetTransformInfo() : 0;
40087825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng
40187825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng      return vectorizeBB(BB);
40287825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng    }
40387825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng
404de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
405de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      BasicBlockPass::getAnalysisUsage(AU);
406de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AU.addRequired<AliasAnalysis>();
407e29c19091cca58db668407dfc5dd86c70e8b3d49Hal Finkel      AU.addRequired<DominatorTree>();
408de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AU.addRequired<ScalarEvolution>();
409de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AU.addPreserved<AliasAnalysis>();
410e29c19091cca58db668407dfc5dd86c70e8b3d49Hal Finkel      AU.addPreserved<DominatorTree>();
411de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AU.addPreserved<ScalarEvolution>();
4127e004d177fe76145f75a9417ed2e281f1b9abaf7Hal Finkel      AU.setPreservesCFG();
413de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
414de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
41564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) {
41664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() &&
41764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel             "Cannot form vector from incompatible scalar types");
41864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      Type *STy = ElemTy->getScalarType();
41964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
42064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      unsigned numElem;
421de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
42264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        numElem = VTy->getNumElements();
42364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } else {
42464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        numElem = 1;
42564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
42664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
42764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (VectorType *VTy = dyn_cast<VectorType>(Elem2Ty)) {
42864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        numElem += VTy->getNumElements();
42964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } else {
43064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        numElem += 1;
431de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
4327e004d177fe76145f75a9417ed2e281f1b9abaf7Hal Finkel
43364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      return VectorType::get(STy, numElem);
43464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    }
43564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
43664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    static inline void getInstructionTypes(Instruction *I,
43764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                           Type *&T1, Type *&T2) {
43864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (isa<StoreInst>(I)) {
43964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // For stores, it is the value type, not the pointer type that matters
44064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // because the value is what will come from a vector register.
44164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
44264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Value *IVal = cast<StoreInst>(I)->getValueOperand();
44364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        T1 = IVal->getType();
44464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } else {
44564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        T1 = I->getType();
44664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
44764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
44864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (I->isCast())
44964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        T2 = cast<CastInst>(I)->getSrcTy();
45064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      else
45164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        T2 = T1;
45265309660fa61a837cc05323f69c618a7d8134d56Hal Finkel
45365309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
45465309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        T2 = SI->getCondition()->getType();
45565309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      }
456de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
457de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
458de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Returns the weight associated with the provided value. A chain of
459de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // candidate pairs has a length given by the sum of the weights of its
460de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // members (one weight per pair; the weight of each member of the pair
461de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // is assumed to be the same). This length is then compared to the
462de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // chain-length threshold to determine if a given chain is significant
463de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // enough to be vectorized. The length is also used in comparing
464de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // candidate chains where longer chains are considered to be better.
465de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Note: when this function returns 0, the resulting instructions are
466de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // not actually fused.
467bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng    inline size_t getDepthFactor(Value *V) {
468de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // InsertElement and ExtractElement have a depth factor of zero. This is
469de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // for two reasons: First, they cannot be usefully fused. Second, because
470de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // the pass generates a lot of these, they can confuse the simple metric
471de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // used to compare the trees in the next iteration. Thus, giving them a
472de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // weight of zero allows the pass to essentially ignore them in
473de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // subsequent iterations when looking for vectorization opportunities
474de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // while still tracking dependency chains that flow through those
475de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // instructions.
476de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
477de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return 0;
478de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
479edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel      // Give a load or store half of the required depth so that load/store
480edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel      // pairs will vectorize.
481bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
482bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        return Config.ReqChainDepth/2;
483edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel
484de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return 1;
485de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
486de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
487de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // This determines the relative offset of two loads or stores, returning
488de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // true if the offset could be determined to be some constant value.
489de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // For example, if OffsetInElmts == 1, then J accesses the memory directly
490de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // after I; if OffsetInElmts == -1 then I accesses the memory
49164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // directly after J.
492de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool getPairPtrInfo(Instruction *I, Instruction *J,
493de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
49465309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        unsigned &IAddressSpace, unsigned &JAddressSpace,
495de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        int64_t &OffsetInElmts) {
496de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      OffsetInElmts = 0;
49765309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
49865309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        LoadInst *LJ = cast<LoadInst>(J);
49965309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        IPtr = LI->getPointerOperand();
50065309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        JPtr = LJ->getPointerOperand();
50165309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        IAlignment = LI->getAlignment();
50265309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        JAlignment = LJ->getAlignment();
50365309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        IAddressSpace = LI->getPointerAddressSpace();
50465309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        JAddressSpace = LJ->getPointerAddressSpace();
505de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
50665309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        StoreInst *SI = cast<StoreInst>(I), *SJ = cast<StoreInst>(J);
50765309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        IPtr = SI->getPointerOperand();
50865309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        JPtr = SJ->getPointerOperand();
50965309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        IAlignment = SI->getAlignment();
51065309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        JAlignment = SJ->getAlignment();
51165309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        IAddressSpace = SI->getPointerAddressSpace();
51265309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        JAddressSpace = SJ->getPointerAddressSpace();
513de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
514de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
515de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
516de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
517de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
518de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // If this is a trivial offset, then we'll get something like
519de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // 1*sizeof(type). With target data, which we need anyway, this will get
520de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // constant folded into a number.
521de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
522de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (const SCEVConstant *ConstOffSCEV =
523de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            dyn_cast<SCEVConstant>(OffsetSCEV)) {
524de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ConstantInt *IntOff = ConstOffSCEV->getValue();
525de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        int64_t Offset = IntOff->getSExtValue();
526de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
527de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Type *VTy = cast<PointerType>(IPtr->getType())->getElementType();
528de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
529de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
53064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Type *VTy2 = cast<PointerType>(JPtr->getType())->getElementType();
53164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (VTy != VTy2 && Offset < 0) {
53264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          int64_t VTy2TSS = (int64_t) TD->getTypeStoreSize(VTy2);
53364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          OffsetInElmts = Offset/VTy2TSS;
53464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          return (abs64(Offset) % VTy2TSS) == 0;
53564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
536de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
537de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        OffsetInElmts = Offset/VTyTSS;
538de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return (abs64(Offset) % VTyTSS) == 0;
539de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
540de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
541de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
542de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
543de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
544de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Returns true if the provided CallInst represents an intrinsic that can
545de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // be vectorized.
546de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool isVectorizableIntrinsic(CallInst* I) {
547de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Function *F = I->getCalledFunction();
548de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!F) return false;
549de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
550de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      unsigned IID = F->getIntrinsicID();
551de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!IID) return false;
552de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
553de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      switch(IID) {
554de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      default:
555de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
556de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::sqrt:
557de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::powi:
558de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::sin:
559de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::cos:
560de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::log:
561de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::log2:
562de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::log10:
563de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::exp:
564de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::exp2:
565de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::pow:
56686312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng        return Config.VectorizeMath;
567de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::fma:
56886312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng        return Config.VectorizeFMA;
569de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
570de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
571de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
572de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Returns true if J is the second element in some pair referenced by
573de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // some multimap pair iterator pair.
574de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    template <typename V>
575de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool isSecondInIteratorPair(V J, std::pair<
576de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           typename std::multimap<V, V>::iterator,
577de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           typename std::multimap<V, V>::iterator> PairRange) {
578de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (typename std::multimap<V, V>::iterator K = PairRange.first;
579de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           K != PairRange.second; ++K)
580de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (K->second == J) return true;
581de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
582de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
583de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
584de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  };
585de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
586de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function implements one vectorization iteration on the provided
587de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // basic block. It returns true if the block is changed.
58864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel  bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) {
5895d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    bool ShouldContinue;
5905d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    BasicBlock::iterator Start = BB.getFirstInsertionPt();
5915d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
5925d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    std::vector<Value *> AllPairableInsts;
5935d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    DenseMap<Value *, Value *> AllChosenPairs;
5945d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
5955d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    do {
5965d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      std::vector<Value *> PairableInsts;
5975d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      std::multimap<Value *, Value *> CandidatePairs;
59865309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      DenseMap<ValuePair, int> CandidatePairCostSavings;
5995d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
60065309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                                         CandidatePairCostSavings,
60164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                         PairableInsts, NonPow2Len);
6025d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      if (PairableInsts.empty()) continue;
6033706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
6045d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // Now we have a map of all of the pairable instructions and we need to
6055d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // select the best possible pairing. A good pairing is one such that the
6065d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // users of the pair are also paired. This defines a (directed) forest
60794c22716d60ff5edf6a98a3c67e0faa001be1142Sylvestre Ledru      // over the pairs such that two pairs are connected iff the second pair
6085d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // uses the first.
6093706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
6105d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // Note that it only matters that both members of the second pair use some
6115d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // element of the first pair (to allow for splatting).
6123706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
6135d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      std::multimap<ValuePair, ValuePair> ConnectedPairs;
6145d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs);
6155d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      if (ConnectedPairs.empty()) continue;
6163706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
6175d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // Build the pairable-instruction dependency map
6185d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      DenseSet<ValuePair> PairableInstUsers;
6195d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
6203706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
62135564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      // There is now a graph of the connected pairs. For each variable, pick
62235564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      // the pairing with the largest tree meeting the depth requirement on at
62335564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      // least one branch. Then select all pairings that are part of that tree
62435564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      // and remove them from the list of available pairings and pairable
62535564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      // variables.
6263706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
6275d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      DenseMap<Value *, Value *> ChosenPairs;
62865309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      choosePairs(CandidatePairs, CandidatePairCostSavings,
62965309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        PairableInsts, ConnectedPairs,
6305d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        PairableInstUsers, ChosenPairs);
6313706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
6325d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      if (ChosenPairs.empty()) continue;
6335d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
6345d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel                              PairableInsts.end());
6355d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
6365d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    } while (ShouldContinue);
6375d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
6385d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    if (AllChosenPairs.empty()) return false;
6395d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    NumFusedOps += AllChosenPairs.size();
6403706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
641de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // A set of pairs has now been selected. It is now necessary to replace the
642de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // paired instructions with vector instructions. For this procedure each
64343ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop    // operand must be replaced with a vector operand. This vector is formed
644de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // by using build_vector on the old operands. The replaced values are then
645de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // replaced with a vector_extract on the result.  Subsequent optimization
646de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // passes should coalesce the build/extract combinations.
6473706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
6485d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs);
64964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
65064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // It is important to cleanup here so that future iterations of this
65164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // function have less work to do.
6528e0d1c03ca7fd86e6879b4e37d0d7f0e982feef6Benjamin Kramer    (void) SimplifyInstructionsInBlock(&BB, TD, AA->getTargetLibraryInfo());
653de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return true;
654de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
655de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
656de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function returns true if the provided instruction is capable of being
657de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // fused into a vector instruction. This determination is based only on the
658de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // type and other attributes of the instruction.
659de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::isInstVectorizable(Instruction *I,
660de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                         bool &IsSimpleLoadStore) {
661de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    IsSimpleLoadStore = false;
662de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
663de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (CallInst *C = dyn_cast<CallInst>(I)) {
664de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!isVectorizableIntrinsic(C))
665de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
666de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
667de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Vectorize simple loads if possbile:
668de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      IsSimpleLoadStore = L->isSimple();
66986312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
670de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
671de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
672de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Vectorize simple stores if possbile:
673de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      IsSimpleLoadStore = S->isSimple();
67486312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
675de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
676de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else if (CastInst *C = dyn_cast<CastInst>(I)) {
677de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // We can vectorize casts, but not casts of pointer types, etc.
67886312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng      if (!Config.VectorizeCasts)
679de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
680de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
681de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Type *SrcTy = C->getSrcTy();
682f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      if (!SrcTy->isSingleValueType())
683de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
684de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
685de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Type *DestTy = C->getDestTy();
686f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      if (!DestTy->isSingleValueType())
687de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
688fc3665c87519850f629c9565535e3be447e10addHal Finkel    } else if (isa<SelectInst>(I)) {
689fc3665c87519850f629c9565535e3be447e10addHal Finkel      if (!Config.VectorizeSelect)
690fc3665c87519850f629c9565535e3be447e10addHal Finkel        return false;
691e415f96b6a43ac8861148a11a4258bc38c247e8fHal Finkel    } else if (isa<CmpInst>(I)) {
692e415f96b6a43ac8861148a11a4258bc38c247e8fHal Finkel      if (!Config.VectorizeCmp)
693e415f96b6a43ac8861148a11a4258bc38c247e8fHal Finkel        return false;
694f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
695f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      if (!Config.VectorizeGEP)
696f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel        return false;
697f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel
698f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      // Currently, vector GEPs exist only with one index.
699f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      if (G->getNumIndices() != 1)
700f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel        return false;
701de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
702de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
703de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
704de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
705de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
706de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // We can't vectorize memory operations without target data
707de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (TD == 0 && IsSimpleLoadStore)
708de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
709de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
710de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Type *T1, *T2;
71164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    getInstructionTypes(I, T1, T2);
712de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
713de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Not every type can be vectorized...
714de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
715de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
716de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
717de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
71865309660fa61a837cc05323f69c618a7d8134d56Hal Finkel    if (T1->getScalarSizeInBits() == 1) {
719768edf3cd037aab10391abc279f71470df8e3156Hal Finkel      if (!Config.VectorizeBools)
720768edf3cd037aab10391abc279f71470df8e3156Hal Finkel        return false;
721768edf3cd037aab10391abc279f71470df8e3156Hal Finkel    } else {
72265309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      if (!Config.VectorizeInts && T1->isIntOrIntVectorTy())
723768edf3cd037aab10391abc279f71470df8e3156Hal Finkel        return false;
724768edf3cd037aab10391abc279f71470df8e3156Hal Finkel    }
72565309660fa61a837cc05323f69c618a7d8134d56Hal Finkel
72665309660fa61a837cc05323f69c618a7d8134d56Hal Finkel    if (T2->getScalarSizeInBits() == 1) {
72765309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      if (!Config.VectorizeBools)
72865309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        return false;
72965309660fa61a837cc05323f69c618a7d8134d56Hal Finkel    } else {
73065309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      if (!Config.VectorizeInts && T2->isIntOrIntVectorTy())
73165309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        return false;
73265309660fa61a837cc05323f69c618a7d8134d56Hal Finkel    }
73365309660fa61a837cc05323f69c618a7d8134d56Hal Finkel
73486312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng    if (!Config.VectorizeFloats
73586312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng        && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
736de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
737de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
738e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel    // Don't vectorize target-specific types.
739e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel    if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy())
740e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel      return false;
741e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel    if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
742e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel      return false;
743e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel
74405bc5087a25bbcf59936d71ebfc878b545ef3e5cHal Finkel    if ((!Config.VectorizePointers || TD == 0) &&
74505bc5087a25bbcf59936d71ebfc878b545ef3e5cHal Finkel        (T1->getScalarType()->isPointerTy() ||
74605bc5087a25bbcf59936d71ebfc878b545ef3e5cHal Finkel         T2->getScalarType()->isPointerTy()))
747f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      return false;
748f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel
74965309660fa61a837cc05323f69c618a7d8134d56Hal Finkel    if (!VTTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
75065309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                  T2->getPrimitiveSizeInBits() >= Config.VectorBits))
751de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
752de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
753de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return true;
754de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
755de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
756de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function returns true if the two provided instructions are compatible
757de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // (meaning that they can be fused into a vector instruction). This assumes
758de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // that I has already been determined to be vectorizable and that J is not
759de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // in the use tree of I.
760de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
76165309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                       bool IsSimpleLoadStore, bool NonPow2Len,
76265309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                       int &CostSavings) {
763de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
764de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     " <-> " << *J << "\n");
765de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
76665309660fa61a837cc05323f69c618a7d8134d56Hal Finkel    CostSavings = 0;
76765309660fa61a837cc05323f69c618a7d8134d56Hal Finkel
768de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Loads and stores can be merged if they have different alignments,
769de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // but are otherwise the same.
77064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment |
77164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                      (NonPow2Len ? Instruction::CompareUsingScalarTypes : 0)))
77264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      return false;
77364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
77464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *IT1, *IT2, *JT1, *JT2;
77564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    getInstructionTypes(I, IT1, IT2);
77664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    getInstructionTypes(J, JT1, JT2);
77764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    unsigned MaxTypeBits = std::max(
77864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
77964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
78065309660fa61a837cc05323f69c618a7d8134d56Hal Finkel    if (!VTTI && MaxTypeBits > Config.VectorBits)
781de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
782ec4e85e3364f50802f2007e4b1e23661d4610366Hal Finkel
783de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // FIXME: handle addsub-type operations!
784de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
785de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (IsSimpleLoadStore) {
786de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Value *IPtr, *JPtr;
78765309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
788de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      int64_t OffsetInElmts = 0;
789de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
79065309660fa61a837cc05323f69c618a7d8134d56Hal Finkel            IAddressSpace, JAddressSpace,
791de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            OffsetInElmts) && abs64(OffsetInElmts) == 1) {
79265309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        unsigned BottomAlignment = IAlignment;
79365309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        if (OffsetInElmts < 0) BottomAlignment = JAlignment;
79465309660fa61a837cc05323f69c618a7d8134d56Hal Finkel
79565309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        Type *aTypeI = isa<StoreInst>(I) ?
79665309660fa61a837cc05323f69c618a7d8134d56Hal Finkel          cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
79765309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        Type *aTypeJ = isa<StoreInst>(J) ?
79865309660fa61a837cc05323f69c618a7d8134d56Hal Finkel          cast<StoreInst>(J)->getValueOperand()->getType() : J->getType();
79965309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        Type *VType = getVecTypeForPair(aTypeI, aTypeJ);
80064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
80165309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        if (Config.AlignedOnly) {
802de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // An aligned load or store is possible only if the instruction
803de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // with the lower offset has an alignment suitable for the
804de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // vector type.
8051230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop
806de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
807de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (BottomAlignment < VecAlignment)
808de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            return false;
809de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
81065309660fa61a837cc05323f69c618a7d8134d56Hal Finkel
81165309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        if (VTTI) {
81265309660fa61a837cc05323f69c618a7d8134d56Hal Finkel          unsigned ICost = VTTI->getMemoryOpCost(I->getOpcode(), I->getType(),
81365309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                                                 IAlignment, IAddressSpace);
81465309660fa61a837cc05323f69c618a7d8134d56Hal Finkel          unsigned JCost = VTTI->getMemoryOpCost(J->getOpcode(), J->getType(),
81565309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                                                 JAlignment, JAddressSpace);
81665309660fa61a837cc05323f69c618a7d8134d56Hal Finkel          unsigned VCost = VTTI->getMemoryOpCost(I->getOpcode(), VType,
81765309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                                                 BottomAlignment,
81865309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                                                 IAddressSpace);
81965309660fa61a837cc05323f69c618a7d8134d56Hal Finkel          if (VCost > ICost + JCost)
82065309660fa61a837cc05323f69c618a7d8134d56Hal Finkel            return false;
82182149a9106f221aa6a7271977c236b078e621f21Hal Finkel
82282149a9106f221aa6a7271977c236b078e621f21Hal Finkel          // FIXME: We don't want to fuse to a type that will be split, even
82382149a9106f221aa6a7271977c236b078e621f21Hal Finkel          // if the two input types will also be split and there is no other
82482149a9106f221aa6a7271977c236b078e621f21Hal Finkel          // associated cost. This check depends on the fact
82582149a9106f221aa6a7271977c236b078e621f21Hal Finkel          // that the current implementation of getMemoryOpCost returns only
82682149a9106f221aa6a7271977c236b078e621f21Hal Finkel          // the type-splitting cost.
82782149a9106f221aa6a7271977c236b078e621f21Hal Finkel          if (VCost > 1)
82882149a9106f221aa6a7271977c236b078e621f21Hal Finkel            return false;
82982149a9106f221aa6a7271977c236b078e621f21Hal Finkel
83065309660fa61a837cc05323f69c618a7d8134d56Hal Finkel          CostSavings = ICost + JCost - VCost;
83165309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        }
832de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
833de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
834de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
83565309660fa61a837cc05323f69c618a7d8134d56Hal Finkel    } else if (VTTI) {
83665309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      unsigned ICost = VTTI->getInstrCost(I->getOpcode(), IT1, IT2);
83765309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      unsigned JCost = VTTI->getInstrCost(J->getOpcode(), JT1, JT2);
83865309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      Type *VT1 = getVecTypeForPair(IT1, JT1),
83965309660fa61a837cc05323f69c618a7d8134d56Hal Finkel           *VT2 = getVecTypeForPair(IT2, JT2);
84065309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      unsigned VCost = VTTI->getInstrCost(I->getOpcode(), VT1, VT2);
84165309660fa61a837cc05323f69c618a7d8134d56Hal Finkel
84265309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      if (VCost > ICost + JCost)
84365309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        return false;
84482149a9106f221aa6a7271977c236b078e621f21Hal Finkel
84582149a9106f221aa6a7271977c236b078e621f21Hal Finkel      // FIXME: We don't want to fuse to a type that will be split, even
84682149a9106f221aa6a7271977c236b078e621f21Hal Finkel      // if the two input types will also be split and there is no other
84782149a9106f221aa6a7271977c236b078e621f21Hal Finkel      // associated cost. This check depends on the fact
84882149a9106f221aa6a7271977c236b078e621f21Hal Finkel      // that the current implementation of getMemoryOpCost returns only
84982149a9106f221aa6a7271977c236b078e621f21Hal Finkel      // the type-splitting cost (and does nothing else).
85082149a9106f221aa6a7271977c236b078e621f21Hal Finkel      unsigned VTypeCost = VTTI->getMemoryOpCost(I->getOpcode(), VT1, 0, 0);
85182149a9106f221aa6a7271977c236b078e621f21Hal Finkel      if (VTypeCost > 1)
85282149a9106f221aa6a7271977c236b078e621f21Hal Finkel        return false;
85382149a9106f221aa6a7271977c236b078e621f21Hal Finkel
85465309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      CostSavings = ICost + JCost - VCost;
855de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
856de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
8576173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    // The powi intrinsic is special because only the first argument is
8586173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    // vectorized, the second arguments must be equal.
8596173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    CallInst *CI = dyn_cast<CallInst>(I);
8606173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    Function *FI;
8616173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    if (CI && (FI = CI->getCalledFunction()) &&
8626173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel        FI->getIntrinsicID() == Intrinsic::powi) {
8636173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel
8646173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel      Value *A1I = CI->getArgOperand(1),
8656173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel            *A1J = cast<CallInst>(J)->getArgOperand(1);
8666173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel      const SCEV *A1ISCEV = SE->getSCEV(A1I),
8676173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel                 *A1JSCEV = SE->getSCEV(A1J);
8686173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel      return (A1ISCEV == A1JSCEV);
8696173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    }
8706173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel
871de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return true;
872de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
873de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
874de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Figure out whether or not J uses I and update the users and write-set
875de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // structures associated with I. Specifically, Users represents the set of
876de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // instructions that depend on I. WriteSet represents the set
877de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // of memory locations that are dependent on I. If UpdateUsers is true,
878de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // and J uses I, then Users is updated to contain J and WriteSet is updated
879de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // to contain any memory locations to which J writes. The function returns
880de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // true if J uses I. By default, alias analysis is used to determine
881de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // whether J reads from memory that overlaps with a location in WriteSet.
882de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // If LoadMoveSet is not null, then it is a previously-computed multimap
883de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // where the key is the memory-based user instruction and the value is
884de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // the instruction to be compared with I. So, if LoadMoveSet is provided,
885de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // then the alias analysis is not used. This is necessary because this
886de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // function is called during the process of moving instructions during
887de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // vectorization and the results of the alias analysis are not stable during
888de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // that process.
889de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
890de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       AliasSetTracker &WriteSet, Instruction *I,
891de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       Instruction *J, bool UpdateUsers,
892de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<Value *, Value *> *LoadMoveSet) {
893de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool UsesI = false;
894de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
895de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // This instruction may already be marked as a user due, for example, to
896de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // being a member of a selected pair.
897de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (Users.count(J))
898de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      UsesI = true;
899de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
900de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (!UsesI)
9017e004d177fe76145f75a9417ed2e281f1b9abaf7Hal Finkel      for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
9027e004d177fe76145f75a9417ed2e281f1b9abaf7Hal Finkel           JU != JE; ++JU) {
903de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Value *V = *JU;
904de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (I == V || Users.count(V)) {
905de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          UsesI = true;
906de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          break;
907de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
908de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
909de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (!UsesI && J->mayReadFromMemory()) {
910de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (LoadMoveSet) {
911de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPIteratorPair JPairRange = LoadMoveSet->equal_range(J);
912de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        UsesI = isSecondInIteratorPair<Value*>(I, JPairRange);
913de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
914de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (AliasSetTracker::iterator W = WriteSet.begin(),
915de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             WE = WriteSet.end(); W != WE; ++W) {
91638a7f22445b8782682d1f8f253454ea0390d4ac5Hal Finkel          if (W->aliasesUnknownInst(J, *AA)) {
91738a7f22445b8782682d1f8f253454ea0390d4ac5Hal Finkel            UsesI = true;
91838a7f22445b8782682d1f8f253454ea0390d4ac5Hal Finkel            break;
919de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
920de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
921de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
922de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
923de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
924de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (UsesI && UpdateUsers) {
925de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (J->mayWriteToMemory()) WriteSet.add(J);
926de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Users.insert(J);
927de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
928de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
929de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return UsesI;
930de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
931de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
932de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function iterates over all instruction pairs in the provided
933de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // basic block and collects all candidate pairs for vectorization.
9345d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel  bool BBVectorize::getCandidatePairs(BasicBlock &BB,
9355d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel                       BasicBlock::iterator &Start,
936de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<Value *, Value *> &CandidatePairs,
93765309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                       DenseMap<ValuePair, int> &CandidatePairCostSavings,
93864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                       std::vector<Value *> &PairableInsts, bool NonPow2Len) {
939de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    BasicBlock::iterator E = BB.end();
9405d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    if (Start == E) return false;
9415d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
9425d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    bool ShouldContinue = false, IAfterStart = false;
9435d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    for (BasicBlock::iterator I = Start++; I != E; ++I) {
9445d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      if (I == Start) IAfterStart = true;
9455d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
946de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      bool IsSimpleLoadStore;
947de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
948de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
949de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Look for an instruction with which to pair instruction *I...
950de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseSet<Value *> Users;
951de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AliasSetTracker WriteSet(*AA);
9525d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      bool JAfterStart = IAfterStart;
9535d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      BasicBlock::iterator J = llvm::next(I);
954bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
9555d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        if (J == Start) JAfterStart = true;
9565d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
957de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Determine if J uses I, if so, exit the loop.
958bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
959bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        if (Config.FastDep) {
960de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // Note: For this heuristic to be effective, independent operations
961de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // must tend to be intermixed. This is likely to be true from some
962de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // kinds of grouped loop unrolling (but not the generic LLVM pass),
963de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // but otherwise may require some kind of reordering pass.
964de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
965de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // When using fast dependency analysis,
966de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // stop searching after first use:
967de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (UsesI) break;
968de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        } else {
969de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (UsesI) continue;
970de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
971de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
972de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // J does not use I, and comes before the first use of I, so it can be
973de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // merged with I if the instructions are compatible.
97465309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        int CostSavings;
97565309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len,
97665309660fa61a837cc05323f69c618a7d8134d56Hal Finkel            CostSavings)) continue;
977de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
978de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // J is a candidate for merging with I.
979de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!PairableInsts.size() ||
980de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             PairableInsts[PairableInsts.size()-1] != I) {
981de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          PairableInsts.push_back(I);
982de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
9835d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
984de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        CandidatePairs.insert(ValuePair(I, J));
98565309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        if (VTTI)
98665309660fa61a837cc05323f69c618a7d8134d56Hal Finkel          CandidatePairCostSavings.insert(ValuePairWithCost(ValuePair(I, J),
98765309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                                                            CostSavings));
9885d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
9895d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        // The next call to this function must start after the last instruction
9905d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        // selected during this invocation.
9915d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        if (JAfterStart) {
9925d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel          Start = llvm::next(J);
9935d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel          IAfterStart = JAfterStart = false;
9945d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        }
9955d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
996de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
99765309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                     << *I << " <-> " << *J << " (cost savings: " <<
99865309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                     CostSavings << ")\n");
9995d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
10005d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        // If we have already found too many pairs, break here and this function
10015d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        // will be called again starting after the last instruction selected
10025d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        // during this invocation.
1003bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        if (PairableInsts.size() >= Config.MaxInsts) {
10045d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel          ShouldContinue = true;
10055d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel          break;
10065d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        }
1007de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
10085d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
10095d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      if (ShouldContinue)
10105d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        break;
1011de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1012de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1013de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
1014de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           << " instructions with candidate pairs\n");
10155d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
10165d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    return ShouldContinue;
1017de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1018de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1019de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
1020de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // it looks for pairs such that both members have an input which is an
1021de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // output of PI or PJ.
1022de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::computePairsConnectedTo(
1023de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
1024de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
1025de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1026de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      ValuePair P) {
1027bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel    StoreInst *SI, *SJ;
1028bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
1029de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // For each possible pairing for this variable, look at the uses of
1030de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // the first value...
1031de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (Value::use_iterator I = P.first->use_begin(),
1032de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = P.first->use_end(); I != E; ++I) {
1033bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel      if (isa<LoadInst>(*I)) {
1034bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        // A pair cannot be connected to a load because the load only takes one
1035bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        // operand (the address) and it is a scalar even after vectorization.
1036bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        continue;
1037bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel      } else if ((SI = dyn_cast<StoreInst>(*I)) &&
1038bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel                 P.first == SI->getPointerOperand()) {
1039bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        // Similarly, a pair cannot be connected to a store through its
1040bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        // pointer operand.
1041bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        continue;
1042bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel      }
1043bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
1044de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
1045de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1046de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // For each use of the first variable, look for uses of the second
1047de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // variable...
1048de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (Value::use_iterator J = P.second->use_begin(),
1049de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           E2 = P.second->use_end(); J != E2; ++J) {
1050bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        if ((SJ = dyn_cast<StoreInst>(*J)) &&
1051bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel            P.second == SJ->getPointerOperand())
1052bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel          continue;
1053bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
1054de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
1055de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1056de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Look for <I, J>:
1057de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
1058de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
1059de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1060de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Look for <J, I>:
1061de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (isSecondInIteratorPair<Value*>(*I, JPairRange))
1062de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          ConnectedPairs.insert(VPPair(P, ValuePair(*J, *I)));
1063de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1064de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1065bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      if (Config.SplatBreaksChain) continue;
1066de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Look for cases where just the first value in the pair is used by
1067de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // both members of another pair (splatting).
1068de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) {
1069bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        if ((SJ = dyn_cast<StoreInst>(*J)) &&
1070bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel            P.first == SJ->getPointerOperand())
1071bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel          continue;
1072bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
1073de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
1074de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
1075de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1076de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1077de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1078bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng    if (Config.SplatBreaksChain) return;
1079de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Look for cases where just the second value in the pair is used by
1080de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // both members of another pair (splatting).
1081de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (Value::use_iterator I = P.second->use_begin(),
1082de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = P.second->use_end(); I != E; ++I) {
1083bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel      if (isa<LoadInst>(*I))
1084bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        continue;
1085bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel      else if ((SI = dyn_cast<StoreInst>(*I)) &&
1086bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel               P.second == SI->getPointerOperand())
1087bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        continue;
1088bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
1089de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
1090de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1091de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
1092bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        if ((SJ = dyn_cast<StoreInst>(*J)) &&
1093bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel            P.second == SJ->getPointerOperand())
1094bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel          continue;
1095bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
1096de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
1097de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
1098de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1099de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1100de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1101de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1102de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function figures out which pairs are connected.  Two pairs are
1103de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // connected if some output of the first pair forms an input to both members
1104de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // of the second pair.
1105de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::computeConnectedPairs(
1106de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
1107de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
1108de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs) {
1109de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1110de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
1111de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         PE = PairableInsts.end(); PI != PE; ++PI) {
1112de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI);
1113de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1114de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
1115de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           P != choiceRange.second; ++P)
1116de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        computePairsConnectedTo(CandidatePairs, PairableInsts,
1117de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                ConnectedPairs, *P);
1118de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1119de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1120de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
1121de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                 << " pair connections.\n");
1122de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1123de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1124de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function builds a set of use tuples such that <A, B> is in the set
1125de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // if B is in the use tree of A. If B is in the use tree of A, then B
1126de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // depends on the output of A.
1127de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::buildDepMap(
1128de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      BasicBlock &BB,
1129de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
1130de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
1131de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers) {
1132de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DenseSet<Value *> IsInPair;
1133de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::multimap<Value *, Value *>::iterator C = CandidatePairs.begin(),
1134de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = CandidatePairs.end(); C != E; ++C) {
1135de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      IsInPair.insert(C->first);
1136de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      IsInPair.insert(C->second);
1137de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1138de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1139de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Iterate through the basic block, recording all Users of each
1140de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // pairable instruction.
1141de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1142de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    BasicBlock::iterator E = BB.end();
1143de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
1144de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (IsInPair.find(I) == IsInPair.end()) continue;
1145de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1146de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseSet<Value *> Users;
1147de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AliasSetTracker WriteSet(*AA);
1148de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (BasicBlock::iterator J = llvm::next(I); J != E; ++J)
1149de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        (void) trackUsesOfI(Users, WriteSet, I, J);
1150de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1151de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
1152de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           U != E; ++U)
1153de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        PairableInstUsers.insert(ValuePair(I, *U));
1154de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1155de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1156de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1157de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Returns true if an input to pair P is an output of pair Q and also an
1158de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // input of pair Q is an output of pair P. If this is the case, then these
1159de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // two pairs cannot be simultaneously fused.
1160de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
1161de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseSet<ValuePair> &PairableInstUsers,
1162de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<ValuePair, ValuePair> *PairableInstUserMap) {
1163de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Two pairs are in conflict if they are mutual Users of eachother.
1164de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
1165de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
1166de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
1167de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(P.second, Q.second));
1168de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
1169de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
1170de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
1171de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(Q.second, P.second));
1172de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (PairableInstUserMap) {
1173de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // FIXME: The expensive part of the cycle check is not so much the cycle
1174de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // check itself but this edge insertion procedure. This needs some
1175de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // profiling and probably a different data structure (same is true of
1176de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // most uses of std::multimap).
1177de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (PUsesQ) {
1178de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q);
1179de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!isSecondInIteratorPair(P, QPairRange))
1180de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          PairableInstUserMap->insert(VPPair(Q, P));
1181de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1182de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (QUsesP) {
1183de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P);
1184de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!isSecondInIteratorPair(Q, PPairRange))
1185de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          PairableInstUserMap->insert(VPPair(P, Q));
1186de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1187de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1188de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1189de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return (QUsesP && PUsesQ);
1190de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1191de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1192de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function walks the use graph of current pairs to see if, starting
1193de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // from P, the walk returns to P.
1194de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::pairWillFormCycle(ValuePair P,
1195de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1196de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       DenseSet<ValuePair> &CurrentPairs) {
1197de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(if (DebugCycleCheck)
1198de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
1199de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                   << *P.second << "\n");
1200de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // A lookup table of visisted pairs is kept because the PairableInstUserMap
1201de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // contains non-direct associations.
1202de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DenseSet<ValuePair> Visited;
120335564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    SmallVector<ValuePair, 32> Q;
1204de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // General depth-first post-order traversal:
1205de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Q.push_back(P);
120635564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    do {
120735564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      ValuePair QTop = Q.pop_back_val();
1208de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Visited.insert(QTop);
1209de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1210de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(if (DebugCycleCheck)
1211de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
1212de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     << *QTop.second << "\n");
1213de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop);
1214de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (std::multimap<ValuePair, ValuePair>::iterator C = QPairRange.first;
1215de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           C != QPairRange.second; ++C) {
1216de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (C->second == P) {
1217de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          DEBUG(dbgs()
1218de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                 << "BBV: rejected to prevent non-trivial cycle formation: "
1219de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                 << *C->first.first << " <-> " << *C->first.second << "\n");
1220de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          return true;
1221de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1222de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
12230b2500c504156c45cd71817a9ef6749b6cde5703David Blaikie        if (CurrentPairs.count(C->second) && !Visited.count(C->second))
1224de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          Q.push_back(C->second);
1225de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
122635564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    } while (!Q.empty());
1227de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1228de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return false;
1229de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1230de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1231de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function builds the initial tree of connected pairs with the
1232de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // pair J at the root.
1233de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::buildInitialTreeFor(
1234de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
1235de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
1236de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1237de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
1238de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
1239de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<ValuePair, size_t> &Tree, ValuePair J) {
1240de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Each of these pairs is viewed as the root node of a Tree. The Tree
1241de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // is then walked (depth-first). As this happens, we keep track of
1242de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // the pairs that compose the Tree and the maximum depth of the Tree.
124335564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    SmallVector<ValuePairWithDepth, 32> Q;
1244de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // General depth-first post-order traversal:
1245de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
124635564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    do {
1247de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      ValuePairWithDepth QTop = Q.back();
1248de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1249de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Push each child onto the queue:
1250de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      bool MoreChildren = false;
1251de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      size_t MaxChildDepth = QTop.second;
1252de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first);
1253478eed85f96f0d93da43e26cfb7fc6dee981c9aaNAKAMURA Takumi      for (std::multimap<ValuePair, ValuePair>::iterator k = qtRange.first;
1254de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           k != qtRange.second; ++k) {
1255de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Make sure that this child pair is still a candidate:
1256de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        bool IsStillCand = false;
1257de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPIteratorPair checkRange =
1258de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          CandidatePairs.equal_range(k->second.first);
1259de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (std::multimap<Value *, Value *>::iterator m = checkRange.first;
1260de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             m != checkRange.second; ++m) {
1261de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (m->second == k->second.second) {
1262de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            IsStillCand = true;
1263de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            break;
1264de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1265de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1266de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1267de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (IsStillCand) {
1268de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          DenseMap<ValuePair, size_t>::iterator C = Tree.find(k->second);
1269de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (C == Tree.end()) {
1270de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            size_t d = getDepthFactor(k->second.first);
1271de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            Q.push_back(ValuePairWithDepth(k->second, QTop.second+d));
1272de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            MoreChildren = true;
1273de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          } else {
1274de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            MaxChildDepth = std::max(MaxChildDepth, C->second);
1275de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1276de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1277de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1278de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1279de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!MoreChildren) {
1280de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Record the current pair as part of the Tree:
1281de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
1282de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Q.pop_back();
1283de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
128435564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    } while (!Q.empty());
1285de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1286de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1287de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Given some initial tree, prune it by removing conflicting pairs (pairs
1288de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // that cannot be simultaneously chosen for vectorization).
1289de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::pruneTreeFor(
1290de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
1291de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
1292de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1293de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
1294de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1295de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
1296de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<ValuePair, size_t> &Tree,
1297de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
1298de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      bool UseCycleCheck) {
129935564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    SmallVector<ValuePairWithDepth, 32> Q;
1300de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // General depth-first post-order traversal:
1301de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
130235564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    do {
130335564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      ValuePairWithDepth QTop = Q.pop_back_val();
1304de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      PrunedTree.insert(QTop.first);
1305de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1306de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Visit each child, pruning as necessary...
130743ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop      DenseMap<ValuePair, size_t> BestChildren;
1308de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
1309478eed85f96f0d93da43e26cfb7fc6dee981c9aaNAKAMURA Takumi      for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first;
1310de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           K != QTopRange.second; ++K) {
1311de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DenseMap<ValuePair, size_t>::iterator C = Tree.find(K->second);
1312de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (C == Tree.end()) continue;
1313de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1314de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // This child is in the Tree, now we need to make sure it is the
1315de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // best of any conflicting children. There could be multiple
1316de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // conflicting children, so first, determine if we're keeping
1317de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // this child, then delete conflicting children as necessary.
1318de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1319de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // It is also necessary to guard against pairing-induced
1320de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // dependencies. Consider instructions a .. x .. y .. b
1321de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // such that (a,b) are to be fused and (x,y) are to be fused
1322de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // but a is an input to x and b is an output from y. This
1323de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // means that y cannot be moved after b but x must be moved
1324de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // after b for (a,b) to be fused. In other words, after
1325de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // fusing (a,b) we have y .. a/b .. x where y is an input
1326de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // to a/b and x is an output to a/b: x and y can no longer
1327de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // be legally fused. To prevent this condition, we must
1328de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // make sure that a child pair added to the Tree is not
1329de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // both an input and output of an already-selected pair.
1330de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1331de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Pairing-induced dependencies can also form from more complicated
1332de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // cycles. The pair vs. pair conflicts are easy to check, and so
1333de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // that is done explicitly for "fast rejection", and because for
1334de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // child vs. child conflicts, we may prefer to keep the current
1335de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // pair in preference to the already-selected child.
1336de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DenseSet<ValuePair> CurrentPairs;
1337de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1338de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        bool CanAdd = true;
1339de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (DenseMap<ValuePair, size_t>::iterator C2
134043ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop              = BestChildren.begin(), E2 = BestChildren.end();
1341de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             C2 != E2; ++C2) {
1342de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (C2->first.first == C->first.first ||
1343de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.first == C->first.second ||
1344de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.first ||
1345de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.second ||
1346de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              pairsConflict(C2->first, C->first, PairableInstUsers,
1347de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1348de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            if (C2->second >= C->second) {
1349de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              CanAdd = false;
1350de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              break;
1351de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            }
1352de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1353de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            CurrentPairs.insert(C2->first);
1354de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1355de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1356de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!CanAdd) continue;
1357de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1358de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Even worse, this child could conflict with another node already
1359de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // selected for the Tree. If that is the case, ignore this child.
1360de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (DenseSet<ValuePair>::iterator T = PrunedTree.begin(),
1361de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             E2 = PrunedTree.end(); T != E2; ++T) {
1362de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (T->first == C->first.first ||
1363de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              T->first == C->first.second ||
1364de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              T->second == C->first.first ||
1365de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              T->second == C->first.second ||
1366de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              pairsConflict(*T, C->first, PairableInstUsers,
1367de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1368de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            CanAdd = false;
1369de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            break;
1370de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1371de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1372de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          CurrentPairs.insert(*T);
1373de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1374de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!CanAdd) continue;
1375de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1376de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // And check the queue too...
137735564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel        for (SmallVector<ValuePairWithDepth, 32>::iterator C2 = Q.begin(),
1378de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             E2 = Q.end(); C2 != E2; ++C2) {
1379de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (C2->first.first == C->first.first ||
1380de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.first == C->first.second ||
1381de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.first ||
1382de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.second ||
1383de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              pairsConflict(C2->first, C->first, PairableInstUsers,
1384de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1385de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            CanAdd = false;
1386de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            break;
1387de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1388de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1389de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          CurrentPairs.insert(C2->first);
1390de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1391de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!CanAdd) continue;
1392de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1393de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Last but not least, check for a conflict with any of the
1394de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // already-chosen pairs.
1395de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (DenseMap<Value *, Value *>::iterator C2 =
1396de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              ChosenPairs.begin(), E2 = ChosenPairs.end();
1397de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             C2 != E2; ++C2) {
1398de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (pairsConflict(*C2, C->first, PairableInstUsers,
1399de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1400de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            CanAdd = false;
1401de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            break;
1402de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1403de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1404de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          CurrentPairs.insert(*C2);
1405de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1406de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!CanAdd) continue;
1407de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
14081230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop        // To check for non-trivial cycles formed by the addition of the
14091230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop        // current pair we've formed a list of all relevant pairs, now use a
14101230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop        // graph walk to check for a cycle. We start from the current pair and
14111230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop        // walk the use tree to see if we again reach the current pair. If we
14121230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop        // do, then the current pair is rejected.
1413de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1414de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // FIXME: It may be more efficient to use a topological-ordering
1415de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // algorithm to improve the cycle check. This should be investigated.
1416de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (UseCycleCheck &&
1417de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
1418de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          continue;
1419de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1420de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // This child can be added, but we may have chosen it in preference
1421de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // to an already-selected child. Check for this here, and if a
1422de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // conflict is found, then remove the previously-selected child
1423de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // before adding this one in its place.
1424de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (DenseMap<ValuePair, size_t>::iterator C2
142543ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop              = BestChildren.begin(); C2 != BestChildren.end();) {
1426de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (C2->first.first == C->first.first ||
1427de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.first == C->first.second ||
1428de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.first ||
1429de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.second ||
1430de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              pairsConflict(C2->first, C->first, PairableInstUsers))
143143ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop            BestChildren.erase(C2++);
1432de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          else
1433de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            ++C2;
1434de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1435de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
143643ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop        BestChildren.insert(ValuePairWithDepth(C->first, C->second));
1437de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1438de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1439de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (DenseMap<ValuePair, size_t>::iterator C
144043ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop            = BestChildren.begin(), E2 = BestChildren.end();
1441de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           C != E2; ++C) {
1442de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        size_t DepthF = getDepthFactor(C->first.first);
1443de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
1444de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
144535564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    } while (!Q.empty());
1446de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1447de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1448de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function finds the best tree of mututally-compatible connected
1449de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // pairs, given the choice of root pairs as an iterator range.
1450de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::findBestTreeFor(
1451de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
145265309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                      DenseMap<ValuePair, int> &CandidatePairCostSavings,
1453de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
1454de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1455de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
1456de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1457de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
1458de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
145965309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                      int &BestEffSize, VPIteratorPair ChoiceRange,
1460de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      bool UseCycleCheck) {
1461de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
1462de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         J != ChoiceRange.second; ++J) {
1463de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1464de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Before going any further, make sure that this pair does not
1465de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // conflict with any already-selected pairs (see comment below
1466de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // near the Tree pruning for more details).
1467de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseSet<ValuePair> ChosenPairSet;
1468de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      bool DoesConflict = false;
1469de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
1470de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           E = ChosenPairs.end(); C != E; ++C) {
1471de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (pairsConflict(*C, *J, PairableInstUsers,
1472de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                          UseCycleCheck ? &PairableInstUserMap : 0)) {
1473de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          DoesConflict = true;
1474de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          break;
1475de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1476de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1477de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ChosenPairSet.insert(*C);
1478de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1479de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (DoesConflict) continue;
1480de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1481de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (UseCycleCheck &&
1482de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet))
1483de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
1484de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1485de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseMap<ValuePair, size_t> Tree;
1486de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1487de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                          PairableInstUsers, ChosenPairs, Tree, *J);
1488de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1489de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Because we'll keep the child with the largest depth, the largest
1490de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // depth is still the same in the unpruned Tree.
1491de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      size_t MaxDepth = Tree.lookup(*J);
1492de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1493de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {"
1494de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                   << *J->first << " <-> " << *J->second << "} of depth " <<
1495de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                   MaxDepth << " and size " << Tree.size() << "\n");
1496de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1497de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // At this point the Tree has been constructed, but, may contain
1498de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // contradictory children (meaning that different children of
1499de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // some tree node may be attempting to fuse the same instruction).
1500de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // So now we walk the tree again, in the case of a conflict,
1501de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // keep only the child with the largest depth. To break a tie,
1502de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // favor the first child.
1503de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1504de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseSet<ValuePair> PrunedTree;
1505de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1506de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                   PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
1507de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                   PrunedTree, *J, UseCycleCheck);
1508de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
150965309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      int EffSize = 0;
151065309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      if (VTTI) {
151165309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
151265309660fa61a837cc05323f69c618a7d8134d56Hal Finkel             E = PrunedTree.end(); S != E; ++S) {
151365309660fa61a837cc05323f69c618a7d8134d56Hal Finkel          if (getDepthFactor(S->first))
151465309660fa61a837cc05323f69c618a7d8134d56Hal Finkel            EffSize += CandidatePairCostSavings.find(*S)->second;
151565309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        }
151665309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      } else {
151765309660fa61a837cc05323f69c618a7d8134d56Hal Finkel        for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
151865309660fa61a837cc05323f69c618a7d8134d56Hal Finkel             E = PrunedTree.end(); S != E; ++S)
151965309660fa61a837cc05323f69c618a7d8134d56Hal Finkel          EffSize += (int) getDepthFactor(S->first);
152065309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      }
1521de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1522de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(if (DebugPairSelection)
1523de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             dbgs() << "BBV: found pruned Tree for pair {"
1524de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             << *J->first << " <-> " << *J->second << "} of depth " <<
1525de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             MaxDepth << " and size " << PrunedTree.size() <<
1526de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            " (effective size: " << EffSize << ")\n");
152765309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      if (MaxDepth >= Config.ReqChainDepth &&
152865309660fa61a837cc05323f69c618a7d8134d56Hal Finkel          EffSize > 0 && EffSize > BestEffSize) {
1529de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        BestMaxDepth = MaxDepth;
1530de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        BestEffSize = EffSize;
1531de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        BestTree = PrunedTree;
1532de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1533de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1534de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1535de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1536de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Given the list of candidate pairs, this function selects those
1537de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // that will be fused into vector instructions.
1538de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::choosePairs(
1539de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
154065309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                      DenseMap<ValuePair, int> &CandidatePairCostSavings,
1541de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
1542de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1543de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
1544de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *>& ChosenPairs) {
1545bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng    bool UseCycleCheck =
1546bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng     CandidatePairs.size() <= Config.MaxCandPairsForCycleCheck;
1547de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    std::multimap<ValuePair, ValuePair> PairableInstUserMap;
1548de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::vector<Value *>::iterator I = PairableInsts.begin(),
1549de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = PairableInsts.end(); I != E; ++I) {
1550de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // The number of possible pairings for this variable:
1551de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      size_t NumChoices = CandidatePairs.count(*I);
1552de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!NumChoices) continue;
1553de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1554de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
1555de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1556de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // The best pair to choose and its tree:
155765309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      size_t BestMaxDepth = 0;
155865309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      int BestEffSize = 0;
1559de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseSet<ValuePair> BestTree;
156065309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      findBestTreeFor(CandidatePairs, CandidatePairCostSavings,
156165309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                      PairableInsts, ConnectedPairs,
1562de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      PairableInstUsers, PairableInstUserMap, ChosenPairs,
1563de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
1564de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      UseCycleCheck);
1565de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1566de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // A tree has been chosen (or not) at this point. If no tree was
1567de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // chosen, then this instruction, I, cannot be paired (and is no longer
1568de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // considered).
1569de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1570de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(if (BestTree.size() > 0)
1571de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              dbgs() << "BBV: selected pairs in the best tree for: "
1572de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     << *cast<Instruction>(*I) << "\n");
1573de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1574de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (DenseSet<ValuePair>::iterator S = BestTree.begin(),
1575de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           SE2 = BestTree.end(); S != SE2; ++S) {
1576de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Insert the members of this tree into the list of chosen pairs.
1577de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ChosenPairs.insert(ValuePair(S->first, S->second));
1578de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
1579de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel               *S->second << "\n");
1580de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1581de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Remove all candidate pairs that have values in the chosen tree.
1582de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (std::multimap<Value *, Value *>::iterator K =
1583de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel               CandidatePairs.begin(); K != CandidatePairs.end();) {
1584de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (K->first == S->first || K->second == S->first ||
1585de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              K->second == S->second || K->first == S->second) {
1586de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            // Don't remove the actual pair chosen so that it can be used
1587de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            // in subsequent tree selections.
1588de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            if (!(K->first == S->first && K->second == S->second))
1589de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              CandidatePairs.erase(K++);
1590de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            else
1591de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              ++K;
1592de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          } else {
1593de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            ++K;
1594de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1595de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1596de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1597de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1598de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1599de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
1600de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1601de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1602de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
1603de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     unsigned n = 0) {
1604de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (!I->hasName())
1605de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return "";
1606de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1607de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
1608de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             (n > 0 ? "." + utostr(n) : "")).str();
1609de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1610de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1611de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Returns the value that is to be used as the pointer input to the vector
1612de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // instruction that fuses I with J.
1613de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
1614de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J, unsigned o,
1615282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                     bool FlipMemInputs) {
1616de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *IPtr, *JPtr;
161765309660fa61a837cc05323f69c618a7d8134d56Hal Finkel    unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
1618de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    int64_t OffsetInElmts;
1619282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
1620282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel    // Note: the analysis might fail here, that is why FlipMemInputs has
1621282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel    // been precomputed (OffsetInElmts must be unused here).
1622de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
162365309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                          IAddressSpace, JAddressSpace,
1624de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                          OffsetInElmts);
1625de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1626de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // The pointer value is taken to be the one with the lowest offset.
1627de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *VPtr;
1628282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel    if (!FlipMemInputs) {
1629de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPtr = IPtr;
1630de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else {
1631de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPtr = JPtr;
1632de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1633de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
163464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *ArgTypeI = cast<PointerType>(IPtr->getType())->getElementType();
163564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *ArgTypeJ = cast<PointerType>(JPtr->getType())->getElementType();
163664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
1637de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Type *VArgPtrType = PointerType::get(VArgType,
1638de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      cast<PointerType>(IPtr->getType())->getAddressSpace());
1639de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
1640de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        /* insert before */ FlipMemInputs ? J : I);
1641de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1642de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1643de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
164464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                     unsigned MaskOffset, unsigned NumInElem,
164564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                     unsigned NumInElem1, unsigned IdxOffset,
164664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                     std::vector<Constant*> &Mask) {
164764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    unsigned NumElem1 = cast<VectorType>(J->getType())->getNumElements();
164864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    for (unsigned v = 0; v < NumElem1; ++v) {
1649de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
1650de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (m < 0) {
1651de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
1652de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
1653de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        unsigned mm = m + (int) IdxOffset;
165464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (m >= (int) NumInElem1)
1655de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          mm += (int) NumInElem;
1656de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1657de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Mask[v+MaskOffset] =
1658de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          ConstantInt::get(Type::getInt32Ty(Context), mm);
1659de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1660de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1661de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1662de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1663de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Returns the value that is to be used as the vector-shuffle mask to the
1664de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // vector instruction that fuses I with J.
1665de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
1666de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J) {
1667de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // This is the shuffle mask. We need to append the second
1668de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // mask to the first, and the numbers need to be adjusted.
1669de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
167064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *ArgTypeI = I->getType();
167164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *ArgTypeJ = J->getType();
167264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
167364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
167464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    unsigned NumElemI = cast<VectorType>(ArgTypeI)->getNumElements();
1675de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1676de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Get the total number of elements in the fused vector type.
1677de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // By definition, this must equal the number of elements in
1678de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // the final mask.
1679de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    unsigned NumElem = cast<VectorType>(VArgType)->getNumElements();
1680de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    std::vector<Constant*> Mask(NumElem);
1681de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
168264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *OpTypeI = I->getOperand(0)->getType();
168364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    unsigned NumInElemI = cast<VectorType>(OpTypeI)->getNumElements();
168464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *OpTypeJ = J->getOperand(0)->getType();
168564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    unsigned NumInElemJ = cast<VectorType>(OpTypeJ)->getNumElements();
168664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
168764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // The fused vector will be:
168864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // -----------------------------------------------------
168964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // | NumInElemI | NumInElemJ | NumInElemI | NumInElemJ |
169064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // -----------------------------------------------------
169164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // from which we'll extract NumElem total elements (where the first NumElemI
169264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // of them come from the mask in I and the remainder come from the mask
169364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // in J.
1694de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1695de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // For the mask from the first pair...
169664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    fillNewShuffleMask(Context, I, 0,        NumInElemJ, NumInElemI,
169764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                       0,          Mask);
1698de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1699de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // For the mask from the second pair...
170064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    fillNewShuffleMask(Context, J, NumElemI, NumInElemI, NumInElemJ,
170164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                       NumInElemI, Mask);
1702de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1703de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return ConstantVector::get(Mask);
1704de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1705de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
170664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel  bool BBVectorize::expandIEChain(LLVMContext& Context, Instruction *I,
170764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  Instruction *J, unsigned o, Value *&LOp,
170864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  unsigned numElemL,
170964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  Type *ArgTypeL, Type *ArgTypeH,
171064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  unsigned IdxOff) {
171164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    bool ExpandedIEChain = false;
171264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) {
171364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      // If we have a pure insertelement chain, then this can be rewritten
171464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      // into a chain that directly builds the larger type.
171564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      bool PureChain = true;
171664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      InsertElementInst *LIENext = LIE;
171764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      do {
171864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (!isa<UndefValue>(LIENext->getOperand(0)) &&
171964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            !isa<InsertElementInst>(LIENext->getOperand(0))) {
172064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          PureChain = false;
172164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          break;
172264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
172364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } while ((LIENext =
172464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                 dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
172564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
172664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (PureChain) {
172764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        SmallVector<Value *, 8> VectElemts(numElemL,
172864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          UndefValue::get(ArgTypeL->getScalarType()));
172964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        InsertElementInst *LIENext = LIE;
173064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        do {
173164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          unsigned Idx =
173264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            cast<ConstantInt>(LIENext->getOperand(2))->getSExtValue();
173364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          VectElemts[Idx] = LIENext->getOperand(1);
173464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        } while ((LIENext =
173564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                   dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
173664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
173764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        LIENext = 0;
173864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Value *LIEPrev = UndefValue::get(ArgTypeH);
173964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        for (unsigned i = 0; i < numElemL; ++i) {
174064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          if (isa<UndefValue>(VectElemts[i])) continue;
174164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i],
174264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                             ConstantInt::get(Type::getInt32Ty(Context),
174364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                              i + IdxOff),
174464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                             getReplacementName(I, true, o, i+1));
174564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          LIENext->insertBefore(J);
174664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          LIEPrev = LIENext;
174764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
174864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
174964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        LOp = LIENext ? (Value*) LIENext : UndefValue::get(ArgTypeH);
175064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        ExpandedIEChain = true;
175164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
175264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    }
175364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
175464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    return ExpandedIEChain;
175564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel  }
175664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
1757de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Returns the value to be used as the specified operand of the vector
1758de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // instruction that fuses I with J.
1759de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
1760de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J, unsigned o, bool FlipMemInputs) {
1761de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
1762de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
1763de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
176464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // Compute the fused vector type for this operand
176564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *ArgTypeI = I->getOperand(o)->getType();
176664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *ArgTypeJ = J->getOperand(o)->getType();
176764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    VectorType *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
1768de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1769de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Instruction *L = I, *H = J;
177064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ;
1771de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (FlipMemInputs) {
1772de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      L = J;
1773de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      H = I;
177464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      ArgTypeL = ArgTypeJ;
177564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      ArgTypeH = ArgTypeI;
1776de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1777de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
177864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    unsigned numElemL;
177964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    if (ArgTypeL->isVectorTy())
178064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      numElemL = cast<VectorType>(ArgTypeL)->getNumElements();
178164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    else
178264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      numElemL = 1;
1783de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
178464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    unsigned numElemH;
178564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    if (ArgTypeH->isVectorTy())
178664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      numElemH = cast<VectorType>(ArgTypeH)->getNumElements();
178764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    else
178864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      numElemH = 1;
178964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
179064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Value *LOp = L->getOperand(o);
179164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Value *HOp = H->getOperand(o);
179264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    unsigned numElem = VArgType->getNumElements();
179364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
179464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // First, we check if we can reuse the "original" vector outputs (if these
179564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // exist). We might need a shuffle.
179664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    ExtractElementInst *LEE = dyn_cast<ExtractElementInst>(LOp);
179764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    ExtractElementInst *HEE = dyn_cast<ExtractElementInst>(HOp);
179864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    ShuffleVectorInst *LSV = dyn_cast<ShuffleVectorInst>(LOp);
179964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    ShuffleVectorInst *HSV = dyn_cast<ShuffleVectorInst>(HOp);
180064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
180164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // FIXME: If we're fusing shuffle instructions, then we can't apply this
180264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // optimization. The input vectors to the shuffle might be a different
180364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // length from the shuffle outputs. Unfortunately, the replacement
180464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // shuffle mask has already been formed, and the mask entries are sensitive
180564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    // to the sizes of the inputs.
180664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    bool IsSizeChangeShuffle =
180764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      isa<ShuffleVectorInst>(L) &&
180864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        (LOp->getType() != L->getType() || HOp->getType() != H->getType());
180964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
181064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) {
181164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      // We can have at most two unique vector inputs.
181264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      bool CanUseInputs = true;
181364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      Value *I1, *I2 = 0;
181464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (LEE) {
181564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        I1 = LEE->getOperand(0);
181664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } else {
181764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        I1 = LSV->getOperand(0);
181864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        I2 = LSV->getOperand(1);
181964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (I2 == I1 || isa<UndefValue>(I2))
182064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I2 = 0;
182164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
182264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
182364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (HEE) {
182464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Value *I3 = HEE->getOperand(0);
182564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (!I2 && I3 != I1)
182664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I2 = I3;
182764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        else if (I3 != I1 && I3 != I2)
182864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          CanUseInputs = false;
182964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } else {
183064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Value *I3 = HSV->getOperand(0);
183164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (!I2 && I3 != I1)
183264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I2 = I3;
183364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        else if (I3 != I1 && I3 != I2)
183464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          CanUseInputs = false;
183564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
183664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (CanUseInputs) {
183764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Value *I4 = HSV->getOperand(1);
183864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          if (!isa<UndefValue>(I4)) {
183964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            if (!I2 && I4 != I1)
184064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              I2 = I4;
184164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            else if (I4 != I1 && I4 != I2)
184264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              CanUseInputs = false;
184364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          }
184464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
184564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
184664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
184764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (CanUseInputs) {
184864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        unsigned LOpElem =
184964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          cast<VectorType>(cast<Instruction>(LOp)->getOperand(0)->getType())
185064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            ->getNumElements();
185164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        unsigned HOpElem =
185264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          cast<VectorType>(cast<Instruction>(HOp)->getOperand(0)->getType())
185364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            ->getNumElements();
185464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
185564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // We have one or two input vectors. We need to map each index of the
185664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // operands to the index of the original vector.
185764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        SmallVector<std::pair<int, int>, 8>  II(numElem);
185864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        for (unsigned i = 0; i < numElemL; ++i) {
185964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          int Idx, INum;
186064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          if (LEE) {
186164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Idx =
186264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              cast<ConstantInt>(LEE->getOperand(1))->getSExtValue();
186364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            INum = LEE->getOperand(0) == I1 ? 0 : 1;
186464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          } else {
186564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Idx = LSV->getMaskValue(i);
186664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            if (Idx < (int) LOpElem) {
186764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              INum = LSV->getOperand(0) == I1 ? 0 : 1;
186864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            } else {
186964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              Idx -= LOpElem;
187064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              INum = LSV->getOperand(1) == I1 ? 0 : 1;
187164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            }
187264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          }
187364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
187464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          II[i] = std::pair<int, int>(Idx, INum);
187564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
187664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        for (unsigned i = 0; i < numElemH; ++i) {
187764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          int Idx, INum;
187864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          if (HEE) {
187964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Idx =
188064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              cast<ConstantInt>(HEE->getOperand(1))->getSExtValue();
188164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            INum = HEE->getOperand(0) == I1 ? 0 : 1;
188264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          } else {
188364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Idx = HSV->getMaskValue(i);
188464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            if (Idx < (int) HOpElem) {
188564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              INum = HSV->getOperand(0) == I1 ? 0 : 1;
188664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            } else {
188764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              Idx -= HOpElem;
188864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              INum = HSV->getOperand(1) == I1 ? 0 : 1;
188964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            }
189064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          }
189164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
189264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          II[i + numElemL] = std::pair<int, int>(Idx, INum);
189364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
189464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
189564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // We now have an array which tells us from which index of which
189664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // input vector each element of the operand comes.
189764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        VectorType *I1T = cast<VectorType>(I1->getType());
189864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        unsigned I1Elem = I1T->getNumElements();
189964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
190064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (!I2) {
190164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          // In this case there is only one underlying vector input. Check for
190264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          // the trivial case where we can use the input directly.
190364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          if (I1Elem == numElem) {
190464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            bool ElemInOrder = true;
190564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            for (unsigned i = 0; i < numElem; ++i) {
190664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              if (II[i].first != (int) i && II[i].first != -1) {
190764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                ElemInOrder = false;
190864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                break;
190964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              }
191064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            }
191164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
191264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            if (ElemInOrder)
191364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              return I1;
191464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          }
191564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
191664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          // A shuffle is needed.
191764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          std::vector<Constant *> Mask(numElem);
191864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (unsigned i = 0; i < numElem; ++i) {
191964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            int Idx = II[i].first;
192064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            if (Idx == -1)
192164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              Mask[i] = UndefValue::get(Type::getInt32Ty(Context));
192264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            else
192364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel              Mask[i] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
192464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          }
192564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
192664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Instruction *S =
192764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            new ShuffleVectorInst(I1, UndefValue::get(I1T),
192864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  ConstantVector::get(Mask),
192964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  getReplacementName(I, true, o));
193064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          S->insertBefore(J);
193164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          return S;
193264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
193364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
193464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        VectorType *I2T = cast<VectorType>(I2->getType());
193564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        unsigned I2Elem = I2T->getNumElements();
193664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
193764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // This input comes from two distinct vectors. The first step is to
193864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // make sure that both vectors are the same length. If not, the
193964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // smaller one will need to grow before they can be shuffled together.
194064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (I1Elem < I2Elem) {
194164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          std::vector<Constant *> Mask(I2Elem);
194264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          unsigned v = 0;
194364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (; v < I1Elem; ++v)
194464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
194564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (; v < I2Elem; ++v)
194664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
194764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
194864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Instruction *NewI1 =
194964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            new ShuffleVectorInst(I1, UndefValue::get(I1T),
195064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  ConstantVector::get(Mask),
195164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  getReplacementName(I, true, o, 1));
195264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          NewI1->insertBefore(J);
195364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I1 = NewI1;
195464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I1T = I2T;
195564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I1Elem = I2Elem;
195664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        } else if (I1Elem > I2Elem) {
195764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          std::vector<Constant *> Mask(I1Elem);
195864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          unsigned v = 0;
195964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (; v < I2Elem; ++v)
196064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
196164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (; v < I1Elem; ++v)
196264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
196364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
196464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Instruction *NewI2 =
196564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            new ShuffleVectorInst(I2, UndefValue::get(I2T),
196664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  ConstantVector::get(Mask),
196764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                  getReplacementName(I, true, o, 1));
196864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          NewI2->insertBefore(J);
196964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I2 = NewI2;
197064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I2T = I1T;
197164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          I2Elem = I1Elem;
197264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
197364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
197464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // Now that both I1 and I2 are the same length we can shuffle them
197564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // together (and use the result).
197664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        std::vector<Constant *> Mask(numElem);
197764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        for (unsigned v = 0; v < numElem; ++v) {
197864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          if (II[v].first == -1) {
197964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
198064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          } else {
198164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            int Idx = II[v].first + II[v].second * I1Elem;
198264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
198364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          }
198464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
198564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
198664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Instruction *NewOp =
198764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask),
198864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                getReplacementName(I, true, o));
198964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        NewOp->insertBefore(J);
199064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        return NewOp;
199164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
1992de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1993de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
199464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Type *ArgType = ArgTypeL;
199564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    if (numElemL < numElemH) {
199664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH,
199764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                         ArgTypeL, VArgType, 1)) {
199864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // This is another short-circuit case: we're combining a scalar into
199964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // a vector that is formed by an IE chain. We've just expanded the IE
200064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // chain, now insert the scalar and we're done.
200164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
200264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Instruction *S = InsertElementInst::Create(HOp, LOp, CV0,
200364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                               getReplacementName(I, true, o));
200464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        S->insertBefore(J);
200564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        return S;
200664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL,
200764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                ArgTypeH)) {
200864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // The two vector inputs to the shuffle must be the same length,
200964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // so extend the smaller vector to be the same length as the larger one.
201064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Instruction *NLOp;
201164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (numElemL > 1) {
201264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
201364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          std::vector<Constant *> Mask(numElemH);
201464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          unsigned v = 0;
201564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (; v < numElemL; ++v)
201664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
201764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (; v < numElemH; ++v)
201864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
201964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
202064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL),
202164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                       ConstantVector::get(Mask),
202264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                       getReplacementName(I, true, o, 1));
202364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        } else {
202464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0,
202564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                           getReplacementName(I, true, o, 1));
202664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
202764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
202864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        NLOp->insertBefore(J);
202964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        LOp = NLOp;
203064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
203164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
203264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      ArgType = ArgTypeH;
203364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    } else if (numElemL > numElemH) {
203464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL,
203564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                         ArgTypeH, VArgType)) {
203664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Instruction *S =
203764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          InsertElementInst::Create(LOp, HOp,
203864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                    ConstantInt::get(Type::getInt32Ty(Context),
203964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                                     numElemL),
204064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                    getReplacementName(I, true, o));
204164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        S->insertBefore(J);
204264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        return S;
204364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH,
204464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                ArgTypeL)) {
204564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Instruction *NHOp;
204664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (numElemH > 1) {
204764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          std::vector<Constant *> Mask(numElemL);
204864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          unsigned v = 0;
204964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (; v < numElemH; ++v)
205064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
205164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          for (; v < numElemL; ++v)
205264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
205364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
205464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH),
205564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                       ConstantVector::get(Mask),
205664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                       getReplacementName(I, true, o, 1));
205764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        } else {
205864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0,
205964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                           getReplacementName(I, true, o, 1));
206064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
206164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
206264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        NHOp->insertBefore(J);
206364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        HOp = NHOp;
2064de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
206564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    }
2066de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
206764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    if (ArgType->isVectorTy()) {
206864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      unsigned numElem = cast<VectorType>(VArgType)->getNumElements();
206964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      std::vector<Constant*> Mask(numElem);
207064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      for (unsigned v = 0; v < numElem; ++v) {
207164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        unsigned Idx = v;
207264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // If the low vector was expanded, we need to skip the extra
207364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        // undefined entries.
207464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        if (v >= numElemL && numElemH > numElemL)
207564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Idx += (numElemH - numElemL);
207664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
207764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
2078de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
207964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      Instruction *BV = new ShuffleVectorInst(LOp, HOp,
208064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                              ConstantVector::get(Mask),
208164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                              getReplacementName(I, true, o));
2082de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      BV->insertBefore(J);
2083de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return BV;
2084de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
2085de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2086de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Instruction *BV1 = InsertElementInst::Create(
208764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                          UndefValue::get(VArgType), LOp, CV0,
2088de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          getReplacementName(I, true, o, 1));
2089de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    BV1->insertBefore(I);
209064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel    Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1,
2091de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          getReplacementName(I, true, o, 2));
2092de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    BV2->insertBefore(J);
2093de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return BV2;
2094de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
2095de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2096de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function creates an array of values that will be used as the inputs
2097de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // to the vector instruction that fuses I with J.
2098de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
2099de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J,
2100de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     SmallVector<Value *, 3> &ReplacedOperands,
2101282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                     bool FlipMemInputs) {
2102de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    unsigned NumOperands = I->getNumOperands();
2103de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2104de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
2105de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Iterate backward so that we look at the store pointer
2106de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // first and know whether or not we need to flip the inputs.
2107de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2108de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
2109de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // This is the pointer for a load/store instruction.
2110de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o,
2111de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                FlipMemInputs);
2112de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
21136173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel      } else if (isa<CallInst>(I)) {
2114de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Function *F = cast<CallInst>(I)->getCalledFunction();
2115de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        unsigned IID = F->getIntrinsicID();
21166173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel        if (o == NumOperands-1) {
21176173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          BasicBlock &BB = *I->getParent();
2118bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng
21196173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          Module *M = BB.getParent()->getParent();
212064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Type *ArgTypeI = I->getType();
212164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Type *ArgTypeJ = J->getType();
212264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2123bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng
21246173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          ReplacedOperands[o] = Intrinsic::getDeclaration(M,
21256173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel            (Intrinsic::ID) IID, VArgType);
21266173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          continue;
21276173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel        } else if (IID == Intrinsic::powi && o == 1) {
21286173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          // The second argument of powi is a single integer and we've already
21296173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          // checked that both arguments are equal. As a result, we just keep
21306173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          // I's second argument.
21316173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          ReplacedOperands[o] = I->getOperand(o);
21326173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          continue;
21336173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel        }
2134de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
2135de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
2136de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
2137de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2138de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2139de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      ReplacedOperands[o] =
2140de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        getReplacementInput(Context, I, J, o, FlipMemInputs);
2141de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
2142de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
2143de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2144de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function creates two values that represent the outputs of the
2145de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // original I and J instructions. These are generally vector shuffles
2146de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // or extracts. In many cases, these will end up being unused and, thus,
2147de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // eliminated by later passes.
2148de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
2149de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J, Instruction *K,
2150de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *&InsertionPt,
2151de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *&K1, Instruction *&K2,
2152282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                     bool FlipMemInputs) {
2153de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (isa<StoreInst>(I)) {
2154de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AA->replaceWithNewValue(I, K);
2155de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AA->replaceWithNewValue(J, K);
2156de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else {
2157de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Type *IType = I->getType();
215864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      Type *JType = J->getType();
215964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
216064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      VectorType *VType = getVecTypeForPair(IType, JType);
216164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      unsigned numElem = VType->getNumElements();
216264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
216364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      unsigned numElemI, numElemJ;
216464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (IType->isVectorTy())
216564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        numElemI = cast<VectorType>(IType)->getNumElements();
216664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      else
216764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        numElemI = 1;
216864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
216964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (JType->isVectorTy())
217064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        numElemJ = cast<VectorType>(JType)->getNumElements();
217164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      else
217264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        numElemJ = 1;
2173de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2174de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (IType->isVectorTy()) {
217564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        std::vector<Constant*> Mask1(numElemI), Mask2(numElemI);
217664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        for (unsigned v = 0; v < numElemI; ++v) {
217764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
217864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemJ+v);
217964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
2180de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
218164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
218264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                   ConstantVector::get(
218364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                     FlipMemInputs ? Mask2 : Mask1),
218464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                   getReplacementName(K, false, 1));
2185de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
218664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
218764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
2188de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        K1 = ExtractElementInst::Create(K, FlipMemInputs ? CV1 : CV0,
2189de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          getReplacementName(K, false, 1));
219064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      }
219164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
219264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      if (JType->isVectorTy()) {
219364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        std::vector<Constant*> Mask1(numElemJ), Mask2(numElemJ);
219464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        for (unsigned v = 0; v < numElemJ; ++v) {
219564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
219664e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel          Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemI+v);
219764e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        }
219864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel
219964e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
220064e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                   ConstantVector::get(
220164e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                     FlipMemInputs ? Mask1 : Mask2),
220264e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel                                   getReplacementName(K, false, 2));
220364e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel      } else {
220464e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
220564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
2206de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        K2 = ExtractElementInst::Create(K, FlipMemInputs ? CV0 : CV1,
2207de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          getReplacementName(K, false, 2));
2208de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2209de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2210de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      K1->insertAfter(K);
2211de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      K2->insertAfter(K1);
2212de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      InsertionPt = K2;
2213de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
2214de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
2215de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2216de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Move all uses of the function I (including pairing-induced uses) after J.
2217de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
2218de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
2219de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J) {
2220de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Skip to the first instruction past I.
2221ded681d2725907c7de9db53d59cee0c51fad6fcbBenjamin Kramer    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2222de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2223de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DenseSet<Value *> Users;
2224de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    AliasSetTracker WriteSet(*AA);
2225de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (; cast<Instruction>(L) != J; ++L)
2226de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet);
2227de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2228de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    assert(cast<Instruction>(L) == J &&
2229de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      "Tracking has not proceeded far enough to check for dependencies");
2230de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // If J is now in the use set of I, then trackUsesOfI will return true
2231de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // and we have a dependency cycle (and the fusing operation must abort).
2232de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet);
2233de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
2234de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2235de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Move all uses of the function I (including pairing-induced uses) after J.
2236de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
2237de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
2238de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *&InsertionPt,
2239de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J) {
2240de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Skip to the first instruction past I.
2241ded681d2725907c7de9db53d59cee0c51fad6fcbBenjamin Kramer    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2242de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2243de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DenseSet<Value *> Users;
2244de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    AliasSetTracker WriteSet(*AA);
2245de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (; cast<Instruction>(L) != J;) {
2246de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) {
2247de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Move this instruction
2248de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Instruction *InstToMove = L; ++L;
2249de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2250de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
2251de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        " to after " << *InsertionPt << "\n");
2252de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        InstToMove->removeFromParent();
2253de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        InstToMove->insertAfter(InsertionPt);
2254de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        InsertionPt = InstToMove;
2255de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
2256de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ++L;
2257de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2258de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
2259de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
2260de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2261de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Collect all load instruction that are in the move set of a given first
2262de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // pair member.  These loads depend on the first instruction, I, and so need
2263de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // to be moved after J (the second instruction) when the pair is fused.
2264de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
2265de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *> &ChosenPairs,
2266de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
2267de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I) {
2268de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Skip to the first instruction past I.
2269ded681d2725907c7de9db53d59cee0c51fad6fcbBenjamin Kramer    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2270de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2271de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DenseSet<Value *> Users;
2272de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    AliasSetTracker WriteSet(*AA);
2273de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2274de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Note: We cannot end the loop when we reach J because J could be moved
2275de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // farther down the use chain by another instruction pairing. Also, J
2276de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // could be before I if this is an inverted input.
2277de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
2278de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (trackUsesOfI(Users, WriteSet, I, L)) {
2279de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (L->mayReadFromMemory())
2280de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          LoadMoveSet.insert(ValuePair(L, I));
2281de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2282de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
2283de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
2284de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2285de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // In cases where both load/stores and the computation of their pointers
2286de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // are chosen for vectorization, we can end up in a situation where the
2287de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // aliasing analysis starts returning different query results as the
2288de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // process of fusing instruction pairs continues. Because the algorithm
2289de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // relies on finding the same use trees here as were found earlier, we'll
2290de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // need to precompute the necessary aliasing information here and then
2291de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // manually update it during the fusion process.
2292de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
2293de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::vector<Value *> &PairableInsts,
2294de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *> &ChosenPairs,
2295de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet) {
2296de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
2297de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         PIE = PairableInsts.end(); PI != PIE; ++PI) {
2298de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
2299de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (P == ChosenPairs.end()) continue;
2300de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2301de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Instruction *I = cast<Instruction>(P->first);
2302de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I);
2303de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
2304de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
2305de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2306282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel  // As with the aliasing information, SCEV can also change because of
2307282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel  // vectorization. This information is used to compute relative pointer
2308282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel  // offsets; the necessary information will be cached here prior to
2309282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel  // fusion.
2310282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel  void BBVectorize::collectPtrInfo(std::vector<Value *> &PairableInsts,
2311282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                                   DenseMap<Value *, Value *> &ChosenPairs,
2312282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                                   DenseSet<Value *> &LowPtrInsts) {
2313282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
2314282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      PIE = PairableInsts.end(); PI != PIE; ++PI) {
2315282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
2316282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      if (P == ChosenPairs.end()) continue;
2317282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
2318282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      Instruction *I = cast<Instruction>(P->first);
2319282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      Instruction *J = cast<Instruction>(P->second);
2320282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
2321282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2322282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel        continue;
2323282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
2324282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      Value *IPtr, *JPtr;
232565309660fa61a837cc05323f69c618a7d8134d56Hal Finkel      unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
2326282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      int64_t OffsetInElmts;
2327282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      if (!getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
232865309660fa61a837cc05323f69c618a7d8134d56Hal Finkel                          IAddressSpace, JAddressSpace,
2329282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel                          OffsetInElmts) || abs64(OffsetInElmts) != 1)
2330282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel        llvm_unreachable("Pre-fusion pointer analysis failed");
2331282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
2332282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      Value *LowPI = (OffsetInElmts > 0) ? I : J;
2333282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      LowPtrInsts.insert(LowPI);
2334282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel    }
2335282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel  }
2336282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
2337ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel  // When the first instruction in each pair is cloned, it will inherit its
2338ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel  // parent's metadata. This metadata must be combined with that of the other
2339ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel  // instruction in a safe way.
2340ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel  void BBVectorize::combineMetadata(Instruction *K, const Instruction *J) {
2341ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel    SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
2342ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel    K->getAllMetadataOtherThanDebugLoc(Metadata);
2343ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel    for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
2344ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      unsigned Kind = Metadata[i].first;
2345ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      MDNode *JMD = J->getMetadata(Kind);
2346ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      MDNode *KMD = Metadata[i].second;
2347ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel
2348ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      switch (Kind) {
2349ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      default:
2350ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel        K->setMetadata(Kind, 0); // Remove unknown metadata
2351ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel        break;
2352ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      case LLVMContext::MD_tbaa:
2353ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel        K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2354ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel        break;
2355ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      case LLVMContext::MD_fpmath:
2356ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel        K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2357ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel        break;
2358ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      }
2359ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel    }
2360ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel  }
2361ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel
2362de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function fuses the chosen instruction pairs into vector instructions,
2363de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // taking care preserve any needed scalar outputs and, then, it reorders the
2364de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // remaining instructions as needed (users of the first member of the pair
2365de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // need to be moved to after the location of the second member of the pair
2366de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // because the vector instruction is inserted in the location of the pair's
2367de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // second member).
2368de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::fuseChosenPairs(BasicBlock &BB,
2369de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::vector<Value *> &PairableInsts,
2370de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *> &ChosenPairs) {
2371de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    LLVMContext& Context = BB.getContext();
2372de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2373de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // During the vectorization process, the order of the pairs to be fused
2374de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
2375de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // list. After a pair is fused, the flipped pair is removed from the list.
2376de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    std::vector<ValuePair> FlippedPairs;
2377de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    FlippedPairs.reserve(ChosenPairs.size());
2378de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
2379de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = ChosenPairs.end(); P != E; ++P)
2380de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      FlippedPairs.push_back(ValuePair(P->second, P->first));
2381de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::vector<ValuePair>::iterator P = FlippedPairs.begin(),
2382de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = FlippedPairs.end(); P != E; ++P)
2383de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      ChosenPairs.insert(*P);
2384de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2385de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    std::multimap<Value *, Value *> LoadMoveSet;
2386de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
2387de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2388282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel    DenseSet<Value *> LowPtrInsts;
2389282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel    collectPtrInfo(PairableInsts, ChosenPairs, LowPtrInsts);
2390282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
2391de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
2392de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2393de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
2394de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
2395de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (P == ChosenPairs.end()) {
2396de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ++PI;
2397de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
2398de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2399de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2400de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (getDepthFactor(P->first) == 0) {
2401de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // These instructions are not really fused, but are tracked as though
2402de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // they are. Any case in which it would be interesting to fuse them
2403de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // will be taken care of by InstCombine.
2404de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        --NumFusedOps;
2405de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ++PI;
2406de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
2407de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2408de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2409de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Instruction *I = cast<Instruction>(P->first),
2410de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        *J = cast<Instruction>(P->second);
2411de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2412de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(dbgs() << "BBV: fusing: " << *I <<
2413de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             " <-> " << *J << "\n");
2414de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2415de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Remove the pair and flipped pair from the list.
2416de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
2417de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
2418de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      ChosenPairs.erase(FP);
2419de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      ChosenPairs.erase(P);
2420de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2421de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) {
2422de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DEBUG(dbgs() << "BBV: fusion of: " << *I <<
2423de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel               " <-> " << *J <<
2424de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel               " aborted because of non-trivial dependency cycle\n");
2425de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        --NumFusedOps;
2426de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ++PI;
2427de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
2428de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2429de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2430282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      bool FlipMemInputs = false;
2431282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel      if (isa<LoadInst>(I) || isa<StoreInst>(I))
2432282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel        FlipMemInputs = (LowPtrInsts.find(I) == LowPtrInsts.end());
2433282969ed3641ffa426e0440d3824dd219152b2d8Hal Finkel
2434de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      unsigned NumOperands = I->getNumOperands();
2435de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      SmallVector<Value *, 3> ReplacedOperands(NumOperands);
2436de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      getReplacementInputsForPair(Context, I, J, ReplacedOperands,
2437de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        FlipMemInputs);
2438de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2439de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Make a copy of the original operation, change its type to the vector
2440de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // type and replace its operands with the vector operands.
2441de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Instruction *K = I->clone();
2442de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (I->hasName()) K->takeName(I);
2443de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2444de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!isa<StoreInst>(K))
244564e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel        K->mutateType(getVecTypeForPair(I->getType(), J->getType()));
2446de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2447ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel      combineMetadata(K, J);
2448ab4684e26fe21857d8c8bc6ba7a5234c35117c83Hal Finkel
2449de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (unsigned o = 0; o < NumOperands; ++o)
2450de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        K->setOperand(o, ReplacedOperands[o]);
2451de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2452de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // If we've flipped the memory inputs, make sure that we take the correct
2453de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // alignment.
2454de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (FlipMemInputs) {
2455de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (isa<StoreInst>(K))
2456de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          cast<StoreInst>(K)->setAlignment(cast<StoreInst>(J)->getAlignment());
2457de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        else
2458de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          cast<LoadInst>(K)->setAlignment(cast<LoadInst>(J)->getAlignment());
2459de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2460de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2461de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      K->insertAfter(J);
2462de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2463de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Instruction insertion point:
2464de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Instruction *InsertionPt = K;
2465de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Instruction *K1 = 0, *K2 = 0;
2466de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      replaceOutputsOfPair(Context, I, J, K, InsertionPt, K1, K2,
2467de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        FlipMemInputs);
2468de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2469de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // The use tree of the first original instruction must be moved to after
2470de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // the location of the second instruction. The entire use tree of the
2471de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // first instruction is disjoint from the input tree of the second
2472de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // (by definition), and so commutes with it.
2473de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2474de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
2475de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2476de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!isa<StoreInst>(I)) {
2477de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        I->replaceAllUsesWith(K1);
2478de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        J->replaceAllUsesWith(K2);
2479de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        AA->replaceWithNewValue(I, K1);
2480de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        AA->replaceWithNewValue(J, K2);
2481de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2482de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2483de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Instructions that may read from memory may be in the load move set.
2484de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Once an instruction is fused, we no longer need its move set, and so
2485de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // the values of the map never need to be updated. However, when a load
2486de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // is fused, we need to merge the entries from both instructions in the
2487de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // pair in case those instructions were in the move set of some other
2488de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // yet-to-be-fused pair. The loads in question are the keys of the map.
2489de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (I->mayReadFromMemory()) {
2490de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        std::vector<ValuePair> NewSetMembers;
2491de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPIteratorPair IPairRange = LoadMoveSet.equal_range(I);
2492de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPIteratorPair JPairRange = LoadMoveSet.equal_range(J);
2493de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (std::multimap<Value *, Value *>::iterator N = IPairRange.first;
2494de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             N != IPairRange.second; ++N)
2495de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          NewSetMembers.push_back(ValuePair(K, N->second));
2496de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (std::multimap<Value *, Value *>::iterator N = JPairRange.first;
2497de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             N != JPairRange.second; ++N)
2498de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          NewSetMembers.push_back(ValuePair(K, N->second));
2499de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
2500de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             AE = NewSetMembers.end(); A != AE; ++A)
2501de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          LoadMoveSet.insert(*A);
2502de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
2503de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2504de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Before removing I, set the iterator to the next instruction.
2505de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      PI = llvm::next(BasicBlock::iterator(I));
2506de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (cast<Instruction>(PI) == J)
2507de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ++PI;
2508de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2509de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      SE->forgetValue(I);
2510de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      SE->forgetValue(J);
2511de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      I->eraseFromParent();
2512de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      J->eraseFromParent();
2513de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
2514de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2515de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
2516de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
2517de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel}
2518de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2519de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelchar BBVectorize::ID = 0;
2520de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic const char bb_vectorize_name[] = "Basic-Block Vectorization";
2521de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelINITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
2522de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelINITIALIZE_AG_DEPENDENCY(AliasAnalysis)
2523e29c19091cca58db668407dfc5dd86c70e8b3d49Hal FinkelINITIALIZE_PASS_DEPENDENCY(DominatorTree)
2524de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelINITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
2525de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelINITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
2526de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2527bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin ZhengBasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
2528bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  return new BBVectorize(C);
2529de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel}
2530de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
2531bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zhengbool
2532bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zhengllvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
2533bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  BBVectorize BBVectorizer(P, C);
253487825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng  return BBVectorizer.vectorizeBB(BB);
253587825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng}
2536bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng
2537bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng//===----------------------------------------------------------------------===//
2538bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin ZhengVectorizeConfig::VectorizeConfig() {
2539bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  VectorBits = ::VectorBits;
2540768edf3cd037aab10391abc279f71470df8e3156Hal Finkel  VectorizeBools = !::NoBools;
254186312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeInts = !::NoInts;
254286312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeFloats = !::NoFloats;
2543f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel  VectorizePointers = !::NoPointers;
254486312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeCasts = !::NoCasts;
254586312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeMath = !::NoMath;
254686312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeFMA = !::NoFMA;
2547fc3665c87519850f629c9565535e3be447e10addHal Finkel  VectorizeSelect = !::NoSelect;
2548e415f96b6a43ac8861148a11a4258bc38c247e8fHal Finkel  VectorizeCmp = !::NoCmp;
2549f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel  VectorizeGEP = !::NoGEP;
255086312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeMemOps = !::NoMemOps;
2551bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  AlignedOnly = ::AlignedOnly;
2552bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  ReqChainDepth= ::ReqChainDepth;
2553bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  SearchLimit = ::SearchLimit;
2554bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
2555bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  SplatBreaksChain = ::SplatBreaksChain;
2556bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  MaxInsts = ::MaxInsts;
2557bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  MaxIter = ::MaxIter;
255864e1b28643d87e70734deb5f3d2d298e859c2fd2Hal Finkel  Pow2LenOnly = ::Pow2LenOnly;
2559bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  NoMemOpBoost = ::NoMemOpBoost;
2560bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  FastDep = ::FastDep;
2561bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng}
2562