BBVectorize.cpp revision e32e5440d6aaff8a77517e9d286846ae9e380770
1de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
2de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//
3de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//                     The LLVM Compiler Infrastructure
4de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//
5de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// This file is distributed under the University of Illinois Open Source
6de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// License. See LICENSE.TXT for details.
7de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//
8de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//===----------------------------------------------------------------------===//
9de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//
10de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// This file implements a basic-block vectorization pass. The algorithm was
11de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
12de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// et al. It works by looking for chains of pairable operations and then
13de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel// pairing them.
14de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//
15de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel//===----------------------------------------------------------------------===//
16de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
17de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#define BBV_NAME "bb-vectorize"
18de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#define DEBUG_TYPE BBV_NAME
19de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Constants.h"
20de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/DerivedTypes.h"
21de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Function.h"
22de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Instructions.h"
23de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/IntrinsicInst.h"
24de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Intrinsics.h"
25de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/LLVMContext.h"
26de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Pass.h"
27de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Type.h"
28de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/DenseMap.h"
29de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/DenseSet.h"
30de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/SmallVector.h"
31de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/Statistic.h"
32de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/STLExtras.h"
33de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/ADT/StringExtras.h"
34de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Analysis/AliasAnalysis.h"
35de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Analysis/AliasSetTracker.h"
36de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Analysis/ScalarEvolution.h"
37de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Analysis/ScalarEvolutionExpressions.h"
38de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Analysis/ValueTracking.h"
39de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Support/CommandLine.h"
40de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Support/Debug.h"
41de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Support/raw_ostream.h"
42de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Support/ValueHandle.h"
43de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Target/TargetData.h"
44de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include "llvm/Transforms/Vectorize.h"
45de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include <algorithm>
46de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#include <map>
47de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelusing namespace llvm;
48de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
49de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<unsigned>
50de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
51de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("The required chain depth for vectorization"));
52de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
53de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<unsigned>
54de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelSearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
55de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("The maximum search distance for instruction pairs"));
56de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
57de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
58de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelSplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
59de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Replicating one element to a pair breaks the chain"));
60de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
61de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<unsigned>
62de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelVectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
63de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("The size of the native vector registers"));
64de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
65de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<unsigned>
66de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelMaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
67de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("The maximum number of pairing iterations"));
68de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
69de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<unsigned>
705d4e18bc39fea892f523d960213906d296d3cb38Hal FinkelMaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
715d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel  cl::desc("The maximum number of pairable instructions per group"));
725d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
735d4e18bc39fea892f523d960213906d296d3cb38Hal Finkelstatic cl::opt<unsigned>
74de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelMaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
75de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
76de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       " a full cycle check"));
77de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
78de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
79de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
80de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize integer values"));
81de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
82de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
83de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
84de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize floating-point values"));
85de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
86de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
87f3f5a1e6f77a842ccb24cc81766437da5197d712Hal FinkelNoPointers("bb-vectorize-no-pointers", cl::init(false), cl::Hidden,
88f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel  cl::desc("Don't try to vectorize pointer values"));
89f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel
90f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkelstatic cl::opt<bool>
91de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
92de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize casting (conversion) operations"));
93de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
94de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
95de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
96de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize floating-point math intrinsics"));
97de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
98de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
99de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
100de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
101de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
102de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
103fc3665c87519850f629c9565535e3be447e10addHal FinkelNoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
104fc3665c87519850f629c9565535e3be447e10addHal Finkel  cl::desc("Don't try to vectorize select instructions"));
105fc3665c87519850f629c9565535e3be447e10addHal Finkel
106fc3665c87519850f629c9565535e3be447e10addHal Finkelstatic cl::opt<bool>
107f3f5a1e6f77a842ccb24cc81766437da5197d712Hal FinkelNoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
108f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel  cl::desc("Don't try to vectorize getelementptr instructions"));
109f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel
110f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkelstatic cl::opt<bool>
111de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelNoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
112de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Don't try to vectorize loads and stores"));
113de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
114de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
115de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelAlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
116de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Only generate aligned loads and stores"));
117de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
118de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
119edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal FinkelNoMemOpBoost("bb-vectorize-no-mem-op-boost",
120edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel  cl::init(false), cl::Hidden,
121edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel  cl::desc("Don't boost the chain-depth contribution of loads and stores"));
122edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel
123edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkelstatic cl::opt<bool>
124de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelFastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
125de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("Use a fast instruction dependency analysis"));
126de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
127de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#ifndef NDEBUG
128de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
129de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelDebugInstructionExamination("bb-vectorize-debug-instruction-examination",
130de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::init(false), cl::Hidden,
131de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("When debugging is enabled, output information on the"
132de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           " instruction-examination process"));
133de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
134de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelDebugCandidateSelection("bb-vectorize-debug-candidate-selection",
135de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::init(false), cl::Hidden,
136de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("When debugging is enabled, output information on the"
137de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           " candidate-selection process"));
138de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
139de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelDebugPairSelection("bb-vectorize-debug-pair-selection",
140de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::init(false), cl::Hidden,
141de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("When debugging is enabled, output information on the"
142de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           " pair-selection process"));
143de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic cl::opt<bool>
144de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelDebugCycleCheck("bb-vectorize-debug-cycle-check",
145de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::init(false), cl::Hidden,
146de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  cl::desc("When debugging is enabled, output information on the"
147de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           " cycle-checking process"));
148de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel#endif
149de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
150de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelSTATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
151de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
152de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelnamespace {
153de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  struct BBVectorize : public BasicBlockPass {
154de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    static char ID; // Pass identification, replacement for typeid
155bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng
156940371bc65570ec0add1ede4f4d9f0a41ba25e09Hongbin Zheng    const VectorizeConfig Config;
157bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng
158bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng    BBVectorize(const VectorizeConfig &C = VectorizeConfig())
159bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      : BasicBlockPass(ID), Config(C) {
160de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      initializeBBVectorizePass(*PassRegistry::getPassRegistry());
161de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
162de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
163bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng    BBVectorize(Pass *P, const VectorizeConfig &C)
164bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      : BasicBlockPass(ID), Config(C) {
16587825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng      AA = &P->getAnalysis<AliasAnalysis>();
16687825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng      SE = &P->getAnalysis<ScalarEvolution>();
16787825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng      TD = P->getAnalysisIfAvailable<TargetData>();
16887825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng    }
16987825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng
170de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    typedef std::pair<Value *, Value *> ValuePair;
171de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
172de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
173de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    typedef std::pair<std::multimap<Value *, Value *>::iterator,
174de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              std::multimap<Value *, Value *>::iterator> VPIteratorPair;
175de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
176de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              std::multimap<ValuePair, ValuePair>::iterator>
177de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                VPPIteratorPair;
178de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
179de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    AliasAnalysis *AA;
180de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    ScalarEvolution *SE;
181de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    TargetData *TD;
182de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
183de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // FIXME: const correct?
184de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
185de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool vectorizePairs(BasicBlock &BB);
186de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1875d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    bool getCandidatePairs(BasicBlock &BB,
1885d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel                       BasicBlock::iterator &Start,
189de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<Value *, Value *> &CandidatePairs,
190de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::vector<Value *> &PairableInsts);
191de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
192de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
193de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::vector<Value *> &PairableInsts,
194de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<ValuePair, ValuePair> &ConnectedPairs);
195de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
196de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void buildDepMap(BasicBlock &BB,
197de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<Value *, Value *> &CandidatePairs,
198de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::vector<Value *> &PairableInsts,
199de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       DenseSet<ValuePair> &PairableInstUsers);
200de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
201de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
202de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        std::vector<Value *> &PairableInsts,
203de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        std::multimap<ValuePair, ValuePair> &ConnectedPairs,
204de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        DenseSet<ValuePair> &PairableInstUsers,
205de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        DenseMap<Value *, Value *>& ChosenPairs);
206de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
207de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void fuseChosenPairs(BasicBlock &BB,
208de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::vector<Value *> &PairableInsts,
209de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *>& ChosenPairs);
210de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
211de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
212de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
213de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool areInstsCompatible(Instruction *I, Instruction *J,
214de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       bool IsSimpleLoadStore);
215de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
216de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool trackUsesOfI(DenseSet<Value *> &Users,
217de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      AliasSetTracker &WriteSet, Instruction *I,
218de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      Instruction *J, bool UpdateUsers = true,
219de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> *LoadMoveSet = 0);
2201230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop
221de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void computePairsConnectedTo(
222de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
223de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
224de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
225de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      ValuePair P);
226de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
227de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool pairsConflict(ValuePair P, ValuePair Q,
228de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                 DenseSet<ValuePair> &PairableInstUsers,
229de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                 std::multimap<ValuePair, ValuePair> *PairableInstUserMap = 0);
230de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
231de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool pairWillFormCycle(ValuePair P,
232de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<ValuePair, ValuePair> &PairableInstUsers,
233de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       DenseSet<ValuePair> &CurrentPairs);
234de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
235de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void pruneTreeFor(
236de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
237de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
238de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
239de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
240de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
241de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
242de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<ValuePair, size_t> &Tree,
243de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
244de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      bool UseCycleCheck);
245de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
246de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void buildInitialTreeFor(
247de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
248de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
249de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
250de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
251de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
252de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<ValuePair, size_t> &Tree, ValuePair J);
253de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
254de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void findBestTreeFor(
255de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
256de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
257de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
258de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
259de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
260de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
261de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
262de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      size_t &BestEffSize, VPIteratorPair ChoiceRange,
263de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      bool UseCycleCheck);
264de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
265de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
266de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J, unsigned o, bool &FlipMemInputs);
267de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
268de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
269de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     unsigned NumElem, unsigned MaskOffset, unsigned NumInElem,
270de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     unsigned IdxOffset, std::vector<Constant*> &Mask);
271de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
272de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
273de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J);
274de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
275de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *getReplacementInput(LLVMContext& Context, Instruction *I,
276de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J, unsigned o, bool FlipMemInputs);
277de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
278de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
279de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J, SmallVector<Value *, 3> &ReplacedOperands,
280de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     bool &FlipMemInputs);
281de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
282de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
283de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J, Instruction *K,
284de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *&InsertionPt, Instruction *&K1,
285de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *&K2, bool &FlipMemInputs);
286de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
287de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void collectPairLoadMoveSet(BasicBlock &BB,
288de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *> &ChosenPairs,
289de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
290de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I);
291de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
292de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void collectLoadMoveSet(BasicBlock &BB,
293de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::vector<Value *> &PairableInsts,
294de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *> &ChosenPairs,
295de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet);
296de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
297de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool canMoveUsesOfIAfterJ(BasicBlock &BB,
298de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
299de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J);
300de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
301de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    void moveUsesOfIAfterJ(BasicBlock &BB,
302de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
303de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *&InsertionPt,
304de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J);
305de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
30687825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng    bool vectorizeBB(BasicBlock &BB) {
307de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      bool changed = false;
308de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Iterate a sufficient number of times to merge types of size 1 bit,
309de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // then 2 bits, then 4, etc. up to half of the target vector width of the
310de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // target vector register.
311bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      for (unsigned v = 2, n = 1;
312bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng           v <= Config.VectorBits && (!Config.MaxIter || n <= Config.MaxIter);
313de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           v *= 2, ++n) {
314bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        DEBUG(dbgs() << "BBV: fusing loop #" << n <<
315de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              " for " << BB.getName() << " in " <<
316de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              BB.getParent()->getName() << "...\n");
317de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (vectorizePairs(BB))
318de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          changed = true;
319de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        else
320de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          break;
321de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
322de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
323de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(dbgs() << "BBV: done!\n");
324de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return changed;
325de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
326de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
32787825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng    virtual bool runOnBasicBlock(BasicBlock &BB) {
32887825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng      AA = &getAnalysis<AliasAnalysis>();
32987825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng      SE = &getAnalysis<ScalarEvolution>();
33087825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng      TD = getAnalysisIfAvailable<TargetData>();
33187825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng
33287825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng      return vectorizeBB(BB);
33387825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng    }
33487825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng
335de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
336de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      BasicBlockPass::getAnalysisUsage(AU);
337de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AU.addRequired<AliasAnalysis>();
338de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AU.addRequired<ScalarEvolution>();
339de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AU.addPreserved<AliasAnalysis>();
340de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AU.addPreserved<ScalarEvolution>();
3417e004d177fe76145f75a9417ed2e281f1b9abaf7Hal Finkel      AU.setPreservesCFG();
342de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
343de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
344de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // This returns the vector type that holds a pair of the provided type.
345de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // If the provided type is already a vector, then its length is doubled.
346de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    static inline VectorType *getVecTypeForPair(Type *ElemTy) {
347de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
348de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        unsigned numElem = VTy->getNumElements();
349de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return VectorType::get(ElemTy->getScalarType(), numElem*2);
350de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
3517e004d177fe76145f75a9417ed2e281f1b9abaf7Hal Finkel
3527e004d177fe76145f75a9417ed2e281f1b9abaf7Hal Finkel      return VectorType::get(ElemTy, 2);
353de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
354de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
355de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Returns the weight associated with the provided value. A chain of
356de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // candidate pairs has a length given by the sum of the weights of its
357de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // members (one weight per pair; the weight of each member of the pair
358de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // is assumed to be the same). This length is then compared to the
359de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // chain-length threshold to determine if a given chain is significant
360de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // enough to be vectorized. The length is also used in comparing
361de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // candidate chains where longer chains are considered to be better.
362de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Note: when this function returns 0, the resulting instructions are
363de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // not actually fused.
364bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng    inline size_t getDepthFactor(Value *V) {
365de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // InsertElement and ExtractElement have a depth factor of zero. This is
366de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // for two reasons: First, they cannot be usefully fused. Second, because
367de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // the pass generates a lot of these, they can confuse the simple metric
368de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // used to compare the trees in the next iteration. Thus, giving them a
369de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // weight of zero allows the pass to essentially ignore them in
370de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // subsequent iterations when looking for vectorization opportunities
371de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // while still tracking dependency chains that flow through those
372de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // instructions.
373de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
374de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return 0;
375de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
376edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel      // Give a load or store half of the required depth so that load/store
377edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel      // pairs will vectorize.
378bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
379bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        return Config.ReqChainDepth/2;
380edc8db87dc2ed4d2971e7f50464f5f4d0fead537Hal Finkel
381de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return 1;
382de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
383de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
384de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // This determines the relative offset of two loads or stores, returning
385de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // true if the offset could be determined to be some constant value.
386de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // For example, if OffsetInElmts == 1, then J accesses the memory directly
387de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // after I; if OffsetInElmts == -1 then I accesses the memory
388de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // directly after J. This function assumes that both instructions
389de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // have the same type.
390de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool getPairPtrInfo(Instruction *I, Instruction *J,
391de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
392de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        int64_t &OffsetInElmts) {
393de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      OffsetInElmts = 0;
394de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (isa<LoadInst>(I)) {
395de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        IPtr = cast<LoadInst>(I)->getPointerOperand();
396de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        JPtr = cast<LoadInst>(J)->getPointerOperand();
397de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        IAlignment = cast<LoadInst>(I)->getAlignment();
398de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        JAlignment = cast<LoadInst>(J)->getAlignment();
399de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
400de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        IPtr = cast<StoreInst>(I)->getPointerOperand();
401de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        JPtr = cast<StoreInst>(J)->getPointerOperand();
402de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        IAlignment = cast<StoreInst>(I)->getAlignment();
403de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        JAlignment = cast<StoreInst>(J)->getAlignment();
404de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
405de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
406de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
407de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
408de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
409de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // If this is a trivial offset, then we'll get something like
410de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // 1*sizeof(type). With target data, which we need anyway, this will get
411de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // constant folded into a number.
412de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
413de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (const SCEVConstant *ConstOffSCEV =
414de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            dyn_cast<SCEVConstant>(OffsetSCEV)) {
415de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ConstantInt *IntOff = ConstOffSCEV->getValue();
416de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        int64_t Offset = IntOff->getSExtValue();
417de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
418de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Type *VTy = cast<PointerType>(IPtr->getType())->getElementType();
419de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
420de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
421de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        assert(VTy == cast<PointerType>(JPtr->getType())->getElementType());
422de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
423de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        OffsetInElmts = Offset/VTyTSS;
424de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return (abs64(Offset) % VTyTSS) == 0;
425de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
426de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
427de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
428de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
429de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
430de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Returns true if the provided CallInst represents an intrinsic that can
431de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // be vectorized.
432de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool isVectorizableIntrinsic(CallInst* I) {
433de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Function *F = I->getCalledFunction();
434de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!F) return false;
435de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
436de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      unsigned IID = F->getIntrinsicID();
437de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!IID) return false;
438de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
439de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      switch(IID) {
440de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      default:
441de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
442de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::sqrt:
443de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::powi:
444de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::sin:
445de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::cos:
446de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::log:
447de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::log2:
448de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::log10:
449de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::exp:
450de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::exp2:
451de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::pow:
45286312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng        return Config.VectorizeMath;
453de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      case Intrinsic::fma:
45486312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng        return Config.VectorizeFMA;
455de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
456de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
457de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
458de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Returns true if J is the second element in some pair referenced by
459de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // some multimap pair iterator pair.
460de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    template <typename V>
461de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool isSecondInIteratorPair(V J, std::pair<
462de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           typename std::multimap<V, V>::iterator,
463de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           typename std::multimap<V, V>::iterator> PairRange) {
464de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (typename std::multimap<V, V>::iterator K = PairRange.first;
465de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           K != PairRange.second; ++K)
466de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (K->second == J) return true;
467de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
468de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
469de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
470de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  };
471de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
472de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function implements one vectorization iteration on the provided
473de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // basic block. It returns true if the block is changed.
474de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::vectorizePairs(BasicBlock &BB) {
4755d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    bool ShouldContinue;
4765d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    BasicBlock::iterator Start = BB.getFirstInsertionPt();
4775d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
4785d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    std::vector<Value *> AllPairableInsts;
4795d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    DenseMap<Value *, Value *> AllChosenPairs;
4805d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
4815d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    do {
4825d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      std::vector<Value *> PairableInsts;
4835d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      std::multimap<Value *, Value *> CandidatePairs;
4845d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
4855d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel                                         PairableInsts);
4865d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      if (PairableInsts.empty()) continue;
4873706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
4885d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // Now we have a map of all of the pairable instructions and we need to
4895d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // select the best possible pairing. A good pairing is one such that the
4905d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // users of the pair are also paired. This defines a (directed) forest
4915d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // over the pairs such that two pairs are connected iff the second pair
4925d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // uses the first.
4933706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
4945d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // Note that it only matters that both members of the second pair use some
4955d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // element of the first pair (to allow for splatting).
4963706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
4975d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      std::multimap<ValuePair, ValuePair> ConnectedPairs;
4985d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs);
4995d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      if (ConnectedPairs.empty()) continue;
5003706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
5015d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      // Build the pairable-instruction dependency map
5025d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      DenseSet<ValuePair> PairableInstUsers;
5035d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
5043706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
50535564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      // There is now a graph of the connected pairs. For each variable, pick
50635564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      // the pairing with the largest tree meeting the depth requirement on at
50735564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      // least one branch. Then select all pairings that are part of that tree
50835564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      // and remove them from the list of available pairings and pairable
50935564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      // variables.
5103706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
5115d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      DenseMap<Value *, Value *> ChosenPairs;
5125d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      choosePairs(CandidatePairs, PairableInsts, ConnectedPairs,
5135d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        PairableInstUsers, ChosenPairs);
5143706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
5155d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      if (ChosenPairs.empty()) continue;
5165d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
5175d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel                              PairableInsts.end());
5185d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
5195d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    } while (ShouldContinue);
5205d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
5215d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    if (AllChosenPairs.empty()) return false;
5225d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    NumFusedOps += AllChosenPairs.size();
5233706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
524de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // A set of pairs has now been selected. It is now necessary to replace the
525de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // paired instructions with vector instructions. For this procedure each
52643ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop    // operand must be replaced with a vector operand. This vector is formed
527de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // by using build_vector on the old operands. The replaced values are then
528de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // replaced with a vector_extract on the result.  Subsequent optimization
529de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // passes should coalesce the build/extract combinations.
5303706ac7aa83ab0aed9e2da7d5fc2386ac1f035f5Sebastian Pop
5315d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs);
532de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return true;
533de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
534de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
535de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function returns true if the provided instruction is capable of being
536de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // fused into a vector instruction. This determination is based only on the
537de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // type and other attributes of the instruction.
538de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::isInstVectorizable(Instruction *I,
539de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                         bool &IsSimpleLoadStore) {
540de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    IsSimpleLoadStore = false;
541de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
542de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (CallInst *C = dyn_cast<CallInst>(I)) {
543de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!isVectorizableIntrinsic(C))
544de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
545de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
546de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Vectorize simple loads if possbile:
547de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      IsSimpleLoadStore = L->isSimple();
54886312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
549de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
550de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
551de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Vectorize simple stores if possbile:
552de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      IsSimpleLoadStore = S->isSimple();
55386312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
554de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
555de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else if (CastInst *C = dyn_cast<CastInst>(I)) {
556de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // We can vectorize casts, but not casts of pointer types, etc.
55786312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng      if (!Config.VectorizeCasts)
558de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
559de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
560de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Type *SrcTy = C->getSrcTy();
561f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      if (!SrcTy->isSingleValueType())
562de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
563de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
564de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Type *DestTy = C->getDestTy();
565f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      if (!DestTy->isSingleValueType())
566de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
567fc3665c87519850f629c9565535e3be447e10addHal Finkel    } else if (isa<SelectInst>(I)) {
568fc3665c87519850f629c9565535e3be447e10addHal Finkel      if (!Config.VectorizeSelect)
569fc3665c87519850f629c9565535e3be447e10addHal Finkel        return false;
570f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
571f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      if (!Config.VectorizeGEP)
572f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel        return false;
573f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel
574f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      // Currently, vector GEPs exist only with one index.
575f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      if (G->getNumIndices() != 1)
576f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel        return false;
577de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
578de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
579de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
580de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
581de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
582de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // We can't vectorize memory operations without target data
583de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (TD == 0 && IsSimpleLoadStore)
584de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
585de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
586de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Type *T1, *T2;
587de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (isa<StoreInst>(I)) {
588de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // For stores, it is the value type, not the pointer type that matters
589de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // because the value is what will come from a vector register.
590de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
591de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Value *IVal = cast<StoreInst>(I)->getValueOperand();
592de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      T1 = IVal->getType();
593de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else {
594de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      T1 = I->getType();
595de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
596de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
597de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (I->isCast())
598de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      T2 = cast<CastInst>(I)->getSrcTy();
599de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    else
600de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      T2 = T1;
601de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
602de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Not every type can be vectorized...
603de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
604de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
605de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
606de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
60786312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng    if (!Config.VectorizeInts
60886312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng        && (T1->isIntOrIntVectorTy() || T2->isIntOrIntVectorTy()))
609de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
610de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
61186312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng    if (!Config.VectorizeFloats
61286312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng        && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
613de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
614de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
615e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel    // Don't vectorize target-specific types.
616e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel    if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy())
617e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel      return false;
618e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel    if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
619e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel      return false;
620e32e5440d6aaff8a77517e9d286846ae9e380770Hal Finkel
62105bc5087a25bbcf59936d71ebfc878b545ef3e5cHal Finkel    if ((!Config.VectorizePointers || TD == 0) &&
62205bc5087a25bbcf59936d71ebfc878b545ef3e5cHal Finkel        (T1->getScalarType()->isPointerTy() ||
62305bc5087a25bbcf59936d71ebfc878b545ef3e5cHal Finkel         T2->getScalarType()->isPointerTy()))
624f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel      return false;
625f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel
626bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng    if (T1->getPrimitiveSizeInBits() > Config.VectorBits/2 ||
627bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        T2->getPrimitiveSizeInBits() > Config.VectorBits/2)
628de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
629de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
630de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return true;
631de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
632de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
633de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function returns true if the two provided instructions are compatible
634de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // (meaning that they can be fused into a vector instruction). This assumes
635de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // that I has already been determined to be vectorizable and that J is not
636de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // in the use tree of I.
637de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
638de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       bool IsSimpleLoadStore) {
639de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
640de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     " <-> " << *J << "\n");
641de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
642de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Loads and stores can be merged if they have different alignments,
643de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // but are otherwise the same.
644de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    LoadInst *LI, *LJ;
645de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    StoreInst *SI, *SJ;
646de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if ((LI = dyn_cast<LoadInst>(I)) && (LJ = dyn_cast<LoadInst>(J))) {
647de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (I->getType() != J->getType())
648de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
649de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
650de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (LI->getPointerOperand()->getType() !=
651de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            LJ->getPointerOperand()->getType() ||
652de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          LI->isVolatile() != LJ->isVolatile() ||
653de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          LI->getOrdering() != LJ->getOrdering() ||
654de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          LI->getSynchScope() != LJ->getSynchScope())
655bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        return false;
656de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else if ((SI = dyn_cast<StoreInst>(I)) && (SJ = dyn_cast<StoreInst>(J))) {
657de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (SI->getValueOperand()->getType() !=
658de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            SJ->getValueOperand()->getType() ||
659de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          SI->getPointerOperand()->getType() !=
660de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            SJ->getPointerOperand()->getType() ||
661de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          SI->isVolatile() != SJ->isVolatile() ||
662de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          SI->getOrdering() != SJ->getOrdering() ||
663de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          SI->getSynchScope() != SJ->getSynchScope())
664de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
665de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else if (!J->isSameOperationAs(I)) {
666de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return false;
667de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
668de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // FIXME: handle addsub-type operations!
669de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
670de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (IsSimpleLoadStore) {
671de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Value *IPtr, *JPtr;
672de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      unsigned IAlignment, JAlignment;
673de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      int64_t OffsetInElmts = 0;
674de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
675de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            OffsetInElmts) && abs64(OffsetInElmts) == 1) {
676bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        if (Config.AlignedOnly) {
677de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          Type *aType = isa<StoreInst>(I) ?
678de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
679de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // An aligned load or store is possible only if the instruction
680de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // with the lower offset has an alignment suitable for the
681de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // vector type.
6821230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop
683de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          unsigned BottomAlignment = IAlignment;
684de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (OffsetInElmts < 0) BottomAlignment = JAlignment;
6851230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop
686de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          Type *VType = getVecTypeForPair(aType);
687de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
688de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (BottomAlignment < VecAlignment)
689de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            return false;
690de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
691de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
692de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return false;
693de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
694de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else if (isa<ShuffleVectorInst>(I)) {
695de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Only merge two shuffles if they're both constant
696de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return isa<Constant>(I->getOperand(2)) &&
697de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             isa<Constant>(J->getOperand(2));
698de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // FIXME: We may want to vectorize non-constant shuffles also.
699de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
700de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
7016173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    // The powi intrinsic is special because only the first argument is
7026173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    // vectorized, the second arguments must be equal.
7036173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    CallInst *CI = dyn_cast<CallInst>(I);
7046173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    Function *FI;
7056173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    if (CI && (FI = CI->getCalledFunction()) &&
7066173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel        FI->getIntrinsicID() == Intrinsic::powi) {
7076173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel
7086173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel      Value *A1I = CI->getArgOperand(1),
7096173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel            *A1J = cast<CallInst>(J)->getArgOperand(1);
7106173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel      const SCEV *A1ISCEV = SE->getSCEV(A1I),
7116173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel                 *A1JSCEV = SE->getSCEV(A1J);
7126173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel      return (A1ISCEV == A1JSCEV);
7136173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel    }
7146173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel
715de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return true;
716de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
717de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
718de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Figure out whether or not J uses I and update the users and write-set
719de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // structures associated with I. Specifically, Users represents the set of
720de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // instructions that depend on I. WriteSet represents the set
721de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // of memory locations that are dependent on I. If UpdateUsers is true,
722de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // and J uses I, then Users is updated to contain J and WriteSet is updated
723de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // to contain any memory locations to which J writes. The function returns
724de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // true if J uses I. By default, alias analysis is used to determine
725de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // whether J reads from memory that overlaps with a location in WriteSet.
726de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // If LoadMoveSet is not null, then it is a previously-computed multimap
727de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // where the key is the memory-based user instruction and the value is
728de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // the instruction to be compared with I. So, if LoadMoveSet is provided,
729de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // then the alias analysis is not used. This is necessary because this
730de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // function is called during the process of moving instructions during
731de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // vectorization and the results of the alias analysis are not stable during
732de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // that process.
733de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
734de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       AliasSetTracker &WriteSet, Instruction *I,
735de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       Instruction *J, bool UpdateUsers,
736de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<Value *, Value *> *LoadMoveSet) {
737de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool UsesI = false;
738de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
739de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // This instruction may already be marked as a user due, for example, to
740de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // being a member of a selected pair.
741de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (Users.count(J))
742de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      UsesI = true;
743de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
744de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (!UsesI)
7457e004d177fe76145f75a9417ed2e281f1b9abaf7Hal Finkel      for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
7467e004d177fe76145f75a9417ed2e281f1b9abaf7Hal Finkel           JU != JE; ++JU) {
747de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Value *V = *JU;
748de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (I == V || Users.count(V)) {
749de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          UsesI = true;
750de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          break;
751de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
752de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
753de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (!UsesI && J->mayReadFromMemory()) {
754de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (LoadMoveSet) {
755de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPIteratorPair JPairRange = LoadMoveSet->equal_range(J);
756de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        UsesI = isSecondInIteratorPair<Value*>(I, JPairRange);
757de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
758de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (AliasSetTracker::iterator W = WriteSet.begin(),
759de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             WE = WriteSet.end(); W != WE; ++W) {
76038a7f22445b8782682d1f8f253454ea0390d4ac5Hal Finkel          if (W->aliasesUnknownInst(J, *AA)) {
76138a7f22445b8782682d1f8f253454ea0390d4ac5Hal Finkel            UsesI = true;
76238a7f22445b8782682d1f8f253454ea0390d4ac5Hal Finkel            break;
763de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
764de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
765de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
766de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
767de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
768de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (UsesI && UpdateUsers) {
769de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (J->mayWriteToMemory()) WriteSet.add(J);
770de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Users.insert(J);
771de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
772de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
773de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return UsesI;
774de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
775de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
776de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function iterates over all instruction pairs in the provided
777de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // basic block and collects all candidate pairs for vectorization.
7785d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel  bool BBVectorize::getCandidatePairs(BasicBlock &BB,
7795d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel                       BasicBlock::iterator &Start,
780de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<Value *, Value *> &CandidatePairs,
781de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::vector<Value *> &PairableInsts) {
782de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    BasicBlock::iterator E = BB.end();
7835d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    if (Start == E) return false;
7845d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
7855d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    bool ShouldContinue = false, IAfterStart = false;
7865d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    for (BasicBlock::iterator I = Start++; I != E; ++I) {
7875d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      if (I == Start) IAfterStart = true;
7885d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
789de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      bool IsSimpleLoadStore;
790de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
791de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
792de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Look for an instruction with which to pair instruction *I...
793de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseSet<Value *> Users;
794de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AliasSetTracker WriteSet(*AA);
7955d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      bool JAfterStart = IAfterStart;
7965d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      BasicBlock::iterator J = llvm::next(I);
797bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
7985d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        if (J == Start) JAfterStart = true;
7995d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
800de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Determine if J uses I, if so, exit the loop.
801bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
802bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        if (Config.FastDep) {
803de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // Note: For this heuristic to be effective, independent operations
804de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // must tend to be intermixed. This is likely to be true from some
805de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // kinds of grouped loop unrolling (but not the generic LLVM pass),
806de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // but otherwise may require some kind of reordering pass.
807de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
808de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // When using fast dependency analysis,
809de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          // stop searching after first use:
810de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (UsesI) break;
811de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        } else {
812de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (UsesI) continue;
813de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
814de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
815de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // J does not use I, and comes before the first use of I, so it can be
816de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // merged with I if the instructions are compatible.
817de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!areInstsCompatible(I, J, IsSimpleLoadStore)) continue;
818de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
819de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // J is a candidate for merging with I.
820de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!PairableInsts.size() ||
821de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             PairableInsts[PairableInsts.size()-1] != I) {
822de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          PairableInsts.push_back(I);
823de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
8245d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
825de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        CandidatePairs.insert(ValuePair(I, J));
8265d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
8275d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        // The next call to this function must start after the last instruction
8285d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        // selected during this invocation.
8295d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        if (JAfterStart) {
8305d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel          Start = llvm::next(J);
8315d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel          IAfterStart = JAfterStart = false;
8325d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        }
8335d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
834de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
835de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     << *I << " <-> " << *J << "\n");
8365d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
8375d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        // If we have already found too many pairs, break here and this function
8385d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        // will be called again starting after the last instruction selected
8395d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        // during this invocation.
840bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng        if (PairableInsts.size() >= Config.MaxInsts) {
8415d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel          ShouldContinue = true;
8425d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel          break;
8435d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        }
844de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
8455d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
8465d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel      if (ShouldContinue)
8475d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel        break;
848de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
849de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
850de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
851de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           << " instructions with candidate pairs\n");
8525d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel
8535d4e18bc39fea892f523d960213906d296d3cb38Hal Finkel    return ShouldContinue;
854de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
855de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
856de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
857de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // it looks for pairs such that both members have an input which is an
858de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // output of PI or PJ.
859de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::computePairsConnectedTo(
860de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
861de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
862de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
863de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      ValuePair P) {
864bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel    StoreInst *SI, *SJ;
865bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
866de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // For each possible pairing for this variable, look at the uses of
867de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // the first value...
868de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (Value::use_iterator I = P.first->use_begin(),
869de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = P.first->use_end(); I != E; ++I) {
870bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel      if (isa<LoadInst>(*I)) {
871bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        // A pair cannot be connected to a load because the load only takes one
872bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        // operand (the address) and it is a scalar even after vectorization.
873bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        continue;
874bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel      } else if ((SI = dyn_cast<StoreInst>(*I)) &&
875bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel                 P.first == SI->getPointerOperand()) {
876bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        // Similarly, a pair cannot be connected to a store through its
877bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        // pointer operand.
878bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        continue;
879bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel      }
880bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
881de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
882de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
883de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // For each use of the first variable, look for uses of the second
884de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // variable...
885de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (Value::use_iterator J = P.second->use_begin(),
886de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           E2 = P.second->use_end(); J != E2; ++J) {
887bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        if ((SJ = dyn_cast<StoreInst>(*J)) &&
888bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel            P.second == SJ->getPointerOperand())
889bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel          continue;
890bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
891de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
892de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
893de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Look for <I, J>:
894de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
895de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
896de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
897de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Look for <J, I>:
898de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (isSecondInIteratorPair<Value*>(*I, JPairRange))
899de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          ConnectedPairs.insert(VPPair(P, ValuePair(*J, *I)));
900de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
901de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
902bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      if (Config.SplatBreaksChain) continue;
903de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Look for cases where just the first value in the pair is used by
904de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // both members of another pair (splatting).
905de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) {
906bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        if ((SJ = dyn_cast<StoreInst>(*J)) &&
907bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel            P.first == SJ->getPointerOperand())
908bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel          continue;
909bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
910de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
911de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
912de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
913de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
914de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
915bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng    if (Config.SplatBreaksChain) return;
916de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Look for cases where just the second value in the pair is used by
917de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // both members of another pair (splatting).
918de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (Value::use_iterator I = P.second->use_begin(),
919de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = P.second->use_end(); I != E; ++I) {
920bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel      if (isa<LoadInst>(*I))
921bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        continue;
922bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel      else if ((SI = dyn_cast<StoreInst>(*I)) &&
923bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel               P.second == SI->getPointerOperand())
924bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        continue;
925bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
926de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
927de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
928de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
929bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel        if ((SJ = dyn_cast<StoreInst>(*J)) &&
930bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel            P.second == SJ->getPointerOperand())
931bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel          continue;
932bba23ed672c4cedd61a302497f45bf6f53fec7b2Hal Finkel
933de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
934de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
935de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
936de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
937de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
938de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
939de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function figures out which pairs are connected.  Two pairs are
940de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // connected if some output of the first pair forms an input to both members
941de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // of the second pair.
942de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::computeConnectedPairs(
943de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
944de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
945de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs) {
946de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
947de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
948de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         PE = PairableInsts.end(); PI != PE; ++PI) {
949de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI);
950de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
951de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
952de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           P != choiceRange.second; ++P)
953de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        computePairsConnectedTo(CandidatePairs, PairableInsts,
954de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                ConnectedPairs, *P);
955de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
956de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
957de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
958de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                 << " pair connections.\n");
959de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
960de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
961de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function builds a set of use tuples such that <A, B> is in the set
962de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // if B is in the use tree of A. If B is in the use tree of A, then B
963de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // depends on the output of A.
964de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::buildDepMap(
965de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      BasicBlock &BB,
966de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
967de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
968de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers) {
969de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DenseSet<Value *> IsInPair;
970de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::multimap<Value *, Value *>::iterator C = CandidatePairs.begin(),
971de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = CandidatePairs.end(); C != E; ++C) {
972de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      IsInPair.insert(C->first);
973de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      IsInPair.insert(C->second);
974de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
975de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
976de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Iterate through the basic block, recording all Users of each
977de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // pairable instruction.
978de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
979de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    BasicBlock::iterator E = BB.end();
980de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
981de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (IsInPair.find(I) == IsInPair.end()) continue;
982de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
983de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseSet<Value *> Users;
984de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AliasSetTracker WriteSet(*AA);
985de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (BasicBlock::iterator J = llvm::next(I); J != E; ++J)
986de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        (void) trackUsesOfI(Users, WriteSet, I, J);
987de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
988de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
989de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           U != E; ++U)
990de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        PairableInstUsers.insert(ValuePair(I, *U));
991de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
992de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
993de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
994de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Returns true if an input to pair P is an output of pair Q and also an
995de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // input of pair Q is an output of pair P. If this is the case, then these
996de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // two pairs cannot be simultaneously fused.
997de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
998de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseSet<ValuePair> &PairableInstUsers,
999de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<ValuePair, ValuePair> *PairableInstUserMap) {
1000de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Two pairs are in conflict if they are mutual Users of eachother.
1001de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
1002de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
1003de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
1004de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(P.second, Q.second));
1005de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
1006de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
1007de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
1008de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                  PairableInstUsers.count(ValuePair(Q.second, P.second));
1009de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (PairableInstUserMap) {
1010de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // FIXME: The expensive part of the cycle check is not so much the cycle
1011de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // check itself but this edge insertion procedure. This needs some
1012de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // profiling and probably a different data structure (same is true of
1013de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // most uses of std::multimap).
1014de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (PUsesQ) {
1015de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q);
1016de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!isSecondInIteratorPair(P, QPairRange))
1017de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          PairableInstUserMap->insert(VPPair(Q, P));
1018de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1019de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (QUsesP) {
1020de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P);
1021de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!isSecondInIteratorPair(Q, PPairRange))
1022de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          PairableInstUserMap->insert(VPPair(P, Q));
1023de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1024de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1025de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1026de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return (QUsesP && PUsesQ);
1027de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1028de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1029de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function walks the use graph of current pairs to see if, starting
1030de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // from P, the walk returns to P.
1031de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::pairWillFormCycle(ValuePair P,
1032de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1033de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       DenseSet<ValuePair> &CurrentPairs) {
1034de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(if (DebugCycleCheck)
1035de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
1036de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                   << *P.second << "\n");
1037de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // A lookup table of visisted pairs is kept because the PairableInstUserMap
1038de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // contains non-direct associations.
1039de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DenseSet<ValuePair> Visited;
104035564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    SmallVector<ValuePair, 32> Q;
1041de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // General depth-first post-order traversal:
1042de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Q.push_back(P);
104335564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    do {
104435564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      ValuePair QTop = Q.pop_back_val();
1045de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Visited.insert(QTop);
1046de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1047de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(if (DebugCycleCheck)
1048de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
1049de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     << *QTop.second << "\n");
1050de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop);
1051de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (std::multimap<ValuePair, ValuePair>::iterator C = QPairRange.first;
1052de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           C != QPairRange.second; ++C) {
1053de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (C->second == P) {
1054de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          DEBUG(dbgs()
1055de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                 << "BBV: rejected to prevent non-trivial cycle formation: "
1056de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                 << *C->first.first << " <-> " << *C->first.second << "\n");
1057de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          return true;
1058de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1059de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
10600b2500c504156c45cd71817a9ef6749b6cde5703David Blaikie        if (CurrentPairs.count(C->second) && !Visited.count(C->second))
1061de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          Q.push_back(C->second);
1062de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
106335564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    } while (!Q.empty());
1064de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1065de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return false;
1066de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1067de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1068de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function builds the initial tree of connected pairs with the
1069de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // pair J at the root.
1070de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::buildInitialTreeFor(
1071de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
1072de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
1073de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1074de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
1075de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
1076de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<ValuePair, size_t> &Tree, ValuePair J) {
1077de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Each of these pairs is viewed as the root node of a Tree. The Tree
1078de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // is then walked (depth-first). As this happens, we keep track of
1079de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // the pairs that compose the Tree and the maximum depth of the Tree.
108035564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    SmallVector<ValuePairWithDepth, 32> Q;
1081de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // General depth-first post-order traversal:
1082de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
108335564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    do {
1084de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      ValuePairWithDepth QTop = Q.back();
1085de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1086de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Push each child onto the queue:
1087de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      bool MoreChildren = false;
1088de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      size_t MaxChildDepth = QTop.second;
1089de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first);
1090478eed85f96f0d93da43e26cfb7fc6dee981c9aaNAKAMURA Takumi      for (std::multimap<ValuePair, ValuePair>::iterator k = qtRange.first;
1091de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           k != qtRange.second; ++k) {
1092de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Make sure that this child pair is still a candidate:
1093de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        bool IsStillCand = false;
1094de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPIteratorPair checkRange =
1095de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          CandidatePairs.equal_range(k->second.first);
1096de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (std::multimap<Value *, Value *>::iterator m = checkRange.first;
1097de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             m != checkRange.second; ++m) {
1098de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (m->second == k->second.second) {
1099de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            IsStillCand = true;
1100de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            break;
1101de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1102de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1103de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1104de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (IsStillCand) {
1105de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          DenseMap<ValuePair, size_t>::iterator C = Tree.find(k->second);
1106de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (C == Tree.end()) {
1107de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            size_t d = getDepthFactor(k->second.first);
1108de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            Q.push_back(ValuePairWithDepth(k->second, QTop.second+d));
1109de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            MoreChildren = true;
1110de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          } else {
1111de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            MaxChildDepth = std::max(MaxChildDepth, C->second);
1112de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1113de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1114de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1115de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1116de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!MoreChildren) {
1117de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Record the current pair as part of the Tree:
1118de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
1119de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Q.pop_back();
1120de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
112135564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    } while (!Q.empty());
1122de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1123de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1124de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Given some initial tree, prune it by removing conflicting pairs (pairs
1125de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // that cannot be simultaneously chosen for vectorization).
1126de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::pruneTreeFor(
1127de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
1128de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
1129de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1130de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
1131de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1132de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
1133de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<ValuePair, size_t> &Tree,
1134de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
1135de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      bool UseCycleCheck) {
113635564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    SmallVector<ValuePairWithDepth, 32> Q;
1137de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // General depth-first post-order traversal:
1138de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
113935564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    do {
114035564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel      ValuePairWithDepth QTop = Q.pop_back_val();
1141de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      PrunedTree.insert(QTop.first);
1142de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1143de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Visit each child, pruning as necessary...
114443ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop      DenseMap<ValuePair, size_t> BestChildren;
1145de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
1146478eed85f96f0d93da43e26cfb7fc6dee981c9aaNAKAMURA Takumi      for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first;
1147de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           K != QTopRange.second; ++K) {
1148de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DenseMap<ValuePair, size_t>::iterator C = Tree.find(K->second);
1149de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (C == Tree.end()) continue;
1150de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1151de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // This child is in the Tree, now we need to make sure it is the
1152de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // best of any conflicting children. There could be multiple
1153de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // conflicting children, so first, determine if we're keeping
1154de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // this child, then delete conflicting children as necessary.
1155de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1156de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // It is also necessary to guard against pairing-induced
1157de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // dependencies. Consider instructions a .. x .. y .. b
1158de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // such that (a,b) are to be fused and (x,y) are to be fused
1159de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // but a is an input to x and b is an output from y. This
1160de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // means that y cannot be moved after b but x must be moved
1161de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // after b for (a,b) to be fused. In other words, after
1162de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // fusing (a,b) we have y .. a/b .. x where y is an input
1163de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // to a/b and x is an output to a/b: x and y can no longer
1164de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // be legally fused. To prevent this condition, we must
1165de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // make sure that a child pair added to the Tree is not
1166de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // both an input and output of an already-selected pair.
1167de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1168de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Pairing-induced dependencies can also form from more complicated
1169de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // cycles. The pair vs. pair conflicts are easy to check, and so
1170de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // that is done explicitly for "fast rejection", and because for
1171de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // child vs. child conflicts, we may prefer to keep the current
1172de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // pair in preference to the already-selected child.
1173de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DenseSet<ValuePair> CurrentPairs;
1174de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1175de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        bool CanAdd = true;
1176de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (DenseMap<ValuePair, size_t>::iterator C2
117743ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop              = BestChildren.begin(), E2 = BestChildren.end();
1178de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             C2 != E2; ++C2) {
1179de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (C2->first.first == C->first.first ||
1180de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.first == C->first.second ||
1181de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.first ||
1182de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.second ||
1183de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              pairsConflict(C2->first, C->first, PairableInstUsers,
1184de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1185de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            if (C2->second >= C->second) {
1186de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              CanAdd = false;
1187de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              break;
1188de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            }
1189de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1190de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            CurrentPairs.insert(C2->first);
1191de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1192de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1193de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!CanAdd) continue;
1194de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1195de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Even worse, this child could conflict with another node already
1196de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // selected for the Tree. If that is the case, ignore this child.
1197de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (DenseSet<ValuePair>::iterator T = PrunedTree.begin(),
1198de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             E2 = PrunedTree.end(); T != E2; ++T) {
1199de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (T->first == C->first.first ||
1200de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              T->first == C->first.second ||
1201de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              T->second == C->first.first ||
1202de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              T->second == C->first.second ||
1203de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              pairsConflict(*T, C->first, PairableInstUsers,
1204de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1205de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            CanAdd = false;
1206de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            break;
1207de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1208de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1209de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          CurrentPairs.insert(*T);
1210de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1211de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!CanAdd) continue;
1212de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1213de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // And check the queue too...
121435564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel        for (SmallVector<ValuePairWithDepth, 32>::iterator C2 = Q.begin(),
1215de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             E2 = Q.end(); C2 != E2; ++C2) {
1216de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (C2->first.first == C->first.first ||
1217de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.first == C->first.second ||
1218de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.first ||
1219de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.second ||
1220de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              pairsConflict(C2->first, C->first, PairableInstUsers,
1221de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1222de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            CanAdd = false;
1223de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            break;
1224de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1225de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1226de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          CurrentPairs.insert(C2->first);
1227de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1228de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!CanAdd) continue;
1229de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1230de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Last but not least, check for a conflict with any of the
1231de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // already-chosen pairs.
1232de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (DenseMap<Value *, Value *>::iterator C2 =
1233de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              ChosenPairs.begin(), E2 = ChosenPairs.end();
1234de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             C2 != E2; ++C2) {
1235de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (pairsConflict(*C2, C->first, PairableInstUsers,
1236de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1237de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            CanAdd = false;
1238de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            break;
1239de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1240de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1241de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          CurrentPairs.insert(*C2);
1242de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1243de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (!CanAdd) continue;
1244de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
12451230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop        // To check for non-trivial cycles formed by the addition of the
12461230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop        // current pair we've formed a list of all relevant pairs, now use a
12471230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop        // graph walk to check for a cycle. We start from the current pair and
12481230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop        // walk the use tree to see if we again reach the current pair. If we
12491230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop        // do, then the current pair is rejected.
1250de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1251de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // FIXME: It may be more efficient to use a topological-ordering
1252de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // algorithm to improve the cycle check. This should be investigated.
1253de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (UseCycleCheck &&
1254de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
1255de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          continue;
1256de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1257de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // This child can be added, but we may have chosen it in preference
1258de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // to an already-selected child. Check for this here, and if a
1259de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // conflict is found, then remove the previously-selected child
1260de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // before adding this one in its place.
1261de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (DenseMap<ValuePair, size_t>::iterator C2
126243ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop              = BestChildren.begin(); C2 != BestChildren.end();) {
1263de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (C2->first.first == C->first.first ||
1264de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.first == C->first.second ||
1265de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.first ||
1266de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              C2->first.second == C->first.second ||
1267de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              pairsConflict(C2->first, C->first, PairableInstUsers))
126843ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop            BestChildren.erase(C2++);
1269de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          else
1270de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            ++C2;
1271de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1272de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
127343ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop        BestChildren.insert(ValuePairWithDepth(C->first, C->second));
1274de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1275de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1276de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (DenseMap<ValuePair, size_t>::iterator C
127743ec0f4921e315dd9507be7467e633a837ad23dbSebastian Pop            = BestChildren.begin(), E2 = BestChildren.end();
1278de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           C != E2; ++C) {
1279de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        size_t DepthF = getDepthFactor(C->first.first);
1280de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
1281de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
128235564dc3ae1c377abad425cb09928eaf676dcb3cHal Finkel    } while (!Q.empty());
1283de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1284de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1285de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function finds the best tree of mututally-compatible connected
1286de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // pairs, given the choice of root pairs as an iterator range.
1287de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::findBestTreeFor(
1288de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
1289de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
1290de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1291de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
1292de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1293de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *> &ChosenPairs,
1294de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
1295de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      size_t &BestEffSize, VPIteratorPair ChoiceRange,
1296de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      bool UseCycleCheck) {
1297de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
1298de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         J != ChoiceRange.second; ++J) {
1299de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1300de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Before going any further, make sure that this pair does not
1301de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // conflict with any already-selected pairs (see comment below
1302de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // near the Tree pruning for more details).
1303de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseSet<ValuePair> ChosenPairSet;
1304de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      bool DoesConflict = false;
1305de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
1306de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           E = ChosenPairs.end(); C != E; ++C) {
1307de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (pairsConflict(*C, *J, PairableInstUsers,
1308de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                          UseCycleCheck ? &PairableInstUserMap : 0)) {
1309de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          DoesConflict = true;
1310de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          break;
1311de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1312de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1313de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ChosenPairSet.insert(*C);
1314de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1315de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (DoesConflict) continue;
1316de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1317de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (UseCycleCheck &&
1318de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet))
1319de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
1320de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1321de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseMap<ValuePair, size_t> Tree;
1322de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1323de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                          PairableInstUsers, ChosenPairs, Tree, *J);
1324de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1325de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Because we'll keep the child with the largest depth, the largest
1326de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // depth is still the same in the unpruned Tree.
1327de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      size_t MaxDepth = Tree.lookup(*J);
1328de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1329de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {"
1330de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                   << *J->first << " <-> " << *J->second << "} of depth " <<
1331de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                   MaxDepth << " and size " << Tree.size() << "\n");
1332de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1333de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // At this point the Tree has been constructed, but, may contain
1334de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // contradictory children (meaning that different children of
1335de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // some tree node may be attempting to fuse the same instruction).
1336de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // So now we walk the tree again, in the case of a conflict,
1337de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // keep only the child with the largest depth. To break a tie,
1338de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // favor the first child.
1339de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1340de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseSet<ValuePair> PrunedTree;
1341de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1342de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                   PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
1343de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                   PrunedTree, *J, UseCycleCheck);
1344de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1345de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      size_t EffSize = 0;
1346de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
1347de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           E = PrunedTree.end(); S != E; ++S)
1348de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        EffSize += getDepthFactor(S->first);
1349de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1350de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(if (DebugPairSelection)
1351de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             dbgs() << "BBV: found pruned Tree for pair {"
1352de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             << *J->first << " <-> " << *J->second << "} of depth " <<
1353de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             MaxDepth << " and size " << PrunedTree.size() <<
1354de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            " (effective size: " << EffSize << ")\n");
1355bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng      if (MaxDepth >= Config.ReqChainDepth && EffSize > BestEffSize) {
1356de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        BestMaxDepth = MaxDepth;
1357de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        BestEffSize = EffSize;
1358de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        BestTree = PrunedTree;
1359de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1360de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1361de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1362de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1363de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Given the list of candidate pairs, this function selects those
1364de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // that will be fused into vector instructions.
1365de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::choosePairs(
1366de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<Value *, Value *> &CandidatePairs,
1367de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::vector<Value *> &PairableInsts,
1368de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1369de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseSet<ValuePair> &PairableInstUsers,
1370de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      DenseMap<Value *, Value *>& ChosenPairs) {
1371bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng    bool UseCycleCheck =
1372bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng     CandidatePairs.size() <= Config.MaxCandPairsForCycleCheck;
1373de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    std::multimap<ValuePair, ValuePair> PairableInstUserMap;
1374de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::vector<Value *>::iterator I = PairableInsts.begin(),
1375de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = PairableInsts.end(); I != E; ++I) {
1376de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // The number of possible pairings for this variable:
1377de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      size_t NumChoices = CandidatePairs.count(*I);
1378de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!NumChoices) continue;
1379de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1380de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
1381de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1382de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // The best pair to choose and its tree:
1383de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      size_t BestMaxDepth = 0, BestEffSize = 0;
1384de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseSet<ValuePair> BestTree;
1385de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      findBestTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1386de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      PairableInstUsers, PairableInstUserMap, ChosenPairs,
1387de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
1388de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                      UseCycleCheck);
1389de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1390de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // A tree has been chosen (or not) at this point. If no tree was
1391de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // chosen, then this instruction, I, cannot be paired (and is no longer
1392de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // considered).
1393de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1394de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(if (BestTree.size() > 0)
1395de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              dbgs() << "BBV: selected pairs in the best tree for: "
1396de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     << *cast<Instruction>(*I) << "\n");
1397de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1398de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (DenseSet<ValuePair>::iterator S = BestTree.begin(),
1399de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel           SE2 = BestTree.end(); S != SE2; ++S) {
1400de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Insert the members of this tree into the list of chosen pairs.
1401de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ChosenPairs.insert(ValuePair(S->first, S->second));
1402de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
1403de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel               *S->second << "\n");
1404de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1405de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Remove all candidate pairs that have values in the chosen tree.
1406de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (std::multimap<Value *, Value *>::iterator K =
1407de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel               CandidatePairs.begin(); K != CandidatePairs.end();) {
1408de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          if (K->first == S->first || K->second == S->first ||
1409de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              K->second == S->second || K->first == S->second) {
1410de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            // Don't remove the actual pair chosen so that it can be used
1411de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            // in subsequent tree selections.
1412de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            if (!(K->first == S->first && K->second == S->second))
1413de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              CandidatePairs.erase(K++);
1414de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            else
1415de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel              ++K;
1416de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          } else {
1417de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            ++K;
1418de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1419de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        }
1420de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1421de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1422de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1423de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
1424de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1425de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1426de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
1427de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     unsigned n = 0) {
1428de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (!I->hasName())
1429de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return "";
1430de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1431de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
1432de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             (n > 0 ? "." + utostr(n) : "")).str();
1433de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1434de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1435de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Returns the value that is to be used as the pointer input to the vector
1436de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // instruction that fuses I with J.
1437de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
1438de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J, unsigned o,
1439de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     bool &FlipMemInputs) {
1440de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *IPtr, *JPtr;
1441de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    unsigned IAlignment, JAlignment;
1442de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    int64_t OffsetInElmts;
1443de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
1444de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                          OffsetInElmts);
1445de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1446de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // The pointer value is taken to be the one with the lowest offset.
1447de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *VPtr;
1448de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (OffsetInElmts > 0) {
1449de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPtr = IPtr;
1450de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else {
1451de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      FlipMemInputs = true;
1452de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VPtr = JPtr;
1453de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1454de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1455de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Type *ArgType = cast<PointerType>(IPtr->getType())->getElementType();
1456de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Type *VArgType = getVecTypeForPair(ArgType);
1457de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Type *VArgPtrType = PointerType::get(VArgType,
1458de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      cast<PointerType>(IPtr->getType())->getAddressSpace());
1459de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
1460de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        /* insert before */ FlipMemInputs ? J : I);
1461de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1462de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1463de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
1464de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     unsigned NumElem, unsigned MaskOffset, unsigned NumInElem,
1465de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     unsigned IdxOffset, std::vector<Constant*> &Mask) {
1466de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (unsigned v = 0; v < NumElem/2; ++v) {
1467de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
1468de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (m < 0) {
1469de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
1470de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
1471de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        unsigned mm = m + (int) IdxOffset;
1472de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (m >= (int) NumInElem)
1473de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          mm += (int) NumInElem;
1474de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1475de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Mask[v+MaskOffset] =
1476de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          ConstantInt::get(Type::getInt32Ty(Context), mm);
1477de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1478de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1479de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1480de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1481de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Returns the value that is to be used as the vector-shuffle mask to the
1482de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // vector instruction that fuses I with J.
1483de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
1484de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J) {
1485de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // This is the shuffle mask. We need to append the second
1486de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // mask to the first, and the numbers need to be adjusted.
1487de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1488de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Type *ArgType = I->getType();
1489de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Type *VArgType = getVecTypeForPair(ArgType);
1490de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1491de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Get the total number of elements in the fused vector type.
1492de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // By definition, this must equal the number of elements in
1493de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // the final mask.
1494de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    unsigned NumElem = cast<VectorType>(VArgType)->getNumElements();
1495de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    std::vector<Constant*> Mask(NumElem);
1496de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1497de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Type *OpType = I->getOperand(0)->getType();
1498de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    unsigned NumInElem = cast<VectorType>(OpType)->getNumElements();
1499de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1500de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // For the mask from the first pair...
1501de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    fillNewShuffleMask(Context, I, NumElem, 0, NumInElem, 0, Mask);
1502de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1503de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // For the mask from the second pair...
1504de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    fillNewShuffleMask(Context, J, NumElem, NumElem/2, NumInElem, NumInElem,
1505de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                       Mask);
1506de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1507de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return ConstantVector::get(Mask);
1508de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1509de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1510de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Returns the value to be used as the specified operand of the vector
1511de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // instruction that fuses I with J.
1512de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
1513de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J, unsigned o, bool FlipMemInputs) {
1514de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
1515de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
1516de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1517de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Compute the fused vector type for this operand
1518de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Type *ArgType = I->getOperand(o)->getType();
1519de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    VectorType *VArgType = getVecTypeForPair(ArgType);
1520de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1521de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Instruction *L = I, *H = J;
1522de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (FlipMemInputs) {
1523de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      L = J;
1524de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      H = I;
1525de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1526de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1527de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (ArgType->isVectorTy()) {
1528de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      unsigned numElem = cast<VectorType>(VArgType)->getNumElements();
1529de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      std::vector<Constant*> Mask(numElem);
1530de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (unsigned v = 0; v < numElem; ++v)
1531de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
1532de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1533de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Instruction *BV = new ShuffleVectorInst(L->getOperand(o),
1534de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                              H->getOperand(o),
1535de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                              ConstantVector::get(Mask),
1536de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                              getReplacementName(I, true, o));
1537de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      BV->insertBefore(J);
1538de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return BV;
1539de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1540de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1541de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // If these two inputs are the output of another vector instruction,
1542de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // then we should use that output directly. It might be necessary to
1543de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // permute it first. [When pairings are fused recursively, you can
1544de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // end up with cases where a large vector is decomposed into scalars
1545de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // using extractelement instructions, then built into size-2
1546de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // vectors using insertelement and the into larger vectors using
1547de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // shuffles. InstCombine does not simplify all of these cases well,
1548de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // and so we make sure that shuffles are generated here when possible.
1549de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    ExtractElementInst *LEE
1550de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      = dyn_cast<ExtractElementInst>(L->getOperand(o));
1551de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    ExtractElementInst *HEE
1552de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      = dyn_cast<ExtractElementInst>(H->getOperand(o));
1553de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1554de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (LEE && HEE &&
1555de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        LEE->getOperand(0)->getType() == HEE->getOperand(0)->getType()) {
1556de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      VectorType *EEType = cast<VectorType>(LEE->getOperand(0)->getType());
1557de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      unsigned LowIndx = cast<ConstantInt>(LEE->getOperand(1))->getZExtValue();
1558de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      unsigned HighIndx = cast<ConstantInt>(HEE->getOperand(1))->getZExtValue();
1559de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (LEE->getOperand(0) == HEE->getOperand(0)) {
1560de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (LowIndx == 0 && HighIndx == 1)
1561de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          return LEE->getOperand(0);
15621230ad6e8cb7977527ac64dcf5005464d7d6c20bSebastian Pop
1563de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        std::vector<Constant*> Mask(2);
1564de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx);
1565de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx);
1566de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1567de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0),
1568de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          UndefValue::get(EEType),
1569de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          ConstantVector::get(Mask),
1570de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          getReplacementName(I, true, o));
1571de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        BV->insertBefore(J);
1572de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        return BV;
1573de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1574de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1575de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      std::vector<Constant*> Mask(2);
1576de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      HighIndx += EEType->getNumElements();
1577de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx);
1578de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx);
1579de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1580de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0),
1581de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          HEE->getOperand(0),
1582de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          ConstantVector::get(Mask),
1583de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          getReplacementName(I, true, o));
1584de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      BV->insertBefore(J);
1585de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      return BV;
1586de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1587de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1588de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Instruction *BV1 = InsertElementInst::Create(
1589de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          UndefValue::get(VArgType),
1590de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          L->getOperand(o), CV0,
1591de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          getReplacementName(I, true, o, 1));
1592de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    BV1->insertBefore(I);
1593de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Instruction *BV2 = InsertElementInst::Create(BV1, H->getOperand(o),
1594de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          CV1,
1595de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          getReplacementName(I, true, o, 2));
1596de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    BV2->insertBefore(J);
1597de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return BV2;
1598de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1599de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1600de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function creates an array of values that will be used as the inputs
1601de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // to the vector instruction that fuses I with J.
1602de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
1603de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J,
1604de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     SmallVector<Value *, 3> &ReplacedOperands,
1605de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     bool &FlipMemInputs) {
1606de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    FlipMemInputs = false;
1607de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    unsigned NumOperands = I->getNumOperands();
1608de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1609de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
1610de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Iterate backward so that we look at the store pointer
1611de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // first and know whether or not we need to flip the inputs.
1612de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1613de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
1614de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // This is the pointer for a load/store instruction.
1615de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o,
1616de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                FlipMemInputs);
1617de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
16186173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel      } else if (isa<CallInst>(I)) {
1619de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Function *F = cast<CallInst>(I)->getCalledFunction();
1620de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        unsigned IID = F->getIntrinsicID();
16216173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel        if (o == NumOperands-1) {
16226173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          BasicBlock &BB = *I->getParent();
1623bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng
16246173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          Module *M = BB.getParent()->getParent();
16256173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          Type *ArgType = I->getType();
16266173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          Type *VArgType = getVecTypeForPair(ArgType);
1627bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng
16286173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          // FIXME: is it safe to do this here?
16296173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          ReplacedOperands[o] = Intrinsic::getDeclaration(M,
16306173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel            (Intrinsic::ID) IID, VArgType);
16316173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          continue;
16326173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel        } else if (IID == Intrinsic::powi && o == 1) {
16336173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          // The second argument of powi is a single integer and we've already
16346173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          // checked that both arguments are equal. As a result, we just keep
16356173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          // I's second argument.
16366173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          ReplacedOperands[o] = I->getOperand(o);
16376173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel          continue;
16386173ed95daf2f209fe3883faee45967e4800ae75Hal Finkel        }
1639de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
1640de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
1641de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
1642de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1643de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1644de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      ReplacedOperands[o] =
1645de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        getReplacementInput(Context, I, J, o, FlipMemInputs);
1646de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1647de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1648de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1649de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function creates two values that represent the outputs of the
1650de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // original I and J instructions. These are generally vector shuffles
1651de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // or extracts. In many cases, these will end up being unused and, thus,
1652de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // eliminated by later passes.
1653de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
1654de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *J, Instruction *K,
1655de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *&InsertionPt,
1656de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *&K1, Instruction *&K2,
1657de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     bool &FlipMemInputs) {
1658de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
1659de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
1660de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1661de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    if (isa<StoreInst>(I)) {
1662de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AA->replaceWithNewValue(I, K);
1663de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      AA->replaceWithNewValue(J, K);
1664de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    } else {
1665de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Type *IType = I->getType();
1666de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Type *VType = getVecTypeForPair(IType);
1667de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1668de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (IType->isVectorTy()) {
1669de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          unsigned numElem = cast<VectorType>(IType)->getNumElements();
1670de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          std::vector<Constant*> Mask1(numElem), Mask2(numElem);
1671de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          for (unsigned v = 0; v < numElem; ++v) {
1672de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
1673de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel            Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElem+v);
1674de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          }
1675de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1676de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
1677de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                       ConstantVector::get(
1678de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                         FlipMemInputs ? Mask2 : Mask1),
1679de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                       getReplacementName(K, false, 1));
1680de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
1681de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                       ConstantVector::get(
1682de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                         FlipMemInputs ? Mask1 : Mask2),
1683de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                       getReplacementName(K, false, 2));
1684de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
1685de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        K1 = ExtractElementInst::Create(K, FlipMemInputs ? CV1 : CV0,
1686de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          getReplacementName(K, false, 1));
1687de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        K2 = ExtractElementInst::Create(K, FlipMemInputs ? CV0 : CV1,
1688de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                                          getReplacementName(K, false, 2));
1689de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1690de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1691de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      K1->insertAfter(K);
1692de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      K2->insertAfter(K1);
1693de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      InsertionPt = K2;
1694de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1695de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1696de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1697de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Move all uses of the function I (including pairing-induced uses) after J.
1698de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
1699de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
1700de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J) {
1701de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Skip to the first instruction past I.
1702ded681d2725907c7de9db53d59cee0c51fad6fcbBenjamin Kramer    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
1703de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1704de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DenseSet<Value *> Users;
1705de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    AliasSetTracker WriteSet(*AA);
1706de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (; cast<Instruction>(L) != J; ++L)
1707de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet);
1708de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1709de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    assert(cast<Instruction>(L) == J &&
1710de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      "Tracking has not proceeded far enough to check for dependencies");
1711de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // If J is now in the use set of I, then trackUsesOfI will return true
1712de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // and we have a dependency cycle (and the fusing operation must abort).
1713de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet);
1714de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1715de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1716de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Move all uses of the function I (including pairing-induced uses) after J.
1717de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
1718de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
1719de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *&InsertionPt,
1720de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I, Instruction *J) {
1721de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Skip to the first instruction past I.
1722ded681d2725907c7de9db53d59cee0c51fad6fcbBenjamin Kramer    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
1723de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1724de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DenseSet<Value *> Users;
1725de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    AliasSetTracker WriteSet(*AA);
1726de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (; cast<Instruction>(L) != J;) {
1727de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) {
1728de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // Move this instruction
1729de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        Instruction *InstToMove = L; ++L;
1730de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1731de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
1732de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                        " to after " << *InsertionPt << "\n");
1733de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        InstToMove->removeFromParent();
1734de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        InstToMove->insertAfter(InsertionPt);
1735de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        InsertionPt = InstToMove;
1736de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      } else {
1737de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ++L;
1738de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1739de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1740de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1741de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1742de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // Collect all load instruction that are in the move set of a given first
1743de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // pair member.  These loads depend on the first instruction, I, and so need
1744de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // to be moved after J (the second instruction) when the pair is fused.
1745de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
1746de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *> &ChosenPairs,
1747de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet,
1748de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     Instruction *I) {
1749de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Skip to the first instruction past I.
1750ded681d2725907c7de9db53d59cee0c51fad6fcbBenjamin Kramer    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
1751de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1752de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DenseSet<Value *> Users;
1753de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    AliasSetTracker WriteSet(*AA);
1754de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1755de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // Note: We cannot end the loop when we reach J because J could be moved
1756de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // farther down the use chain by another instruction pairing. Also, J
1757de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // could be before I if this is an inverted input.
1758de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
1759de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (trackUsesOfI(Users, WriteSet, I, L)) {
1760de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (L->mayReadFromMemory())
1761de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          LoadMoveSet.insert(ValuePair(L, I));
1762de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1763de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1764de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1765de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1766de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // In cases where both load/stores and the computation of their pointers
1767de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // are chosen for vectorization, we can end up in a situation where the
1768de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // aliasing analysis starts returning different query results as the
1769de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // process of fusing instruction pairs continues. Because the algorithm
1770de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // relies on finding the same use trees here as were found earlier, we'll
1771de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // need to precompute the necessary aliasing information here and then
1772de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // manually update it during the fusion process.
1773de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
1774de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::vector<Value *> &PairableInsts,
1775de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *> &ChosenPairs,
1776de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::multimap<Value *, Value *> &LoadMoveSet) {
1777de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
1778de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         PIE = PairableInsts.end(); PI != PIE; ++PI) {
1779de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
1780de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (P == ChosenPairs.end()) continue;
1781de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1782de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Instruction *I = cast<Instruction>(P->first);
1783de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I);
1784de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1785de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1786de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1787de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // This function fuses the chosen instruction pairs into vector instructions,
1788de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // taking care preserve any needed scalar outputs and, then, it reorders the
1789de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // remaining instructions as needed (users of the first member of the pair
1790de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // need to be moved to after the location of the second member of the pair
1791de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // because the vector instruction is inserted in the location of the pair's
1792de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  // second member).
1793de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  void BBVectorize::fuseChosenPairs(BasicBlock &BB,
1794de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     std::vector<Value *> &PairableInsts,
1795de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel                     DenseMap<Value *, Value *> &ChosenPairs) {
1796de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    LLVMContext& Context = BB.getContext();
1797de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1798de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // During the vectorization process, the order of the pairs to be fused
1799de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
1800de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    // list. After a pair is fused, the flipped pair is removed from the list.
1801de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    std::vector<ValuePair> FlippedPairs;
1802de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    FlippedPairs.reserve(ChosenPairs.size());
1803de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
1804de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = ChosenPairs.end(); P != E; ++P)
1805de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      FlippedPairs.push_back(ValuePair(P->second, P->first));
1806de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (std::vector<ValuePair>::iterator P = FlippedPairs.begin(),
1807de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel         E = FlippedPairs.end(); P != E; ++P)
1808de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      ChosenPairs.insert(*P);
1809de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1810de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    std::multimap<Value *, Value *> LoadMoveSet;
1811de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
1812de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1813de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
1814de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1815de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
1816de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
1817de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (P == ChosenPairs.end()) {
1818de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ++PI;
1819de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
1820de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1821de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1822de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (getDepthFactor(P->first) == 0) {
1823de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // These instructions are not really fused, but are tracked as though
1824de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // they are. Any case in which it would be interesting to fuse them
1825de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        // will be taken care of by InstCombine.
1826de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        --NumFusedOps;
1827de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ++PI;
1828de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
1829de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1830de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1831de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Instruction *I = cast<Instruction>(P->first),
1832de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        *J = cast<Instruction>(P->second);
1833de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1834de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DEBUG(dbgs() << "BBV: fusing: " << *I <<
1835de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             " <-> " << *J << "\n");
1836de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1837de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Remove the pair and flipped pair from the list.
1838de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
1839de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
1840de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      ChosenPairs.erase(FP);
1841de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      ChosenPairs.erase(P);
1842de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1843de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) {
1844de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        DEBUG(dbgs() << "BBV: fusion of: " << *I <<
1845de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel               " <-> " << *J <<
1846de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel               " aborted because of non-trivial dependency cycle\n");
1847de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        --NumFusedOps;
1848de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ++PI;
1849de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        continue;
1850de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1851de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1852de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      bool FlipMemInputs;
1853de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      unsigned NumOperands = I->getNumOperands();
1854de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      SmallVector<Value *, 3> ReplacedOperands(NumOperands);
1855de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      getReplacementInputsForPair(Context, I, J, ReplacedOperands,
1856de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        FlipMemInputs);
1857de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1858de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Make a copy of the original operation, change its type to the vector
1859de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // type and replace its operands with the vector operands.
1860de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Instruction *K = I->clone();
1861de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (I->hasName()) K->takeName(I);
1862de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1863de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!isa<StoreInst>(K))
1864de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        K->mutateType(getVecTypeForPair(I->getType()));
1865de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1866de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      for (unsigned o = 0; o < NumOperands; ++o)
1867de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        K->setOperand(o, ReplacedOperands[o]);
1868de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1869de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // If we've flipped the memory inputs, make sure that we take the correct
1870de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // alignment.
1871de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (FlipMemInputs) {
1872de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        if (isa<StoreInst>(K))
1873de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          cast<StoreInst>(K)->setAlignment(cast<StoreInst>(J)->getAlignment());
1874de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        else
1875de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          cast<LoadInst>(K)->setAlignment(cast<LoadInst>(J)->getAlignment());
1876de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1877de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1878de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      K->insertAfter(J);
1879de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1880de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Instruction insertion point:
1881de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Instruction *InsertionPt = K;
1882de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      Instruction *K1 = 0, *K2 = 0;
1883de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      replaceOutputsOfPair(Context, I, J, K, InsertionPt, K1, K2,
1884de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        FlipMemInputs);
1885de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1886de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // The use tree of the first original instruction must be moved to after
1887de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // the location of the second instruction. The entire use tree of the
1888de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // first instruction is disjoint from the input tree of the second
1889de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // (by definition), and so commutes with it.
1890de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1891de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
1892de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1893de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (!isa<StoreInst>(I)) {
1894de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        I->replaceAllUsesWith(K1);
1895de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        J->replaceAllUsesWith(K2);
1896de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        AA->replaceWithNewValue(I, K1);
1897de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        AA->replaceWithNewValue(J, K2);
1898de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1899de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1900de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Instructions that may read from memory may be in the load move set.
1901de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Once an instruction is fused, we no longer need its move set, and so
1902de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // the values of the map never need to be updated. However, when a load
1903de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // is fused, we need to merge the entries from both instructions in the
1904de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // pair in case those instructions were in the move set of some other
1905de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // yet-to-be-fused pair. The loads in question are the keys of the map.
1906de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (I->mayReadFromMemory()) {
1907de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        std::vector<ValuePair> NewSetMembers;
1908de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPIteratorPair IPairRange = LoadMoveSet.equal_range(I);
1909de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        VPIteratorPair JPairRange = LoadMoveSet.equal_range(J);
1910de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (std::multimap<Value *, Value *>::iterator N = IPairRange.first;
1911de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             N != IPairRange.second; ++N)
1912de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          NewSetMembers.push_back(ValuePair(K, N->second));
1913de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (std::multimap<Value *, Value *>::iterator N = JPairRange.first;
1914de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             N != JPairRange.second; ++N)
1915de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          NewSetMembers.push_back(ValuePair(K, N->second));
1916de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
1917de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel             AE = NewSetMembers.end(); A != AE; ++A)
1918de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel          LoadMoveSet.insert(*A);
1919de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      }
1920de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1921de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      // Before removing I, set the iterator to the next instruction.
1922de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      PI = llvm::next(BasicBlock::iterator(I));
1923de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      if (cast<Instruction>(PI) == J)
1924de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel        ++PI;
1925de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1926de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      SE->forgetValue(I);
1927de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      SE->forgetValue(J);
1928de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      I->eraseFromParent();
1929de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel      J->eraseFromParent();
1930de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    }
1931de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1932de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel    DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
1933de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel  }
1934de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel}
1935de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1936de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelchar BBVectorize::ID = 0;
1937de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkelstatic const char bb_vectorize_name[] = "Basic-Block Vectorization";
1938de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelINITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
1939de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelINITIALIZE_AG_DEPENDENCY(AliasAnalysis)
1940de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelINITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
1941de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal FinkelINITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
1942de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1943bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin ZhengBasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
1944bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  return new BBVectorize(C);
1945de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel}
1946de5e5ec3045a73a06b1054417f9ac6c02929e9ceHal Finkel
1947bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zhengbool
1948bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zhengllvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
1949bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  BBVectorize BBVectorizer(P, C);
195087825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng  return BBVectorizer.vectorizeBB(BB);
195187825e7970a361ce5a8bab19bc880ff7f6242ca2Hongbin Zheng}
1952bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng
1953bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng//===----------------------------------------------------------------------===//
1954bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin ZhengVectorizeConfig::VectorizeConfig() {
1955bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  VectorBits = ::VectorBits;
195686312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeInts = !::NoInts;
195786312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeFloats = !::NoFloats;
1958f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel  VectorizePointers = !::NoPointers;
195986312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeCasts = !::NoCasts;
196086312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeMath = !::NoMath;
196186312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeFMA = !::NoFMA;
1962fc3665c87519850f629c9565535e3be447e10addHal Finkel  VectorizeSelect = !::NoSelect;
1963f3f5a1e6f77a842ccb24cc81766437da5197d712Hal Finkel  VectorizeGEP = !::NoGEP;
196486312cc15f29ce2bbd9647b94862e068045280c3Hongbin Zheng  VectorizeMemOps = !::NoMemOps;
1965bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  AlignedOnly = ::AlignedOnly;
1966bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  ReqChainDepth= ::ReqChainDepth;
1967bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  SearchLimit = ::SearchLimit;
1968bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
1969bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  SplatBreaksChain = ::SplatBreaksChain;
1970bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  MaxInsts = ::MaxInsts;
1971bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  MaxIter = ::MaxIter;
1972bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  NoMemOpBoost = ::NoMemOpBoost;
1973bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng  FastDep = ::FastDep;
1974bef377b7d7ce31edb40c87f8786d1b7bb6cdd6b1Hongbin Zheng}
1975