BBVectorize.cpp revision 35564dc3ae1c377abad425cb09928eaf676dcb3c
1//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a basic-block vectorization pass. The algorithm was
11// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
12// et al. It works by looking for chains of pairable operations and then
13// pairing them.
14//
15//===----------------------------------------------------------------------===//
16
17#define BBV_NAME "bb-vectorize"
18#define DEBUG_TYPE BBV_NAME
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Pass.h"
27#include "llvm/Type.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/Analysis/AliasSetTracker.h"
36#include "llvm/Analysis/ScalarEvolution.h"
37#include "llvm/Analysis/ScalarEvolutionExpressions.h"
38#include "llvm/Analysis/ValueTracking.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Support/ValueHandle.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Transforms/Vectorize.h"
45#include <algorithm>
46#include <map>
47using namespace llvm;
48
49static cl::opt<unsigned>
50ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
51  cl::desc("The required chain depth for vectorization"));
52
53static cl::opt<unsigned>
54SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
55  cl::desc("The maximum search distance for instruction pairs"));
56
57static cl::opt<bool>
58SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
59  cl::desc("Replicating one element to a pair breaks the chain"));
60
61static cl::opt<unsigned>
62VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
63  cl::desc("The size of the native vector registers"));
64
65static cl::opt<unsigned>
66MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
67  cl::desc("The maximum number of pairing iterations"));
68
69static cl::opt<unsigned>
70MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
71  cl::desc("The maximum number of pairable instructions per group"));
72
73static cl::opt<unsigned>
74MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
75  cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
76                       " a full cycle check"));
77
78static cl::opt<bool>
79NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
80  cl::desc("Don't try to vectorize integer values"));
81
82static cl::opt<bool>
83NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
84  cl::desc("Don't try to vectorize floating-point values"));
85
86static cl::opt<bool>
87NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
88  cl::desc("Don't try to vectorize casting (conversion) operations"));
89
90static cl::opt<bool>
91NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
92  cl::desc("Don't try to vectorize floating-point math intrinsics"));
93
94static cl::opt<bool>
95NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
96  cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
97
98static cl::opt<bool>
99NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
100  cl::desc("Don't try to vectorize loads and stores"));
101
102static cl::opt<bool>
103AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
104  cl::desc("Only generate aligned loads and stores"));
105
106static cl::opt<bool>
107FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
108  cl::desc("Use a fast instruction dependency analysis"));
109
110#ifndef NDEBUG
111static cl::opt<bool>
112DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
113  cl::init(false), cl::Hidden,
114  cl::desc("When debugging is enabled, output information on the"
115           " instruction-examination process"));
116static cl::opt<bool>
117DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
118  cl::init(false), cl::Hidden,
119  cl::desc("When debugging is enabled, output information on the"
120           " candidate-selection process"));
121static cl::opt<bool>
122DebugPairSelection("bb-vectorize-debug-pair-selection",
123  cl::init(false), cl::Hidden,
124  cl::desc("When debugging is enabled, output information on the"
125           " pair-selection process"));
126static cl::opt<bool>
127DebugCycleCheck("bb-vectorize-debug-cycle-check",
128  cl::init(false), cl::Hidden,
129  cl::desc("When debugging is enabled, output information on the"
130           " cycle-checking process"));
131#endif
132
133STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
134
135namespace {
136  struct BBVectorize : public BasicBlockPass {
137    static char ID; // Pass identification, replacement for typeid
138    BBVectorize() : BasicBlockPass(ID) {
139      initializeBBVectorizePass(*PassRegistry::getPassRegistry());
140    }
141
142    typedef std::pair<Value *, Value *> ValuePair;
143    typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
144    typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
145    typedef std::pair<std::multimap<Value *, Value *>::iterator,
146              std::multimap<Value *, Value *>::iterator> VPIteratorPair;
147    typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
148              std::multimap<ValuePair, ValuePair>::iterator>
149                VPPIteratorPair;
150
151    AliasAnalysis *AA;
152    ScalarEvolution *SE;
153    TargetData *TD;
154
155    // FIXME: const correct?
156
157    bool vectorizePairs(BasicBlock &BB);
158
159    bool getCandidatePairs(BasicBlock &BB,
160                       BasicBlock::iterator &Start,
161                       std::multimap<Value *, Value *> &CandidatePairs,
162                       std::vector<Value *> &PairableInsts);
163
164    void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
165                       std::vector<Value *> &PairableInsts,
166                       std::multimap<ValuePair, ValuePair> &ConnectedPairs);
167
168    void buildDepMap(BasicBlock &BB,
169                       std::multimap<Value *, Value *> &CandidatePairs,
170                       std::vector<Value *> &PairableInsts,
171                       DenseSet<ValuePair> &PairableInstUsers);
172
173    void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
174                        std::vector<Value *> &PairableInsts,
175                        std::multimap<ValuePair, ValuePair> &ConnectedPairs,
176                        DenseSet<ValuePair> &PairableInstUsers,
177                        DenseMap<Value *, Value *>& ChosenPairs);
178
179    void fuseChosenPairs(BasicBlock &BB,
180                     std::vector<Value *> &PairableInsts,
181                     DenseMap<Value *, Value *>& ChosenPairs);
182
183    bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
184
185    bool areInstsCompatible(Instruction *I, Instruction *J,
186                       bool IsSimpleLoadStore);
187
188    bool trackUsesOfI(DenseSet<Value *> &Users,
189                      AliasSetTracker &WriteSet, Instruction *I,
190                      Instruction *J, bool UpdateUsers = true,
191                      std::multimap<Value *, Value *> *LoadMoveSet = 0);
192
193    void computePairsConnectedTo(
194                      std::multimap<Value *, Value *> &CandidatePairs,
195                      std::vector<Value *> &PairableInsts,
196                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
197                      ValuePair P);
198
199    bool pairsConflict(ValuePair P, ValuePair Q,
200                 DenseSet<ValuePair> &PairableInstUsers,
201                 std::multimap<ValuePair, ValuePair> *PairableInstUserMap = 0);
202
203    bool pairWillFormCycle(ValuePair P,
204                       std::multimap<ValuePair, ValuePair> &PairableInstUsers,
205                       DenseSet<ValuePair> &CurrentPairs);
206
207    void pruneTreeFor(
208                      std::multimap<Value *, Value *> &CandidatePairs,
209                      std::vector<Value *> &PairableInsts,
210                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
211                      DenseSet<ValuePair> &PairableInstUsers,
212                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
213                      DenseMap<Value *, Value *> &ChosenPairs,
214                      DenseMap<ValuePair, size_t> &Tree,
215                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
216                      bool UseCycleCheck);
217
218    void buildInitialTreeFor(
219                      std::multimap<Value *, Value *> &CandidatePairs,
220                      std::vector<Value *> &PairableInsts,
221                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
222                      DenseSet<ValuePair> &PairableInstUsers,
223                      DenseMap<Value *, Value *> &ChosenPairs,
224                      DenseMap<ValuePair, size_t> &Tree, ValuePair J);
225
226    void findBestTreeFor(
227                      std::multimap<Value *, Value *> &CandidatePairs,
228                      std::vector<Value *> &PairableInsts,
229                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
230                      DenseSet<ValuePair> &PairableInstUsers,
231                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
232                      DenseMap<Value *, Value *> &ChosenPairs,
233                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
234                      size_t &BestEffSize, VPIteratorPair ChoiceRange,
235                      bool UseCycleCheck);
236
237    Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
238                     Instruction *J, unsigned o, bool &FlipMemInputs);
239
240    void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
241                     unsigned NumElem, unsigned MaskOffset, unsigned NumInElem,
242                     unsigned IdxOffset, std::vector<Constant*> &Mask);
243
244    Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
245                     Instruction *J);
246
247    Value *getReplacementInput(LLVMContext& Context, Instruction *I,
248                     Instruction *J, unsigned o, bool FlipMemInputs);
249
250    void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
251                     Instruction *J, SmallVector<Value *, 3> &ReplacedOperands,
252                     bool &FlipMemInputs);
253
254    void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
255                     Instruction *J, Instruction *K,
256                     Instruction *&InsertionPt, Instruction *&K1,
257                     Instruction *&K2, bool &FlipMemInputs);
258
259    void collectPairLoadMoveSet(BasicBlock &BB,
260                     DenseMap<Value *, Value *> &ChosenPairs,
261                     std::multimap<Value *, Value *> &LoadMoveSet,
262                     Instruction *I);
263
264    void collectLoadMoveSet(BasicBlock &BB,
265                     std::vector<Value *> &PairableInsts,
266                     DenseMap<Value *, Value *> &ChosenPairs,
267                     std::multimap<Value *, Value *> &LoadMoveSet);
268
269    bool canMoveUsesOfIAfterJ(BasicBlock &BB,
270                     std::multimap<Value *, Value *> &LoadMoveSet,
271                     Instruction *I, Instruction *J);
272
273    void moveUsesOfIAfterJ(BasicBlock &BB,
274                     std::multimap<Value *, Value *> &LoadMoveSet,
275                     Instruction *&InsertionPt,
276                     Instruction *I, Instruction *J);
277
278    virtual bool runOnBasicBlock(BasicBlock &BB) {
279      AA = &getAnalysis<AliasAnalysis>();
280      SE = &getAnalysis<ScalarEvolution>();
281      TD = getAnalysisIfAvailable<TargetData>();
282
283      bool changed = false;
284      // Iterate a sufficient number of times to merge types of size 1 bit,
285      // then 2 bits, then 4, etc. up to half of the target vector width of the
286      // target vector register.
287      for (unsigned v = 2, n = 1; v <= VectorBits && (!MaxIter || n <= MaxIter);
288           v *= 2, ++n) {
289        DEBUG(dbgs() << "BBV: fusing loop #" << n <<
290              " for " << BB.getName() << " in " <<
291              BB.getParent()->getName() << "...\n");
292        if (vectorizePairs(BB))
293          changed = true;
294        else
295          break;
296      }
297
298      DEBUG(dbgs() << "BBV: done!\n");
299      return changed;
300    }
301
302    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
303      BasicBlockPass::getAnalysisUsage(AU);
304      AU.addRequired<AliasAnalysis>();
305      AU.addRequired<ScalarEvolution>();
306      AU.addPreserved<AliasAnalysis>();
307      AU.addPreserved<ScalarEvolution>();
308      AU.setPreservesCFG();
309    }
310
311    // This returns the vector type that holds a pair of the provided type.
312    // If the provided type is already a vector, then its length is doubled.
313    static inline VectorType *getVecTypeForPair(Type *ElemTy) {
314      if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
315        unsigned numElem = VTy->getNumElements();
316        return VectorType::get(ElemTy->getScalarType(), numElem*2);
317      }
318
319      return VectorType::get(ElemTy, 2);
320    }
321
322    // Returns the weight associated with the provided value. A chain of
323    // candidate pairs has a length given by the sum of the weights of its
324    // members (one weight per pair; the weight of each member of the pair
325    // is assumed to be the same). This length is then compared to the
326    // chain-length threshold to determine if a given chain is significant
327    // enough to be vectorized. The length is also used in comparing
328    // candidate chains where longer chains are considered to be better.
329    // Note: when this function returns 0, the resulting instructions are
330    // not actually fused.
331    static inline size_t getDepthFactor(Value *V) {
332      // InsertElement and ExtractElement have a depth factor of zero. This is
333      // for two reasons: First, they cannot be usefully fused. Second, because
334      // the pass generates a lot of these, they can confuse the simple metric
335      // used to compare the trees in the next iteration. Thus, giving them a
336      // weight of zero allows the pass to essentially ignore them in
337      // subsequent iterations when looking for vectorization opportunities
338      // while still tracking dependency chains that flow through those
339      // instructions.
340      if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
341        return 0;
342
343      return 1;
344    }
345
346    // This determines the relative offset of two loads or stores, returning
347    // true if the offset could be determined to be some constant value.
348    // For example, if OffsetInElmts == 1, then J accesses the memory directly
349    // after I; if OffsetInElmts == -1 then I accesses the memory
350    // directly after J. This function assumes that both instructions
351    // have the same type.
352    bool getPairPtrInfo(Instruction *I, Instruction *J,
353        Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
354        int64_t &OffsetInElmts) {
355      OffsetInElmts = 0;
356      if (isa<LoadInst>(I)) {
357        IPtr = cast<LoadInst>(I)->getPointerOperand();
358        JPtr = cast<LoadInst>(J)->getPointerOperand();
359        IAlignment = cast<LoadInst>(I)->getAlignment();
360        JAlignment = cast<LoadInst>(J)->getAlignment();
361      } else {
362        IPtr = cast<StoreInst>(I)->getPointerOperand();
363        JPtr = cast<StoreInst>(J)->getPointerOperand();
364        IAlignment = cast<StoreInst>(I)->getAlignment();
365        JAlignment = cast<StoreInst>(J)->getAlignment();
366      }
367
368      const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
369      const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
370
371      // If this is a trivial offset, then we'll get something like
372      // 1*sizeof(type). With target data, which we need anyway, this will get
373      // constant folded into a number.
374      const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
375      if (const SCEVConstant *ConstOffSCEV =
376            dyn_cast<SCEVConstant>(OffsetSCEV)) {
377        ConstantInt *IntOff = ConstOffSCEV->getValue();
378        int64_t Offset = IntOff->getSExtValue();
379
380        Type *VTy = cast<PointerType>(IPtr->getType())->getElementType();
381        int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
382
383        assert(VTy == cast<PointerType>(JPtr->getType())->getElementType());
384
385        OffsetInElmts = Offset/VTyTSS;
386        return (abs64(Offset) % VTyTSS) == 0;
387      }
388
389      return false;
390    }
391
392    // Returns true if the provided CallInst represents an intrinsic that can
393    // be vectorized.
394    bool isVectorizableIntrinsic(CallInst* I) {
395      Function *F = I->getCalledFunction();
396      if (!F) return false;
397
398      unsigned IID = F->getIntrinsicID();
399      if (!IID) return false;
400
401      switch(IID) {
402      default:
403        return false;
404      case Intrinsic::sqrt:
405      case Intrinsic::powi:
406      case Intrinsic::sin:
407      case Intrinsic::cos:
408      case Intrinsic::log:
409      case Intrinsic::log2:
410      case Intrinsic::log10:
411      case Intrinsic::exp:
412      case Intrinsic::exp2:
413      case Intrinsic::pow:
414        return !NoMath;
415      case Intrinsic::fma:
416        return !NoFMA;
417      }
418    }
419
420    // Returns true if J is the second element in some pair referenced by
421    // some multimap pair iterator pair.
422    template <typename V>
423    bool isSecondInIteratorPair(V J, std::pair<
424           typename std::multimap<V, V>::iterator,
425           typename std::multimap<V, V>::iterator> PairRange) {
426      for (typename std::multimap<V, V>::iterator K = PairRange.first;
427           K != PairRange.second; ++K)
428        if (K->second == J) return true;
429
430      return false;
431    }
432  };
433
434  // This function implements one vectorization iteration on the provided
435  // basic block. It returns true if the block is changed.
436  bool BBVectorize::vectorizePairs(BasicBlock &BB) {
437    bool ShouldContinue;
438    BasicBlock::iterator Start = BB.getFirstInsertionPt();
439
440    std::vector<Value *> AllPairableInsts;
441    DenseMap<Value *, Value *> AllChosenPairs;
442
443    do {
444      std::vector<Value *> PairableInsts;
445      std::multimap<Value *, Value *> CandidatePairs;
446      ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
447                                         PairableInsts);
448      if (PairableInsts.empty()) continue;
449
450      // Now we have a map of all of the pairable instructions and we need to
451      // select the best possible pairing. A good pairing is one such that the
452      // users of the pair are also paired. This defines a (directed) forest
453      // over the pairs such that two pairs are connected iff the second pair
454      // uses the first.
455
456      // Note that it only matters that both members of the second pair use some
457      // element of the first pair (to allow for splatting).
458
459      std::multimap<ValuePair, ValuePair> ConnectedPairs;
460      computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs);
461      if (ConnectedPairs.empty()) continue;
462
463      // Build the pairable-instruction dependency map
464      DenseSet<ValuePair> PairableInstUsers;
465      buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
466
467      // There is now a graph of the connected pairs. For each variable, pick
468      // the pairing with the largest tree meeting the depth requirement on at
469      // least one branch. Then select all pairings that are part of that tree
470      // and remove them from the list of available pairings and pairable
471      // variables.
472
473      DenseMap<Value *, Value *> ChosenPairs;
474      choosePairs(CandidatePairs, PairableInsts, ConnectedPairs,
475        PairableInstUsers, ChosenPairs);
476
477      if (ChosenPairs.empty()) continue;
478      AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
479                              PairableInsts.end());
480      AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
481    } while (ShouldContinue);
482
483    if (AllChosenPairs.empty()) return false;
484    NumFusedOps += AllChosenPairs.size();
485
486    // A set of pairs has now been selected. It is now necessary to replace the
487    // paired instructions with vector instructions. For this procedure each
488    // operand much be replaced with a vector operand. This vector is formed
489    // by using build_vector on the old operands. The replaced values are then
490    // replaced with a vector_extract on the result.  Subsequent optimization
491    // passes should coalesce the build/extract combinations.
492
493    fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs);
494    return true;
495  }
496
497  // This function returns true if the provided instruction is capable of being
498  // fused into a vector instruction. This determination is based only on the
499  // type and other attributes of the instruction.
500  bool BBVectorize::isInstVectorizable(Instruction *I,
501                                         bool &IsSimpleLoadStore) {
502    IsSimpleLoadStore = false;
503
504    if (CallInst *C = dyn_cast<CallInst>(I)) {
505      if (!isVectorizableIntrinsic(C))
506        return false;
507    } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
508      // Vectorize simple loads if possbile:
509      IsSimpleLoadStore = L->isSimple();
510      if (!IsSimpleLoadStore || NoMemOps)
511        return false;
512    } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
513      // Vectorize simple stores if possbile:
514      IsSimpleLoadStore = S->isSimple();
515      if (!IsSimpleLoadStore || NoMemOps)
516        return false;
517    } else if (CastInst *C = dyn_cast<CastInst>(I)) {
518      // We can vectorize casts, but not casts of pointer types, etc.
519      if (NoCasts)
520        return false;
521
522      Type *SrcTy = C->getSrcTy();
523      if (!SrcTy->isSingleValueType() || SrcTy->isPointerTy())
524        return false;
525
526      Type *DestTy = C->getDestTy();
527      if (!DestTy->isSingleValueType() || DestTy->isPointerTy())
528        return false;
529    } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
530        isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
531      return false;
532    }
533
534    // We can't vectorize memory operations without target data
535    if (TD == 0 && IsSimpleLoadStore)
536      return false;
537
538    Type *T1, *T2;
539    if (isa<StoreInst>(I)) {
540      // For stores, it is the value type, not the pointer type that matters
541      // because the value is what will come from a vector register.
542
543      Value *IVal = cast<StoreInst>(I)->getValueOperand();
544      T1 = IVal->getType();
545    } else {
546      T1 = I->getType();
547    }
548
549    if (I->isCast())
550      T2 = cast<CastInst>(I)->getSrcTy();
551    else
552      T2 = T1;
553
554    // Not every type can be vectorized...
555    if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
556        !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
557      return false;
558
559    if (NoInts && (T1->isIntOrIntVectorTy() || T2->isIntOrIntVectorTy()))
560      return false;
561
562    if (NoFloats && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
563      return false;
564
565    if (T1->getPrimitiveSizeInBits() > VectorBits/2 ||
566        T2->getPrimitiveSizeInBits() > VectorBits/2)
567      return false;
568
569    return true;
570  }
571
572  // This function returns true if the two provided instructions are compatible
573  // (meaning that they can be fused into a vector instruction). This assumes
574  // that I has already been determined to be vectorizable and that J is not
575  // in the use tree of I.
576  bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
577                       bool IsSimpleLoadStore) {
578    DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
579                     " <-> " << *J << "\n");
580
581    // Loads and stores can be merged if they have different alignments,
582    // but are otherwise the same.
583    LoadInst *LI, *LJ;
584    StoreInst *SI, *SJ;
585    if ((LI = dyn_cast<LoadInst>(I)) && (LJ = dyn_cast<LoadInst>(J))) {
586      if (I->getType() != J->getType())
587        return false;
588
589      if (LI->getPointerOperand()->getType() !=
590            LJ->getPointerOperand()->getType() ||
591          LI->isVolatile() != LJ->isVolatile() ||
592          LI->getOrdering() != LJ->getOrdering() ||
593          LI->getSynchScope() != LJ->getSynchScope())
594        return false;
595    } else if ((SI = dyn_cast<StoreInst>(I)) && (SJ = dyn_cast<StoreInst>(J))) {
596      if (SI->getValueOperand()->getType() !=
597            SJ->getValueOperand()->getType() ||
598          SI->getPointerOperand()->getType() !=
599            SJ->getPointerOperand()->getType() ||
600          SI->isVolatile() != SJ->isVolatile() ||
601          SI->getOrdering() != SJ->getOrdering() ||
602          SI->getSynchScope() != SJ->getSynchScope())
603        return false;
604    } else if (!J->isSameOperationAs(I)) {
605      return false;
606    }
607    // FIXME: handle addsub-type operations!
608
609    if (IsSimpleLoadStore) {
610      Value *IPtr, *JPtr;
611      unsigned IAlignment, JAlignment;
612      int64_t OffsetInElmts = 0;
613      if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
614            OffsetInElmts) && abs64(OffsetInElmts) == 1) {
615        if (AlignedOnly) {
616          Type *aType = isa<StoreInst>(I) ?
617            cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
618          // An aligned load or store is possible only if the instruction
619          // with the lower offset has an alignment suitable for the
620          // vector type.
621
622          unsigned BottomAlignment = IAlignment;
623          if (OffsetInElmts < 0) BottomAlignment = JAlignment;
624
625          Type *VType = getVecTypeForPair(aType);
626          unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
627          if (BottomAlignment < VecAlignment)
628            return false;
629        }
630      } else {
631        return false;
632      }
633    } else if (isa<ShuffleVectorInst>(I)) {
634      // Only merge two shuffles if they're both constant
635      return isa<Constant>(I->getOperand(2)) &&
636             isa<Constant>(J->getOperand(2));
637      // FIXME: We may want to vectorize non-constant shuffles also.
638    }
639
640    return true;
641  }
642
643  // Figure out whether or not J uses I and update the users and write-set
644  // structures associated with I. Specifically, Users represents the set of
645  // instructions that depend on I. WriteSet represents the set
646  // of memory locations that are dependent on I. If UpdateUsers is true,
647  // and J uses I, then Users is updated to contain J and WriteSet is updated
648  // to contain any memory locations to which J writes. The function returns
649  // true if J uses I. By default, alias analysis is used to determine
650  // whether J reads from memory that overlaps with a location in WriteSet.
651  // If LoadMoveSet is not null, then it is a previously-computed multimap
652  // where the key is the memory-based user instruction and the value is
653  // the instruction to be compared with I. So, if LoadMoveSet is provided,
654  // then the alias analysis is not used. This is necessary because this
655  // function is called during the process of moving instructions during
656  // vectorization and the results of the alias analysis are not stable during
657  // that process.
658  bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
659                       AliasSetTracker &WriteSet, Instruction *I,
660                       Instruction *J, bool UpdateUsers,
661                       std::multimap<Value *, Value *> *LoadMoveSet) {
662    bool UsesI = false;
663
664    // This instruction may already be marked as a user due, for example, to
665    // being a member of a selected pair.
666    if (Users.count(J))
667      UsesI = true;
668
669    if (!UsesI)
670      for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
671           JU != JE; ++JU) {
672        Value *V = *JU;
673        if (I == V || Users.count(V)) {
674          UsesI = true;
675          break;
676        }
677      }
678    if (!UsesI && J->mayReadFromMemory()) {
679      if (LoadMoveSet) {
680        VPIteratorPair JPairRange = LoadMoveSet->equal_range(J);
681        UsesI = isSecondInIteratorPair<Value*>(I, JPairRange);
682      } else {
683        for (AliasSetTracker::iterator W = WriteSet.begin(),
684             WE = WriteSet.end(); W != WE; ++W) {
685          for (AliasSet::iterator A = W->begin(), AE = W->end();
686               A != AE; ++A) {
687            AliasAnalysis::Location ptrLoc(A->getValue(), A->getSize(),
688                                           A->getTBAAInfo());
689            if (AA->getModRefInfo(J, ptrLoc) != AliasAnalysis::NoModRef) {
690              UsesI = true;
691              break;
692            }
693          }
694          if (UsesI) break;
695        }
696      }
697    }
698
699    if (UsesI && UpdateUsers) {
700      if (J->mayWriteToMemory()) WriteSet.add(J);
701      Users.insert(J);
702    }
703
704    return UsesI;
705  }
706
707  // This function iterates over all instruction pairs in the provided
708  // basic block and collects all candidate pairs for vectorization.
709  bool BBVectorize::getCandidatePairs(BasicBlock &BB,
710                       BasicBlock::iterator &Start,
711                       std::multimap<Value *, Value *> &CandidatePairs,
712                       std::vector<Value *> &PairableInsts) {
713    BasicBlock::iterator E = BB.end();
714    if (Start == E) return false;
715
716    bool ShouldContinue = false, IAfterStart = false;
717    for (BasicBlock::iterator I = Start++; I != E; ++I) {
718      if (I == Start) IAfterStart = true;
719
720      bool IsSimpleLoadStore;
721      if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
722
723      // Look for an instruction with which to pair instruction *I...
724      DenseSet<Value *> Users;
725      AliasSetTracker WriteSet(*AA);
726      bool JAfterStart = IAfterStart;
727      BasicBlock::iterator J = llvm::next(I);
728      for (unsigned ss = 0; J != E && ss <= SearchLimit; ++J, ++ss) {
729        if (J == Start) JAfterStart = true;
730
731        // Determine if J uses I, if so, exit the loop.
732        bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !FastDep);
733        if (FastDep) {
734          // Note: For this heuristic to be effective, independent operations
735          // must tend to be intermixed. This is likely to be true from some
736          // kinds of grouped loop unrolling (but not the generic LLVM pass),
737          // but otherwise may require some kind of reordering pass.
738
739          // When using fast dependency analysis,
740          // stop searching after first use:
741          if (UsesI) break;
742        } else {
743          if (UsesI) continue;
744        }
745
746        // J does not use I, and comes before the first use of I, so it can be
747        // merged with I if the instructions are compatible.
748        if (!areInstsCompatible(I, J, IsSimpleLoadStore)) continue;
749
750        // J is a candidate for merging with I.
751        if (!PairableInsts.size() ||
752             PairableInsts[PairableInsts.size()-1] != I) {
753          PairableInsts.push_back(I);
754        }
755
756        CandidatePairs.insert(ValuePair(I, J));
757
758        // The next call to this function must start after the last instruction
759        // selected during this invocation.
760        if (JAfterStart) {
761          Start = llvm::next(J);
762          IAfterStart = JAfterStart = false;
763        }
764
765        DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
766                     << *I << " <-> " << *J << "\n");
767
768        // If we have already found too many pairs, break here and this function
769        // will be called again starting after the last instruction selected
770        // during this invocation.
771        if (PairableInsts.size() >= MaxInsts) {
772          ShouldContinue = true;
773          break;
774        }
775      }
776
777      if (ShouldContinue)
778        break;
779    }
780
781    DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
782           << " instructions with candidate pairs\n");
783
784    return ShouldContinue;
785  }
786
787  // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
788  // it looks for pairs such that both members have an input which is an
789  // output of PI or PJ.
790  void BBVectorize::computePairsConnectedTo(
791                      std::multimap<Value *, Value *> &CandidatePairs,
792                      std::vector<Value *> &PairableInsts,
793                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
794                      ValuePair P) {
795    // For each possible pairing for this variable, look at the uses of
796    // the first value...
797    for (Value::use_iterator I = P.first->use_begin(),
798         E = P.first->use_end(); I != E; ++I) {
799      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
800
801      // For each use of the first variable, look for uses of the second
802      // variable...
803      for (Value::use_iterator J = P.second->use_begin(),
804           E2 = P.second->use_end(); J != E2; ++J) {
805        VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
806
807        // Look for <I, J>:
808        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
809          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
810
811        // Look for <J, I>:
812        if (isSecondInIteratorPair<Value*>(*I, JPairRange))
813          ConnectedPairs.insert(VPPair(P, ValuePair(*J, *I)));
814      }
815
816      if (SplatBreaksChain) continue;
817      // Look for cases where just the first value in the pair is used by
818      // both members of another pair (splatting).
819      for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) {
820        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
821          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
822      }
823    }
824
825    if (SplatBreaksChain) return;
826    // Look for cases where just the second value in the pair is used by
827    // both members of another pair (splatting).
828    for (Value::use_iterator I = P.second->use_begin(),
829         E = P.second->use_end(); I != E; ++I) {
830      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
831
832      for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
833        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
834          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
835      }
836    }
837  }
838
839  // This function figures out which pairs are connected.  Two pairs are
840  // connected if some output of the first pair forms an input to both members
841  // of the second pair.
842  void BBVectorize::computeConnectedPairs(
843                      std::multimap<Value *, Value *> &CandidatePairs,
844                      std::vector<Value *> &PairableInsts,
845                      std::multimap<ValuePair, ValuePair> &ConnectedPairs) {
846
847    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
848         PE = PairableInsts.end(); PI != PE; ++PI) {
849      VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI);
850
851      for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
852           P != choiceRange.second; ++P)
853        computePairsConnectedTo(CandidatePairs, PairableInsts,
854                                ConnectedPairs, *P);
855    }
856
857    DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
858                 << " pair connections.\n");
859  }
860
861  // This function builds a set of use tuples such that <A, B> is in the set
862  // if B is in the use tree of A. If B is in the use tree of A, then B
863  // depends on the output of A.
864  void BBVectorize::buildDepMap(
865                      BasicBlock &BB,
866                      std::multimap<Value *, Value *> &CandidatePairs,
867                      std::vector<Value *> &PairableInsts,
868                      DenseSet<ValuePair> &PairableInstUsers) {
869    DenseSet<Value *> IsInPair;
870    for (std::multimap<Value *, Value *>::iterator C = CandidatePairs.begin(),
871         E = CandidatePairs.end(); C != E; ++C) {
872      IsInPair.insert(C->first);
873      IsInPair.insert(C->second);
874    }
875
876    // Iterate through the basic block, recording all Users of each
877    // pairable instruction.
878
879    BasicBlock::iterator E = BB.end();
880    for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
881      if (IsInPair.find(I) == IsInPair.end()) continue;
882
883      DenseSet<Value *> Users;
884      AliasSetTracker WriteSet(*AA);
885      for (BasicBlock::iterator J = llvm::next(I); J != E; ++J)
886        (void) trackUsesOfI(Users, WriteSet, I, J);
887
888      for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
889           U != E; ++U)
890        PairableInstUsers.insert(ValuePair(I, *U));
891    }
892  }
893
894  // Returns true if an input to pair P is an output of pair Q and also an
895  // input of pair Q is an output of pair P. If this is the case, then these
896  // two pairs cannot be simultaneously fused.
897  bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
898                     DenseSet<ValuePair> &PairableInstUsers,
899                     std::multimap<ValuePair, ValuePair> *PairableInstUserMap) {
900    // Two pairs are in conflict if they are mutual Users of eachother.
901    bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
902                  PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
903                  PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
904                  PairableInstUsers.count(ValuePair(P.second, Q.second));
905    bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
906                  PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
907                  PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
908                  PairableInstUsers.count(ValuePair(Q.second, P.second));
909    if (PairableInstUserMap) {
910      // FIXME: The expensive part of the cycle check is not so much the cycle
911      // check itself but this edge insertion procedure. This needs some
912      // profiling and probably a different data structure (same is true of
913      // most uses of std::multimap).
914      if (PUsesQ) {
915        VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q);
916        if (!isSecondInIteratorPair(P, QPairRange))
917          PairableInstUserMap->insert(VPPair(Q, P));
918      }
919      if (QUsesP) {
920        VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P);
921        if (!isSecondInIteratorPair(Q, PPairRange))
922          PairableInstUserMap->insert(VPPair(P, Q));
923      }
924    }
925
926    return (QUsesP && PUsesQ);
927  }
928
929  // This function walks the use graph of current pairs to see if, starting
930  // from P, the walk returns to P.
931  bool BBVectorize::pairWillFormCycle(ValuePair P,
932                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
933                       DenseSet<ValuePair> &CurrentPairs) {
934    DEBUG(if (DebugCycleCheck)
935            dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
936                   << *P.second << "\n");
937    // A lookup table of visisted pairs is kept because the PairableInstUserMap
938    // contains non-direct associations.
939    DenseSet<ValuePair> Visited;
940    SmallVector<ValuePair, 32> Q;
941    // General depth-first post-order traversal:
942    Q.push_back(P);
943    do {
944      ValuePair QTop = Q.pop_back_val();
945      Visited.insert(QTop);
946
947      DEBUG(if (DebugCycleCheck)
948              dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
949                     << *QTop.second << "\n");
950      VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop);
951      for (std::multimap<ValuePair, ValuePair>::iterator C = QPairRange.first;
952           C != QPairRange.second; ++C) {
953        if (C->second == P) {
954          DEBUG(dbgs()
955                 << "BBV: rejected to prevent non-trivial cycle formation: "
956                 << *C->first.first << " <-> " << *C->first.second << "\n");
957          return true;
958        }
959
960        if (CurrentPairs.count(C->second) > 0 &&
961            Visited.count(C->second) == 0)
962          Q.push_back(C->second);
963      }
964    } while (!Q.empty());
965
966    return false;
967  }
968
969  // This function builds the initial tree of connected pairs with the
970  // pair J at the root.
971  void BBVectorize::buildInitialTreeFor(
972                      std::multimap<Value *, Value *> &CandidatePairs,
973                      std::vector<Value *> &PairableInsts,
974                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
975                      DenseSet<ValuePair> &PairableInstUsers,
976                      DenseMap<Value *, Value *> &ChosenPairs,
977                      DenseMap<ValuePair, size_t> &Tree, ValuePair J) {
978    // Each of these pairs is viewed as the root node of a Tree. The Tree
979    // is then walked (depth-first). As this happens, we keep track of
980    // the pairs that compose the Tree and the maximum depth of the Tree.
981    SmallVector<ValuePairWithDepth, 32> Q;
982    // General depth-first post-order traversal:
983    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
984    do {
985      ValuePairWithDepth QTop = Q.back();
986
987      // Push each child onto the queue:
988      bool MoreChildren = false;
989      size_t MaxChildDepth = QTop.second;
990      VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first);
991      for (std::multimap<ValuePair, ValuePair>::iterator k = qtRange.first;
992           k != qtRange.second; ++k) {
993        // Make sure that this child pair is still a candidate:
994        bool IsStillCand = false;
995        VPIteratorPair checkRange =
996          CandidatePairs.equal_range(k->second.first);
997        for (std::multimap<Value *, Value *>::iterator m = checkRange.first;
998             m != checkRange.second; ++m) {
999          if (m->second == k->second.second) {
1000            IsStillCand = true;
1001            break;
1002          }
1003        }
1004
1005        if (IsStillCand) {
1006          DenseMap<ValuePair, size_t>::iterator C = Tree.find(k->second);
1007          if (C == Tree.end()) {
1008            size_t d = getDepthFactor(k->second.first);
1009            Q.push_back(ValuePairWithDepth(k->second, QTop.second+d));
1010            MoreChildren = true;
1011          } else {
1012            MaxChildDepth = std::max(MaxChildDepth, C->second);
1013          }
1014        }
1015      }
1016
1017      if (!MoreChildren) {
1018        // Record the current pair as part of the Tree:
1019        Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
1020        Q.pop_back();
1021      }
1022    } while (!Q.empty());
1023  }
1024
1025  // Given some initial tree, prune it by removing conflicting pairs (pairs
1026  // that cannot be simultaneously chosen for vectorization).
1027  void BBVectorize::pruneTreeFor(
1028                      std::multimap<Value *, Value *> &CandidatePairs,
1029                      std::vector<Value *> &PairableInsts,
1030                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1031                      DenseSet<ValuePair> &PairableInstUsers,
1032                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1033                      DenseMap<Value *, Value *> &ChosenPairs,
1034                      DenseMap<ValuePair, size_t> &Tree,
1035                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
1036                      bool UseCycleCheck) {
1037    SmallVector<ValuePairWithDepth, 32> Q;
1038    // General depth-first post-order traversal:
1039    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
1040    do {
1041      ValuePairWithDepth QTop = Q.pop_back_val();
1042      PrunedTree.insert(QTop.first);
1043
1044      // Visit each child, pruning as necessary...
1045      DenseMap<ValuePair, size_t> BestChilden;
1046      VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
1047      for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first;
1048           K != QTopRange.second; ++K) {
1049        DenseMap<ValuePair, size_t>::iterator C = Tree.find(K->second);
1050        if (C == Tree.end()) continue;
1051
1052        // This child is in the Tree, now we need to make sure it is the
1053        // best of any conflicting children. There could be multiple
1054        // conflicting children, so first, determine if we're keeping
1055        // this child, then delete conflicting children as necessary.
1056
1057        // It is also necessary to guard against pairing-induced
1058        // dependencies. Consider instructions a .. x .. y .. b
1059        // such that (a,b) are to be fused and (x,y) are to be fused
1060        // but a is an input to x and b is an output from y. This
1061        // means that y cannot be moved after b but x must be moved
1062        // after b for (a,b) to be fused. In other words, after
1063        // fusing (a,b) we have y .. a/b .. x where y is an input
1064        // to a/b and x is an output to a/b: x and y can no longer
1065        // be legally fused. To prevent this condition, we must
1066        // make sure that a child pair added to the Tree is not
1067        // both an input and output of an already-selected pair.
1068
1069        // Pairing-induced dependencies can also form from more complicated
1070        // cycles. The pair vs. pair conflicts are easy to check, and so
1071        // that is done explicitly for "fast rejection", and because for
1072        // child vs. child conflicts, we may prefer to keep the current
1073        // pair in preference to the already-selected child.
1074        DenseSet<ValuePair> CurrentPairs;
1075
1076        bool CanAdd = true;
1077        for (DenseMap<ValuePair, size_t>::iterator C2
1078              = BestChilden.begin(), E2 = BestChilden.end();
1079             C2 != E2; ++C2) {
1080          if (C2->first.first == C->first.first ||
1081              C2->first.first == C->first.second ||
1082              C2->first.second == C->first.first ||
1083              C2->first.second == C->first.second ||
1084              pairsConflict(C2->first, C->first, PairableInstUsers,
1085                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1086            if (C2->second >= C->second) {
1087              CanAdd = false;
1088              break;
1089            }
1090
1091            CurrentPairs.insert(C2->first);
1092          }
1093        }
1094        if (!CanAdd) continue;
1095
1096        // Even worse, this child could conflict with another node already
1097        // selected for the Tree. If that is the case, ignore this child.
1098        for (DenseSet<ValuePair>::iterator T = PrunedTree.begin(),
1099             E2 = PrunedTree.end(); T != E2; ++T) {
1100          if (T->first == C->first.first ||
1101              T->first == C->first.second ||
1102              T->second == C->first.first ||
1103              T->second == C->first.second ||
1104              pairsConflict(*T, C->first, PairableInstUsers,
1105                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1106            CanAdd = false;
1107            break;
1108          }
1109
1110          CurrentPairs.insert(*T);
1111        }
1112        if (!CanAdd) continue;
1113
1114        // And check the queue too...
1115        for (SmallVector<ValuePairWithDepth, 32>::iterator C2 = Q.begin(),
1116             E2 = Q.end(); C2 != E2; ++C2) {
1117          if (C2->first.first == C->first.first ||
1118              C2->first.first == C->first.second ||
1119              C2->first.second == C->first.first ||
1120              C2->first.second == C->first.second ||
1121              pairsConflict(C2->first, C->first, PairableInstUsers,
1122                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1123            CanAdd = false;
1124            break;
1125          }
1126
1127          CurrentPairs.insert(C2->first);
1128        }
1129        if (!CanAdd) continue;
1130
1131        // Last but not least, check for a conflict with any of the
1132        // already-chosen pairs.
1133        for (DenseMap<Value *, Value *>::iterator C2 =
1134              ChosenPairs.begin(), E2 = ChosenPairs.end();
1135             C2 != E2; ++C2) {
1136          if (pairsConflict(*C2, C->first, PairableInstUsers,
1137                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1138            CanAdd = false;
1139            break;
1140          }
1141
1142          CurrentPairs.insert(*C2);
1143        }
1144        if (!CanAdd) continue;
1145
1146	// To check for non-trivial cycles formed by the addition of the
1147	// current pair we've formed a list of all relevant pairs, now use a
1148	// graph walk to check for a cycle. We start from the current pair and
1149	// walk the use tree to see if we again reach the current pair. If we
1150	// do, then the current pair is rejected.
1151
1152        // FIXME: It may be more efficient to use a topological-ordering
1153        // algorithm to improve the cycle check. This should be investigated.
1154        if (UseCycleCheck &&
1155            pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
1156          continue;
1157
1158        // This child can be added, but we may have chosen it in preference
1159        // to an already-selected child. Check for this here, and if a
1160        // conflict is found, then remove the previously-selected child
1161        // before adding this one in its place.
1162        for (DenseMap<ValuePair, size_t>::iterator C2
1163              = BestChilden.begin(); C2 != BestChilden.end();) {
1164          if (C2->first.first == C->first.first ||
1165              C2->first.first == C->first.second ||
1166              C2->first.second == C->first.first ||
1167              C2->first.second == C->first.second ||
1168              pairsConflict(C2->first, C->first, PairableInstUsers))
1169            BestChilden.erase(C2++);
1170          else
1171            ++C2;
1172        }
1173
1174        BestChilden.insert(ValuePairWithDepth(C->first, C->second));
1175      }
1176
1177      for (DenseMap<ValuePair, size_t>::iterator C
1178            = BestChilden.begin(), E2 = BestChilden.end();
1179           C != E2; ++C) {
1180        size_t DepthF = getDepthFactor(C->first.first);
1181        Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
1182      }
1183    } while (!Q.empty());
1184  }
1185
1186  // This function finds the best tree of mututally-compatible connected
1187  // pairs, given the choice of root pairs as an iterator range.
1188  void BBVectorize::findBestTreeFor(
1189                      std::multimap<Value *, Value *> &CandidatePairs,
1190                      std::vector<Value *> &PairableInsts,
1191                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1192                      DenseSet<ValuePair> &PairableInstUsers,
1193                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1194                      DenseMap<Value *, Value *> &ChosenPairs,
1195                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
1196                      size_t &BestEffSize, VPIteratorPair ChoiceRange,
1197                      bool UseCycleCheck) {
1198    for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
1199         J != ChoiceRange.second; ++J) {
1200
1201      // Before going any further, make sure that this pair does not
1202      // conflict with any already-selected pairs (see comment below
1203      // near the Tree pruning for more details).
1204      DenseSet<ValuePair> ChosenPairSet;
1205      bool DoesConflict = false;
1206      for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
1207           E = ChosenPairs.end(); C != E; ++C) {
1208        if (pairsConflict(*C, *J, PairableInstUsers,
1209                          UseCycleCheck ? &PairableInstUserMap : 0)) {
1210          DoesConflict = true;
1211          break;
1212        }
1213
1214        ChosenPairSet.insert(*C);
1215      }
1216      if (DoesConflict) continue;
1217
1218      if (UseCycleCheck &&
1219          pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet))
1220        continue;
1221
1222      DenseMap<ValuePair, size_t> Tree;
1223      buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1224                          PairableInstUsers, ChosenPairs, Tree, *J);
1225
1226      // Because we'll keep the child with the largest depth, the largest
1227      // depth is still the same in the unpruned Tree.
1228      size_t MaxDepth = Tree.lookup(*J);
1229
1230      DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {"
1231                   << *J->first << " <-> " << *J->second << "} of depth " <<
1232                   MaxDepth << " and size " << Tree.size() << "\n");
1233
1234      // At this point the Tree has been constructed, but, may contain
1235      // contradictory children (meaning that different children of
1236      // some tree node may be attempting to fuse the same instruction).
1237      // So now we walk the tree again, in the case of a conflict,
1238      // keep only the child with the largest depth. To break a tie,
1239      // favor the first child.
1240
1241      DenseSet<ValuePair> PrunedTree;
1242      pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1243                   PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
1244                   PrunedTree, *J, UseCycleCheck);
1245
1246      size_t EffSize = 0;
1247      for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
1248           E = PrunedTree.end(); S != E; ++S)
1249        EffSize += getDepthFactor(S->first);
1250
1251      DEBUG(if (DebugPairSelection)
1252             dbgs() << "BBV: found pruned Tree for pair {"
1253             << *J->first << " <-> " << *J->second << "} of depth " <<
1254             MaxDepth << " and size " << PrunedTree.size() <<
1255            " (effective size: " << EffSize << ")\n");
1256      if (MaxDepth >= ReqChainDepth && EffSize > BestEffSize) {
1257        BestMaxDepth = MaxDepth;
1258        BestEffSize = EffSize;
1259        BestTree = PrunedTree;
1260      }
1261    }
1262  }
1263
1264  // Given the list of candidate pairs, this function selects those
1265  // that will be fused into vector instructions.
1266  void BBVectorize::choosePairs(
1267                      std::multimap<Value *, Value *> &CandidatePairs,
1268                      std::vector<Value *> &PairableInsts,
1269                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1270                      DenseSet<ValuePair> &PairableInstUsers,
1271                      DenseMap<Value *, Value *>& ChosenPairs) {
1272    bool UseCycleCheck = CandidatePairs.size() <= MaxCandPairsForCycleCheck;
1273    std::multimap<ValuePair, ValuePair> PairableInstUserMap;
1274    for (std::vector<Value *>::iterator I = PairableInsts.begin(),
1275         E = PairableInsts.end(); I != E; ++I) {
1276      // The number of possible pairings for this variable:
1277      size_t NumChoices = CandidatePairs.count(*I);
1278      if (!NumChoices) continue;
1279
1280      VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
1281
1282      // The best pair to choose and its tree:
1283      size_t BestMaxDepth = 0, BestEffSize = 0;
1284      DenseSet<ValuePair> BestTree;
1285      findBestTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1286                      PairableInstUsers, PairableInstUserMap, ChosenPairs,
1287                      BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
1288                      UseCycleCheck);
1289
1290      // A tree has been chosen (or not) at this point. If no tree was
1291      // chosen, then this instruction, I, cannot be paired (and is no longer
1292      // considered).
1293
1294      DEBUG(if (BestTree.size() > 0)
1295              dbgs() << "BBV: selected pairs in the best tree for: "
1296                     << *cast<Instruction>(*I) << "\n");
1297
1298      for (DenseSet<ValuePair>::iterator S = BestTree.begin(),
1299           SE2 = BestTree.end(); S != SE2; ++S) {
1300        // Insert the members of this tree into the list of chosen pairs.
1301        ChosenPairs.insert(ValuePair(S->first, S->second));
1302        DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
1303               *S->second << "\n");
1304
1305        // Remove all candidate pairs that have values in the chosen tree.
1306        for (std::multimap<Value *, Value *>::iterator K =
1307               CandidatePairs.begin(); K != CandidatePairs.end();) {
1308          if (K->first == S->first || K->second == S->first ||
1309              K->second == S->second || K->first == S->second) {
1310            // Don't remove the actual pair chosen so that it can be used
1311            // in subsequent tree selections.
1312            if (!(K->first == S->first && K->second == S->second))
1313              CandidatePairs.erase(K++);
1314            else
1315              ++K;
1316          } else {
1317            ++K;
1318          }
1319        }
1320      }
1321    }
1322
1323    DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
1324  }
1325
1326  std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
1327                     unsigned n = 0) {
1328    if (!I->hasName())
1329      return "";
1330
1331    return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
1332             (n > 0 ? "." + utostr(n) : "")).str();
1333  }
1334
1335  // Returns the value that is to be used as the pointer input to the vector
1336  // instruction that fuses I with J.
1337  Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
1338                     Instruction *I, Instruction *J, unsigned o,
1339                     bool &FlipMemInputs) {
1340    Value *IPtr, *JPtr;
1341    unsigned IAlignment, JAlignment;
1342    int64_t OffsetInElmts;
1343    (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
1344                          OffsetInElmts);
1345
1346    // The pointer value is taken to be the one with the lowest offset.
1347    Value *VPtr;
1348    if (OffsetInElmts > 0) {
1349      VPtr = IPtr;
1350    } else {
1351      FlipMemInputs = true;
1352      VPtr = JPtr;
1353    }
1354
1355    Type *ArgType = cast<PointerType>(IPtr->getType())->getElementType();
1356    Type *VArgType = getVecTypeForPair(ArgType);
1357    Type *VArgPtrType = PointerType::get(VArgType,
1358      cast<PointerType>(IPtr->getType())->getAddressSpace());
1359    return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
1360                        /* insert before */ FlipMemInputs ? J : I);
1361  }
1362
1363  void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
1364                     unsigned NumElem, unsigned MaskOffset, unsigned NumInElem,
1365                     unsigned IdxOffset, std::vector<Constant*> &Mask) {
1366    for (unsigned v = 0; v < NumElem/2; ++v) {
1367      int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
1368      if (m < 0) {
1369        Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
1370      } else {
1371        unsigned mm = m + (int) IdxOffset;
1372        if (m >= (int) NumInElem)
1373          mm += (int) NumInElem;
1374
1375        Mask[v+MaskOffset] =
1376          ConstantInt::get(Type::getInt32Ty(Context), mm);
1377      }
1378    }
1379  }
1380
1381  // Returns the value that is to be used as the vector-shuffle mask to the
1382  // vector instruction that fuses I with J.
1383  Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
1384                     Instruction *I, Instruction *J) {
1385    // This is the shuffle mask. We need to append the second
1386    // mask to the first, and the numbers need to be adjusted.
1387
1388    Type *ArgType = I->getType();
1389    Type *VArgType = getVecTypeForPair(ArgType);
1390
1391    // Get the total number of elements in the fused vector type.
1392    // By definition, this must equal the number of elements in
1393    // the final mask.
1394    unsigned NumElem = cast<VectorType>(VArgType)->getNumElements();
1395    std::vector<Constant*> Mask(NumElem);
1396
1397    Type *OpType = I->getOperand(0)->getType();
1398    unsigned NumInElem = cast<VectorType>(OpType)->getNumElements();
1399
1400    // For the mask from the first pair...
1401    fillNewShuffleMask(Context, I, NumElem, 0, NumInElem, 0, Mask);
1402
1403    // For the mask from the second pair...
1404    fillNewShuffleMask(Context, J, NumElem, NumElem/2, NumInElem, NumInElem,
1405                       Mask);
1406
1407    return ConstantVector::get(Mask);
1408  }
1409
1410  // Returns the value to be used as the specified operand of the vector
1411  // instruction that fuses I with J.
1412  Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
1413                     Instruction *J, unsigned o, bool FlipMemInputs) {
1414    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
1415    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
1416
1417      // Compute the fused vector type for this operand
1418    Type *ArgType = I->getOperand(o)->getType();
1419    VectorType *VArgType = getVecTypeForPair(ArgType);
1420
1421    Instruction *L = I, *H = J;
1422    if (FlipMemInputs) {
1423      L = J;
1424      H = I;
1425    }
1426
1427    if (ArgType->isVectorTy()) {
1428      unsigned numElem = cast<VectorType>(VArgType)->getNumElements();
1429      std::vector<Constant*> Mask(numElem);
1430      for (unsigned v = 0; v < numElem; ++v)
1431        Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
1432
1433      Instruction *BV = new ShuffleVectorInst(L->getOperand(o),
1434                                              H->getOperand(o),
1435                                              ConstantVector::get(Mask),
1436                                              getReplacementName(I, true, o));
1437      BV->insertBefore(J);
1438      return BV;
1439    }
1440
1441    // If these two inputs are the output of another vector instruction,
1442    // then we should use that output directly. It might be necessary to
1443    // permute it first. [When pairings are fused recursively, you can
1444    // end up with cases where a large vector is decomposed into scalars
1445    // using extractelement instructions, then built into size-2
1446    // vectors using insertelement and the into larger vectors using
1447    // shuffles. InstCombine does not simplify all of these cases well,
1448    // and so we make sure that shuffles are generated here when possible.
1449    ExtractElementInst *LEE
1450      = dyn_cast<ExtractElementInst>(L->getOperand(o));
1451    ExtractElementInst *HEE
1452      = dyn_cast<ExtractElementInst>(H->getOperand(o));
1453
1454    if (LEE && HEE &&
1455        LEE->getOperand(0)->getType() == HEE->getOperand(0)->getType()) {
1456      VectorType *EEType = cast<VectorType>(LEE->getOperand(0)->getType());
1457      unsigned LowIndx = cast<ConstantInt>(LEE->getOperand(1))->getZExtValue();
1458      unsigned HighIndx = cast<ConstantInt>(HEE->getOperand(1))->getZExtValue();
1459      if (LEE->getOperand(0) == HEE->getOperand(0)) {
1460        if (LowIndx == 0 && HighIndx == 1)
1461          return LEE->getOperand(0);
1462
1463        std::vector<Constant*> Mask(2);
1464        Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx);
1465        Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx);
1466
1467        Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0),
1468                                          UndefValue::get(EEType),
1469                                          ConstantVector::get(Mask),
1470                                          getReplacementName(I, true, o));
1471        BV->insertBefore(J);
1472        return BV;
1473      }
1474
1475      std::vector<Constant*> Mask(2);
1476      HighIndx += EEType->getNumElements();
1477      Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx);
1478      Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx);
1479
1480      Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0),
1481                                          HEE->getOperand(0),
1482                                          ConstantVector::get(Mask),
1483                                          getReplacementName(I, true, o));
1484      BV->insertBefore(J);
1485      return BV;
1486    }
1487
1488    Instruction *BV1 = InsertElementInst::Create(
1489                                          UndefValue::get(VArgType),
1490                                          L->getOperand(o), CV0,
1491                                          getReplacementName(I, true, o, 1));
1492    BV1->insertBefore(I);
1493    Instruction *BV2 = InsertElementInst::Create(BV1, H->getOperand(o),
1494                                          CV1,
1495                                          getReplacementName(I, true, o, 2));
1496    BV2->insertBefore(J);
1497    return BV2;
1498  }
1499
1500  // This function creates an array of values that will be used as the inputs
1501  // to the vector instruction that fuses I with J.
1502  void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
1503                     Instruction *I, Instruction *J,
1504                     SmallVector<Value *, 3> &ReplacedOperands,
1505                     bool &FlipMemInputs) {
1506    FlipMemInputs = false;
1507    unsigned NumOperands = I->getNumOperands();
1508
1509    for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
1510      // Iterate backward so that we look at the store pointer
1511      // first and know whether or not we need to flip the inputs.
1512
1513      if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
1514        // This is the pointer for a load/store instruction.
1515        ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o,
1516                                FlipMemInputs);
1517        continue;
1518      } else if (isa<CallInst>(I) && o == NumOperands-1) {
1519        Function *F = cast<CallInst>(I)->getCalledFunction();
1520        unsigned IID = F->getIntrinsicID();
1521        BasicBlock &BB = *I->getParent();
1522
1523        Module *M = BB.getParent()->getParent();
1524        Type *ArgType = I->getType();
1525        Type *VArgType = getVecTypeForPair(ArgType);
1526
1527        // FIXME: is it safe to do this here?
1528        ReplacedOperands[o] = Intrinsic::getDeclaration(M,
1529          (Intrinsic::ID) IID, VArgType);
1530        continue;
1531      } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
1532        ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
1533        continue;
1534      }
1535
1536      ReplacedOperands[o] =
1537        getReplacementInput(Context, I, J, o, FlipMemInputs);
1538    }
1539  }
1540
1541  // This function creates two values that represent the outputs of the
1542  // original I and J instructions. These are generally vector shuffles
1543  // or extracts. In many cases, these will end up being unused and, thus,
1544  // eliminated by later passes.
1545  void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
1546                     Instruction *J, Instruction *K,
1547                     Instruction *&InsertionPt,
1548                     Instruction *&K1, Instruction *&K2,
1549                     bool &FlipMemInputs) {
1550    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
1551    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
1552
1553    if (isa<StoreInst>(I)) {
1554      AA->replaceWithNewValue(I, K);
1555      AA->replaceWithNewValue(J, K);
1556    } else {
1557      Type *IType = I->getType();
1558      Type *VType = getVecTypeForPair(IType);
1559
1560      if (IType->isVectorTy()) {
1561          unsigned numElem = cast<VectorType>(IType)->getNumElements();
1562          std::vector<Constant*> Mask1(numElem), Mask2(numElem);
1563          for (unsigned v = 0; v < numElem; ++v) {
1564            Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
1565            Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElem+v);
1566          }
1567
1568          K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
1569                                       ConstantVector::get(
1570                                         FlipMemInputs ? Mask2 : Mask1),
1571                                       getReplacementName(K, false, 1));
1572          K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
1573                                       ConstantVector::get(
1574                                         FlipMemInputs ? Mask1 : Mask2),
1575                                       getReplacementName(K, false, 2));
1576      } else {
1577        K1 = ExtractElementInst::Create(K, FlipMemInputs ? CV1 : CV0,
1578                                          getReplacementName(K, false, 1));
1579        K2 = ExtractElementInst::Create(K, FlipMemInputs ? CV0 : CV1,
1580                                          getReplacementName(K, false, 2));
1581      }
1582
1583      K1->insertAfter(K);
1584      K2->insertAfter(K1);
1585      InsertionPt = K2;
1586    }
1587  }
1588
1589  // Move all uses of the function I (including pairing-induced uses) after J.
1590  bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
1591                     std::multimap<Value *, Value *> &LoadMoveSet,
1592                     Instruction *I, Instruction *J) {
1593    // Skip to the first instruction past I.
1594    BasicBlock::iterator L = BB.begin();
1595    for (; cast<Instruction>(L) != I; ++L);
1596    ++L;
1597
1598    DenseSet<Value *> Users;
1599    AliasSetTracker WriteSet(*AA);
1600    for (; cast<Instruction>(L) != J; ++L)
1601      (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet);
1602
1603    assert(cast<Instruction>(L) == J &&
1604      "Tracking has not proceeded far enough to check for dependencies");
1605    // If J is now in the use set of I, then trackUsesOfI will return true
1606    // and we have a dependency cycle (and the fusing operation must abort).
1607    return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet);
1608  }
1609
1610  // Move all uses of the function I (including pairing-induced uses) after J.
1611  void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
1612                     std::multimap<Value *, Value *> &LoadMoveSet,
1613                     Instruction *&InsertionPt,
1614                     Instruction *I, Instruction *J) {
1615    // Skip to the first instruction past I.
1616    BasicBlock::iterator L = BB.begin();
1617    for (; cast<Instruction>(L) != I; ++L);
1618    ++L;
1619
1620    DenseSet<Value *> Users;
1621    AliasSetTracker WriteSet(*AA);
1622    for (; cast<Instruction>(L) != J;) {
1623      if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) {
1624        // Move this instruction
1625        Instruction *InstToMove = L; ++L;
1626
1627        DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
1628                        " to after " << *InsertionPt << "\n");
1629        InstToMove->removeFromParent();
1630        InstToMove->insertAfter(InsertionPt);
1631        InsertionPt = InstToMove;
1632      } else {
1633        ++L;
1634      }
1635    }
1636  }
1637
1638  // Collect all load instruction that are in the move set of a given first
1639  // pair member.  These loads depend on the first instruction, I, and so need
1640  // to be moved after J (the second instruction) when the pair is fused.
1641  void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
1642                     DenseMap<Value *, Value *> &ChosenPairs,
1643                     std::multimap<Value *, Value *> &LoadMoveSet,
1644                     Instruction *I) {
1645    // Skip to the first instruction past I.
1646    BasicBlock::iterator L = BB.begin();
1647    for (; cast<Instruction>(L) != I; ++L);
1648    ++L;
1649
1650    DenseSet<Value *> Users;
1651    AliasSetTracker WriteSet(*AA);
1652
1653    // Note: We cannot end the loop when we reach J because J could be moved
1654    // farther down the use chain by another instruction pairing. Also, J
1655    // could be before I if this is an inverted input.
1656    for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
1657      if (trackUsesOfI(Users, WriteSet, I, L)) {
1658        if (L->mayReadFromMemory())
1659          LoadMoveSet.insert(ValuePair(L, I));
1660      }
1661    }
1662  }
1663
1664  // In cases where both load/stores and the computation of their pointers
1665  // are chosen for vectorization, we can end up in a situation where the
1666  // aliasing analysis starts returning different query results as the
1667  // process of fusing instruction pairs continues. Because the algorithm
1668  // relies on finding the same use trees here as were found earlier, we'll
1669  // need to precompute the necessary aliasing information here and then
1670  // manually update it during the fusion process.
1671  void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
1672                     std::vector<Value *> &PairableInsts,
1673                     DenseMap<Value *, Value *> &ChosenPairs,
1674                     std::multimap<Value *, Value *> &LoadMoveSet) {
1675    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
1676         PIE = PairableInsts.end(); PI != PIE; ++PI) {
1677      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
1678      if (P == ChosenPairs.end()) continue;
1679
1680      Instruction *I = cast<Instruction>(P->first);
1681      collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I);
1682    }
1683  }
1684
1685  // This function fuses the chosen instruction pairs into vector instructions,
1686  // taking care preserve any needed scalar outputs and, then, it reorders the
1687  // remaining instructions as needed (users of the first member of the pair
1688  // need to be moved to after the location of the second member of the pair
1689  // because the vector instruction is inserted in the location of the pair's
1690  // second member).
1691  void BBVectorize::fuseChosenPairs(BasicBlock &BB,
1692                     std::vector<Value *> &PairableInsts,
1693                     DenseMap<Value *, Value *> &ChosenPairs) {
1694    LLVMContext& Context = BB.getContext();
1695
1696    // During the vectorization process, the order of the pairs to be fused
1697    // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
1698    // list. After a pair is fused, the flipped pair is removed from the list.
1699    std::vector<ValuePair> FlippedPairs;
1700    FlippedPairs.reserve(ChosenPairs.size());
1701    for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
1702         E = ChosenPairs.end(); P != E; ++P)
1703      FlippedPairs.push_back(ValuePair(P->second, P->first));
1704    for (std::vector<ValuePair>::iterator P = FlippedPairs.begin(),
1705         E = FlippedPairs.end(); P != E; ++P)
1706      ChosenPairs.insert(*P);
1707
1708    std::multimap<Value *, Value *> LoadMoveSet;
1709    collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
1710
1711    DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
1712
1713    for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
1714      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
1715      if (P == ChosenPairs.end()) {
1716        ++PI;
1717        continue;
1718      }
1719
1720      if (getDepthFactor(P->first) == 0) {
1721        // These instructions are not really fused, but are tracked as though
1722        // they are. Any case in which it would be interesting to fuse them
1723        // will be taken care of by InstCombine.
1724        --NumFusedOps;
1725        ++PI;
1726        continue;
1727      }
1728
1729      Instruction *I = cast<Instruction>(P->first),
1730        *J = cast<Instruction>(P->second);
1731
1732      DEBUG(dbgs() << "BBV: fusing: " << *I <<
1733             " <-> " << *J << "\n");
1734
1735      // Remove the pair and flipped pair from the list.
1736      DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
1737      assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
1738      ChosenPairs.erase(FP);
1739      ChosenPairs.erase(P);
1740
1741      if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) {
1742        DEBUG(dbgs() << "BBV: fusion of: " << *I <<
1743               " <-> " << *J <<
1744               " aborted because of non-trivial dependency cycle\n");
1745        --NumFusedOps;
1746        ++PI;
1747        continue;
1748      }
1749
1750      bool FlipMemInputs;
1751      unsigned NumOperands = I->getNumOperands();
1752      SmallVector<Value *, 3> ReplacedOperands(NumOperands);
1753      getReplacementInputsForPair(Context, I, J, ReplacedOperands,
1754        FlipMemInputs);
1755
1756      // Make a copy of the original operation, change its type to the vector
1757      // type and replace its operands with the vector operands.
1758      Instruction *K = I->clone();
1759      if (I->hasName()) K->takeName(I);
1760
1761      if (!isa<StoreInst>(K))
1762        K->mutateType(getVecTypeForPair(I->getType()));
1763
1764      for (unsigned o = 0; o < NumOperands; ++o)
1765        K->setOperand(o, ReplacedOperands[o]);
1766
1767      // If we've flipped the memory inputs, make sure that we take the correct
1768      // alignment.
1769      if (FlipMemInputs) {
1770        if (isa<StoreInst>(K))
1771          cast<StoreInst>(K)->setAlignment(cast<StoreInst>(J)->getAlignment());
1772        else
1773          cast<LoadInst>(K)->setAlignment(cast<LoadInst>(J)->getAlignment());
1774      }
1775
1776      K->insertAfter(J);
1777
1778      // Instruction insertion point:
1779      Instruction *InsertionPt = K;
1780      Instruction *K1 = 0, *K2 = 0;
1781      replaceOutputsOfPair(Context, I, J, K, InsertionPt, K1, K2,
1782        FlipMemInputs);
1783
1784      // The use tree of the first original instruction must be moved to after
1785      // the location of the second instruction. The entire use tree of the
1786      // first instruction is disjoint from the input tree of the second
1787      // (by definition), and so commutes with it.
1788
1789      moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
1790
1791      if (!isa<StoreInst>(I)) {
1792        I->replaceAllUsesWith(K1);
1793        J->replaceAllUsesWith(K2);
1794        AA->replaceWithNewValue(I, K1);
1795        AA->replaceWithNewValue(J, K2);
1796      }
1797
1798      // Instructions that may read from memory may be in the load move set.
1799      // Once an instruction is fused, we no longer need its move set, and so
1800      // the values of the map never need to be updated. However, when a load
1801      // is fused, we need to merge the entries from both instructions in the
1802      // pair in case those instructions were in the move set of some other
1803      // yet-to-be-fused pair. The loads in question are the keys of the map.
1804      if (I->mayReadFromMemory()) {
1805        std::vector<ValuePair> NewSetMembers;
1806        VPIteratorPair IPairRange = LoadMoveSet.equal_range(I);
1807        VPIteratorPair JPairRange = LoadMoveSet.equal_range(J);
1808        for (std::multimap<Value *, Value *>::iterator N = IPairRange.first;
1809             N != IPairRange.second; ++N)
1810          NewSetMembers.push_back(ValuePair(K, N->second));
1811        for (std::multimap<Value *, Value *>::iterator N = JPairRange.first;
1812             N != JPairRange.second; ++N)
1813          NewSetMembers.push_back(ValuePair(K, N->second));
1814        for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
1815             AE = NewSetMembers.end(); A != AE; ++A)
1816          LoadMoveSet.insert(*A);
1817      }
1818
1819      // Before removing I, set the iterator to the next instruction.
1820      PI = llvm::next(BasicBlock::iterator(I));
1821      if (cast<Instruction>(PI) == J)
1822        ++PI;
1823
1824      SE->forgetValue(I);
1825      SE->forgetValue(J);
1826      I->eraseFromParent();
1827      J->eraseFromParent();
1828    }
1829
1830    DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
1831  }
1832}
1833
1834char BBVectorize::ID = 0;
1835static const char bb_vectorize_name[] = "Basic-Block Vectorization";
1836INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
1837INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
1838INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
1839INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
1840
1841BasicBlockPass *llvm::createBBVectorizePass() {
1842  return new BBVectorize();
1843}
1844
1845