BBVectorize.cpp revision 4387b8c95971a512e07bfda30dea6459e8419e8f
1//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a basic-block vectorization pass. The algorithm was
11// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
12// et al. It works by looking for chains of pairable operations and then
13// pairing them.
14//
15//===----------------------------------------------------------------------===//
16
17#define BBV_NAME "bb-vectorize"
18#define DEBUG_TYPE BBV_NAME
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Metadata.h"
27#include "llvm/Pass.h"
28#include "llvm/Type.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/ADT/StringExtras.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/Analysis/AliasSetTracker.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Analysis/ScalarEvolution.h"
40#include "llvm/Analysis/ScalarEvolutionExpressions.h"
41#include "llvm/Analysis/ValueTracking.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Support/ValueHandle.h"
46#include "llvm/DataLayout.h"
47#include "llvm/TargetTransformInfo.h"
48#include "llvm/Transforms/Utils/Local.h"
49#include "llvm/Transforms/Vectorize.h"
50#include <algorithm>
51#include <map>
52using namespace llvm;
53
54static cl::opt<bool>
55IgnoreTargetInfo("bb-vectorize-ignore-target-info",  cl::init(false),
56  cl::Hidden, cl::desc("Ignore target information"));
57
58static cl::opt<unsigned>
59ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
60  cl::desc("The required chain depth for vectorization"));
61
62static cl::opt<bool>
63UseChainDepthWithTI("bb-vectorize-use-chain-depth",  cl::init(false),
64  cl::Hidden, cl::desc("Use the chain depth requirement with"
65                       " target information"));
66
67static cl::opt<unsigned>
68SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
69  cl::desc("The maximum search distance for instruction pairs"));
70
71static cl::opt<bool>
72SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
73  cl::desc("Replicating one element to a pair breaks the chain"));
74
75static cl::opt<unsigned>
76VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
77  cl::desc("The size of the native vector registers"));
78
79static cl::opt<unsigned>
80MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
81  cl::desc("The maximum number of pairing iterations"));
82
83static cl::opt<bool>
84Pow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden,
85  cl::desc("Don't try to form non-2^n-length vectors"));
86
87static cl::opt<unsigned>
88MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
89  cl::desc("The maximum number of pairable instructions per group"));
90
91static cl::opt<unsigned>
92MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
93  cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
94                       " a full cycle check"));
95
96static cl::opt<bool>
97NoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden,
98  cl::desc("Don't try to vectorize boolean (i1) values"));
99
100static cl::opt<bool>
101NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
102  cl::desc("Don't try to vectorize integer values"));
103
104static cl::opt<bool>
105NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
106  cl::desc("Don't try to vectorize floating-point values"));
107
108// FIXME: This should default to false once pointer vector support works.
109static cl::opt<bool>
110NoPointers("bb-vectorize-no-pointers", cl::init(/*false*/ true), cl::Hidden,
111  cl::desc("Don't try to vectorize pointer values"));
112
113static cl::opt<bool>
114NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
115  cl::desc("Don't try to vectorize casting (conversion) operations"));
116
117static cl::opt<bool>
118NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
119  cl::desc("Don't try to vectorize floating-point math intrinsics"));
120
121static cl::opt<bool>
122NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
123  cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
124
125static cl::opt<bool>
126NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
127  cl::desc("Don't try to vectorize select instructions"));
128
129static cl::opt<bool>
130NoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden,
131  cl::desc("Don't try to vectorize comparison instructions"));
132
133static cl::opt<bool>
134NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
135  cl::desc("Don't try to vectorize getelementptr instructions"));
136
137static cl::opt<bool>
138NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
139  cl::desc("Don't try to vectorize loads and stores"));
140
141static cl::opt<bool>
142AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
143  cl::desc("Only generate aligned loads and stores"));
144
145static cl::opt<bool>
146NoMemOpBoost("bb-vectorize-no-mem-op-boost",
147  cl::init(false), cl::Hidden,
148  cl::desc("Don't boost the chain-depth contribution of loads and stores"));
149
150static cl::opt<bool>
151FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
152  cl::desc("Use a fast instruction dependency analysis"));
153
154#ifndef NDEBUG
155static cl::opt<bool>
156DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
157  cl::init(false), cl::Hidden,
158  cl::desc("When debugging is enabled, output information on the"
159           " instruction-examination process"));
160static cl::opt<bool>
161DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
162  cl::init(false), cl::Hidden,
163  cl::desc("When debugging is enabled, output information on the"
164           " candidate-selection process"));
165static cl::opt<bool>
166DebugPairSelection("bb-vectorize-debug-pair-selection",
167  cl::init(false), cl::Hidden,
168  cl::desc("When debugging is enabled, output information on the"
169           " pair-selection process"));
170static cl::opt<bool>
171DebugCycleCheck("bb-vectorize-debug-cycle-check",
172  cl::init(false), cl::Hidden,
173  cl::desc("When debugging is enabled, output information on the"
174           " cycle-checking process"));
175
176static cl::opt<bool>
177PrintAfterEveryPair("bb-vectorize-debug-print-after-every-pair",
178  cl::init(false), cl::Hidden,
179  cl::desc("When debugging is enabled, dump the basic block after"
180           " every pair is fused"));
181#endif
182
183STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
184
185namespace {
186  struct BBVectorize : public BasicBlockPass {
187    static char ID; // Pass identification, replacement for typeid
188
189    const VectorizeConfig Config;
190
191    BBVectorize(const VectorizeConfig &C = VectorizeConfig())
192      : BasicBlockPass(ID), Config(C) {
193      initializeBBVectorizePass(*PassRegistry::getPassRegistry());
194    }
195
196    BBVectorize(Pass *P, const VectorizeConfig &C)
197      : BasicBlockPass(ID), Config(C) {
198      AA = &P->getAnalysis<AliasAnalysis>();
199      DT = &P->getAnalysis<DominatorTree>();
200      SE = &P->getAnalysis<ScalarEvolution>();
201      TD = P->getAnalysisIfAvailable<DataLayout>();
202      TTI = IgnoreTargetInfo ? 0 :
203        P->getAnalysisIfAvailable<TargetTransformInfo>();
204      VTTI = TTI ? TTI->getVectorTargetTransformInfo() : 0;
205    }
206
207    typedef std::pair<Value *, Value *> ValuePair;
208    typedef std::pair<ValuePair, int> ValuePairWithCost;
209    typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
210    typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
211    typedef std::pair<VPPair, unsigned> VPPairWithType;
212    typedef std::pair<std::multimap<Value *, Value *>::iterator,
213              std::multimap<Value *, Value *>::iterator> VPIteratorPair;
214    typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
215              std::multimap<ValuePair, ValuePair>::iterator>
216                VPPIteratorPair;
217
218    AliasAnalysis *AA;
219    DominatorTree *DT;
220    ScalarEvolution *SE;
221    DataLayout *TD;
222    TargetTransformInfo *TTI;
223    const VectorTargetTransformInfo *VTTI;
224
225    // FIXME: const correct?
226
227    bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false);
228
229    bool getCandidatePairs(BasicBlock &BB,
230                       BasicBlock::iterator &Start,
231                       std::multimap<Value *, Value *> &CandidatePairs,
232                       DenseSet<ValuePair> &FixedOrderPairs,
233                       DenseMap<ValuePair, int> &CandidatePairCostSavings,
234                       std::vector<Value *> &PairableInsts, bool NonPow2Len);
235
236    // FIXME: The current implementation does not account for pairs that
237    // are connected in multiple ways. For example:
238    //   C1 = A1 / A2; C2 = A2 / A1 (which may be both direct and a swap)
239    enum PairConnectionType {
240      PairConnectionDirect,
241      PairConnectionSwap,
242      PairConnectionSplat
243    };
244
245    void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
246                       std::vector<Value *> &PairableInsts,
247                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
248                       DenseMap<VPPair, unsigned> &PairConnectionTypes);
249
250    void buildDepMap(BasicBlock &BB,
251                       std::multimap<Value *, Value *> &CandidatePairs,
252                       std::vector<Value *> &PairableInsts,
253                       DenseSet<ValuePair> &PairableInstUsers);
254
255    void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
256                        DenseMap<ValuePair, int> &CandidatePairCostSavings,
257                        std::vector<Value *> &PairableInsts,
258                        DenseSet<ValuePair> &FixedOrderPairs,
259                        DenseMap<VPPair, unsigned> &PairConnectionTypes,
260                        std::multimap<ValuePair, ValuePair> &ConnectedPairs,
261                        std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
262                        DenseSet<ValuePair> &PairableInstUsers,
263                        DenseMap<Value *, Value *>& ChosenPairs);
264
265    void fuseChosenPairs(BasicBlock &BB,
266                     std::vector<Value *> &PairableInsts,
267                     DenseMap<Value *, Value *>& ChosenPairs,
268                     DenseSet<ValuePair> &FixedOrderPairs,
269                     DenseMap<VPPair, unsigned> &PairConnectionTypes,
270                     std::multimap<ValuePair, ValuePair> &ConnectedPairs,
271                     std::multimap<ValuePair, ValuePair> &ConnectedPairDeps);
272
273
274    bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
275
276    bool areInstsCompatible(Instruction *I, Instruction *J,
277                       bool IsSimpleLoadStore, bool NonPow2Len,
278                       int &CostSavings, int &FixedOrder);
279
280    bool trackUsesOfI(DenseSet<Value *> &Users,
281                      AliasSetTracker &WriteSet, Instruction *I,
282                      Instruction *J, bool UpdateUsers = true,
283                      std::multimap<Value *, Value *> *LoadMoveSet = 0);
284
285    void computePairsConnectedTo(
286                      std::multimap<Value *, Value *> &CandidatePairs,
287                      std::vector<Value *> &PairableInsts,
288                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
289                      DenseMap<VPPair, unsigned> &PairConnectionTypes,
290                      ValuePair P);
291
292    bool pairsConflict(ValuePair P, ValuePair Q,
293                 DenseSet<ValuePair> &PairableInstUsers,
294                 std::multimap<ValuePair, ValuePair> *PairableInstUserMap = 0);
295
296    bool pairWillFormCycle(ValuePair P,
297                       std::multimap<ValuePair, ValuePair> &PairableInstUsers,
298                       DenseSet<ValuePair> &CurrentPairs);
299
300    void pruneTreeFor(
301                      std::multimap<Value *, Value *> &CandidatePairs,
302                      std::vector<Value *> &PairableInsts,
303                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
304                      DenseSet<ValuePair> &PairableInstUsers,
305                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
306                      DenseMap<Value *, Value *> &ChosenPairs,
307                      DenseMap<ValuePair, size_t> &Tree,
308                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
309                      bool UseCycleCheck);
310
311    void buildInitialTreeFor(
312                      std::multimap<Value *, Value *> &CandidatePairs,
313                      std::vector<Value *> &PairableInsts,
314                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
315                      DenseSet<ValuePair> &PairableInstUsers,
316                      DenseMap<Value *, Value *> &ChosenPairs,
317                      DenseMap<ValuePair, size_t> &Tree, ValuePair J);
318
319    void findBestTreeFor(
320                      std::multimap<Value *, Value *> &CandidatePairs,
321                      DenseMap<ValuePair, int> &CandidatePairCostSavings,
322                      std::vector<Value *> &PairableInsts,
323                      DenseSet<ValuePair> &FixedOrderPairs,
324                      DenseMap<VPPair, unsigned> &PairConnectionTypes,
325                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
326                      std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
327                      DenseSet<ValuePair> &PairableInstUsers,
328                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
329                      DenseMap<Value *, Value *> &ChosenPairs,
330                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
331                      int &BestEffSize, VPIteratorPair ChoiceRange,
332                      bool UseCycleCheck);
333
334    Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
335                     Instruction *J, unsigned o);
336
337    void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
338                     unsigned MaskOffset, unsigned NumInElem,
339                     unsigned NumInElem1, unsigned IdxOffset,
340                     std::vector<Constant*> &Mask);
341
342    Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
343                     Instruction *J);
344
345    bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J,
346                       unsigned o, Value *&LOp, unsigned numElemL,
347                       Type *ArgTypeL, Type *ArgTypeR, bool IBeforeJ,
348                       unsigned IdxOff = 0);
349
350    Value *getReplacementInput(LLVMContext& Context, Instruction *I,
351                     Instruction *J, unsigned o, bool IBeforeJ);
352
353    void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
354                     Instruction *J, SmallVector<Value *, 3> &ReplacedOperands,
355                     bool IBeforeJ);
356
357    void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
358                     Instruction *J, Instruction *K,
359                     Instruction *&InsertionPt, Instruction *&K1,
360                     Instruction *&K2);
361
362    void collectPairLoadMoveSet(BasicBlock &BB,
363                     DenseMap<Value *, Value *> &ChosenPairs,
364                     std::multimap<Value *, Value *> &LoadMoveSet,
365                     Instruction *I);
366
367    void collectLoadMoveSet(BasicBlock &BB,
368                     std::vector<Value *> &PairableInsts,
369                     DenseMap<Value *, Value *> &ChosenPairs,
370                     std::multimap<Value *, Value *> &LoadMoveSet);
371
372    bool canMoveUsesOfIAfterJ(BasicBlock &BB,
373                     std::multimap<Value *, Value *> &LoadMoveSet,
374                     Instruction *I, Instruction *J);
375
376    void moveUsesOfIAfterJ(BasicBlock &BB,
377                     std::multimap<Value *, Value *> &LoadMoveSet,
378                     Instruction *&InsertionPt,
379                     Instruction *I, Instruction *J);
380
381    void combineMetadata(Instruction *K, const Instruction *J);
382
383    bool vectorizeBB(BasicBlock &BB) {
384      if (!DT->isReachableFromEntry(&BB)) {
385        DEBUG(dbgs() << "BBV: skipping unreachable " << BB.getName() <<
386              " in " << BB.getParent()->getName() << "\n");
387        return false;
388      }
389
390      DEBUG(if (VTTI) dbgs() << "BBV: using target information\n");
391
392      bool changed = false;
393      // Iterate a sufficient number of times to merge types of size 1 bit,
394      // then 2 bits, then 4, etc. up to half of the target vector width of the
395      // target vector register.
396      unsigned n = 1;
397      for (unsigned v = 2;
398           (VTTI || v <= Config.VectorBits) &&
399           (!Config.MaxIter || n <= Config.MaxIter);
400           v *= 2, ++n) {
401        DEBUG(dbgs() << "BBV: fusing loop #" << n <<
402              " for " << BB.getName() << " in " <<
403              BB.getParent()->getName() << "...\n");
404assert(n < 10 && "hrmm, really?");
405        if (vectorizePairs(BB))
406          changed = true;
407        else
408          break;
409      }
410
411      if (changed && !Pow2LenOnly) {
412        ++n;
413        for (; !Config.MaxIter || n <= Config.MaxIter; ++n) {
414          DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " <<
415                n << " for " << BB.getName() << " in " <<
416                BB.getParent()->getName() << "...\n");
417          if (!vectorizePairs(BB, true)) break;
418        }
419      }
420
421      DEBUG(dbgs() << "BBV: done!\n");
422      return changed;
423    }
424
425    virtual bool runOnBasicBlock(BasicBlock &BB) {
426      AA = &getAnalysis<AliasAnalysis>();
427      DT = &getAnalysis<DominatorTree>();
428      SE = &getAnalysis<ScalarEvolution>();
429      TD = getAnalysisIfAvailable<DataLayout>();
430      TTI = IgnoreTargetInfo ? 0 :
431        getAnalysisIfAvailable<TargetTransformInfo>();
432      VTTI = TTI ? TTI->getVectorTargetTransformInfo() : 0;
433
434      return vectorizeBB(BB);
435    }
436
437    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
438      BasicBlockPass::getAnalysisUsage(AU);
439      AU.addRequired<AliasAnalysis>();
440      AU.addRequired<DominatorTree>();
441      AU.addRequired<ScalarEvolution>();
442      AU.addPreserved<AliasAnalysis>();
443      AU.addPreserved<DominatorTree>();
444      AU.addPreserved<ScalarEvolution>();
445      AU.setPreservesCFG();
446    }
447
448    static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) {
449      assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() &&
450             "Cannot form vector from incompatible scalar types");
451      Type *STy = ElemTy->getScalarType();
452
453      unsigned numElem;
454      if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
455        numElem = VTy->getNumElements();
456      } else {
457        numElem = 1;
458      }
459
460      if (VectorType *VTy = dyn_cast<VectorType>(Elem2Ty)) {
461        numElem += VTy->getNumElements();
462      } else {
463        numElem += 1;
464      }
465
466      return VectorType::get(STy, numElem);
467    }
468
469    static inline void getInstructionTypes(Instruction *I,
470                                           Type *&T1, Type *&T2) {
471      if (isa<StoreInst>(I)) {
472        // For stores, it is the value type, not the pointer type that matters
473        // because the value is what will come from a vector register.
474
475        Value *IVal = cast<StoreInst>(I)->getValueOperand();
476        T1 = IVal->getType();
477      } else {
478        T1 = I->getType();
479      }
480
481      if (I->isCast())
482        T2 = cast<CastInst>(I)->getSrcTy();
483      else
484        T2 = T1;
485
486      if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
487        T2 = SI->getCondition()->getType();
488      } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) {
489        T2 = SI->getOperand(0)->getType();
490      } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
491        T2 = CI->getOperand(0)->getType();
492      }
493    }
494
495    // Returns the weight associated with the provided value. A chain of
496    // candidate pairs has a length given by the sum of the weights of its
497    // members (one weight per pair; the weight of each member of the pair
498    // is assumed to be the same). This length is then compared to the
499    // chain-length threshold to determine if a given chain is significant
500    // enough to be vectorized. The length is also used in comparing
501    // candidate chains where longer chains are considered to be better.
502    // Note: when this function returns 0, the resulting instructions are
503    // not actually fused.
504    inline size_t getDepthFactor(Value *V) {
505      // InsertElement and ExtractElement have a depth factor of zero. This is
506      // for two reasons: First, they cannot be usefully fused. Second, because
507      // the pass generates a lot of these, they can confuse the simple metric
508      // used to compare the trees in the next iteration. Thus, giving them a
509      // weight of zero allows the pass to essentially ignore them in
510      // subsequent iterations when looking for vectorization opportunities
511      // while still tracking dependency chains that flow through those
512      // instructions.
513      if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
514        return 0;
515
516      // Give a load or store half of the required depth so that load/store
517      // pairs will vectorize.
518      if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
519        return Config.ReqChainDepth/2;
520
521      return 1;
522    }
523
524    // Returns the cost of the provided instruction using VTTI.
525    // This does not handle loads and stores.
526    unsigned getInstrCost(unsigned Opcode, Type *T1, Type *T2) {
527      switch (Opcode) {
528      default: break;
529      case Instruction::GetElementPtr:
530        // We mark this instruction as zero-cost because scalar GEPs are usually
531        // lowered to the intruction addressing mode. At the moment we don't
532        // generate vector GEPs.
533        return 0;
534      case Instruction::Br:
535        return VTTI->getCFInstrCost(Opcode);
536      case Instruction::PHI:
537        return 0;
538      case Instruction::Add:
539      case Instruction::FAdd:
540      case Instruction::Sub:
541      case Instruction::FSub:
542      case Instruction::Mul:
543      case Instruction::FMul:
544      case Instruction::UDiv:
545      case Instruction::SDiv:
546      case Instruction::FDiv:
547      case Instruction::URem:
548      case Instruction::SRem:
549      case Instruction::FRem:
550      case Instruction::Shl:
551      case Instruction::LShr:
552      case Instruction::AShr:
553      case Instruction::And:
554      case Instruction::Or:
555      case Instruction::Xor:
556        return VTTI->getArithmeticInstrCost(Opcode, T1);
557      case Instruction::Select:
558      case Instruction::ICmp:
559      case Instruction::FCmp:
560        return VTTI->getCmpSelInstrCost(Opcode, T1, T2);
561      case Instruction::ZExt:
562      case Instruction::SExt:
563      case Instruction::FPToUI:
564      case Instruction::FPToSI:
565      case Instruction::FPExt:
566      case Instruction::PtrToInt:
567      case Instruction::IntToPtr:
568      case Instruction::SIToFP:
569      case Instruction::UIToFP:
570      case Instruction::Trunc:
571      case Instruction::FPTrunc:
572      case Instruction::BitCast:
573      case Instruction::ShuffleVector:
574        return VTTI->getCastInstrCost(Opcode, T1, T2);
575      }
576
577      return 1;
578    }
579
580    // This determines the relative offset of two loads or stores, returning
581    // true if the offset could be determined to be some constant value.
582    // For example, if OffsetInElmts == 1, then J accesses the memory directly
583    // after I; if OffsetInElmts == -1 then I accesses the memory
584    // directly after J.
585    bool getPairPtrInfo(Instruction *I, Instruction *J,
586        Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
587        unsigned &IAddressSpace, unsigned &JAddressSpace,
588        int64_t &OffsetInElmts, bool ComputeOffset = true) {
589      OffsetInElmts = 0;
590      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
591        LoadInst *LJ = cast<LoadInst>(J);
592        IPtr = LI->getPointerOperand();
593        JPtr = LJ->getPointerOperand();
594        IAlignment = LI->getAlignment();
595        JAlignment = LJ->getAlignment();
596        IAddressSpace = LI->getPointerAddressSpace();
597        JAddressSpace = LJ->getPointerAddressSpace();
598      } else {
599        StoreInst *SI = cast<StoreInst>(I), *SJ = cast<StoreInst>(J);
600        IPtr = SI->getPointerOperand();
601        JPtr = SJ->getPointerOperand();
602        IAlignment = SI->getAlignment();
603        JAlignment = SJ->getAlignment();
604        IAddressSpace = SI->getPointerAddressSpace();
605        JAddressSpace = SJ->getPointerAddressSpace();
606      }
607
608      if (!ComputeOffset)
609        return true;
610
611      const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
612      const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
613
614      // If this is a trivial offset, then we'll get something like
615      // 1*sizeof(type). With target data, which we need anyway, this will get
616      // constant folded into a number.
617      const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
618      if (const SCEVConstant *ConstOffSCEV =
619            dyn_cast<SCEVConstant>(OffsetSCEV)) {
620        ConstantInt *IntOff = ConstOffSCEV->getValue();
621        int64_t Offset = IntOff->getSExtValue();
622
623        Type *VTy = cast<PointerType>(IPtr->getType())->getElementType();
624        int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
625
626        Type *VTy2 = cast<PointerType>(JPtr->getType())->getElementType();
627        if (VTy != VTy2 && Offset < 0) {
628          int64_t VTy2TSS = (int64_t) TD->getTypeStoreSize(VTy2);
629          OffsetInElmts = Offset/VTy2TSS;
630          return (abs64(Offset) % VTy2TSS) == 0;
631        }
632
633        OffsetInElmts = Offset/VTyTSS;
634        return (abs64(Offset) % VTyTSS) == 0;
635      }
636
637      return false;
638    }
639
640    // Returns true if the provided CallInst represents an intrinsic that can
641    // be vectorized.
642    bool isVectorizableIntrinsic(CallInst* I) {
643      Function *F = I->getCalledFunction();
644      if (!F) return false;
645
646      unsigned IID = F->getIntrinsicID();
647      if (!IID) return false;
648
649      switch(IID) {
650      default:
651        return false;
652      case Intrinsic::sqrt:
653      case Intrinsic::powi:
654      case Intrinsic::sin:
655      case Intrinsic::cos:
656      case Intrinsic::log:
657      case Intrinsic::log2:
658      case Intrinsic::log10:
659      case Intrinsic::exp:
660      case Intrinsic::exp2:
661      case Intrinsic::pow:
662        return Config.VectorizeMath;
663      case Intrinsic::fma:
664        return Config.VectorizeFMA;
665      }
666    }
667
668    // Returns true if J is the second element in some pair referenced by
669    // some multimap pair iterator pair.
670    template <typename V>
671    bool isSecondInIteratorPair(V J, std::pair<
672           typename std::multimap<V, V>::iterator,
673           typename std::multimap<V, V>::iterator> PairRange) {
674      for (typename std::multimap<V, V>::iterator K = PairRange.first;
675           K != PairRange.second; ++K)
676        if (K->second == J) return true;
677
678      return false;
679    }
680
681    bool isPureIEChain(InsertElementInst *IE) {
682      InsertElementInst *IENext = IE;
683      do {
684        if (!isa<UndefValue>(IENext->getOperand(0)) &&
685            !isa<InsertElementInst>(IENext->getOperand(0))) {
686          return false;
687        }
688      } while ((IENext =
689                 dyn_cast<InsertElementInst>(IENext->getOperand(0))));
690
691      return true;
692    }
693  };
694
695  // This function implements one vectorization iteration on the provided
696  // basic block. It returns true if the block is changed.
697  bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) {
698    bool ShouldContinue;
699    BasicBlock::iterator Start = BB.getFirstInsertionPt();
700
701    std::vector<Value *> AllPairableInsts;
702    DenseMap<Value *, Value *> AllChosenPairs;
703    DenseSet<ValuePair> AllFixedOrderPairs;
704    DenseMap<VPPair, unsigned> AllPairConnectionTypes;
705    std::multimap<ValuePair, ValuePair> AllConnectedPairs, AllConnectedPairDeps;
706
707    do {
708      std::vector<Value *> PairableInsts;
709      std::multimap<Value *, Value *> CandidatePairs;
710      DenseSet<ValuePair> FixedOrderPairs;
711      DenseMap<ValuePair, int> CandidatePairCostSavings;
712      ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
713                                         FixedOrderPairs,
714                                         CandidatePairCostSavings,
715                                         PairableInsts, NonPow2Len);
716      if (PairableInsts.empty()) continue;
717
718      // Now we have a map of all of the pairable instructions and we need to
719      // select the best possible pairing. A good pairing is one such that the
720      // users of the pair are also paired. This defines a (directed) forest
721      // over the pairs such that two pairs are connected iff the second pair
722      // uses the first.
723
724      // Note that it only matters that both members of the second pair use some
725      // element of the first pair (to allow for splatting).
726
727      std::multimap<ValuePair, ValuePair> ConnectedPairs, ConnectedPairDeps;
728      DenseMap<VPPair, unsigned> PairConnectionTypes;
729      computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs,
730                            PairConnectionTypes);
731      if (ConnectedPairs.empty()) continue;
732
733      for (std::multimap<ValuePair, ValuePair>::iterator
734           I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
735           I != IE; ++I) {
736        ConnectedPairDeps.insert(VPPair(I->second, I->first));
737      }
738
739      // Build the pairable-instruction dependency map
740      DenseSet<ValuePair> PairableInstUsers;
741      buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
742
743      // There is now a graph of the connected pairs. For each variable, pick
744      // the pairing with the largest tree meeting the depth requirement on at
745      // least one branch. Then select all pairings that are part of that tree
746      // and remove them from the list of available pairings and pairable
747      // variables.
748
749      DenseMap<Value *, Value *> ChosenPairs;
750      choosePairs(CandidatePairs, CandidatePairCostSavings,
751        PairableInsts, FixedOrderPairs, PairConnectionTypes,
752        ConnectedPairs, ConnectedPairDeps,
753        PairableInstUsers, ChosenPairs);
754
755      if (ChosenPairs.empty()) continue;
756      AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
757                              PairableInsts.end());
758      AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
759
760      // Only for the chosen pairs, propagate information on fixed-order pairs,
761      // pair connections, and their types to the data structures used by the
762      // pair fusion procedures.
763      for (DenseMap<Value *, Value *>::iterator I = ChosenPairs.begin(),
764           IE = ChosenPairs.end(); I != IE; ++I) {
765        if (FixedOrderPairs.count(*I))
766          AllFixedOrderPairs.insert(*I);
767        else if (FixedOrderPairs.count(ValuePair(I->second, I->first)))
768          AllFixedOrderPairs.insert(ValuePair(I->second, I->first));
769
770        for (DenseMap<Value *, Value *>::iterator J = ChosenPairs.begin();
771             J != IE; ++J) {
772          DenseMap<VPPair, unsigned>::iterator K =
773            PairConnectionTypes.find(VPPair(*I, *J));
774          if (K != PairConnectionTypes.end()) {
775            AllPairConnectionTypes.insert(*K);
776          } else {
777            K = PairConnectionTypes.find(VPPair(*J, *I));
778            if (K != PairConnectionTypes.end())
779              AllPairConnectionTypes.insert(*K);
780          }
781        }
782      }
783
784      for (std::multimap<ValuePair, ValuePair>::iterator
785           I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
786           I != IE; ++I) {
787        if (AllPairConnectionTypes.count(*I)) {
788          AllConnectedPairs.insert(*I);
789          AllConnectedPairDeps.insert(VPPair(I->second, I->first));
790        }
791      }
792    } while (ShouldContinue);
793
794    if (AllChosenPairs.empty()) return false;
795    NumFusedOps += AllChosenPairs.size();
796
797    // A set of pairs has now been selected. It is now necessary to replace the
798    // paired instructions with vector instructions. For this procedure each
799    // operand must be replaced with a vector operand. This vector is formed
800    // by using build_vector on the old operands. The replaced values are then
801    // replaced with a vector_extract on the result.  Subsequent optimization
802    // passes should coalesce the build/extract combinations.
803
804    fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs, AllFixedOrderPairs,
805                    AllPairConnectionTypes,
806                    AllConnectedPairs, AllConnectedPairDeps);
807
808    // It is important to cleanup here so that future iterations of this
809    // function have less work to do.
810    (void) SimplifyInstructionsInBlock(&BB, TD, AA->getTargetLibraryInfo());
811    return true;
812  }
813
814  // This function returns true if the provided instruction is capable of being
815  // fused into a vector instruction. This determination is based only on the
816  // type and other attributes of the instruction.
817  bool BBVectorize::isInstVectorizable(Instruction *I,
818                                         bool &IsSimpleLoadStore) {
819    IsSimpleLoadStore = false;
820
821    if (CallInst *C = dyn_cast<CallInst>(I)) {
822      if (!isVectorizableIntrinsic(C))
823        return false;
824    } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
825      // Vectorize simple loads if possbile:
826      IsSimpleLoadStore = L->isSimple();
827      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
828        return false;
829    } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
830      // Vectorize simple stores if possbile:
831      IsSimpleLoadStore = S->isSimple();
832      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
833        return false;
834    } else if (CastInst *C = dyn_cast<CastInst>(I)) {
835      // We can vectorize casts, but not casts of pointer types, etc.
836      if (!Config.VectorizeCasts)
837        return false;
838
839      Type *SrcTy = C->getSrcTy();
840      if (!SrcTy->isSingleValueType())
841        return false;
842
843      Type *DestTy = C->getDestTy();
844      if (!DestTy->isSingleValueType())
845        return false;
846    } else if (isa<SelectInst>(I)) {
847      if (!Config.VectorizeSelect)
848        return false;
849    } else if (isa<CmpInst>(I)) {
850      if (!Config.VectorizeCmp)
851        return false;
852    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
853      if (!Config.VectorizeGEP)
854        return false;
855
856      // Currently, vector GEPs exist only with one index.
857      if (G->getNumIndices() != 1)
858        return false;
859    } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
860        isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
861      return false;
862    }
863
864    // We can't vectorize memory operations without target data
865    if (TD == 0 && IsSimpleLoadStore)
866      return false;
867
868    Type *T1, *T2;
869    getInstructionTypes(I, T1, T2);
870
871    // Not every type can be vectorized...
872    if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
873        !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
874      return false;
875
876    if (T1->getScalarSizeInBits() == 1) {
877      if (!Config.VectorizeBools)
878        return false;
879    } else {
880      if (!Config.VectorizeInts && T1->isIntOrIntVectorTy())
881        return false;
882    }
883
884    if (T2->getScalarSizeInBits() == 1) {
885      if (!Config.VectorizeBools)
886        return false;
887    } else {
888      if (!Config.VectorizeInts && T2->isIntOrIntVectorTy())
889        return false;
890    }
891
892    if (!Config.VectorizeFloats
893        && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
894      return false;
895
896    // Don't vectorize target-specific types.
897    if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy())
898      return false;
899    if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
900      return false;
901
902    if ((!Config.VectorizePointers || TD == 0) &&
903        (T1->getScalarType()->isPointerTy() ||
904         T2->getScalarType()->isPointerTy()))
905      return false;
906
907    if (!VTTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
908                  T2->getPrimitiveSizeInBits() >= Config.VectorBits))
909      return false;
910
911    return true;
912  }
913
914  // This function returns true if the two provided instructions are compatible
915  // (meaning that they can be fused into a vector instruction). This assumes
916  // that I has already been determined to be vectorizable and that J is not
917  // in the use tree of I.
918  bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
919                       bool IsSimpleLoadStore, bool NonPow2Len,
920                       int &CostSavings, int &FixedOrder) {
921    DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
922                     " <-> " << *J << "\n");
923
924    CostSavings = 0;
925    FixedOrder = 0;
926
927    // Loads and stores can be merged if they have different alignments,
928    // but are otherwise the same.
929    if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment |
930                      (NonPow2Len ? Instruction::CompareUsingScalarTypes : 0)))
931      return false;
932
933    Type *IT1, *IT2, *JT1, *JT2;
934    getInstructionTypes(I, IT1, IT2);
935    getInstructionTypes(J, JT1, JT2);
936    unsigned MaxTypeBits = std::max(
937      IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
938      IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
939    if (!VTTI && MaxTypeBits > Config.VectorBits)
940      return false;
941
942    // FIXME: handle addsub-type operations!
943
944    if (IsSimpleLoadStore) {
945      Value *IPtr, *JPtr;
946      unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
947      int64_t OffsetInElmts = 0;
948      if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
949            IAddressSpace, JAddressSpace,
950            OffsetInElmts) && abs64(OffsetInElmts) == 1) {
951        FixedOrder = (int) OffsetInElmts;
952        unsigned BottomAlignment = IAlignment;
953        if (OffsetInElmts < 0) BottomAlignment = JAlignment;
954
955        Type *aTypeI = isa<StoreInst>(I) ?
956          cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
957        Type *aTypeJ = isa<StoreInst>(J) ?
958          cast<StoreInst>(J)->getValueOperand()->getType() : J->getType();
959        Type *VType = getVecTypeForPair(aTypeI, aTypeJ);
960
961        if (Config.AlignedOnly) {
962          // An aligned load or store is possible only if the instruction
963          // with the lower offset has an alignment suitable for the
964          // vector type.
965
966          unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
967          if (BottomAlignment < VecAlignment)
968            return false;
969        }
970
971        if (VTTI) {
972          unsigned ICost = VTTI->getMemoryOpCost(I->getOpcode(), I->getType(),
973                                                 IAlignment, IAddressSpace);
974          unsigned JCost = VTTI->getMemoryOpCost(J->getOpcode(), J->getType(),
975                                                 JAlignment, JAddressSpace);
976          unsigned VCost = VTTI->getMemoryOpCost(I->getOpcode(), VType,
977                                                 BottomAlignment,
978                                                 IAddressSpace);
979          if (VCost > ICost + JCost)
980            return false;
981
982          // We don't want to fuse to a type that will be split, even
983          // if the two input types will also be split and there is no other
984          // associated cost.
985          unsigned VParts = VTTI->getNumberOfParts(VType);
986          if (VParts > 1)
987            return false;
988          else if (!VParts && VCost == ICost + JCost)
989            return false;
990
991          CostSavings = ICost + JCost - VCost;
992        }
993      } else {
994        return false;
995      }
996    } else if (VTTI) {
997      unsigned ICost = getInstrCost(I->getOpcode(), IT1, IT2);
998      unsigned JCost = getInstrCost(J->getOpcode(), JT1, JT2);
999      Type *VT1 = getVecTypeForPair(IT1, JT1),
1000           *VT2 = getVecTypeForPair(IT2, JT2);
1001      unsigned VCost = getInstrCost(I->getOpcode(), VT1, VT2);
1002
1003      if (VCost > ICost + JCost)
1004        return false;
1005
1006      // We don't want to fuse to a type that will be split, even
1007      // if the two input types will also be split and there is no other
1008      // associated cost.
1009      unsigned VParts1 = VTTI->getNumberOfParts(VT1),
1010               VParts2 = VTTI->getNumberOfParts(VT2);
1011      if (VParts1 > 1 || VParts2 > 1)
1012        return false;
1013      else if ((!VParts1 || !VParts2) && VCost == ICost + JCost)
1014        return false;
1015
1016      CostSavings = ICost + JCost - VCost;
1017    }
1018
1019    // The powi intrinsic is special because only the first argument is
1020    // vectorized, the second arguments must be equal.
1021    CallInst *CI = dyn_cast<CallInst>(I);
1022    Function *FI;
1023    if (CI && (FI = CI->getCalledFunction()) &&
1024        FI->getIntrinsicID() == Intrinsic::powi) {
1025
1026      Value *A1I = CI->getArgOperand(1),
1027            *A1J = cast<CallInst>(J)->getArgOperand(1);
1028      const SCEV *A1ISCEV = SE->getSCEV(A1I),
1029                 *A1JSCEV = SE->getSCEV(A1J);
1030      return (A1ISCEV == A1JSCEV);
1031    }
1032
1033    return true;
1034  }
1035
1036  // Figure out whether or not J uses I and update the users and write-set
1037  // structures associated with I. Specifically, Users represents the set of
1038  // instructions that depend on I. WriteSet represents the set
1039  // of memory locations that are dependent on I. If UpdateUsers is true,
1040  // and J uses I, then Users is updated to contain J and WriteSet is updated
1041  // to contain any memory locations to which J writes. The function returns
1042  // true if J uses I. By default, alias analysis is used to determine
1043  // whether J reads from memory that overlaps with a location in WriteSet.
1044  // If LoadMoveSet is not null, then it is a previously-computed multimap
1045  // where the key is the memory-based user instruction and the value is
1046  // the instruction to be compared with I. So, if LoadMoveSet is provided,
1047  // then the alias analysis is not used. This is necessary because this
1048  // function is called during the process of moving instructions during
1049  // vectorization and the results of the alias analysis are not stable during
1050  // that process.
1051  bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
1052                       AliasSetTracker &WriteSet, Instruction *I,
1053                       Instruction *J, bool UpdateUsers,
1054                       std::multimap<Value *, Value *> *LoadMoveSet) {
1055    bool UsesI = false;
1056
1057    // This instruction may already be marked as a user due, for example, to
1058    // being a member of a selected pair.
1059    if (Users.count(J))
1060      UsesI = true;
1061
1062    if (!UsesI)
1063      for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
1064           JU != JE; ++JU) {
1065        Value *V = *JU;
1066        if (I == V || Users.count(V)) {
1067          UsesI = true;
1068          break;
1069        }
1070      }
1071    if (!UsesI && J->mayReadFromMemory()) {
1072      if (LoadMoveSet) {
1073        VPIteratorPair JPairRange = LoadMoveSet->equal_range(J);
1074        UsesI = isSecondInIteratorPair<Value*>(I, JPairRange);
1075      } else {
1076        for (AliasSetTracker::iterator W = WriteSet.begin(),
1077             WE = WriteSet.end(); W != WE; ++W) {
1078          if (W->aliasesUnknownInst(J, *AA)) {
1079            UsesI = true;
1080            break;
1081          }
1082        }
1083      }
1084    }
1085
1086    if (UsesI && UpdateUsers) {
1087      if (J->mayWriteToMemory()) WriteSet.add(J);
1088      Users.insert(J);
1089    }
1090
1091    return UsesI;
1092  }
1093
1094  // This function iterates over all instruction pairs in the provided
1095  // basic block and collects all candidate pairs for vectorization.
1096  bool BBVectorize::getCandidatePairs(BasicBlock &BB,
1097                       BasicBlock::iterator &Start,
1098                       std::multimap<Value *, Value *> &CandidatePairs,
1099                       DenseSet<ValuePair> &FixedOrderPairs,
1100                       DenseMap<ValuePair, int> &CandidatePairCostSavings,
1101                       std::vector<Value *> &PairableInsts, bool NonPow2Len) {
1102    BasicBlock::iterator E = BB.end();
1103    if (Start == E) return false;
1104
1105    bool ShouldContinue = false, IAfterStart = false;
1106    for (BasicBlock::iterator I = Start++; I != E; ++I) {
1107      if (I == Start) IAfterStart = true;
1108
1109      bool IsSimpleLoadStore;
1110      if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
1111
1112      // Look for an instruction with which to pair instruction *I...
1113      DenseSet<Value *> Users;
1114      AliasSetTracker WriteSet(*AA);
1115      bool JAfterStart = IAfterStart;
1116      BasicBlock::iterator J = llvm::next(I);
1117      for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
1118        if (J == Start) JAfterStart = true;
1119
1120        // Determine if J uses I, if so, exit the loop.
1121        bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
1122        if (Config.FastDep) {
1123          // Note: For this heuristic to be effective, independent operations
1124          // must tend to be intermixed. This is likely to be true from some
1125          // kinds of grouped loop unrolling (but not the generic LLVM pass),
1126          // but otherwise may require some kind of reordering pass.
1127
1128          // When using fast dependency analysis,
1129          // stop searching after first use:
1130          if (UsesI) break;
1131        } else {
1132          if (UsesI) continue;
1133        }
1134
1135        // J does not use I, and comes before the first use of I, so it can be
1136        // merged with I if the instructions are compatible.
1137        int CostSavings, FixedOrder;
1138        if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len,
1139            CostSavings, FixedOrder)) continue;
1140
1141        // J is a candidate for merging with I.
1142        if (!PairableInsts.size() ||
1143             PairableInsts[PairableInsts.size()-1] != I) {
1144          PairableInsts.push_back(I);
1145        }
1146
1147        CandidatePairs.insert(ValuePair(I, J));
1148        if (VTTI)
1149          CandidatePairCostSavings.insert(ValuePairWithCost(ValuePair(I, J),
1150                                                            CostSavings));
1151
1152        if (FixedOrder == 1)
1153          FixedOrderPairs.insert(ValuePair(I, J));
1154        else if (FixedOrder == -1)
1155          FixedOrderPairs.insert(ValuePair(J, I));
1156
1157        // The next call to this function must start after the last instruction
1158        // selected during this invocation.
1159        if (JAfterStart) {
1160          Start = llvm::next(J);
1161          IAfterStart = JAfterStart = false;
1162        }
1163
1164        DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
1165                     << *I << " <-> " << *J << " (cost savings: " <<
1166                     CostSavings << ")\n");
1167
1168        // If we have already found too many pairs, break here and this function
1169        // will be called again starting after the last instruction selected
1170        // during this invocation.
1171        if (PairableInsts.size() >= Config.MaxInsts) {
1172          ShouldContinue = true;
1173          break;
1174        }
1175      }
1176
1177      if (ShouldContinue)
1178        break;
1179    }
1180
1181    DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
1182           << " instructions with candidate pairs\n");
1183
1184    return ShouldContinue;
1185  }
1186
1187  // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
1188  // it looks for pairs such that both members have an input which is an
1189  // output of PI or PJ.
1190  void BBVectorize::computePairsConnectedTo(
1191                      std::multimap<Value *, Value *> &CandidatePairs,
1192                      std::vector<Value *> &PairableInsts,
1193                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1194                      DenseMap<VPPair, unsigned> &PairConnectionTypes,
1195                      ValuePair P) {
1196    StoreInst *SI, *SJ;
1197
1198    // For each possible pairing for this variable, look at the uses of
1199    // the first value...
1200    for (Value::use_iterator I = P.first->use_begin(),
1201         E = P.first->use_end(); I != E; ++I) {
1202      if (isa<LoadInst>(*I)) {
1203        // A pair cannot be connected to a load because the load only takes one
1204        // operand (the address) and it is a scalar even after vectorization.
1205        continue;
1206      } else if ((SI = dyn_cast<StoreInst>(*I)) &&
1207                 P.first == SI->getPointerOperand()) {
1208        // Similarly, a pair cannot be connected to a store through its
1209        // pointer operand.
1210        continue;
1211      }
1212
1213      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
1214
1215      // For each use of the first variable, look for uses of the second
1216      // variable...
1217      for (Value::use_iterator J = P.second->use_begin(),
1218           E2 = P.second->use_end(); J != E2; ++J) {
1219        if ((SJ = dyn_cast<StoreInst>(*J)) &&
1220            P.second == SJ->getPointerOperand())
1221          continue;
1222
1223        VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
1224
1225        // Look for <I, J>:
1226        if (isSecondInIteratorPair<Value*>(*J, IPairRange)) {
1227          VPPair VP(P, ValuePair(*I, *J));
1228          ConnectedPairs.insert(VP);
1229          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionDirect));
1230        }
1231
1232        // Look for <J, I>:
1233        if (isSecondInIteratorPair<Value*>(*I, JPairRange)) {
1234          VPPair VP(P, ValuePair(*J, *I));
1235          ConnectedPairs.insert(VP);
1236          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSwap));
1237        }
1238      }
1239
1240      if (Config.SplatBreaksChain) continue;
1241      // Look for cases where just the first value in the pair is used by
1242      // both members of another pair (splatting).
1243      for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) {
1244        if ((SJ = dyn_cast<StoreInst>(*J)) &&
1245            P.first == SJ->getPointerOperand())
1246          continue;
1247
1248        if (isSecondInIteratorPair<Value*>(*J, IPairRange)) {
1249          VPPair VP(P, ValuePair(*I, *J));
1250          ConnectedPairs.insert(VP);
1251          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
1252        }
1253      }
1254    }
1255
1256    if (Config.SplatBreaksChain) return;
1257    // Look for cases where just the second value in the pair is used by
1258    // both members of another pair (splatting).
1259    for (Value::use_iterator I = P.second->use_begin(),
1260         E = P.second->use_end(); I != E; ++I) {
1261      if (isa<LoadInst>(*I))
1262        continue;
1263      else if ((SI = dyn_cast<StoreInst>(*I)) &&
1264               P.second == SI->getPointerOperand())
1265        continue;
1266
1267      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
1268
1269      for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
1270        if ((SJ = dyn_cast<StoreInst>(*J)) &&
1271            P.second == SJ->getPointerOperand())
1272          continue;
1273
1274        if (isSecondInIteratorPair<Value*>(*J, IPairRange)) {
1275          VPPair VP(P, ValuePair(*I, *J));
1276          ConnectedPairs.insert(VP);
1277          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
1278        }
1279      }
1280    }
1281  }
1282
1283  // This function figures out which pairs are connected.  Two pairs are
1284  // connected if some output of the first pair forms an input to both members
1285  // of the second pair.
1286  void BBVectorize::computeConnectedPairs(
1287                      std::multimap<Value *, Value *> &CandidatePairs,
1288                      std::vector<Value *> &PairableInsts,
1289                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1290                      DenseMap<VPPair, unsigned> &PairConnectionTypes) {
1291
1292    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
1293         PE = PairableInsts.end(); PI != PE; ++PI) {
1294      VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI);
1295
1296      for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
1297           P != choiceRange.second; ++P)
1298        computePairsConnectedTo(CandidatePairs, PairableInsts,
1299                                ConnectedPairs, PairConnectionTypes, *P);
1300    }
1301
1302    DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
1303                 << " pair connections.\n");
1304  }
1305
1306  // This function builds a set of use tuples such that <A, B> is in the set
1307  // if B is in the use tree of A. If B is in the use tree of A, then B
1308  // depends on the output of A.
1309  void BBVectorize::buildDepMap(
1310                      BasicBlock &BB,
1311                      std::multimap<Value *, Value *> &CandidatePairs,
1312                      std::vector<Value *> &PairableInsts,
1313                      DenseSet<ValuePair> &PairableInstUsers) {
1314    DenseSet<Value *> IsInPair;
1315    for (std::multimap<Value *, Value *>::iterator C = CandidatePairs.begin(),
1316         E = CandidatePairs.end(); C != E; ++C) {
1317      IsInPair.insert(C->first);
1318      IsInPair.insert(C->second);
1319    }
1320
1321    // Iterate through the basic block, recording all Users of each
1322    // pairable instruction.
1323
1324    BasicBlock::iterator E = BB.end();
1325    for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
1326      if (IsInPair.find(I) == IsInPair.end()) continue;
1327
1328      DenseSet<Value *> Users;
1329      AliasSetTracker WriteSet(*AA);
1330      for (BasicBlock::iterator J = llvm::next(I); J != E; ++J)
1331        (void) trackUsesOfI(Users, WriteSet, I, J);
1332
1333      for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
1334           U != E; ++U)
1335        PairableInstUsers.insert(ValuePair(I, *U));
1336    }
1337  }
1338
1339  // Returns true if an input to pair P is an output of pair Q and also an
1340  // input of pair Q is an output of pair P. If this is the case, then these
1341  // two pairs cannot be simultaneously fused.
1342  bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
1343                     DenseSet<ValuePair> &PairableInstUsers,
1344                     std::multimap<ValuePair, ValuePair> *PairableInstUserMap) {
1345    // Two pairs are in conflict if they are mutual Users of eachother.
1346    bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
1347                  PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
1348                  PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
1349                  PairableInstUsers.count(ValuePair(P.second, Q.second));
1350    bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
1351                  PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
1352                  PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
1353                  PairableInstUsers.count(ValuePair(Q.second, P.second));
1354    if (PairableInstUserMap) {
1355      // FIXME: The expensive part of the cycle check is not so much the cycle
1356      // check itself but this edge insertion procedure. This needs some
1357      // profiling and probably a different data structure (same is true of
1358      // most uses of std::multimap).
1359      if (PUsesQ) {
1360        VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q);
1361        if (!isSecondInIteratorPair(P, QPairRange))
1362          PairableInstUserMap->insert(VPPair(Q, P));
1363      }
1364      if (QUsesP) {
1365        VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P);
1366        if (!isSecondInIteratorPair(Q, PPairRange))
1367          PairableInstUserMap->insert(VPPair(P, Q));
1368      }
1369    }
1370
1371    return (QUsesP && PUsesQ);
1372  }
1373
1374  // This function walks the use graph of current pairs to see if, starting
1375  // from P, the walk returns to P.
1376  bool BBVectorize::pairWillFormCycle(ValuePair P,
1377                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1378                       DenseSet<ValuePair> &CurrentPairs) {
1379    DEBUG(if (DebugCycleCheck)
1380            dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
1381                   << *P.second << "\n");
1382    // A lookup table of visisted pairs is kept because the PairableInstUserMap
1383    // contains non-direct associations.
1384    DenseSet<ValuePair> Visited;
1385    SmallVector<ValuePair, 32> Q;
1386    // General depth-first post-order traversal:
1387    Q.push_back(P);
1388    do {
1389      ValuePair QTop = Q.pop_back_val();
1390      Visited.insert(QTop);
1391
1392      DEBUG(if (DebugCycleCheck)
1393              dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
1394                     << *QTop.second << "\n");
1395      VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop);
1396      for (std::multimap<ValuePair, ValuePair>::iterator C = QPairRange.first;
1397           C != QPairRange.second; ++C) {
1398        if (C->second == P) {
1399          DEBUG(dbgs()
1400                 << "BBV: rejected to prevent non-trivial cycle formation: "
1401                 << *C->first.first << " <-> " << *C->first.second << "\n");
1402          return true;
1403        }
1404
1405        if (CurrentPairs.count(C->second) && !Visited.count(C->second))
1406          Q.push_back(C->second);
1407      }
1408    } while (!Q.empty());
1409
1410    return false;
1411  }
1412
1413  // This function builds the initial tree of connected pairs with the
1414  // pair J at the root.
1415  void BBVectorize::buildInitialTreeFor(
1416                      std::multimap<Value *, Value *> &CandidatePairs,
1417                      std::vector<Value *> &PairableInsts,
1418                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1419                      DenseSet<ValuePair> &PairableInstUsers,
1420                      DenseMap<Value *, Value *> &ChosenPairs,
1421                      DenseMap<ValuePair, size_t> &Tree, ValuePair J) {
1422    // Each of these pairs is viewed as the root node of a Tree. The Tree
1423    // is then walked (depth-first). As this happens, we keep track of
1424    // the pairs that compose the Tree and the maximum depth of the Tree.
1425    SmallVector<ValuePairWithDepth, 32> Q;
1426    // General depth-first post-order traversal:
1427    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
1428    do {
1429      ValuePairWithDepth QTop = Q.back();
1430
1431      // Push each child onto the queue:
1432      bool MoreChildren = false;
1433      size_t MaxChildDepth = QTop.second;
1434      VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first);
1435      for (std::multimap<ValuePair, ValuePair>::iterator k = qtRange.first;
1436           k != qtRange.second; ++k) {
1437        // Make sure that this child pair is still a candidate:
1438        bool IsStillCand = false;
1439        VPIteratorPair checkRange =
1440          CandidatePairs.equal_range(k->second.first);
1441        for (std::multimap<Value *, Value *>::iterator m = checkRange.first;
1442             m != checkRange.second; ++m) {
1443          if (m->second == k->second.second) {
1444            IsStillCand = true;
1445            break;
1446          }
1447        }
1448
1449        if (IsStillCand) {
1450          DenseMap<ValuePair, size_t>::iterator C = Tree.find(k->second);
1451          if (C == Tree.end()) {
1452            size_t d = getDepthFactor(k->second.first);
1453            Q.push_back(ValuePairWithDepth(k->second, QTop.second+d));
1454            MoreChildren = true;
1455          } else {
1456            MaxChildDepth = std::max(MaxChildDepth, C->second);
1457          }
1458        }
1459      }
1460
1461      if (!MoreChildren) {
1462        // Record the current pair as part of the Tree:
1463        Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
1464        Q.pop_back();
1465      }
1466    } while (!Q.empty());
1467  }
1468
1469  // Given some initial tree, prune it by removing conflicting pairs (pairs
1470  // that cannot be simultaneously chosen for vectorization).
1471  void BBVectorize::pruneTreeFor(
1472                      std::multimap<Value *, Value *> &CandidatePairs,
1473                      std::vector<Value *> &PairableInsts,
1474                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1475                      DenseSet<ValuePair> &PairableInstUsers,
1476                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1477                      DenseMap<Value *, Value *> &ChosenPairs,
1478                      DenseMap<ValuePair, size_t> &Tree,
1479                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
1480                      bool UseCycleCheck) {
1481    SmallVector<ValuePairWithDepth, 32> Q;
1482    // General depth-first post-order traversal:
1483    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
1484    do {
1485      ValuePairWithDepth QTop = Q.pop_back_val();
1486      PrunedTree.insert(QTop.first);
1487
1488      // Visit each child, pruning as necessary...
1489      DenseMap<ValuePair, size_t> BestChildren;
1490      VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
1491      for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first;
1492           K != QTopRange.second; ++K) {
1493        DenseMap<ValuePair, size_t>::iterator C = Tree.find(K->second);
1494        if (C == Tree.end()) continue;
1495
1496        // This child is in the Tree, now we need to make sure it is the
1497        // best of any conflicting children. There could be multiple
1498        // conflicting children, so first, determine if we're keeping
1499        // this child, then delete conflicting children as necessary.
1500
1501        // It is also necessary to guard against pairing-induced
1502        // dependencies. Consider instructions a .. x .. y .. b
1503        // such that (a,b) are to be fused and (x,y) are to be fused
1504        // but a is an input to x and b is an output from y. This
1505        // means that y cannot be moved after b but x must be moved
1506        // after b for (a,b) to be fused. In other words, after
1507        // fusing (a,b) we have y .. a/b .. x where y is an input
1508        // to a/b and x is an output to a/b: x and y can no longer
1509        // be legally fused. To prevent this condition, we must
1510        // make sure that a child pair added to the Tree is not
1511        // both an input and output of an already-selected pair.
1512
1513        // Pairing-induced dependencies can also form from more complicated
1514        // cycles. The pair vs. pair conflicts are easy to check, and so
1515        // that is done explicitly for "fast rejection", and because for
1516        // child vs. child conflicts, we may prefer to keep the current
1517        // pair in preference to the already-selected child.
1518        DenseSet<ValuePair> CurrentPairs;
1519
1520        bool CanAdd = true;
1521        for (DenseMap<ValuePair, size_t>::iterator C2
1522              = BestChildren.begin(), E2 = BestChildren.end();
1523             C2 != E2; ++C2) {
1524          if (C2->first.first == C->first.first ||
1525              C2->first.first == C->first.second ||
1526              C2->first.second == C->first.first ||
1527              C2->first.second == C->first.second ||
1528              pairsConflict(C2->first, C->first, PairableInstUsers,
1529                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1530            if (C2->second >= C->second) {
1531              CanAdd = false;
1532              break;
1533            }
1534
1535            CurrentPairs.insert(C2->first);
1536          }
1537        }
1538        if (!CanAdd) continue;
1539
1540        // Even worse, this child could conflict with another node already
1541        // selected for the Tree. If that is the case, ignore this child.
1542        for (DenseSet<ValuePair>::iterator T = PrunedTree.begin(),
1543             E2 = PrunedTree.end(); T != E2; ++T) {
1544          if (T->first == C->first.first ||
1545              T->first == C->first.second ||
1546              T->second == C->first.first ||
1547              T->second == C->first.second ||
1548              pairsConflict(*T, C->first, PairableInstUsers,
1549                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1550            CanAdd = false;
1551            break;
1552          }
1553
1554          CurrentPairs.insert(*T);
1555        }
1556        if (!CanAdd) continue;
1557
1558        // And check the queue too...
1559        for (SmallVector<ValuePairWithDepth, 32>::iterator C2 = Q.begin(),
1560             E2 = Q.end(); C2 != E2; ++C2) {
1561          if (C2->first.first == C->first.first ||
1562              C2->first.first == C->first.second ||
1563              C2->first.second == C->first.first ||
1564              C2->first.second == C->first.second ||
1565              pairsConflict(C2->first, C->first, PairableInstUsers,
1566                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1567            CanAdd = false;
1568            break;
1569          }
1570
1571          CurrentPairs.insert(C2->first);
1572        }
1573        if (!CanAdd) continue;
1574
1575        // Last but not least, check for a conflict with any of the
1576        // already-chosen pairs.
1577        for (DenseMap<Value *, Value *>::iterator C2 =
1578              ChosenPairs.begin(), E2 = ChosenPairs.end();
1579             C2 != E2; ++C2) {
1580          if (pairsConflict(*C2, C->first, PairableInstUsers,
1581                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1582            CanAdd = false;
1583            break;
1584          }
1585
1586          CurrentPairs.insert(*C2);
1587        }
1588        if (!CanAdd) continue;
1589
1590        // To check for non-trivial cycles formed by the addition of the
1591        // current pair we've formed a list of all relevant pairs, now use a
1592        // graph walk to check for a cycle. We start from the current pair and
1593        // walk the use tree to see if we again reach the current pair. If we
1594        // do, then the current pair is rejected.
1595
1596        // FIXME: It may be more efficient to use a topological-ordering
1597        // algorithm to improve the cycle check. This should be investigated.
1598        if (UseCycleCheck &&
1599            pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
1600          continue;
1601
1602        // This child can be added, but we may have chosen it in preference
1603        // to an already-selected child. Check for this here, and if a
1604        // conflict is found, then remove the previously-selected child
1605        // before adding this one in its place.
1606        for (DenseMap<ValuePair, size_t>::iterator C2
1607              = BestChildren.begin(); C2 != BestChildren.end();) {
1608          if (C2->first.first == C->first.first ||
1609              C2->first.first == C->first.second ||
1610              C2->first.second == C->first.first ||
1611              C2->first.second == C->first.second ||
1612              pairsConflict(C2->first, C->first, PairableInstUsers))
1613            BestChildren.erase(C2++);
1614          else
1615            ++C2;
1616        }
1617
1618        BestChildren.insert(ValuePairWithDepth(C->first, C->second));
1619      }
1620
1621      for (DenseMap<ValuePair, size_t>::iterator C
1622            = BestChildren.begin(), E2 = BestChildren.end();
1623           C != E2; ++C) {
1624        size_t DepthF = getDepthFactor(C->first.first);
1625        Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
1626      }
1627    } while (!Q.empty());
1628  }
1629
1630  // This function finds the best tree of mututally-compatible connected
1631  // pairs, given the choice of root pairs as an iterator range.
1632  void BBVectorize::findBestTreeFor(
1633                      std::multimap<Value *, Value *> &CandidatePairs,
1634                      DenseMap<ValuePair, int> &CandidatePairCostSavings,
1635                      std::vector<Value *> &PairableInsts,
1636                      DenseSet<ValuePair> &FixedOrderPairs,
1637                      DenseMap<VPPair, unsigned> &PairConnectionTypes,
1638                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1639                      std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
1640                      DenseSet<ValuePair> &PairableInstUsers,
1641                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1642                      DenseMap<Value *, Value *> &ChosenPairs,
1643                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
1644                      int &BestEffSize, VPIteratorPair ChoiceRange,
1645                      bool UseCycleCheck) {
1646    for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
1647         J != ChoiceRange.second; ++J) {
1648
1649      // Before going any further, make sure that this pair does not
1650      // conflict with any already-selected pairs (see comment below
1651      // near the Tree pruning for more details).
1652      DenseSet<ValuePair> ChosenPairSet;
1653      bool DoesConflict = false;
1654      for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
1655           E = ChosenPairs.end(); C != E; ++C) {
1656        if (pairsConflict(*C, *J, PairableInstUsers,
1657                          UseCycleCheck ? &PairableInstUserMap : 0)) {
1658          DoesConflict = true;
1659          break;
1660        }
1661
1662        ChosenPairSet.insert(*C);
1663      }
1664      if (DoesConflict) continue;
1665
1666      if (UseCycleCheck &&
1667          pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet))
1668        continue;
1669
1670      DenseMap<ValuePair, size_t> Tree;
1671      buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1672                          PairableInstUsers, ChosenPairs, Tree, *J);
1673
1674      // Because we'll keep the child with the largest depth, the largest
1675      // depth is still the same in the unpruned Tree.
1676      size_t MaxDepth = Tree.lookup(*J);
1677
1678      DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {"
1679                   << *J->first << " <-> " << *J->second << "} of depth " <<
1680                   MaxDepth << " and size " << Tree.size() << "\n");
1681
1682      // At this point the Tree has been constructed, but, may contain
1683      // contradictory children (meaning that different children of
1684      // some tree node may be attempting to fuse the same instruction).
1685      // So now we walk the tree again, in the case of a conflict,
1686      // keep only the child with the largest depth. To break a tie,
1687      // favor the first child.
1688
1689      DenseSet<ValuePair> PrunedTree;
1690      pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1691                   PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
1692                   PrunedTree, *J, UseCycleCheck);
1693
1694      int EffSize = 0;
1695      if (VTTI) {
1696        DenseSet<Value *> PrunedTreeInstrs;
1697        for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
1698             E = PrunedTree.end(); S != E; ++S) {
1699          PrunedTreeInstrs.insert(S->first);
1700          PrunedTreeInstrs.insert(S->second);
1701        }
1702
1703        // The set of pairs that have already contributed to the total cost.
1704        DenseSet<ValuePair> IncomingPairs;
1705
1706        // If the cost model were perfect, this might not be necessary; but we
1707        // need to make sure that we don't get stuck vectorizing our own
1708        // shuffle chains.
1709        bool HasNontrivialInsts = false;
1710
1711        // The node weights represent the cost savings associated with
1712        // fusing the pair of instructions.
1713        for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
1714             E = PrunedTree.end(); S != E; ++S) {
1715          if (!isa<ShuffleVectorInst>(S->first) &&
1716              !isa<InsertElementInst>(S->first) &&
1717              !isa<ExtractElementInst>(S->first))
1718            HasNontrivialInsts = true;
1719
1720          bool FlipOrder = false;
1721
1722          if (getDepthFactor(S->first)) {
1723            int ESContrib = CandidatePairCostSavings.find(*S)->second;
1724            DEBUG(if (DebugPairSelection) dbgs() << "\tweight {"
1725                   << *S->first << " <-> " << *S->second << "} = " <<
1726                   ESContrib << "\n");
1727            EffSize += ESContrib;
1728          }
1729
1730          // The edge weights contribute in a negative sense: they represent
1731          // the cost of shuffles.
1732          VPPIteratorPair IP = ConnectedPairDeps.equal_range(*S);
1733          if (IP.first != ConnectedPairDeps.end()) {
1734            unsigned NumDepsDirect = 0, NumDepsSwap = 0;
1735            for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
1736                 Q != IP.second; ++Q) {
1737              if (!PrunedTree.count(Q->second))
1738                continue;
1739              DenseMap<VPPair, unsigned>::iterator R =
1740                PairConnectionTypes.find(VPPair(Q->second, Q->first));
1741              assert(R != PairConnectionTypes.end() &&
1742                     "Cannot find pair connection type");
1743              if (R->second == PairConnectionDirect)
1744                ++NumDepsDirect;
1745              else if (R->second == PairConnectionSwap)
1746                ++NumDepsSwap;
1747            }
1748
1749            // If there are more swaps than direct connections, then
1750            // the pair order will be flipped during fusion. So the real
1751            // number of swaps is the minimum number.
1752            FlipOrder = !FixedOrderPairs.count(*S) &&
1753              ((NumDepsSwap > NumDepsDirect) ||
1754                FixedOrderPairs.count(ValuePair(S->second, S->first)));
1755
1756            for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
1757                 Q != IP.second; ++Q) {
1758              if (!PrunedTree.count(Q->second))
1759                continue;
1760              DenseMap<VPPair, unsigned>::iterator R =
1761                PairConnectionTypes.find(VPPair(Q->second, Q->first));
1762              assert(R != PairConnectionTypes.end() &&
1763                     "Cannot find pair connection type");
1764              Type *Ty1 = Q->second.first->getType(),
1765                   *Ty2 = Q->second.second->getType();
1766              Type *VTy = getVecTypeForPair(Ty1, Ty2);
1767              if ((R->second == PairConnectionDirect && FlipOrder) ||
1768                  (R->second == PairConnectionSwap && !FlipOrder)  ||
1769                  R->second == PairConnectionSplat) {
1770                int ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
1771                                                   VTy, VTy);
1772                DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
1773                  *Q->second.first << " <-> " << *Q->second.second <<
1774                    "} -> {" <<
1775                  *S->first << " <-> " << *S->second << "} = " <<
1776                   ESContrib << "\n");
1777                EffSize -= ESContrib;
1778              }
1779            }
1780          }
1781
1782          // Compute the cost of outgoing edges. We assume that edges outgoing
1783          // to shuffles, inserts or extracts can be merged, and so contribute
1784          // no additional cost.
1785          if (!S->first->getType()->isVoidTy()) {
1786            Type *Ty1 = S->first->getType(),
1787                 *Ty2 = S->second->getType();
1788            Type *VTy = getVecTypeForPair(Ty1, Ty2);
1789
1790            bool NeedsExtraction = false;
1791            for (Value::use_iterator I = S->first->use_begin(),
1792                 IE = S->first->use_end(); I != IE; ++I) {
1793              if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(*I)) {
1794                // Shuffle can be folded if it has no other input
1795                if (isa<UndefValue>(SI->getOperand(1)))
1796                  continue;
1797              }
1798              if (isa<ExtractElementInst>(*I))
1799                continue;
1800              if (PrunedTreeInstrs.count(*I))
1801                continue;
1802              NeedsExtraction = true;
1803              break;
1804            }
1805
1806            if (NeedsExtraction) {
1807              int ESContrib;
1808              if (Ty1->isVectorTy())
1809                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
1810                                               Ty1, VTy);
1811              else
1812                ESContrib = (int) VTTI->getVectorInstrCost(
1813                                    Instruction::ExtractElement, VTy, 0);
1814
1815              DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
1816                *S->first << "} = " << ESContrib << "\n");
1817              EffSize -= ESContrib;
1818            }
1819
1820            NeedsExtraction = false;
1821            for (Value::use_iterator I = S->second->use_begin(),
1822                 IE = S->second->use_end(); I != IE; ++I) {
1823              if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(*I)) {
1824                // Shuffle can be folded if it has no other input
1825                if (isa<UndefValue>(SI->getOperand(1)))
1826                  continue;
1827              }
1828              if (isa<ExtractElementInst>(*I))
1829                continue;
1830              if (PrunedTreeInstrs.count(*I))
1831                continue;
1832              NeedsExtraction = true;
1833              break;
1834            }
1835
1836            if (NeedsExtraction) {
1837              int ESContrib;
1838              if (Ty2->isVectorTy())
1839                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
1840                                               Ty2, VTy);
1841              else
1842                ESContrib = (int) VTTI->getVectorInstrCost(
1843                                    Instruction::ExtractElement, VTy, 1);
1844              DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
1845                *S->second << "} = " << ESContrib << "\n");
1846              EffSize -= ESContrib;
1847            }
1848          }
1849
1850          // Compute the cost of incoming edges.
1851          if (!isa<LoadInst>(S->first) && !isa<StoreInst>(S->first)) {
1852            Instruction *S1 = cast<Instruction>(S->first),
1853                        *S2 = cast<Instruction>(S->second);
1854            for (unsigned o = 0; o < S1->getNumOperands(); ++o) {
1855              Value *O1 = S1->getOperand(o), *O2 = S2->getOperand(o);
1856
1857              // Combining constants into vector constants (or small vector
1858              // constants into larger ones are assumed free).
1859              if (isa<Constant>(O1) && isa<Constant>(O2))
1860                continue;
1861
1862              if (FlipOrder)
1863                std::swap(O1, O2);
1864
1865              ValuePair VP  = ValuePair(O1, O2);
1866              ValuePair VPR = ValuePair(O2, O1);
1867
1868              // Internal edges are not handled here.
1869              if (PrunedTree.count(VP) || PrunedTree.count(VPR))
1870                continue;
1871
1872              Type *Ty1 = O1->getType(),
1873                   *Ty2 = O2->getType();
1874              Type *VTy = getVecTypeForPair(Ty1, Ty2);
1875
1876              // Combining vector operations of the same type is also assumed
1877              // folded with other operations.
1878              if (Ty1 == Ty2) {
1879                // If both are insert elements, then both can be widened.
1880                InsertElementInst *IEO1 = dyn_cast<InsertElementInst>(O1),
1881                                  *IEO2 = dyn_cast<InsertElementInst>(O2);
1882                if (IEO1 && IEO2 && isPureIEChain(IEO1) && isPureIEChain(IEO2))
1883                  continue;
1884                // If both are extract elements, and both have the same input
1885                // type, then they can be replaced with a shuffle
1886                ExtractElementInst *EIO1 = dyn_cast<ExtractElementInst>(O1),
1887                                   *EIO2 = dyn_cast<ExtractElementInst>(O2);
1888                if (EIO1 && EIO2 &&
1889                    EIO1->getOperand(0)->getType() ==
1890                      EIO2->getOperand(0)->getType())
1891                  continue;
1892                // If both are a shuffle with equal operand types and only two
1893                // unqiue operands, then they can be replaced with a single
1894                // shuffle
1895                ShuffleVectorInst *SIO1 = dyn_cast<ShuffleVectorInst>(O1),
1896                                  *SIO2 = dyn_cast<ShuffleVectorInst>(O2);
1897                if (SIO1 && SIO2 &&
1898                    SIO1->getOperand(0)->getType() ==
1899                      SIO2->getOperand(0)->getType()) {
1900                  SmallSet<Value *, 4> SIOps;
1901                  SIOps.insert(SIO1->getOperand(0));
1902                  SIOps.insert(SIO1->getOperand(1));
1903                  SIOps.insert(SIO2->getOperand(0));
1904                  SIOps.insert(SIO2->getOperand(1));
1905                  if (SIOps.size() <= 2)
1906                    continue;
1907                }
1908              }
1909
1910              int ESContrib;
1911              // This pair has already been formed.
1912              if (IncomingPairs.count(VP)) {
1913                continue;
1914              } else if (IncomingPairs.count(VPR)) {
1915                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
1916                                               VTy, VTy);
1917              } else if (!Ty1->isVectorTy() && !Ty2->isVectorTy()) {
1918                ESContrib = (int) VTTI->getVectorInstrCost(
1919                                    Instruction::InsertElement, VTy, 0);
1920                ESContrib += (int) VTTI->getVectorInstrCost(
1921                                     Instruction::InsertElement, VTy, 1);
1922              } else if (!Ty1->isVectorTy()) {
1923                // O1 needs to be inserted into a vector of size O2, and then
1924                // both need to be shuffled together.
1925                ESContrib = (int) VTTI->getVectorInstrCost(
1926                                    Instruction::InsertElement, Ty2, 0);
1927                ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
1928                                                VTy, Ty2);
1929              } else if (!Ty2->isVectorTy()) {
1930                // O2 needs to be inserted into a vector of size O1, and then
1931                // both need to be shuffled together.
1932                ESContrib = (int) VTTI->getVectorInstrCost(
1933                                    Instruction::InsertElement, Ty1, 0);
1934                ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
1935                                                VTy, Ty1);
1936              } else {
1937                Type *TyBig = Ty1, *TySmall = Ty2;
1938                if (Ty2->getVectorNumElements() > Ty1->getVectorNumElements())
1939                  std::swap(TyBig, TySmall);
1940
1941                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
1942                                               VTy, TyBig);
1943                if (TyBig != TySmall)
1944                  ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
1945                                                  TyBig, TySmall);
1946              }
1947
1948              DEBUG(if (DebugPairSelection) dbgs() << "\tcost {"
1949                     << *O1 << " <-> " << *O2 << "} = " <<
1950                     ESContrib << "\n");
1951              EffSize -= ESContrib;
1952              IncomingPairs.insert(VP);
1953            }
1954          }
1955        }
1956
1957        if (!HasNontrivialInsts) {
1958          DEBUG(if (DebugPairSelection) dbgs() <<
1959                "\tNo non-trivial instructions in tree;"
1960                " override to zero effective size\n");
1961          EffSize = 0;
1962        }
1963      } else {
1964        for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
1965             E = PrunedTree.end(); S != E; ++S)
1966          EffSize += (int) getDepthFactor(S->first);
1967      }
1968
1969      DEBUG(if (DebugPairSelection)
1970             dbgs() << "BBV: found pruned Tree for pair {"
1971             << *J->first << " <-> " << *J->second << "} of depth " <<
1972             MaxDepth << " and size " << PrunedTree.size() <<
1973            " (effective size: " << EffSize << ")\n");
1974      if (((VTTI && !UseChainDepthWithTI) ||
1975            MaxDepth >= Config.ReqChainDepth) &&
1976          EffSize > 0 && EffSize > BestEffSize) {
1977        BestMaxDepth = MaxDepth;
1978        BestEffSize = EffSize;
1979        BestTree = PrunedTree;
1980      }
1981    }
1982  }
1983
1984  // Given the list of candidate pairs, this function selects those
1985  // that will be fused into vector instructions.
1986  void BBVectorize::choosePairs(
1987                      std::multimap<Value *, Value *> &CandidatePairs,
1988                      DenseMap<ValuePair, int> &CandidatePairCostSavings,
1989                      std::vector<Value *> &PairableInsts,
1990                      DenseSet<ValuePair> &FixedOrderPairs,
1991                      DenseMap<VPPair, unsigned> &PairConnectionTypes,
1992                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1993                      std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
1994                      DenseSet<ValuePair> &PairableInstUsers,
1995                      DenseMap<Value *, Value *>& ChosenPairs) {
1996    bool UseCycleCheck =
1997     CandidatePairs.size() <= Config.MaxCandPairsForCycleCheck;
1998    std::multimap<ValuePair, ValuePair> PairableInstUserMap;
1999    for (std::vector<Value *>::iterator I = PairableInsts.begin(),
2000         E = PairableInsts.end(); I != E; ++I) {
2001      // The number of possible pairings for this variable:
2002      size_t NumChoices = CandidatePairs.count(*I);
2003      if (!NumChoices) continue;
2004
2005      VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
2006
2007      // The best pair to choose and its tree:
2008      size_t BestMaxDepth = 0;
2009      int BestEffSize = 0;
2010      DenseSet<ValuePair> BestTree;
2011      findBestTreeFor(CandidatePairs, CandidatePairCostSavings,
2012                      PairableInsts, FixedOrderPairs, PairConnectionTypes,
2013                      ConnectedPairs, ConnectedPairDeps,
2014                      PairableInstUsers, PairableInstUserMap, ChosenPairs,
2015                      BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
2016                      UseCycleCheck);
2017
2018      // A tree has been chosen (or not) at this point. If no tree was
2019      // chosen, then this instruction, I, cannot be paired (and is no longer
2020      // considered).
2021
2022      DEBUG(if (BestTree.size() > 0)
2023              dbgs() << "BBV: selected pairs in the best tree for: "
2024                     << *cast<Instruction>(*I) << "\n");
2025
2026      for (DenseSet<ValuePair>::iterator S = BestTree.begin(),
2027           SE2 = BestTree.end(); S != SE2; ++S) {
2028        // Insert the members of this tree into the list of chosen pairs.
2029        ChosenPairs.insert(ValuePair(S->first, S->second));
2030        DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
2031               *S->second << "\n");
2032
2033        // Remove all candidate pairs that have values in the chosen tree.
2034        for (std::multimap<Value *, Value *>::iterator K =
2035               CandidatePairs.begin(); K != CandidatePairs.end();) {
2036          if (K->first == S->first || K->second == S->first ||
2037              K->second == S->second || K->first == S->second) {
2038            // Don't remove the actual pair chosen so that it can be used
2039            // in subsequent tree selections.
2040            if (!(K->first == S->first && K->second == S->second))
2041              CandidatePairs.erase(K++);
2042            else
2043              ++K;
2044          } else {
2045            ++K;
2046          }
2047        }
2048      }
2049    }
2050
2051    DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
2052  }
2053
2054  std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
2055                     unsigned n = 0) {
2056    if (!I->hasName())
2057      return "";
2058
2059    return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
2060             (n > 0 ? "." + utostr(n) : "")).str();
2061  }
2062
2063  // Returns the value that is to be used as the pointer input to the vector
2064  // instruction that fuses I with J.
2065  Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
2066                     Instruction *I, Instruction *J, unsigned o) {
2067    Value *IPtr, *JPtr;
2068    unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
2069    int64_t OffsetInElmts;
2070
2071    // Note: the analysis might fail here, that is why the pair order has
2072    // been precomputed (OffsetInElmts must be unused here).
2073    (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
2074                          IAddressSpace, JAddressSpace,
2075                          OffsetInElmts, false);
2076
2077    // The pointer value is taken to be the one with the lowest offset.
2078    Value *VPtr = IPtr;
2079
2080    Type *ArgTypeI = cast<PointerType>(IPtr->getType())->getElementType();
2081    Type *ArgTypeJ = cast<PointerType>(JPtr->getType())->getElementType();
2082    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2083    Type *VArgPtrType = PointerType::get(VArgType,
2084      cast<PointerType>(IPtr->getType())->getAddressSpace());
2085    return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
2086                        /* insert before */ I);
2087  }
2088
2089  void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
2090                     unsigned MaskOffset, unsigned NumInElem,
2091                     unsigned NumInElem1, unsigned IdxOffset,
2092                     std::vector<Constant*> &Mask) {
2093    unsigned NumElem1 = cast<VectorType>(J->getType())->getNumElements();
2094    for (unsigned v = 0; v < NumElem1; ++v) {
2095      int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
2096      if (m < 0) {
2097        Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
2098      } else {
2099        unsigned mm = m + (int) IdxOffset;
2100        if (m >= (int) NumInElem1)
2101          mm += (int) NumInElem;
2102
2103        Mask[v+MaskOffset] =
2104          ConstantInt::get(Type::getInt32Ty(Context), mm);
2105      }
2106    }
2107  }
2108
2109  // Returns the value that is to be used as the vector-shuffle mask to the
2110  // vector instruction that fuses I with J.
2111  Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
2112                     Instruction *I, Instruction *J) {
2113    // This is the shuffle mask. We need to append the second
2114    // mask to the first, and the numbers need to be adjusted.
2115
2116    Type *ArgTypeI = I->getType();
2117    Type *ArgTypeJ = J->getType();
2118    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2119
2120    unsigned NumElemI = cast<VectorType>(ArgTypeI)->getNumElements();
2121
2122    // Get the total number of elements in the fused vector type.
2123    // By definition, this must equal the number of elements in
2124    // the final mask.
2125    unsigned NumElem = cast<VectorType>(VArgType)->getNumElements();
2126    std::vector<Constant*> Mask(NumElem);
2127
2128    Type *OpTypeI = I->getOperand(0)->getType();
2129    unsigned NumInElemI = cast<VectorType>(OpTypeI)->getNumElements();
2130    Type *OpTypeJ = J->getOperand(0)->getType();
2131    unsigned NumInElemJ = cast<VectorType>(OpTypeJ)->getNumElements();
2132
2133    // The fused vector will be:
2134    // -----------------------------------------------------
2135    // | NumInElemI | NumInElemJ | NumInElemI | NumInElemJ |
2136    // -----------------------------------------------------
2137    // from which we'll extract NumElem total elements (where the first NumElemI
2138    // of them come from the mask in I and the remainder come from the mask
2139    // in J.
2140
2141    // For the mask from the first pair...
2142    fillNewShuffleMask(Context, I, 0,        NumInElemJ, NumInElemI,
2143                       0,          Mask);
2144
2145    // For the mask from the second pair...
2146    fillNewShuffleMask(Context, J, NumElemI, NumInElemI, NumInElemJ,
2147                       NumInElemI, Mask);
2148
2149    return ConstantVector::get(Mask);
2150  }
2151
2152  bool BBVectorize::expandIEChain(LLVMContext& Context, Instruction *I,
2153                                  Instruction *J, unsigned o, Value *&LOp,
2154                                  unsigned numElemL,
2155                                  Type *ArgTypeL, Type *ArgTypeH,
2156                                  bool IBeforeJ, unsigned IdxOff) {
2157    bool ExpandedIEChain = false;
2158    if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) {
2159      // If we have a pure insertelement chain, then this can be rewritten
2160      // into a chain that directly builds the larger type.
2161      if (isPureIEChain(LIE)) {
2162        SmallVector<Value *, 8> VectElemts(numElemL,
2163          UndefValue::get(ArgTypeL->getScalarType()));
2164        InsertElementInst *LIENext = LIE;
2165        do {
2166          unsigned Idx =
2167            cast<ConstantInt>(LIENext->getOperand(2))->getSExtValue();
2168          VectElemts[Idx] = LIENext->getOperand(1);
2169        } while ((LIENext =
2170                   dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
2171
2172        LIENext = 0;
2173        Value *LIEPrev = UndefValue::get(ArgTypeH);
2174        for (unsigned i = 0; i < numElemL; ++i) {
2175          if (isa<UndefValue>(VectElemts[i])) continue;
2176          LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i],
2177                             ConstantInt::get(Type::getInt32Ty(Context),
2178                                              i + IdxOff),
2179                             getReplacementName(IBeforeJ ? I : J,
2180                                                true, o, i+1));
2181          LIENext->insertBefore(IBeforeJ ? J : I);
2182          LIEPrev = LIENext;
2183        }
2184
2185        LOp = LIENext ? (Value*) LIENext : UndefValue::get(ArgTypeH);
2186        ExpandedIEChain = true;
2187      }
2188    }
2189
2190    return ExpandedIEChain;
2191  }
2192
2193  // Returns the value to be used as the specified operand of the vector
2194  // instruction that fuses I with J.
2195  Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
2196                     Instruction *J, unsigned o, bool IBeforeJ) {
2197    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
2198    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
2199
2200    // Compute the fused vector type for this operand
2201    Type *ArgTypeI = I->getOperand(o)->getType();
2202    Type *ArgTypeJ = J->getOperand(o)->getType();
2203    VectorType *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2204
2205    Instruction *L = I, *H = J;
2206    Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ;
2207
2208    unsigned numElemL;
2209    if (ArgTypeL->isVectorTy())
2210      numElemL = cast<VectorType>(ArgTypeL)->getNumElements();
2211    else
2212      numElemL = 1;
2213
2214    unsigned numElemH;
2215    if (ArgTypeH->isVectorTy())
2216      numElemH = cast<VectorType>(ArgTypeH)->getNumElements();
2217    else
2218      numElemH = 1;
2219
2220    Value *LOp = L->getOperand(o);
2221    Value *HOp = H->getOperand(o);
2222    unsigned numElem = VArgType->getNumElements();
2223
2224    // First, we check if we can reuse the "original" vector outputs (if these
2225    // exist). We might need a shuffle.
2226    ExtractElementInst *LEE = dyn_cast<ExtractElementInst>(LOp);
2227    ExtractElementInst *HEE = dyn_cast<ExtractElementInst>(HOp);
2228    ShuffleVectorInst *LSV = dyn_cast<ShuffleVectorInst>(LOp);
2229    ShuffleVectorInst *HSV = dyn_cast<ShuffleVectorInst>(HOp);
2230
2231    // FIXME: If we're fusing shuffle instructions, then we can't apply this
2232    // optimization. The input vectors to the shuffle might be a different
2233    // length from the shuffle outputs. Unfortunately, the replacement
2234    // shuffle mask has already been formed, and the mask entries are sensitive
2235    // to the sizes of the inputs.
2236    bool IsSizeChangeShuffle =
2237      isa<ShuffleVectorInst>(L) &&
2238        (LOp->getType() != L->getType() || HOp->getType() != H->getType());
2239
2240    if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) {
2241      // We can have at most two unique vector inputs.
2242      bool CanUseInputs = true;
2243      Value *I1, *I2 = 0;
2244      if (LEE) {
2245        I1 = LEE->getOperand(0);
2246      } else {
2247        I1 = LSV->getOperand(0);
2248        I2 = LSV->getOperand(1);
2249        if (I2 == I1 || isa<UndefValue>(I2))
2250          I2 = 0;
2251      }
2252
2253      if (HEE) {
2254        Value *I3 = HEE->getOperand(0);
2255        if (!I2 && I3 != I1)
2256          I2 = I3;
2257        else if (I3 != I1 && I3 != I2)
2258          CanUseInputs = false;
2259      } else {
2260        Value *I3 = HSV->getOperand(0);
2261        if (!I2 && I3 != I1)
2262          I2 = I3;
2263        else if (I3 != I1 && I3 != I2)
2264          CanUseInputs = false;
2265
2266        if (CanUseInputs) {
2267          Value *I4 = HSV->getOperand(1);
2268          if (!isa<UndefValue>(I4)) {
2269            if (!I2 && I4 != I1)
2270              I2 = I4;
2271            else if (I4 != I1 && I4 != I2)
2272              CanUseInputs = false;
2273          }
2274        }
2275      }
2276
2277      if (CanUseInputs) {
2278        unsigned LOpElem =
2279          cast<VectorType>(cast<Instruction>(LOp)->getOperand(0)->getType())
2280            ->getNumElements();
2281        unsigned HOpElem =
2282          cast<VectorType>(cast<Instruction>(HOp)->getOperand(0)->getType())
2283            ->getNumElements();
2284
2285        // We have one or two input vectors. We need to map each index of the
2286        // operands to the index of the original vector.
2287        SmallVector<std::pair<int, int>, 8>  II(numElem);
2288        for (unsigned i = 0; i < numElemL; ++i) {
2289          int Idx, INum;
2290          if (LEE) {
2291            Idx =
2292              cast<ConstantInt>(LEE->getOperand(1))->getSExtValue();
2293            INum = LEE->getOperand(0) == I1 ? 0 : 1;
2294          } else {
2295            Idx = LSV->getMaskValue(i);
2296            if (Idx < (int) LOpElem) {
2297              INum = LSV->getOperand(0) == I1 ? 0 : 1;
2298            } else {
2299              Idx -= LOpElem;
2300              INum = LSV->getOperand(1) == I1 ? 0 : 1;
2301            }
2302          }
2303
2304          II[i] = std::pair<int, int>(Idx, INum);
2305        }
2306        for (unsigned i = 0; i < numElemH; ++i) {
2307          int Idx, INum;
2308          if (HEE) {
2309            Idx =
2310              cast<ConstantInt>(HEE->getOperand(1))->getSExtValue();
2311            INum = HEE->getOperand(0) == I1 ? 0 : 1;
2312          } else {
2313            Idx = HSV->getMaskValue(i);
2314            if (Idx < (int) HOpElem) {
2315              INum = HSV->getOperand(0) == I1 ? 0 : 1;
2316            } else {
2317              Idx -= HOpElem;
2318              INum = HSV->getOperand(1) == I1 ? 0 : 1;
2319            }
2320          }
2321
2322          II[i + numElemL] = std::pair<int, int>(Idx, INum);
2323        }
2324
2325        // We now have an array which tells us from which index of which
2326        // input vector each element of the operand comes.
2327        VectorType *I1T = cast<VectorType>(I1->getType());
2328        unsigned I1Elem = I1T->getNumElements();
2329
2330        if (!I2) {
2331          // In this case there is only one underlying vector input. Check for
2332          // the trivial case where we can use the input directly.
2333          if (I1Elem == numElem) {
2334            bool ElemInOrder = true;
2335            for (unsigned i = 0; i < numElem; ++i) {
2336              if (II[i].first != (int) i && II[i].first != -1) {
2337                ElemInOrder = false;
2338                break;
2339              }
2340            }
2341
2342            if (ElemInOrder)
2343              return I1;
2344          }
2345
2346          // A shuffle is needed.
2347          std::vector<Constant *> Mask(numElem);
2348          for (unsigned i = 0; i < numElem; ++i) {
2349            int Idx = II[i].first;
2350            if (Idx == -1)
2351              Mask[i] = UndefValue::get(Type::getInt32Ty(Context));
2352            else
2353              Mask[i] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
2354          }
2355
2356          Instruction *S =
2357            new ShuffleVectorInst(I1, UndefValue::get(I1T),
2358                                  ConstantVector::get(Mask),
2359                                  getReplacementName(IBeforeJ ? I : J,
2360                                                     true, o));
2361          S->insertBefore(IBeforeJ ? J : I);
2362          return S;
2363        }
2364
2365        VectorType *I2T = cast<VectorType>(I2->getType());
2366        unsigned I2Elem = I2T->getNumElements();
2367
2368        // This input comes from two distinct vectors. The first step is to
2369        // make sure that both vectors are the same length. If not, the
2370        // smaller one will need to grow before they can be shuffled together.
2371        if (I1Elem < I2Elem) {
2372          std::vector<Constant *> Mask(I2Elem);
2373          unsigned v = 0;
2374          for (; v < I1Elem; ++v)
2375            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2376          for (; v < I2Elem; ++v)
2377            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2378
2379          Instruction *NewI1 =
2380            new ShuffleVectorInst(I1, UndefValue::get(I1T),
2381                                  ConstantVector::get(Mask),
2382                                  getReplacementName(IBeforeJ ? I : J,
2383                                                     true, o, 1));
2384          NewI1->insertBefore(IBeforeJ ? J : I);
2385          I1 = NewI1;
2386          I1T = I2T;
2387          I1Elem = I2Elem;
2388        } else if (I1Elem > I2Elem) {
2389          std::vector<Constant *> Mask(I1Elem);
2390          unsigned v = 0;
2391          for (; v < I2Elem; ++v)
2392            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2393          for (; v < I1Elem; ++v)
2394            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2395
2396          Instruction *NewI2 =
2397            new ShuffleVectorInst(I2, UndefValue::get(I2T),
2398                                  ConstantVector::get(Mask),
2399                                  getReplacementName(IBeforeJ ? I : J,
2400                                                     true, o, 1));
2401          NewI2->insertBefore(IBeforeJ ? J : I);
2402          I2 = NewI2;
2403          I2T = I1T;
2404          I2Elem = I1Elem;
2405        }
2406
2407        // Now that both I1 and I2 are the same length we can shuffle them
2408        // together (and use the result).
2409        std::vector<Constant *> Mask(numElem);
2410        for (unsigned v = 0; v < numElem; ++v) {
2411          if (II[v].first == -1) {
2412            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2413          } else {
2414            int Idx = II[v].first + II[v].second * I1Elem;
2415            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
2416          }
2417        }
2418
2419        Instruction *NewOp =
2420          new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask),
2421                                getReplacementName(IBeforeJ ? I : J, true, o));
2422        NewOp->insertBefore(IBeforeJ ? J : I);
2423        return NewOp;
2424      }
2425    }
2426
2427    Type *ArgType = ArgTypeL;
2428    if (numElemL < numElemH) {
2429      if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH,
2430                                         ArgTypeL, VArgType, IBeforeJ, 1)) {
2431        // This is another short-circuit case: we're combining a scalar into
2432        // a vector that is formed by an IE chain. We've just expanded the IE
2433        // chain, now insert the scalar and we're done.
2434
2435        Instruction *S = InsertElementInst::Create(HOp, LOp, CV0,
2436                           getReplacementName(IBeforeJ ? I : J, true, o));
2437        S->insertBefore(IBeforeJ ? J : I);
2438        return S;
2439      } else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL,
2440                                ArgTypeH, IBeforeJ)) {
2441        // The two vector inputs to the shuffle must be the same length,
2442        // so extend the smaller vector to be the same length as the larger one.
2443        Instruction *NLOp;
2444        if (numElemL > 1) {
2445
2446          std::vector<Constant *> Mask(numElemH);
2447          unsigned v = 0;
2448          for (; v < numElemL; ++v)
2449            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2450          for (; v < numElemH; ++v)
2451            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2452
2453          NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL),
2454                                       ConstantVector::get(Mask),
2455                                       getReplacementName(IBeforeJ ? I : J,
2456                                                          true, o, 1));
2457        } else {
2458          NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0,
2459                                           getReplacementName(IBeforeJ ? I : J,
2460                                                              true, o, 1));
2461        }
2462
2463        NLOp->insertBefore(IBeforeJ ? J : I);
2464        LOp = NLOp;
2465      }
2466
2467      ArgType = ArgTypeH;
2468    } else if (numElemL > numElemH) {
2469      if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL,
2470                                         ArgTypeH, VArgType, IBeforeJ)) {
2471        Instruction *S =
2472          InsertElementInst::Create(LOp, HOp,
2473                                    ConstantInt::get(Type::getInt32Ty(Context),
2474                                                     numElemL),
2475                                    getReplacementName(IBeforeJ ? I : J,
2476                                                       true, o));
2477        S->insertBefore(IBeforeJ ? J : I);
2478        return S;
2479      } else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH,
2480                                ArgTypeL, IBeforeJ)) {
2481        Instruction *NHOp;
2482        if (numElemH > 1) {
2483          std::vector<Constant *> Mask(numElemL);
2484          unsigned v = 0;
2485          for (; v < numElemH; ++v)
2486            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2487          for (; v < numElemL; ++v)
2488            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2489
2490          NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH),
2491                                       ConstantVector::get(Mask),
2492                                       getReplacementName(IBeforeJ ? I : J,
2493                                                          true, o, 1));
2494        } else {
2495          NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0,
2496                                           getReplacementName(IBeforeJ ? I : J,
2497                                                              true, o, 1));
2498        }
2499
2500        NHOp->insertBefore(IBeforeJ ? J : I);
2501        HOp = NHOp;
2502      }
2503    }
2504
2505    if (ArgType->isVectorTy()) {
2506      unsigned numElem = cast<VectorType>(VArgType)->getNumElements();
2507      std::vector<Constant*> Mask(numElem);
2508      for (unsigned v = 0; v < numElem; ++v) {
2509        unsigned Idx = v;
2510        // If the low vector was expanded, we need to skip the extra
2511        // undefined entries.
2512        if (v >= numElemL && numElemH > numElemL)
2513          Idx += (numElemH - numElemL);
2514        Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
2515      }
2516
2517      Instruction *BV = new ShuffleVectorInst(LOp, HOp,
2518                          ConstantVector::get(Mask),
2519                          getReplacementName(IBeforeJ ? I : J, true, o));
2520      BV->insertBefore(IBeforeJ ? J : I);
2521      return BV;
2522    }
2523
2524    Instruction *BV1 = InsertElementInst::Create(
2525                                          UndefValue::get(VArgType), LOp, CV0,
2526                                          getReplacementName(IBeforeJ ? I : J,
2527                                                             true, o, 1));
2528    BV1->insertBefore(IBeforeJ ? J : I);
2529    Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1,
2530                                          getReplacementName(IBeforeJ ? I : J,
2531                                                             true, o, 2));
2532    BV2->insertBefore(IBeforeJ ? J : I);
2533    return BV2;
2534  }
2535
2536  // This function creates an array of values that will be used as the inputs
2537  // to the vector instruction that fuses I with J.
2538  void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
2539                     Instruction *I, Instruction *J,
2540                     SmallVector<Value *, 3> &ReplacedOperands,
2541                     bool IBeforeJ) {
2542    unsigned NumOperands = I->getNumOperands();
2543
2544    for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
2545      // Iterate backward so that we look at the store pointer
2546      // first and know whether or not we need to flip the inputs.
2547
2548      if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
2549        // This is the pointer for a load/store instruction.
2550        ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o);
2551        continue;
2552      } else if (isa<CallInst>(I)) {
2553        Function *F = cast<CallInst>(I)->getCalledFunction();
2554        unsigned IID = F->getIntrinsicID();
2555        if (o == NumOperands-1) {
2556          BasicBlock &BB = *I->getParent();
2557
2558          Module *M = BB.getParent()->getParent();
2559          Type *ArgTypeI = I->getType();
2560          Type *ArgTypeJ = J->getType();
2561          Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2562
2563          ReplacedOperands[o] = Intrinsic::getDeclaration(M,
2564            (Intrinsic::ID) IID, VArgType);
2565          continue;
2566        } else if (IID == Intrinsic::powi && o == 1) {
2567          // The second argument of powi is a single integer and we've already
2568          // checked that both arguments are equal. As a result, we just keep
2569          // I's second argument.
2570          ReplacedOperands[o] = I->getOperand(o);
2571          continue;
2572        }
2573      } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
2574        ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
2575        continue;
2576      }
2577
2578      ReplacedOperands[o] = getReplacementInput(Context, I, J, o, IBeforeJ);
2579    }
2580  }
2581
2582  // This function creates two values that represent the outputs of the
2583  // original I and J instructions. These are generally vector shuffles
2584  // or extracts. In many cases, these will end up being unused and, thus,
2585  // eliminated by later passes.
2586  void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
2587                     Instruction *J, Instruction *K,
2588                     Instruction *&InsertionPt,
2589                     Instruction *&K1, Instruction *&K2) {
2590    if (isa<StoreInst>(I)) {
2591      AA->replaceWithNewValue(I, K);
2592      AA->replaceWithNewValue(J, K);
2593    } else {
2594      Type *IType = I->getType();
2595      Type *JType = J->getType();
2596
2597      VectorType *VType = getVecTypeForPair(IType, JType);
2598      unsigned numElem = VType->getNumElements();
2599
2600      unsigned numElemI, numElemJ;
2601      if (IType->isVectorTy())
2602        numElemI = cast<VectorType>(IType)->getNumElements();
2603      else
2604        numElemI = 1;
2605
2606      if (JType->isVectorTy())
2607        numElemJ = cast<VectorType>(JType)->getNumElements();
2608      else
2609        numElemJ = 1;
2610
2611      if (IType->isVectorTy()) {
2612        std::vector<Constant*> Mask1(numElemI), Mask2(numElemI);
2613        for (unsigned v = 0; v < numElemI; ++v) {
2614          Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2615          Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemJ+v);
2616        }
2617
2618        K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
2619                                   ConstantVector::get( Mask1),
2620                                   getReplacementName(K, false, 1));
2621      } else {
2622        Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
2623        K1 = ExtractElementInst::Create(K, CV0,
2624                                          getReplacementName(K, false, 1));
2625      }
2626
2627      if (JType->isVectorTy()) {
2628        std::vector<Constant*> Mask1(numElemJ), Mask2(numElemJ);
2629        for (unsigned v = 0; v < numElemJ; ++v) {
2630          Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2631          Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemI+v);
2632        }
2633
2634        K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
2635                                   ConstantVector::get( Mask2),
2636                                   getReplacementName(K, false, 2));
2637      } else {
2638        Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
2639        K2 = ExtractElementInst::Create(K, CV1,
2640                                          getReplacementName(K, false, 2));
2641      }
2642
2643      K1->insertAfter(K);
2644      K2->insertAfter(K1);
2645      InsertionPt = K2;
2646    }
2647  }
2648
2649  // Move all uses of the function I (including pairing-induced uses) after J.
2650  bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
2651                     std::multimap<Value *, Value *> &LoadMoveSet,
2652                     Instruction *I, Instruction *J) {
2653    // Skip to the first instruction past I.
2654    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2655
2656    DenseSet<Value *> Users;
2657    AliasSetTracker WriteSet(*AA);
2658    for (; cast<Instruction>(L) != J; ++L)
2659      (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet);
2660
2661    assert(cast<Instruction>(L) == J &&
2662      "Tracking has not proceeded far enough to check for dependencies");
2663    // If J is now in the use set of I, then trackUsesOfI will return true
2664    // and we have a dependency cycle (and the fusing operation must abort).
2665    return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet);
2666  }
2667
2668  // Move all uses of the function I (including pairing-induced uses) after J.
2669  void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
2670                     std::multimap<Value *, Value *> &LoadMoveSet,
2671                     Instruction *&InsertionPt,
2672                     Instruction *I, Instruction *J) {
2673    // Skip to the first instruction past I.
2674    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2675
2676    DenseSet<Value *> Users;
2677    AliasSetTracker WriteSet(*AA);
2678    for (; cast<Instruction>(L) != J;) {
2679      if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) {
2680        // Move this instruction
2681        Instruction *InstToMove = L; ++L;
2682
2683        DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
2684                        " to after " << *InsertionPt << "\n");
2685        InstToMove->removeFromParent();
2686        InstToMove->insertAfter(InsertionPt);
2687        InsertionPt = InstToMove;
2688      } else {
2689        ++L;
2690      }
2691    }
2692  }
2693
2694  // Collect all load instruction that are in the move set of a given first
2695  // pair member.  These loads depend on the first instruction, I, and so need
2696  // to be moved after J (the second instruction) when the pair is fused.
2697  void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
2698                     DenseMap<Value *, Value *> &ChosenPairs,
2699                     std::multimap<Value *, Value *> &LoadMoveSet,
2700                     Instruction *I) {
2701    // Skip to the first instruction past I.
2702    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2703
2704    DenseSet<Value *> Users;
2705    AliasSetTracker WriteSet(*AA);
2706
2707    // Note: We cannot end the loop when we reach J because J could be moved
2708    // farther down the use chain by another instruction pairing. Also, J
2709    // could be before I if this is an inverted input.
2710    for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
2711      if (trackUsesOfI(Users, WriteSet, I, L)) {
2712        if (L->mayReadFromMemory())
2713          LoadMoveSet.insert(ValuePair(L, I));
2714      }
2715    }
2716  }
2717
2718  // In cases where both load/stores and the computation of their pointers
2719  // are chosen for vectorization, we can end up in a situation where the
2720  // aliasing analysis starts returning different query results as the
2721  // process of fusing instruction pairs continues. Because the algorithm
2722  // relies on finding the same use trees here as were found earlier, we'll
2723  // need to precompute the necessary aliasing information here and then
2724  // manually update it during the fusion process.
2725  void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
2726                     std::vector<Value *> &PairableInsts,
2727                     DenseMap<Value *, Value *> &ChosenPairs,
2728                     std::multimap<Value *, Value *> &LoadMoveSet) {
2729    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
2730         PIE = PairableInsts.end(); PI != PIE; ++PI) {
2731      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
2732      if (P == ChosenPairs.end()) continue;
2733
2734      Instruction *I = cast<Instruction>(P->first);
2735      collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I);
2736    }
2737  }
2738
2739  // When the first instruction in each pair is cloned, it will inherit its
2740  // parent's metadata. This metadata must be combined with that of the other
2741  // instruction in a safe way.
2742  void BBVectorize::combineMetadata(Instruction *K, const Instruction *J) {
2743    SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
2744    K->getAllMetadataOtherThanDebugLoc(Metadata);
2745    for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
2746      unsigned Kind = Metadata[i].first;
2747      MDNode *JMD = J->getMetadata(Kind);
2748      MDNode *KMD = Metadata[i].second;
2749
2750      switch (Kind) {
2751      default:
2752        K->setMetadata(Kind, 0); // Remove unknown metadata
2753        break;
2754      case LLVMContext::MD_tbaa:
2755        K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2756        break;
2757      case LLVMContext::MD_fpmath:
2758        K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2759        break;
2760      }
2761    }
2762  }
2763
2764  // This function fuses the chosen instruction pairs into vector instructions,
2765  // taking care preserve any needed scalar outputs and, then, it reorders the
2766  // remaining instructions as needed (users of the first member of the pair
2767  // need to be moved to after the location of the second member of the pair
2768  // because the vector instruction is inserted in the location of the pair's
2769  // second member).
2770  void BBVectorize::fuseChosenPairs(BasicBlock &BB,
2771                     std::vector<Value *> &PairableInsts,
2772                     DenseMap<Value *, Value *> &ChosenPairs,
2773                     DenseSet<ValuePair> &FixedOrderPairs,
2774                     DenseMap<VPPair, unsigned> &PairConnectionTypes,
2775                     std::multimap<ValuePair, ValuePair> &ConnectedPairs,
2776                     std::multimap<ValuePair, ValuePair> &ConnectedPairDeps) {
2777    LLVMContext& Context = BB.getContext();
2778
2779    // During the vectorization process, the order of the pairs to be fused
2780    // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
2781    // list. After a pair is fused, the flipped pair is removed from the list.
2782    DenseSet<ValuePair> FlippedPairs;
2783    for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
2784         E = ChosenPairs.end(); P != E; ++P)
2785      FlippedPairs.insert(ValuePair(P->second, P->first));
2786    for (DenseSet<ValuePair>::iterator P = FlippedPairs.begin(),
2787         E = FlippedPairs.end(); P != E; ++P)
2788      ChosenPairs.insert(*P);
2789
2790    std::multimap<Value *, Value *> LoadMoveSet;
2791    collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
2792
2793    DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
2794
2795    for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
2796      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
2797      if (P == ChosenPairs.end()) {
2798        ++PI;
2799        continue;
2800      }
2801
2802      if (getDepthFactor(P->first) == 0) {
2803        // These instructions are not really fused, but are tracked as though
2804        // they are. Any case in which it would be interesting to fuse them
2805        // will be taken care of by InstCombine.
2806        --NumFusedOps;
2807        ++PI;
2808        continue;
2809      }
2810
2811      Instruction *I = cast<Instruction>(P->first),
2812        *J = cast<Instruction>(P->second);
2813
2814      DEBUG(dbgs() << "BBV: fusing: " << *I <<
2815             " <-> " << *J << "\n");
2816
2817      // Remove the pair and flipped pair from the list.
2818      DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
2819      assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
2820      ChosenPairs.erase(FP);
2821      ChosenPairs.erase(P);
2822
2823      if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) {
2824        DEBUG(dbgs() << "BBV: fusion of: " << *I <<
2825               " <-> " << *J <<
2826               " aborted because of non-trivial dependency cycle\n");
2827        --NumFusedOps;
2828        ++PI;
2829        continue;
2830      }
2831
2832      // If the pair must have the other order, then flip it.
2833      bool FlipPairOrder = FixedOrderPairs.count(ValuePair(J, I));
2834      if (!FlipPairOrder && !FixedOrderPairs.count(ValuePair(I, J))) {
2835        // This pair does not have a fixed order, and so we might want to
2836        // flip it if that will yield fewer shuffles. We count the number
2837        // of dependencies connected via swaps, and those directly connected,
2838        // and flip the order if the number of swaps is greater.
2839        bool OrigOrder = true;
2840        VPPIteratorPair IP = ConnectedPairDeps.equal_range(ValuePair(I, J));
2841        if (IP.first == ConnectedPairDeps.end()) {
2842          IP = ConnectedPairDeps.equal_range(ValuePair(J, I));
2843          OrigOrder = false;
2844        }
2845
2846        if (IP.first != ConnectedPairDeps.end()) {
2847          unsigned NumDepsDirect = 0, NumDepsSwap = 0;
2848          for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
2849               Q != IP.second; ++Q) {
2850            DenseMap<VPPair, unsigned>::iterator R =
2851              PairConnectionTypes.find(VPPair(Q->second, Q->first));
2852            assert(R != PairConnectionTypes.end() &&
2853                   "Cannot find pair connection type");
2854            if (R->second == PairConnectionDirect)
2855              ++NumDepsDirect;
2856            else if (R->second == PairConnectionSwap)
2857              ++NumDepsSwap;
2858          }
2859
2860          if (!OrigOrder)
2861            std::swap(NumDepsDirect, NumDepsSwap);
2862
2863          if (NumDepsSwap > NumDepsDirect) {
2864            FlipPairOrder = true;
2865            DEBUG(dbgs() << "BBV: reordering pair: " << *I <<
2866                            " <-> " << *J << "\n");
2867          }
2868        }
2869      }
2870
2871      Instruction *L = I, *H = J;
2872      if (FlipPairOrder)
2873        std::swap(H, L);
2874
2875      // If the pair being fused uses the opposite order from that in the pair
2876      // connection map, then we need to flip the types.
2877      VPPIteratorPair IP = ConnectedPairs.equal_range(ValuePair(H, L));
2878      for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
2879           Q != IP.second; ++Q) {
2880        DenseMap<VPPair, unsigned>::iterator R = PairConnectionTypes.find(*Q);
2881        assert(R != PairConnectionTypes.end() &&
2882               "Cannot find pair connection type");
2883        if (R->second == PairConnectionDirect)
2884          R->second = PairConnectionSwap;
2885        else if (R->second == PairConnectionSwap)
2886          R->second = PairConnectionDirect;
2887      }
2888
2889      bool LBeforeH = !FlipPairOrder;
2890      unsigned NumOperands = I->getNumOperands();
2891      SmallVector<Value *, 3> ReplacedOperands(NumOperands);
2892      getReplacementInputsForPair(Context, L, H, ReplacedOperands,
2893                                  LBeforeH);
2894
2895      // Make a copy of the original operation, change its type to the vector
2896      // type and replace its operands with the vector operands.
2897      Instruction *K = L->clone();
2898      if (L->hasName())
2899        K->takeName(L);
2900      else if (H->hasName())
2901        K->takeName(H);
2902
2903      if (!isa<StoreInst>(K))
2904        K->mutateType(getVecTypeForPair(L->getType(), H->getType()));
2905
2906      combineMetadata(K, H);
2907
2908      for (unsigned o = 0; o < NumOperands; ++o)
2909        K->setOperand(o, ReplacedOperands[o]);
2910
2911      K->insertAfter(J);
2912
2913      // Instruction insertion point:
2914      Instruction *InsertionPt = K;
2915      Instruction *K1 = 0, *K2 = 0;
2916      replaceOutputsOfPair(Context, L, H, K, InsertionPt, K1, K2);
2917
2918      // The use tree of the first original instruction must be moved to after
2919      // the location of the second instruction. The entire use tree of the
2920      // first instruction is disjoint from the input tree of the second
2921      // (by definition), and so commutes with it.
2922
2923      moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
2924
2925      if (!isa<StoreInst>(I)) {
2926        L->replaceAllUsesWith(K1);
2927        H->replaceAllUsesWith(K2);
2928        AA->replaceWithNewValue(L, K1);
2929        AA->replaceWithNewValue(H, K2);
2930      }
2931
2932      // Instructions that may read from memory may be in the load move set.
2933      // Once an instruction is fused, we no longer need its move set, and so
2934      // the values of the map never need to be updated. However, when a load
2935      // is fused, we need to merge the entries from both instructions in the
2936      // pair in case those instructions were in the move set of some other
2937      // yet-to-be-fused pair. The loads in question are the keys of the map.
2938      if (I->mayReadFromMemory()) {
2939        std::vector<ValuePair> NewSetMembers;
2940        VPIteratorPair IPairRange = LoadMoveSet.equal_range(I);
2941        VPIteratorPair JPairRange = LoadMoveSet.equal_range(J);
2942        for (std::multimap<Value *, Value *>::iterator N = IPairRange.first;
2943             N != IPairRange.second; ++N)
2944          NewSetMembers.push_back(ValuePair(K, N->second));
2945        for (std::multimap<Value *, Value *>::iterator N = JPairRange.first;
2946             N != JPairRange.second; ++N)
2947          NewSetMembers.push_back(ValuePair(K, N->second));
2948        for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
2949             AE = NewSetMembers.end(); A != AE; ++A)
2950          LoadMoveSet.insert(*A);
2951      }
2952
2953      // Before removing I, set the iterator to the next instruction.
2954      PI = llvm::next(BasicBlock::iterator(I));
2955      if (cast<Instruction>(PI) == J)
2956        ++PI;
2957
2958      SE->forgetValue(I);
2959      SE->forgetValue(J);
2960      I->eraseFromParent();
2961      J->eraseFromParent();
2962
2963      DEBUG(if (PrintAfterEveryPair) dbgs() << "BBV: block is now: \n" <<
2964                                               BB << "\n");
2965    }
2966
2967    DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
2968  }
2969}
2970
2971char BBVectorize::ID = 0;
2972static const char bb_vectorize_name[] = "Basic-Block Vectorization";
2973INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
2974INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
2975INITIALIZE_PASS_DEPENDENCY(DominatorTree)
2976INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
2977INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
2978
2979BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
2980  return new BBVectorize(C);
2981}
2982
2983bool
2984llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
2985  BBVectorize BBVectorizer(P, C);
2986  return BBVectorizer.vectorizeBB(BB);
2987}
2988
2989//===----------------------------------------------------------------------===//
2990VectorizeConfig::VectorizeConfig() {
2991  VectorBits = ::VectorBits;
2992  VectorizeBools = !::NoBools;
2993  VectorizeInts = !::NoInts;
2994  VectorizeFloats = !::NoFloats;
2995  VectorizePointers = !::NoPointers;
2996  VectorizeCasts = !::NoCasts;
2997  VectorizeMath = !::NoMath;
2998  VectorizeFMA = !::NoFMA;
2999  VectorizeSelect = !::NoSelect;
3000  VectorizeCmp = !::NoCmp;
3001  VectorizeGEP = !::NoGEP;
3002  VectorizeMemOps = !::NoMemOps;
3003  AlignedOnly = ::AlignedOnly;
3004  ReqChainDepth= ::ReqChainDepth;
3005  SearchLimit = ::SearchLimit;
3006  MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
3007  SplatBreaksChain = ::SplatBreaksChain;
3008  MaxInsts = ::MaxInsts;
3009  MaxIter = ::MaxIter;
3010  Pow2LenOnly = ::Pow2LenOnly;
3011  NoMemOpBoost = ::NoMemOpBoost;
3012  FastDep = ::FastDep;
3013}
3014