BBVectorize.cpp revision 768edf3cd037aab10391abc279f71470df8e3156
1//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a basic-block vectorization pass. The algorithm was
11// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
12// et al. It works by looking for chains of pairable operations and then
13// pairing them.
14//
15//===----------------------------------------------------------------------===//
16
17#define BBV_NAME "bb-vectorize"
18#define DEBUG_TYPE BBV_NAME
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Metadata.h"
27#include "llvm/Pass.h"
28#include "llvm/Type.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/AliasSetTracker.h"
37#include "llvm/Analysis/ScalarEvolution.h"
38#include "llvm/Analysis/ScalarEvolutionExpressions.h"
39#include "llvm/Analysis/ValueTracking.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Support/ValueHandle.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Vectorize.h"
46#include <algorithm>
47#include <map>
48using namespace llvm;
49
50static cl::opt<unsigned>
51ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
52  cl::desc("The required chain depth for vectorization"));
53
54static cl::opt<unsigned>
55SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
56  cl::desc("The maximum search distance for instruction pairs"));
57
58static cl::opt<bool>
59SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
60  cl::desc("Replicating one element to a pair breaks the chain"));
61
62static cl::opt<unsigned>
63VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
64  cl::desc("The size of the native vector registers"));
65
66static cl::opt<unsigned>
67MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
68  cl::desc("The maximum number of pairing iterations"));
69
70static cl::opt<unsigned>
71MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
72  cl::desc("The maximum number of pairable instructions per group"));
73
74static cl::opt<unsigned>
75MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
76  cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
77                       " a full cycle check"));
78
79static cl::opt<bool>
80NoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden,
81  cl::desc("Don't try to vectorize boolean (i1) values"));
82
83static cl::opt<bool>
84NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
85  cl::desc("Don't try to vectorize integer values"));
86
87static cl::opt<bool>
88NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
89  cl::desc("Don't try to vectorize floating-point values"));
90
91static cl::opt<bool>
92NoPointers("bb-vectorize-no-pointers", cl::init(false), cl::Hidden,
93  cl::desc("Don't try to vectorize pointer values"));
94
95static cl::opt<bool>
96NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
97  cl::desc("Don't try to vectorize casting (conversion) operations"));
98
99static cl::opt<bool>
100NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
101  cl::desc("Don't try to vectorize floating-point math intrinsics"));
102
103static cl::opt<bool>
104NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
105  cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
106
107static cl::opt<bool>
108NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
109  cl::desc("Don't try to vectorize select instructions"));
110
111static cl::opt<bool>
112NoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden,
113  cl::desc("Don't try to vectorize comparison instructions"));
114
115static cl::opt<bool>
116NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
117  cl::desc("Don't try to vectorize getelementptr instructions"));
118
119static cl::opt<bool>
120NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
121  cl::desc("Don't try to vectorize loads and stores"));
122
123static cl::opt<bool>
124AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
125  cl::desc("Only generate aligned loads and stores"));
126
127static cl::opt<bool>
128NoMemOpBoost("bb-vectorize-no-mem-op-boost",
129  cl::init(false), cl::Hidden,
130  cl::desc("Don't boost the chain-depth contribution of loads and stores"));
131
132static cl::opt<bool>
133FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
134  cl::desc("Use a fast instruction dependency analysis"));
135
136#ifndef NDEBUG
137static cl::opt<bool>
138DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
139  cl::init(false), cl::Hidden,
140  cl::desc("When debugging is enabled, output information on the"
141           " instruction-examination process"));
142static cl::opt<bool>
143DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
144  cl::init(false), cl::Hidden,
145  cl::desc("When debugging is enabled, output information on the"
146           " candidate-selection process"));
147static cl::opt<bool>
148DebugPairSelection("bb-vectorize-debug-pair-selection",
149  cl::init(false), cl::Hidden,
150  cl::desc("When debugging is enabled, output information on the"
151           " pair-selection process"));
152static cl::opt<bool>
153DebugCycleCheck("bb-vectorize-debug-cycle-check",
154  cl::init(false), cl::Hidden,
155  cl::desc("When debugging is enabled, output information on the"
156           " cycle-checking process"));
157#endif
158
159STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
160
161namespace {
162  struct BBVectorize : public BasicBlockPass {
163    static char ID; // Pass identification, replacement for typeid
164
165    const VectorizeConfig Config;
166
167    BBVectorize(const VectorizeConfig &C = VectorizeConfig())
168      : BasicBlockPass(ID), Config(C) {
169      initializeBBVectorizePass(*PassRegistry::getPassRegistry());
170    }
171
172    BBVectorize(Pass *P, const VectorizeConfig &C)
173      : BasicBlockPass(ID), Config(C) {
174      AA = &P->getAnalysis<AliasAnalysis>();
175      SE = &P->getAnalysis<ScalarEvolution>();
176      TD = P->getAnalysisIfAvailable<TargetData>();
177    }
178
179    typedef std::pair<Value *, Value *> ValuePair;
180    typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
181    typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
182    typedef std::pair<std::multimap<Value *, Value *>::iterator,
183              std::multimap<Value *, Value *>::iterator> VPIteratorPair;
184    typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
185              std::multimap<ValuePair, ValuePair>::iterator>
186                VPPIteratorPair;
187
188    AliasAnalysis *AA;
189    ScalarEvolution *SE;
190    TargetData *TD;
191
192    // FIXME: const correct?
193
194    bool vectorizePairs(BasicBlock &BB);
195
196    bool getCandidatePairs(BasicBlock &BB,
197                       BasicBlock::iterator &Start,
198                       std::multimap<Value *, Value *> &CandidatePairs,
199                       std::vector<Value *> &PairableInsts);
200
201    void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
202                       std::vector<Value *> &PairableInsts,
203                       std::multimap<ValuePair, ValuePair> &ConnectedPairs);
204
205    void buildDepMap(BasicBlock &BB,
206                       std::multimap<Value *, Value *> &CandidatePairs,
207                       std::vector<Value *> &PairableInsts,
208                       DenseSet<ValuePair> &PairableInstUsers);
209
210    void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
211                        std::vector<Value *> &PairableInsts,
212                        std::multimap<ValuePair, ValuePair> &ConnectedPairs,
213                        DenseSet<ValuePair> &PairableInstUsers,
214                        DenseMap<Value *, Value *>& ChosenPairs);
215
216    void fuseChosenPairs(BasicBlock &BB,
217                     std::vector<Value *> &PairableInsts,
218                     DenseMap<Value *, Value *>& ChosenPairs);
219
220    bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
221
222    bool areInstsCompatible(Instruction *I, Instruction *J,
223                       bool IsSimpleLoadStore);
224
225    bool trackUsesOfI(DenseSet<Value *> &Users,
226                      AliasSetTracker &WriteSet, Instruction *I,
227                      Instruction *J, bool UpdateUsers = true,
228                      std::multimap<Value *, Value *> *LoadMoveSet = 0);
229
230    void computePairsConnectedTo(
231                      std::multimap<Value *, Value *> &CandidatePairs,
232                      std::vector<Value *> &PairableInsts,
233                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
234                      ValuePair P);
235
236    bool pairsConflict(ValuePair P, ValuePair Q,
237                 DenseSet<ValuePair> &PairableInstUsers,
238                 std::multimap<ValuePair, ValuePair> *PairableInstUserMap = 0);
239
240    bool pairWillFormCycle(ValuePair P,
241                       std::multimap<ValuePair, ValuePair> &PairableInstUsers,
242                       DenseSet<ValuePair> &CurrentPairs);
243
244    void pruneTreeFor(
245                      std::multimap<Value *, Value *> &CandidatePairs,
246                      std::vector<Value *> &PairableInsts,
247                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
248                      DenseSet<ValuePair> &PairableInstUsers,
249                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
250                      DenseMap<Value *, Value *> &ChosenPairs,
251                      DenseMap<ValuePair, size_t> &Tree,
252                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
253                      bool UseCycleCheck);
254
255    void buildInitialTreeFor(
256                      std::multimap<Value *, Value *> &CandidatePairs,
257                      std::vector<Value *> &PairableInsts,
258                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
259                      DenseSet<ValuePair> &PairableInstUsers,
260                      DenseMap<Value *, Value *> &ChosenPairs,
261                      DenseMap<ValuePair, size_t> &Tree, ValuePair J);
262
263    void findBestTreeFor(
264                      std::multimap<Value *, Value *> &CandidatePairs,
265                      std::vector<Value *> &PairableInsts,
266                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
267                      DenseSet<ValuePair> &PairableInstUsers,
268                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
269                      DenseMap<Value *, Value *> &ChosenPairs,
270                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
271                      size_t &BestEffSize, VPIteratorPair ChoiceRange,
272                      bool UseCycleCheck);
273
274    Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
275                     Instruction *J, unsigned o, bool &FlipMemInputs);
276
277    void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
278                     unsigned NumElem, unsigned MaskOffset, unsigned NumInElem,
279                     unsigned IdxOffset, std::vector<Constant*> &Mask);
280
281    Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
282                     Instruction *J);
283
284    Value *getReplacementInput(LLVMContext& Context, Instruction *I,
285                     Instruction *J, unsigned o, bool FlipMemInputs);
286
287    void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
288                     Instruction *J, SmallVector<Value *, 3> &ReplacedOperands,
289                     bool &FlipMemInputs);
290
291    void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
292                     Instruction *J, Instruction *K,
293                     Instruction *&InsertionPt, Instruction *&K1,
294                     Instruction *&K2, bool &FlipMemInputs);
295
296    void collectPairLoadMoveSet(BasicBlock &BB,
297                     DenseMap<Value *, Value *> &ChosenPairs,
298                     std::multimap<Value *, Value *> &LoadMoveSet,
299                     Instruction *I);
300
301    void collectLoadMoveSet(BasicBlock &BB,
302                     std::vector<Value *> &PairableInsts,
303                     DenseMap<Value *, Value *> &ChosenPairs,
304                     std::multimap<Value *, Value *> &LoadMoveSet);
305
306    bool canMoveUsesOfIAfterJ(BasicBlock &BB,
307                     std::multimap<Value *, Value *> &LoadMoveSet,
308                     Instruction *I, Instruction *J);
309
310    void moveUsesOfIAfterJ(BasicBlock &BB,
311                     std::multimap<Value *, Value *> &LoadMoveSet,
312                     Instruction *&InsertionPt,
313                     Instruction *I, Instruction *J);
314
315    void combineMetadata(Instruction *K, const Instruction *J);
316
317    bool vectorizeBB(BasicBlock &BB) {
318      bool changed = false;
319      // Iterate a sufficient number of times to merge types of size 1 bit,
320      // then 2 bits, then 4, etc. up to half of the target vector width of the
321      // target vector register.
322      for (unsigned v = 2, n = 1;
323           v <= Config.VectorBits && (!Config.MaxIter || n <= Config.MaxIter);
324           v *= 2, ++n) {
325        DEBUG(dbgs() << "BBV: fusing loop #" << n <<
326              " for " << BB.getName() << " in " <<
327              BB.getParent()->getName() << "...\n");
328        if (vectorizePairs(BB))
329          changed = true;
330        else
331          break;
332      }
333
334      DEBUG(dbgs() << "BBV: done!\n");
335      return changed;
336    }
337
338    virtual bool runOnBasicBlock(BasicBlock &BB) {
339      AA = &getAnalysis<AliasAnalysis>();
340      SE = &getAnalysis<ScalarEvolution>();
341      TD = getAnalysisIfAvailable<TargetData>();
342
343      return vectorizeBB(BB);
344    }
345
346    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
347      BasicBlockPass::getAnalysisUsage(AU);
348      AU.addRequired<AliasAnalysis>();
349      AU.addRequired<ScalarEvolution>();
350      AU.addPreserved<AliasAnalysis>();
351      AU.addPreserved<ScalarEvolution>();
352      AU.setPreservesCFG();
353    }
354
355    // This returns the vector type that holds a pair of the provided type.
356    // If the provided type is already a vector, then its length is doubled.
357    static inline VectorType *getVecTypeForPair(Type *ElemTy) {
358      if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
359        unsigned numElem = VTy->getNumElements();
360        return VectorType::get(ElemTy->getScalarType(), numElem*2);
361      }
362
363      return VectorType::get(ElemTy, 2);
364    }
365
366    // Returns the weight associated with the provided value. A chain of
367    // candidate pairs has a length given by the sum of the weights of its
368    // members (one weight per pair; the weight of each member of the pair
369    // is assumed to be the same). This length is then compared to the
370    // chain-length threshold to determine if a given chain is significant
371    // enough to be vectorized. The length is also used in comparing
372    // candidate chains where longer chains are considered to be better.
373    // Note: when this function returns 0, the resulting instructions are
374    // not actually fused.
375    inline size_t getDepthFactor(Value *V) {
376      // InsertElement and ExtractElement have a depth factor of zero. This is
377      // for two reasons: First, they cannot be usefully fused. Second, because
378      // the pass generates a lot of these, they can confuse the simple metric
379      // used to compare the trees in the next iteration. Thus, giving them a
380      // weight of zero allows the pass to essentially ignore them in
381      // subsequent iterations when looking for vectorization opportunities
382      // while still tracking dependency chains that flow through those
383      // instructions.
384      if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
385        return 0;
386
387      // Give a load or store half of the required depth so that load/store
388      // pairs will vectorize.
389      if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
390        return Config.ReqChainDepth/2;
391
392      return 1;
393    }
394
395    // This determines the relative offset of two loads or stores, returning
396    // true if the offset could be determined to be some constant value.
397    // For example, if OffsetInElmts == 1, then J accesses the memory directly
398    // after I; if OffsetInElmts == -1 then I accesses the memory
399    // directly after J. This function assumes that both instructions
400    // have the same type.
401    bool getPairPtrInfo(Instruction *I, Instruction *J,
402        Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
403        int64_t &OffsetInElmts) {
404      OffsetInElmts = 0;
405      if (isa<LoadInst>(I)) {
406        IPtr = cast<LoadInst>(I)->getPointerOperand();
407        JPtr = cast<LoadInst>(J)->getPointerOperand();
408        IAlignment = cast<LoadInst>(I)->getAlignment();
409        JAlignment = cast<LoadInst>(J)->getAlignment();
410      } else {
411        IPtr = cast<StoreInst>(I)->getPointerOperand();
412        JPtr = cast<StoreInst>(J)->getPointerOperand();
413        IAlignment = cast<StoreInst>(I)->getAlignment();
414        JAlignment = cast<StoreInst>(J)->getAlignment();
415      }
416
417      const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
418      const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
419
420      // If this is a trivial offset, then we'll get something like
421      // 1*sizeof(type). With target data, which we need anyway, this will get
422      // constant folded into a number.
423      const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
424      if (const SCEVConstant *ConstOffSCEV =
425            dyn_cast<SCEVConstant>(OffsetSCEV)) {
426        ConstantInt *IntOff = ConstOffSCEV->getValue();
427        int64_t Offset = IntOff->getSExtValue();
428
429        Type *VTy = cast<PointerType>(IPtr->getType())->getElementType();
430        int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
431
432        assert(VTy == cast<PointerType>(JPtr->getType())->getElementType());
433
434        OffsetInElmts = Offset/VTyTSS;
435        return (abs64(Offset) % VTyTSS) == 0;
436      }
437
438      return false;
439    }
440
441    // Returns true if the provided CallInst represents an intrinsic that can
442    // be vectorized.
443    bool isVectorizableIntrinsic(CallInst* I) {
444      Function *F = I->getCalledFunction();
445      if (!F) return false;
446
447      unsigned IID = F->getIntrinsicID();
448      if (!IID) return false;
449
450      switch(IID) {
451      default:
452        return false;
453      case Intrinsic::sqrt:
454      case Intrinsic::powi:
455      case Intrinsic::sin:
456      case Intrinsic::cos:
457      case Intrinsic::log:
458      case Intrinsic::log2:
459      case Intrinsic::log10:
460      case Intrinsic::exp:
461      case Intrinsic::exp2:
462      case Intrinsic::pow:
463        return Config.VectorizeMath;
464      case Intrinsic::fma:
465        return Config.VectorizeFMA;
466      }
467    }
468
469    // Returns true if J is the second element in some pair referenced by
470    // some multimap pair iterator pair.
471    template <typename V>
472    bool isSecondInIteratorPair(V J, std::pair<
473           typename std::multimap<V, V>::iterator,
474           typename std::multimap<V, V>::iterator> PairRange) {
475      for (typename std::multimap<V, V>::iterator K = PairRange.first;
476           K != PairRange.second; ++K)
477        if (K->second == J) return true;
478
479      return false;
480    }
481  };
482
483  // This function implements one vectorization iteration on the provided
484  // basic block. It returns true if the block is changed.
485  bool BBVectorize::vectorizePairs(BasicBlock &BB) {
486    bool ShouldContinue;
487    BasicBlock::iterator Start = BB.getFirstInsertionPt();
488
489    std::vector<Value *> AllPairableInsts;
490    DenseMap<Value *, Value *> AllChosenPairs;
491
492    do {
493      std::vector<Value *> PairableInsts;
494      std::multimap<Value *, Value *> CandidatePairs;
495      ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
496                                         PairableInsts);
497      if (PairableInsts.empty()) continue;
498
499      // Now we have a map of all of the pairable instructions and we need to
500      // select the best possible pairing. A good pairing is one such that the
501      // users of the pair are also paired. This defines a (directed) forest
502      // over the pairs such that two pairs are connected iff the second pair
503      // uses the first.
504
505      // Note that it only matters that both members of the second pair use some
506      // element of the first pair (to allow for splatting).
507
508      std::multimap<ValuePair, ValuePair> ConnectedPairs;
509      computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs);
510      if (ConnectedPairs.empty()) continue;
511
512      // Build the pairable-instruction dependency map
513      DenseSet<ValuePair> PairableInstUsers;
514      buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
515
516      // There is now a graph of the connected pairs. For each variable, pick
517      // the pairing with the largest tree meeting the depth requirement on at
518      // least one branch. Then select all pairings that are part of that tree
519      // and remove them from the list of available pairings and pairable
520      // variables.
521
522      DenseMap<Value *, Value *> ChosenPairs;
523      choosePairs(CandidatePairs, PairableInsts, ConnectedPairs,
524        PairableInstUsers, ChosenPairs);
525
526      if (ChosenPairs.empty()) continue;
527      AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
528                              PairableInsts.end());
529      AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
530    } while (ShouldContinue);
531
532    if (AllChosenPairs.empty()) return false;
533    NumFusedOps += AllChosenPairs.size();
534
535    // A set of pairs has now been selected. It is now necessary to replace the
536    // paired instructions with vector instructions. For this procedure each
537    // operand must be replaced with a vector operand. This vector is formed
538    // by using build_vector on the old operands. The replaced values are then
539    // replaced with a vector_extract on the result.  Subsequent optimization
540    // passes should coalesce the build/extract combinations.
541
542    fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs);
543    return true;
544  }
545
546  // This function returns true if the provided instruction is capable of being
547  // fused into a vector instruction. This determination is based only on the
548  // type and other attributes of the instruction.
549  bool BBVectorize::isInstVectorizable(Instruction *I,
550                                         bool &IsSimpleLoadStore) {
551    IsSimpleLoadStore = false;
552
553    if (CallInst *C = dyn_cast<CallInst>(I)) {
554      if (!isVectorizableIntrinsic(C))
555        return false;
556    } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
557      // Vectorize simple loads if possbile:
558      IsSimpleLoadStore = L->isSimple();
559      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
560        return false;
561    } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
562      // Vectorize simple stores if possbile:
563      IsSimpleLoadStore = S->isSimple();
564      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
565        return false;
566    } else if (CastInst *C = dyn_cast<CastInst>(I)) {
567      // We can vectorize casts, but not casts of pointer types, etc.
568      if (!Config.VectorizeCasts)
569        return false;
570
571      Type *SrcTy = C->getSrcTy();
572      if (!SrcTy->isSingleValueType())
573        return false;
574
575      Type *DestTy = C->getDestTy();
576      if (!DestTy->isSingleValueType())
577        return false;
578    } else if (isa<SelectInst>(I)) {
579      if (!Config.VectorizeSelect)
580        return false;
581    } else if (isa<CmpInst>(I)) {
582      if (!Config.VectorizeCmp)
583        return false;
584    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
585      if (!Config.VectorizeGEP)
586        return false;
587
588      // Currently, vector GEPs exist only with one index.
589      if (G->getNumIndices() != 1)
590        return false;
591    } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
592        isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
593      return false;
594    }
595
596    // We can't vectorize memory operations without target data
597    if (TD == 0 && IsSimpleLoadStore)
598      return false;
599
600    Type *T1, *T2;
601    if (isa<StoreInst>(I)) {
602      // For stores, it is the value type, not the pointer type that matters
603      // because the value is what will come from a vector register.
604
605      Value *IVal = cast<StoreInst>(I)->getValueOperand();
606      T1 = IVal->getType();
607    } else {
608      T1 = I->getType();
609    }
610
611    if (I->isCast())
612      T2 = cast<CastInst>(I)->getSrcTy();
613    else
614      T2 = T1;
615
616    // Not every type can be vectorized...
617    if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
618        !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
619      return false;
620
621    if (T1->getScalarSizeInBits() == 1 && T2->getScalarSizeInBits() == 1) {
622      if (!Config.VectorizeBools)
623        return false;
624    } else {
625      if (!Config.VectorizeInts
626          && (T1->isIntOrIntVectorTy() || T2->isIntOrIntVectorTy()))
627        return false;
628    }
629
630    if (!Config.VectorizeFloats
631        && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
632      return false;
633
634    // Don't vectorize target-specific types.
635    if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy())
636      return false;
637    if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
638      return false;
639
640    if ((!Config.VectorizePointers || TD == 0) &&
641        (T1->getScalarType()->isPointerTy() ||
642         T2->getScalarType()->isPointerTy()))
643      return false;
644
645    if (T1->getPrimitiveSizeInBits() > Config.VectorBits/2 ||
646        T2->getPrimitiveSizeInBits() > Config.VectorBits/2)
647      return false;
648
649    return true;
650  }
651
652  // This function returns true if the two provided instructions are compatible
653  // (meaning that they can be fused into a vector instruction). This assumes
654  // that I has already been determined to be vectorizable and that J is not
655  // in the use tree of I.
656  bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
657                       bool IsSimpleLoadStore) {
658    DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
659                     " <-> " << *J << "\n");
660
661    // Loads and stores can be merged if they have different alignments,
662    // but are otherwise the same.
663    LoadInst *LI, *LJ;
664    StoreInst *SI, *SJ;
665    if ((LI = dyn_cast<LoadInst>(I)) && (LJ = dyn_cast<LoadInst>(J))) {
666      if (I->getType() != J->getType())
667        return false;
668
669      if (LI->getPointerOperand()->getType() !=
670            LJ->getPointerOperand()->getType() ||
671          LI->isVolatile() != LJ->isVolatile() ||
672          LI->getOrdering() != LJ->getOrdering() ||
673          LI->getSynchScope() != LJ->getSynchScope())
674        return false;
675    } else if ((SI = dyn_cast<StoreInst>(I)) && (SJ = dyn_cast<StoreInst>(J))) {
676      if (SI->getValueOperand()->getType() !=
677            SJ->getValueOperand()->getType() ||
678          SI->getPointerOperand()->getType() !=
679            SJ->getPointerOperand()->getType() ||
680          SI->isVolatile() != SJ->isVolatile() ||
681          SI->getOrdering() != SJ->getOrdering() ||
682          SI->getSynchScope() != SJ->getSynchScope())
683        return false;
684    } else if (!J->isSameOperationAs(I)) {
685      return false;
686    }
687    // FIXME: handle addsub-type operations!
688
689    if (IsSimpleLoadStore) {
690      Value *IPtr, *JPtr;
691      unsigned IAlignment, JAlignment;
692      int64_t OffsetInElmts = 0;
693      if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
694            OffsetInElmts) && abs64(OffsetInElmts) == 1) {
695        if (Config.AlignedOnly) {
696          Type *aType = isa<StoreInst>(I) ?
697            cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
698          // An aligned load or store is possible only if the instruction
699          // with the lower offset has an alignment suitable for the
700          // vector type.
701
702          unsigned BottomAlignment = IAlignment;
703          if (OffsetInElmts < 0) BottomAlignment = JAlignment;
704
705          Type *VType = getVecTypeForPair(aType);
706          unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
707          if (BottomAlignment < VecAlignment)
708            return false;
709        }
710      } else {
711        return false;
712      }
713    } else if (isa<ShuffleVectorInst>(I)) {
714      // Only merge two shuffles if they're both constant
715      return isa<Constant>(I->getOperand(2)) &&
716             isa<Constant>(J->getOperand(2));
717      // FIXME: We may want to vectorize non-constant shuffles also.
718    }
719
720    // The powi intrinsic is special because only the first argument is
721    // vectorized, the second arguments must be equal.
722    CallInst *CI = dyn_cast<CallInst>(I);
723    Function *FI;
724    if (CI && (FI = CI->getCalledFunction()) &&
725        FI->getIntrinsicID() == Intrinsic::powi) {
726
727      Value *A1I = CI->getArgOperand(1),
728            *A1J = cast<CallInst>(J)->getArgOperand(1);
729      const SCEV *A1ISCEV = SE->getSCEV(A1I),
730                 *A1JSCEV = SE->getSCEV(A1J);
731      return (A1ISCEV == A1JSCEV);
732    }
733
734    return true;
735  }
736
737  // Figure out whether or not J uses I and update the users and write-set
738  // structures associated with I. Specifically, Users represents the set of
739  // instructions that depend on I. WriteSet represents the set
740  // of memory locations that are dependent on I. If UpdateUsers is true,
741  // and J uses I, then Users is updated to contain J and WriteSet is updated
742  // to contain any memory locations to which J writes. The function returns
743  // true if J uses I. By default, alias analysis is used to determine
744  // whether J reads from memory that overlaps with a location in WriteSet.
745  // If LoadMoveSet is not null, then it is a previously-computed multimap
746  // where the key is the memory-based user instruction and the value is
747  // the instruction to be compared with I. So, if LoadMoveSet is provided,
748  // then the alias analysis is not used. This is necessary because this
749  // function is called during the process of moving instructions during
750  // vectorization and the results of the alias analysis are not stable during
751  // that process.
752  bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
753                       AliasSetTracker &WriteSet, Instruction *I,
754                       Instruction *J, bool UpdateUsers,
755                       std::multimap<Value *, Value *> *LoadMoveSet) {
756    bool UsesI = false;
757
758    // This instruction may already be marked as a user due, for example, to
759    // being a member of a selected pair.
760    if (Users.count(J))
761      UsesI = true;
762
763    if (!UsesI)
764      for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
765           JU != JE; ++JU) {
766        Value *V = *JU;
767        if (I == V || Users.count(V)) {
768          UsesI = true;
769          break;
770        }
771      }
772    if (!UsesI && J->mayReadFromMemory()) {
773      if (LoadMoveSet) {
774        VPIteratorPair JPairRange = LoadMoveSet->equal_range(J);
775        UsesI = isSecondInIteratorPair<Value*>(I, JPairRange);
776      } else {
777        for (AliasSetTracker::iterator W = WriteSet.begin(),
778             WE = WriteSet.end(); W != WE; ++W) {
779          if (W->aliasesUnknownInst(J, *AA)) {
780            UsesI = true;
781            break;
782          }
783        }
784      }
785    }
786
787    if (UsesI && UpdateUsers) {
788      if (J->mayWriteToMemory()) WriteSet.add(J);
789      Users.insert(J);
790    }
791
792    return UsesI;
793  }
794
795  // This function iterates over all instruction pairs in the provided
796  // basic block and collects all candidate pairs for vectorization.
797  bool BBVectorize::getCandidatePairs(BasicBlock &BB,
798                       BasicBlock::iterator &Start,
799                       std::multimap<Value *, Value *> &CandidatePairs,
800                       std::vector<Value *> &PairableInsts) {
801    BasicBlock::iterator E = BB.end();
802    if (Start == E) return false;
803
804    bool ShouldContinue = false, IAfterStart = false;
805    for (BasicBlock::iterator I = Start++; I != E; ++I) {
806      if (I == Start) IAfterStart = true;
807
808      bool IsSimpleLoadStore;
809      if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
810
811      // Look for an instruction with which to pair instruction *I...
812      DenseSet<Value *> Users;
813      AliasSetTracker WriteSet(*AA);
814      bool JAfterStart = IAfterStart;
815      BasicBlock::iterator J = llvm::next(I);
816      for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
817        if (J == Start) JAfterStart = true;
818
819        // Determine if J uses I, if so, exit the loop.
820        bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
821        if (Config.FastDep) {
822          // Note: For this heuristic to be effective, independent operations
823          // must tend to be intermixed. This is likely to be true from some
824          // kinds of grouped loop unrolling (but not the generic LLVM pass),
825          // but otherwise may require some kind of reordering pass.
826
827          // When using fast dependency analysis,
828          // stop searching after first use:
829          if (UsesI) break;
830        } else {
831          if (UsesI) continue;
832        }
833
834        // J does not use I, and comes before the first use of I, so it can be
835        // merged with I if the instructions are compatible.
836        if (!areInstsCompatible(I, J, IsSimpleLoadStore)) continue;
837
838        // J is a candidate for merging with I.
839        if (!PairableInsts.size() ||
840             PairableInsts[PairableInsts.size()-1] != I) {
841          PairableInsts.push_back(I);
842        }
843
844        CandidatePairs.insert(ValuePair(I, J));
845
846        // The next call to this function must start after the last instruction
847        // selected during this invocation.
848        if (JAfterStart) {
849          Start = llvm::next(J);
850          IAfterStart = JAfterStart = false;
851        }
852
853        DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
854                     << *I << " <-> " << *J << "\n");
855
856        // If we have already found too many pairs, break here and this function
857        // will be called again starting after the last instruction selected
858        // during this invocation.
859        if (PairableInsts.size() >= Config.MaxInsts) {
860          ShouldContinue = true;
861          break;
862        }
863      }
864
865      if (ShouldContinue)
866        break;
867    }
868
869    DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
870           << " instructions with candidate pairs\n");
871
872    return ShouldContinue;
873  }
874
875  // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
876  // it looks for pairs such that both members have an input which is an
877  // output of PI or PJ.
878  void BBVectorize::computePairsConnectedTo(
879                      std::multimap<Value *, Value *> &CandidatePairs,
880                      std::vector<Value *> &PairableInsts,
881                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
882                      ValuePair P) {
883    StoreInst *SI, *SJ;
884
885    // For each possible pairing for this variable, look at the uses of
886    // the first value...
887    for (Value::use_iterator I = P.first->use_begin(),
888         E = P.first->use_end(); I != E; ++I) {
889      if (isa<LoadInst>(*I)) {
890        // A pair cannot be connected to a load because the load only takes one
891        // operand (the address) and it is a scalar even after vectorization.
892        continue;
893      } else if ((SI = dyn_cast<StoreInst>(*I)) &&
894                 P.first == SI->getPointerOperand()) {
895        // Similarly, a pair cannot be connected to a store through its
896        // pointer operand.
897        continue;
898      }
899
900      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
901
902      // For each use of the first variable, look for uses of the second
903      // variable...
904      for (Value::use_iterator J = P.second->use_begin(),
905           E2 = P.second->use_end(); J != E2; ++J) {
906        if ((SJ = dyn_cast<StoreInst>(*J)) &&
907            P.second == SJ->getPointerOperand())
908          continue;
909
910        VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
911
912        // Look for <I, J>:
913        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
914          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
915
916        // Look for <J, I>:
917        if (isSecondInIteratorPair<Value*>(*I, JPairRange))
918          ConnectedPairs.insert(VPPair(P, ValuePair(*J, *I)));
919      }
920
921      if (Config.SplatBreaksChain) continue;
922      // Look for cases where just the first value in the pair is used by
923      // both members of another pair (splatting).
924      for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) {
925        if ((SJ = dyn_cast<StoreInst>(*J)) &&
926            P.first == SJ->getPointerOperand())
927          continue;
928
929        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
930          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
931      }
932    }
933
934    if (Config.SplatBreaksChain) return;
935    // Look for cases where just the second value in the pair is used by
936    // both members of another pair (splatting).
937    for (Value::use_iterator I = P.second->use_begin(),
938         E = P.second->use_end(); I != E; ++I) {
939      if (isa<LoadInst>(*I))
940        continue;
941      else if ((SI = dyn_cast<StoreInst>(*I)) &&
942               P.second == SI->getPointerOperand())
943        continue;
944
945      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
946
947      for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
948        if ((SJ = dyn_cast<StoreInst>(*J)) &&
949            P.second == SJ->getPointerOperand())
950          continue;
951
952        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
953          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
954      }
955    }
956  }
957
958  // This function figures out which pairs are connected.  Two pairs are
959  // connected if some output of the first pair forms an input to both members
960  // of the second pair.
961  void BBVectorize::computeConnectedPairs(
962                      std::multimap<Value *, Value *> &CandidatePairs,
963                      std::vector<Value *> &PairableInsts,
964                      std::multimap<ValuePair, ValuePair> &ConnectedPairs) {
965
966    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
967         PE = PairableInsts.end(); PI != PE; ++PI) {
968      VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI);
969
970      for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
971           P != choiceRange.second; ++P)
972        computePairsConnectedTo(CandidatePairs, PairableInsts,
973                                ConnectedPairs, *P);
974    }
975
976    DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
977                 << " pair connections.\n");
978  }
979
980  // This function builds a set of use tuples such that <A, B> is in the set
981  // if B is in the use tree of A. If B is in the use tree of A, then B
982  // depends on the output of A.
983  void BBVectorize::buildDepMap(
984                      BasicBlock &BB,
985                      std::multimap<Value *, Value *> &CandidatePairs,
986                      std::vector<Value *> &PairableInsts,
987                      DenseSet<ValuePair> &PairableInstUsers) {
988    DenseSet<Value *> IsInPair;
989    for (std::multimap<Value *, Value *>::iterator C = CandidatePairs.begin(),
990         E = CandidatePairs.end(); C != E; ++C) {
991      IsInPair.insert(C->first);
992      IsInPair.insert(C->second);
993    }
994
995    // Iterate through the basic block, recording all Users of each
996    // pairable instruction.
997
998    BasicBlock::iterator E = BB.end();
999    for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
1000      if (IsInPair.find(I) == IsInPair.end()) continue;
1001
1002      DenseSet<Value *> Users;
1003      AliasSetTracker WriteSet(*AA);
1004      for (BasicBlock::iterator J = llvm::next(I); J != E; ++J)
1005        (void) trackUsesOfI(Users, WriteSet, I, J);
1006
1007      for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
1008           U != E; ++U)
1009        PairableInstUsers.insert(ValuePair(I, *U));
1010    }
1011  }
1012
1013  // Returns true if an input to pair P is an output of pair Q and also an
1014  // input of pair Q is an output of pair P. If this is the case, then these
1015  // two pairs cannot be simultaneously fused.
1016  bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
1017                     DenseSet<ValuePair> &PairableInstUsers,
1018                     std::multimap<ValuePair, ValuePair> *PairableInstUserMap) {
1019    // Two pairs are in conflict if they are mutual Users of eachother.
1020    bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
1021                  PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
1022                  PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
1023                  PairableInstUsers.count(ValuePair(P.second, Q.second));
1024    bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
1025                  PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
1026                  PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
1027                  PairableInstUsers.count(ValuePair(Q.second, P.second));
1028    if (PairableInstUserMap) {
1029      // FIXME: The expensive part of the cycle check is not so much the cycle
1030      // check itself but this edge insertion procedure. This needs some
1031      // profiling and probably a different data structure (same is true of
1032      // most uses of std::multimap).
1033      if (PUsesQ) {
1034        VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q);
1035        if (!isSecondInIteratorPair(P, QPairRange))
1036          PairableInstUserMap->insert(VPPair(Q, P));
1037      }
1038      if (QUsesP) {
1039        VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P);
1040        if (!isSecondInIteratorPair(Q, PPairRange))
1041          PairableInstUserMap->insert(VPPair(P, Q));
1042      }
1043    }
1044
1045    return (QUsesP && PUsesQ);
1046  }
1047
1048  // This function walks the use graph of current pairs to see if, starting
1049  // from P, the walk returns to P.
1050  bool BBVectorize::pairWillFormCycle(ValuePair P,
1051                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1052                       DenseSet<ValuePair> &CurrentPairs) {
1053    DEBUG(if (DebugCycleCheck)
1054            dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
1055                   << *P.second << "\n");
1056    // A lookup table of visisted pairs is kept because the PairableInstUserMap
1057    // contains non-direct associations.
1058    DenseSet<ValuePair> Visited;
1059    SmallVector<ValuePair, 32> Q;
1060    // General depth-first post-order traversal:
1061    Q.push_back(P);
1062    do {
1063      ValuePair QTop = Q.pop_back_val();
1064      Visited.insert(QTop);
1065
1066      DEBUG(if (DebugCycleCheck)
1067              dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
1068                     << *QTop.second << "\n");
1069      VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop);
1070      for (std::multimap<ValuePair, ValuePair>::iterator C = QPairRange.first;
1071           C != QPairRange.second; ++C) {
1072        if (C->second == P) {
1073          DEBUG(dbgs()
1074                 << "BBV: rejected to prevent non-trivial cycle formation: "
1075                 << *C->first.first << " <-> " << *C->first.second << "\n");
1076          return true;
1077        }
1078
1079        if (CurrentPairs.count(C->second) && !Visited.count(C->second))
1080          Q.push_back(C->second);
1081      }
1082    } while (!Q.empty());
1083
1084    return false;
1085  }
1086
1087  // This function builds the initial tree of connected pairs with the
1088  // pair J at the root.
1089  void BBVectorize::buildInitialTreeFor(
1090                      std::multimap<Value *, Value *> &CandidatePairs,
1091                      std::vector<Value *> &PairableInsts,
1092                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1093                      DenseSet<ValuePair> &PairableInstUsers,
1094                      DenseMap<Value *, Value *> &ChosenPairs,
1095                      DenseMap<ValuePair, size_t> &Tree, ValuePair J) {
1096    // Each of these pairs is viewed as the root node of a Tree. The Tree
1097    // is then walked (depth-first). As this happens, we keep track of
1098    // the pairs that compose the Tree and the maximum depth of the Tree.
1099    SmallVector<ValuePairWithDepth, 32> Q;
1100    // General depth-first post-order traversal:
1101    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
1102    do {
1103      ValuePairWithDepth QTop = Q.back();
1104
1105      // Push each child onto the queue:
1106      bool MoreChildren = false;
1107      size_t MaxChildDepth = QTop.second;
1108      VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first);
1109      for (std::multimap<ValuePair, ValuePair>::iterator k = qtRange.first;
1110           k != qtRange.second; ++k) {
1111        // Make sure that this child pair is still a candidate:
1112        bool IsStillCand = false;
1113        VPIteratorPair checkRange =
1114          CandidatePairs.equal_range(k->second.first);
1115        for (std::multimap<Value *, Value *>::iterator m = checkRange.first;
1116             m != checkRange.second; ++m) {
1117          if (m->second == k->second.second) {
1118            IsStillCand = true;
1119            break;
1120          }
1121        }
1122
1123        if (IsStillCand) {
1124          DenseMap<ValuePair, size_t>::iterator C = Tree.find(k->second);
1125          if (C == Tree.end()) {
1126            size_t d = getDepthFactor(k->second.first);
1127            Q.push_back(ValuePairWithDepth(k->second, QTop.second+d));
1128            MoreChildren = true;
1129          } else {
1130            MaxChildDepth = std::max(MaxChildDepth, C->second);
1131          }
1132        }
1133      }
1134
1135      if (!MoreChildren) {
1136        // Record the current pair as part of the Tree:
1137        Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
1138        Q.pop_back();
1139      }
1140    } while (!Q.empty());
1141  }
1142
1143  // Given some initial tree, prune it by removing conflicting pairs (pairs
1144  // that cannot be simultaneously chosen for vectorization).
1145  void BBVectorize::pruneTreeFor(
1146                      std::multimap<Value *, Value *> &CandidatePairs,
1147                      std::vector<Value *> &PairableInsts,
1148                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1149                      DenseSet<ValuePair> &PairableInstUsers,
1150                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1151                      DenseMap<Value *, Value *> &ChosenPairs,
1152                      DenseMap<ValuePair, size_t> &Tree,
1153                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
1154                      bool UseCycleCheck) {
1155    SmallVector<ValuePairWithDepth, 32> Q;
1156    // General depth-first post-order traversal:
1157    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
1158    do {
1159      ValuePairWithDepth QTop = Q.pop_back_val();
1160      PrunedTree.insert(QTop.first);
1161
1162      // Visit each child, pruning as necessary...
1163      DenseMap<ValuePair, size_t> BestChildren;
1164      VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
1165      for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first;
1166           K != QTopRange.second; ++K) {
1167        DenseMap<ValuePair, size_t>::iterator C = Tree.find(K->second);
1168        if (C == Tree.end()) continue;
1169
1170        // This child is in the Tree, now we need to make sure it is the
1171        // best of any conflicting children. There could be multiple
1172        // conflicting children, so first, determine if we're keeping
1173        // this child, then delete conflicting children as necessary.
1174
1175        // It is also necessary to guard against pairing-induced
1176        // dependencies. Consider instructions a .. x .. y .. b
1177        // such that (a,b) are to be fused and (x,y) are to be fused
1178        // but a is an input to x and b is an output from y. This
1179        // means that y cannot be moved after b but x must be moved
1180        // after b for (a,b) to be fused. In other words, after
1181        // fusing (a,b) we have y .. a/b .. x where y is an input
1182        // to a/b and x is an output to a/b: x and y can no longer
1183        // be legally fused. To prevent this condition, we must
1184        // make sure that a child pair added to the Tree is not
1185        // both an input and output of an already-selected pair.
1186
1187        // Pairing-induced dependencies can also form from more complicated
1188        // cycles. The pair vs. pair conflicts are easy to check, and so
1189        // that is done explicitly for "fast rejection", and because for
1190        // child vs. child conflicts, we may prefer to keep the current
1191        // pair in preference to the already-selected child.
1192        DenseSet<ValuePair> CurrentPairs;
1193
1194        bool CanAdd = true;
1195        for (DenseMap<ValuePair, size_t>::iterator C2
1196              = BestChildren.begin(), E2 = BestChildren.end();
1197             C2 != E2; ++C2) {
1198          if (C2->first.first == C->first.first ||
1199              C2->first.first == C->first.second ||
1200              C2->first.second == C->first.first ||
1201              C2->first.second == C->first.second ||
1202              pairsConflict(C2->first, C->first, PairableInstUsers,
1203                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1204            if (C2->second >= C->second) {
1205              CanAdd = false;
1206              break;
1207            }
1208
1209            CurrentPairs.insert(C2->first);
1210          }
1211        }
1212        if (!CanAdd) continue;
1213
1214        // Even worse, this child could conflict with another node already
1215        // selected for the Tree. If that is the case, ignore this child.
1216        for (DenseSet<ValuePair>::iterator T = PrunedTree.begin(),
1217             E2 = PrunedTree.end(); T != E2; ++T) {
1218          if (T->first == C->first.first ||
1219              T->first == C->first.second ||
1220              T->second == C->first.first ||
1221              T->second == C->first.second ||
1222              pairsConflict(*T, C->first, PairableInstUsers,
1223                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1224            CanAdd = false;
1225            break;
1226          }
1227
1228          CurrentPairs.insert(*T);
1229        }
1230        if (!CanAdd) continue;
1231
1232        // And check the queue too...
1233        for (SmallVector<ValuePairWithDepth, 32>::iterator C2 = Q.begin(),
1234             E2 = Q.end(); C2 != E2; ++C2) {
1235          if (C2->first.first == C->first.first ||
1236              C2->first.first == C->first.second ||
1237              C2->first.second == C->first.first ||
1238              C2->first.second == C->first.second ||
1239              pairsConflict(C2->first, C->first, PairableInstUsers,
1240                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1241            CanAdd = false;
1242            break;
1243          }
1244
1245          CurrentPairs.insert(C2->first);
1246        }
1247        if (!CanAdd) continue;
1248
1249        // Last but not least, check for a conflict with any of the
1250        // already-chosen pairs.
1251        for (DenseMap<Value *, Value *>::iterator C2 =
1252              ChosenPairs.begin(), E2 = ChosenPairs.end();
1253             C2 != E2; ++C2) {
1254          if (pairsConflict(*C2, C->first, PairableInstUsers,
1255                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1256            CanAdd = false;
1257            break;
1258          }
1259
1260          CurrentPairs.insert(*C2);
1261        }
1262        if (!CanAdd) continue;
1263
1264        // To check for non-trivial cycles formed by the addition of the
1265        // current pair we've formed a list of all relevant pairs, now use a
1266        // graph walk to check for a cycle. We start from the current pair and
1267        // walk the use tree to see if we again reach the current pair. If we
1268        // do, then the current pair is rejected.
1269
1270        // FIXME: It may be more efficient to use a topological-ordering
1271        // algorithm to improve the cycle check. This should be investigated.
1272        if (UseCycleCheck &&
1273            pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
1274          continue;
1275
1276        // This child can be added, but we may have chosen it in preference
1277        // to an already-selected child. Check for this here, and if a
1278        // conflict is found, then remove the previously-selected child
1279        // before adding this one in its place.
1280        for (DenseMap<ValuePair, size_t>::iterator C2
1281              = BestChildren.begin(); C2 != BestChildren.end();) {
1282          if (C2->first.first == C->first.first ||
1283              C2->first.first == C->first.second ||
1284              C2->first.second == C->first.first ||
1285              C2->first.second == C->first.second ||
1286              pairsConflict(C2->first, C->first, PairableInstUsers))
1287            BestChildren.erase(C2++);
1288          else
1289            ++C2;
1290        }
1291
1292        BestChildren.insert(ValuePairWithDepth(C->first, C->second));
1293      }
1294
1295      for (DenseMap<ValuePair, size_t>::iterator C
1296            = BestChildren.begin(), E2 = BestChildren.end();
1297           C != E2; ++C) {
1298        size_t DepthF = getDepthFactor(C->first.first);
1299        Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
1300      }
1301    } while (!Q.empty());
1302  }
1303
1304  // This function finds the best tree of mututally-compatible connected
1305  // pairs, given the choice of root pairs as an iterator range.
1306  void BBVectorize::findBestTreeFor(
1307                      std::multimap<Value *, Value *> &CandidatePairs,
1308                      std::vector<Value *> &PairableInsts,
1309                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1310                      DenseSet<ValuePair> &PairableInstUsers,
1311                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1312                      DenseMap<Value *, Value *> &ChosenPairs,
1313                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
1314                      size_t &BestEffSize, VPIteratorPair ChoiceRange,
1315                      bool UseCycleCheck) {
1316    for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
1317         J != ChoiceRange.second; ++J) {
1318
1319      // Before going any further, make sure that this pair does not
1320      // conflict with any already-selected pairs (see comment below
1321      // near the Tree pruning for more details).
1322      DenseSet<ValuePair> ChosenPairSet;
1323      bool DoesConflict = false;
1324      for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
1325           E = ChosenPairs.end(); C != E; ++C) {
1326        if (pairsConflict(*C, *J, PairableInstUsers,
1327                          UseCycleCheck ? &PairableInstUserMap : 0)) {
1328          DoesConflict = true;
1329          break;
1330        }
1331
1332        ChosenPairSet.insert(*C);
1333      }
1334      if (DoesConflict) continue;
1335
1336      if (UseCycleCheck &&
1337          pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet))
1338        continue;
1339
1340      DenseMap<ValuePair, size_t> Tree;
1341      buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1342                          PairableInstUsers, ChosenPairs, Tree, *J);
1343
1344      // Because we'll keep the child with the largest depth, the largest
1345      // depth is still the same in the unpruned Tree.
1346      size_t MaxDepth = Tree.lookup(*J);
1347
1348      DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {"
1349                   << *J->first << " <-> " << *J->second << "} of depth " <<
1350                   MaxDepth << " and size " << Tree.size() << "\n");
1351
1352      // At this point the Tree has been constructed, but, may contain
1353      // contradictory children (meaning that different children of
1354      // some tree node may be attempting to fuse the same instruction).
1355      // So now we walk the tree again, in the case of a conflict,
1356      // keep only the child with the largest depth. To break a tie,
1357      // favor the first child.
1358
1359      DenseSet<ValuePair> PrunedTree;
1360      pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1361                   PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
1362                   PrunedTree, *J, UseCycleCheck);
1363
1364      size_t EffSize = 0;
1365      for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
1366           E = PrunedTree.end(); S != E; ++S)
1367        EffSize += getDepthFactor(S->first);
1368
1369      DEBUG(if (DebugPairSelection)
1370             dbgs() << "BBV: found pruned Tree for pair {"
1371             << *J->first << " <-> " << *J->second << "} of depth " <<
1372             MaxDepth << " and size " << PrunedTree.size() <<
1373            " (effective size: " << EffSize << ")\n");
1374      if (MaxDepth >= Config.ReqChainDepth && EffSize > BestEffSize) {
1375        BestMaxDepth = MaxDepth;
1376        BestEffSize = EffSize;
1377        BestTree = PrunedTree;
1378      }
1379    }
1380  }
1381
1382  // Given the list of candidate pairs, this function selects those
1383  // that will be fused into vector instructions.
1384  void BBVectorize::choosePairs(
1385                      std::multimap<Value *, Value *> &CandidatePairs,
1386                      std::vector<Value *> &PairableInsts,
1387                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1388                      DenseSet<ValuePair> &PairableInstUsers,
1389                      DenseMap<Value *, Value *>& ChosenPairs) {
1390    bool UseCycleCheck =
1391     CandidatePairs.size() <= Config.MaxCandPairsForCycleCheck;
1392    std::multimap<ValuePair, ValuePair> PairableInstUserMap;
1393    for (std::vector<Value *>::iterator I = PairableInsts.begin(),
1394         E = PairableInsts.end(); I != E; ++I) {
1395      // The number of possible pairings for this variable:
1396      size_t NumChoices = CandidatePairs.count(*I);
1397      if (!NumChoices) continue;
1398
1399      VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
1400
1401      // The best pair to choose and its tree:
1402      size_t BestMaxDepth = 0, BestEffSize = 0;
1403      DenseSet<ValuePair> BestTree;
1404      findBestTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1405                      PairableInstUsers, PairableInstUserMap, ChosenPairs,
1406                      BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
1407                      UseCycleCheck);
1408
1409      // A tree has been chosen (or not) at this point. If no tree was
1410      // chosen, then this instruction, I, cannot be paired (and is no longer
1411      // considered).
1412
1413      DEBUG(if (BestTree.size() > 0)
1414              dbgs() << "BBV: selected pairs in the best tree for: "
1415                     << *cast<Instruction>(*I) << "\n");
1416
1417      for (DenseSet<ValuePair>::iterator S = BestTree.begin(),
1418           SE2 = BestTree.end(); S != SE2; ++S) {
1419        // Insert the members of this tree into the list of chosen pairs.
1420        ChosenPairs.insert(ValuePair(S->first, S->second));
1421        DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
1422               *S->second << "\n");
1423
1424        // Remove all candidate pairs that have values in the chosen tree.
1425        for (std::multimap<Value *, Value *>::iterator K =
1426               CandidatePairs.begin(); K != CandidatePairs.end();) {
1427          if (K->first == S->first || K->second == S->first ||
1428              K->second == S->second || K->first == S->second) {
1429            // Don't remove the actual pair chosen so that it can be used
1430            // in subsequent tree selections.
1431            if (!(K->first == S->first && K->second == S->second))
1432              CandidatePairs.erase(K++);
1433            else
1434              ++K;
1435          } else {
1436            ++K;
1437          }
1438        }
1439      }
1440    }
1441
1442    DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
1443  }
1444
1445  std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
1446                     unsigned n = 0) {
1447    if (!I->hasName())
1448      return "";
1449
1450    return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
1451             (n > 0 ? "." + utostr(n) : "")).str();
1452  }
1453
1454  // Returns the value that is to be used as the pointer input to the vector
1455  // instruction that fuses I with J.
1456  Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
1457                     Instruction *I, Instruction *J, unsigned o,
1458                     bool &FlipMemInputs) {
1459    Value *IPtr, *JPtr;
1460    unsigned IAlignment, JAlignment;
1461    int64_t OffsetInElmts;
1462    (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
1463                          OffsetInElmts);
1464
1465    // The pointer value is taken to be the one with the lowest offset.
1466    Value *VPtr;
1467    if (OffsetInElmts > 0) {
1468      VPtr = IPtr;
1469    } else {
1470      FlipMemInputs = true;
1471      VPtr = JPtr;
1472    }
1473
1474    Type *ArgType = cast<PointerType>(IPtr->getType())->getElementType();
1475    Type *VArgType = getVecTypeForPair(ArgType);
1476    Type *VArgPtrType = PointerType::get(VArgType,
1477      cast<PointerType>(IPtr->getType())->getAddressSpace());
1478    return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
1479                        /* insert before */ FlipMemInputs ? J : I);
1480  }
1481
1482  void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
1483                     unsigned NumElem, unsigned MaskOffset, unsigned NumInElem,
1484                     unsigned IdxOffset, std::vector<Constant*> &Mask) {
1485    for (unsigned v = 0; v < NumElem/2; ++v) {
1486      int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
1487      if (m < 0) {
1488        Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
1489      } else {
1490        unsigned mm = m + (int) IdxOffset;
1491        if (m >= (int) NumInElem)
1492          mm += (int) NumInElem;
1493
1494        Mask[v+MaskOffset] =
1495          ConstantInt::get(Type::getInt32Ty(Context), mm);
1496      }
1497    }
1498  }
1499
1500  // Returns the value that is to be used as the vector-shuffle mask to the
1501  // vector instruction that fuses I with J.
1502  Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
1503                     Instruction *I, Instruction *J) {
1504    // This is the shuffle mask. We need to append the second
1505    // mask to the first, and the numbers need to be adjusted.
1506
1507    Type *ArgType = I->getType();
1508    Type *VArgType = getVecTypeForPair(ArgType);
1509
1510    // Get the total number of elements in the fused vector type.
1511    // By definition, this must equal the number of elements in
1512    // the final mask.
1513    unsigned NumElem = cast<VectorType>(VArgType)->getNumElements();
1514    std::vector<Constant*> Mask(NumElem);
1515
1516    Type *OpType = I->getOperand(0)->getType();
1517    unsigned NumInElem = cast<VectorType>(OpType)->getNumElements();
1518
1519    // For the mask from the first pair...
1520    fillNewShuffleMask(Context, I, NumElem, 0, NumInElem, 0, Mask);
1521
1522    // For the mask from the second pair...
1523    fillNewShuffleMask(Context, J, NumElem, NumElem/2, NumInElem, NumInElem,
1524                       Mask);
1525
1526    return ConstantVector::get(Mask);
1527  }
1528
1529  // Returns the value to be used as the specified operand of the vector
1530  // instruction that fuses I with J.
1531  Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
1532                     Instruction *J, unsigned o, bool FlipMemInputs) {
1533    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
1534    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
1535
1536      // Compute the fused vector type for this operand
1537    Type *ArgType = I->getOperand(o)->getType();
1538    VectorType *VArgType = getVecTypeForPair(ArgType);
1539
1540    Instruction *L = I, *H = J;
1541    if (FlipMemInputs) {
1542      L = J;
1543      H = I;
1544    }
1545
1546    if (ArgType->isVectorTy()) {
1547      unsigned numElem = cast<VectorType>(VArgType)->getNumElements();
1548      std::vector<Constant*> Mask(numElem);
1549      for (unsigned v = 0; v < numElem; ++v)
1550        Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
1551
1552      Instruction *BV = new ShuffleVectorInst(L->getOperand(o),
1553                                              H->getOperand(o),
1554                                              ConstantVector::get(Mask),
1555                                              getReplacementName(I, true, o));
1556      BV->insertBefore(J);
1557      return BV;
1558    }
1559
1560    // If these two inputs are the output of another vector instruction,
1561    // then we should use that output directly. It might be necessary to
1562    // permute it first. [When pairings are fused recursively, you can
1563    // end up with cases where a large vector is decomposed into scalars
1564    // using extractelement instructions, then built into size-2
1565    // vectors using insertelement and the into larger vectors using
1566    // shuffles. InstCombine does not simplify all of these cases well,
1567    // and so we make sure that shuffles are generated here when possible.
1568    ExtractElementInst *LEE
1569      = dyn_cast<ExtractElementInst>(L->getOperand(o));
1570    ExtractElementInst *HEE
1571      = dyn_cast<ExtractElementInst>(H->getOperand(o));
1572
1573    if (LEE && HEE &&
1574        LEE->getOperand(0)->getType() == HEE->getOperand(0)->getType()) {
1575      VectorType *EEType = cast<VectorType>(LEE->getOperand(0)->getType());
1576      unsigned LowIndx = cast<ConstantInt>(LEE->getOperand(1))->getZExtValue();
1577      unsigned HighIndx = cast<ConstantInt>(HEE->getOperand(1))->getZExtValue();
1578      if (LEE->getOperand(0) == HEE->getOperand(0)) {
1579        if (LowIndx == 0 && HighIndx == 1)
1580          return LEE->getOperand(0);
1581
1582        std::vector<Constant*> Mask(2);
1583        Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx);
1584        Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx);
1585
1586        Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0),
1587                                          UndefValue::get(EEType),
1588                                          ConstantVector::get(Mask),
1589                                          getReplacementName(I, true, o));
1590        BV->insertBefore(J);
1591        return BV;
1592      }
1593
1594      std::vector<Constant*> Mask(2);
1595      HighIndx += EEType->getNumElements();
1596      Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx);
1597      Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx);
1598
1599      Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0),
1600                                          HEE->getOperand(0),
1601                                          ConstantVector::get(Mask),
1602                                          getReplacementName(I, true, o));
1603      BV->insertBefore(J);
1604      return BV;
1605    }
1606
1607    Instruction *BV1 = InsertElementInst::Create(
1608                                          UndefValue::get(VArgType),
1609                                          L->getOperand(o), CV0,
1610                                          getReplacementName(I, true, o, 1));
1611    BV1->insertBefore(I);
1612    Instruction *BV2 = InsertElementInst::Create(BV1, H->getOperand(o),
1613                                          CV1,
1614                                          getReplacementName(I, true, o, 2));
1615    BV2->insertBefore(J);
1616    return BV2;
1617  }
1618
1619  // This function creates an array of values that will be used as the inputs
1620  // to the vector instruction that fuses I with J.
1621  void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
1622                     Instruction *I, Instruction *J,
1623                     SmallVector<Value *, 3> &ReplacedOperands,
1624                     bool &FlipMemInputs) {
1625    FlipMemInputs = false;
1626    unsigned NumOperands = I->getNumOperands();
1627
1628    for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
1629      // Iterate backward so that we look at the store pointer
1630      // first and know whether or not we need to flip the inputs.
1631
1632      if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
1633        // This is the pointer for a load/store instruction.
1634        ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o,
1635                                FlipMemInputs);
1636        continue;
1637      } else if (isa<CallInst>(I)) {
1638        Function *F = cast<CallInst>(I)->getCalledFunction();
1639        unsigned IID = F->getIntrinsicID();
1640        if (o == NumOperands-1) {
1641          BasicBlock &BB = *I->getParent();
1642
1643          Module *M = BB.getParent()->getParent();
1644          Type *ArgType = I->getType();
1645          Type *VArgType = getVecTypeForPair(ArgType);
1646
1647          // FIXME: is it safe to do this here?
1648          ReplacedOperands[o] = Intrinsic::getDeclaration(M,
1649            (Intrinsic::ID) IID, VArgType);
1650          continue;
1651        } else if (IID == Intrinsic::powi && o == 1) {
1652          // The second argument of powi is a single integer and we've already
1653          // checked that both arguments are equal. As a result, we just keep
1654          // I's second argument.
1655          ReplacedOperands[o] = I->getOperand(o);
1656          continue;
1657        }
1658      } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
1659        ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
1660        continue;
1661      }
1662
1663      ReplacedOperands[o] =
1664        getReplacementInput(Context, I, J, o, FlipMemInputs);
1665    }
1666  }
1667
1668  // This function creates two values that represent the outputs of the
1669  // original I and J instructions. These are generally vector shuffles
1670  // or extracts. In many cases, these will end up being unused and, thus,
1671  // eliminated by later passes.
1672  void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
1673                     Instruction *J, Instruction *K,
1674                     Instruction *&InsertionPt,
1675                     Instruction *&K1, Instruction *&K2,
1676                     bool &FlipMemInputs) {
1677    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
1678    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
1679
1680    if (isa<StoreInst>(I)) {
1681      AA->replaceWithNewValue(I, K);
1682      AA->replaceWithNewValue(J, K);
1683    } else {
1684      Type *IType = I->getType();
1685      Type *VType = getVecTypeForPair(IType);
1686
1687      if (IType->isVectorTy()) {
1688          unsigned numElem = cast<VectorType>(IType)->getNumElements();
1689          std::vector<Constant*> Mask1(numElem), Mask2(numElem);
1690          for (unsigned v = 0; v < numElem; ++v) {
1691            Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
1692            Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElem+v);
1693          }
1694
1695          K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
1696                                       ConstantVector::get(
1697                                         FlipMemInputs ? Mask2 : Mask1),
1698                                       getReplacementName(K, false, 1));
1699          K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
1700                                       ConstantVector::get(
1701                                         FlipMemInputs ? Mask1 : Mask2),
1702                                       getReplacementName(K, false, 2));
1703      } else {
1704        K1 = ExtractElementInst::Create(K, FlipMemInputs ? CV1 : CV0,
1705                                          getReplacementName(K, false, 1));
1706        K2 = ExtractElementInst::Create(K, FlipMemInputs ? CV0 : CV1,
1707                                          getReplacementName(K, false, 2));
1708      }
1709
1710      K1->insertAfter(K);
1711      K2->insertAfter(K1);
1712      InsertionPt = K2;
1713    }
1714  }
1715
1716  // Move all uses of the function I (including pairing-induced uses) after J.
1717  bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
1718                     std::multimap<Value *, Value *> &LoadMoveSet,
1719                     Instruction *I, Instruction *J) {
1720    // Skip to the first instruction past I.
1721    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
1722
1723    DenseSet<Value *> Users;
1724    AliasSetTracker WriteSet(*AA);
1725    for (; cast<Instruction>(L) != J; ++L)
1726      (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet);
1727
1728    assert(cast<Instruction>(L) == J &&
1729      "Tracking has not proceeded far enough to check for dependencies");
1730    // If J is now in the use set of I, then trackUsesOfI will return true
1731    // and we have a dependency cycle (and the fusing operation must abort).
1732    return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet);
1733  }
1734
1735  // Move all uses of the function I (including pairing-induced uses) after J.
1736  void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
1737                     std::multimap<Value *, Value *> &LoadMoveSet,
1738                     Instruction *&InsertionPt,
1739                     Instruction *I, Instruction *J) {
1740    // Skip to the first instruction past I.
1741    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
1742
1743    DenseSet<Value *> Users;
1744    AliasSetTracker WriteSet(*AA);
1745    for (; cast<Instruction>(L) != J;) {
1746      if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) {
1747        // Move this instruction
1748        Instruction *InstToMove = L; ++L;
1749
1750        DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
1751                        " to after " << *InsertionPt << "\n");
1752        InstToMove->removeFromParent();
1753        InstToMove->insertAfter(InsertionPt);
1754        InsertionPt = InstToMove;
1755      } else {
1756        ++L;
1757      }
1758    }
1759  }
1760
1761  // Collect all load instruction that are in the move set of a given first
1762  // pair member.  These loads depend on the first instruction, I, and so need
1763  // to be moved after J (the second instruction) when the pair is fused.
1764  void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
1765                     DenseMap<Value *, Value *> &ChosenPairs,
1766                     std::multimap<Value *, Value *> &LoadMoveSet,
1767                     Instruction *I) {
1768    // Skip to the first instruction past I.
1769    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
1770
1771    DenseSet<Value *> Users;
1772    AliasSetTracker WriteSet(*AA);
1773
1774    // Note: We cannot end the loop when we reach J because J could be moved
1775    // farther down the use chain by another instruction pairing. Also, J
1776    // could be before I if this is an inverted input.
1777    for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
1778      if (trackUsesOfI(Users, WriteSet, I, L)) {
1779        if (L->mayReadFromMemory())
1780          LoadMoveSet.insert(ValuePair(L, I));
1781      }
1782    }
1783  }
1784
1785  // In cases where both load/stores and the computation of their pointers
1786  // are chosen for vectorization, we can end up in a situation where the
1787  // aliasing analysis starts returning different query results as the
1788  // process of fusing instruction pairs continues. Because the algorithm
1789  // relies on finding the same use trees here as were found earlier, we'll
1790  // need to precompute the necessary aliasing information here and then
1791  // manually update it during the fusion process.
1792  void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
1793                     std::vector<Value *> &PairableInsts,
1794                     DenseMap<Value *, Value *> &ChosenPairs,
1795                     std::multimap<Value *, Value *> &LoadMoveSet) {
1796    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
1797         PIE = PairableInsts.end(); PI != PIE; ++PI) {
1798      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
1799      if (P == ChosenPairs.end()) continue;
1800
1801      Instruction *I = cast<Instruction>(P->first);
1802      collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I);
1803    }
1804  }
1805
1806  // When the first instruction in each pair is cloned, it will inherit its
1807  // parent's metadata. This metadata must be combined with that of the other
1808  // instruction in a safe way.
1809  void BBVectorize::combineMetadata(Instruction *K, const Instruction *J) {
1810    SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
1811    K->getAllMetadataOtherThanDebugLoc(Metadata);
1812    for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
1813      unsigned Kind = Metadata[i].first;
1814      MDNode *JMD = J->getMetadata(Kind);
1815      MDNode *KMD = Metadata[i].second;
1816
1817      switch (Kind) {
1818      default:
1819        K->setMetadata(Kind, 0); // Remove unknown metadata
1820        break;
1821      case LLVMContext::MD_tbaa:
1822        K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
1823        break;
1824      case LLVMContext::MD_fpmath:
1825        K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
1826        break;
1827      }
1828    }
1829  }
1830
1831  // This function fuses the chosen instruction pairs into vector instructions,
1832  // taking care preserve any needed scalar outputs and, then, it reorders the
1833  // remaining instructions as needed (users of the first member of the pair
1834  // need to be moved to after the location of the second member of the pair
1835  // because the vector instruction is inserted in the location of the pair's
1836  // second member).
1837  void BBVectorize::fuseChosenPairs(BasicBlock &BB,
1838                     std::vector<Value *> &PairableInsts,
1839                     DenseMap<Value *, Value *> &ChosenPairs) {
1840    LLVMContext& Context = BB.getContext();
1841
1842    // During the vectorization process, the order of the pairs to be fused
1843    // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
1844    // list. After a pair is fused, the flipped pair is removed from the list.
1845    std::vector<ValuePair> FlippedPairs;
1846    FlippedPairs.reserve(ChosenPairs.size());
1847    for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
1848         E = ChosenPairs.end(); P != E; ++P)
1849      FlippedPairs.push_back(ValuePair(P->second, P->first));
1850    for (std::vector<ValuePair>::iterator P = FlippedPairs.begin(),
1851         E = FlippedPairs.end(); P != E; ++P)
1852      ChosenPairs.insert(*P);
1853
1854    std::multimap<Value *, Value *> LoadMoveSet;
1855    collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
1856
1857    DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
1858
1859    for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
1860      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
1861      if (P == ChosenPairs.end()) {
1862        ++PI;
1863        continue;
1864      }
1865
1866      if (getDepthFactor(P->first) == 0) {
1867        // These instructions are not really fused, but are tracked as though
1868        // they are. Any case in which it would be interesting to fuse them
1869        // will be taken care of by InstCombine.
1870        --NumFusedOps;
1871        ++PI;
1872        continue;
1873      }
1874
1875      Instruction *I = cast<Instruction>(P->first),
1876        *J = cast<Instruction>(P->second);
1877
1878      DEBUG(dbgs() << "BBV: fusing: " << *I <<
1879             " <-> " << *J << "\n");
1880
1881      // Remove the pair and flipped pair from the list.
1882      DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
1883      assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
1884      ChosenPairs.erase(FP);
1885      ChosenPairs.erase(P);
1886
1887      if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) {
1888        DEBUG(dbgs() << "BBV: fusion of: " << *I <<
1889               " <-> " << *J <<
1890               " aborted because of non-trivial dependency cycle\n");
1891        --NumFusedOps;
1892        ++PI;
1893        continue;
1894      }
1895
1896      bool FlipMemInputs;
1897      unsigned NumOperands = I->getNumOperands();
1898      SmallVector<Value *, 3> ReplacedOperands(NumOperands);
1899      getReplacementInputsForPair(Context, I, J, ReplacedOperands,
1900        FlipMemInputs);
1901
1902      // Make a copy of the original operation, change its type to the vector
1903      // type and replace its operands with the vector operands.
1904      Instruction *K = I->clone();
1905      if (I->hasName()) K->takeName(I);
1906
1907      if (!isa<StoreInst>(K))
1908        K->mutateType(getVecTypeForPair(I->getType()));
1909
1910      combineMetadata(K, J);
1911
1912      for (unsigned o = 0; o < NumOperands; ++o)
1913        K->setOperand(o, ReplacedOperands[o]);
1914
1915      // If we've flipped the memory inputs, make sure that we take the correct
1916      // alignment.
1917      if (FlipMemInputs) {
1918        if (isa<StoreInst>(K))
1919          cast<StoreInst>(K)->setAlignment(cast<StoreInst>(J)->getAlignment());
1920        else
1921          cast<LoadInst>(K)->setAlignment(cast<LoadInst>(J)->getAlignment());
1922      }
1923
1924      K->insertAfter(J);
1925
1926      // Instruction insertion point:
1927      Instruction *InsertionPt = K;
1928      Instruction *K1 = 0, *K2 = 0;
1929      replaceOutputsOfPair(Context, I, J, K, InsertionPt, K1, K2,
1930        FlipMemInputs);
1931
1932      // The use tree of the first original instruction must be moved to after
1933      // the location of the second instruction. The entire use tree of the
1934      // first instruction is disjoint from the input tree of the second
1935      // (by definition), and so commutes with it.
1936
1937      moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
1938
1939      if (!isa<StoreInst>(I)) {
1940        I->replaceAllUsesWith(K1);
1941        J->replaceAllUsesWith(K2);
1942        AA->replaceWithNewValue(I, K1);
1943        AA->replaceWithNewValue(J, K2);
1944      }
1945
1946      // Instructions that may read from memory may be in the load move set.
1947      // Once an instruction is fused, we no longer need its move set, and so
1948      // the values of the map never need to be updated. However, when a load
1949      // is fused, we need to merge the entries from both instructions in the
1950      // pair in case those instructions were in the move set of some other
1951      // yet-to-be-fused pair. The loads in question are the keys of the map.
1952      if (I->mayReadFromMemory()) {
1953        std::vector<ValuePair> NewSetMembers;
1954        VPIteratorPair IPairRange = LoadMoveSet.equal_range(I);
1955        VPIteratorPair JPairRange = LoadMoveSet.equal_range(J);
1956        for (std::multimap<Value *, Value *>::iterator N = IPairRange.first;
1957             N != IPairRange.second; ++N)
1958          NewSetMembers.push_back(ValuePair(K, N->second));
1959        for (std::multimap<Value *, Value *>::iterator N = JPairRange.first;
1960             N != JPairRange.second; ++N)
1961          NewSetMembers.push_back(ValuePair(K, N->second));
1962        for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
1963             AE = NewSetMembers.end(); A != AE; ++A)
1964          LoadMoveSet.insert(*A);
1965      }
1966
1967      // Before removing I, set the iterator to the next instruction.
1968      PI = llvm::next(BasicBlock::iterator(I));
1969      if (cast<Instruction>(PI) == J)
1970        ++PI;
1971
1972      SE->forgetValue(I);
1973      SE->forgetValue(J);
1974      I->eraseFromParent();
1975      J->eraseFromParent();
1976    }
1977
1978    DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
1979  }
1980}
1981
1982char BBVectorize::ID = 0;
1983static const char bb_vectorize_name[] = "Basic-Block Vectorization";
1984INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
1985INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
1986INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
1987INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
1988
1989BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
1990  return new BBVectorize(C);
1991}
1992
1993bool
1994llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
1995  BBVectorize BBVectorizer(P, C);
1996  return BBVectorizer.vectorizeBB(BB);
1997}
1998
1999//===----------------------------------------------------------------------===//
2000VectorizeConfig::VectorizeConfig() {
2001  VectorBits = ::VectorBits;
2002  VectorizeBools = !::NoBools;
2003  VectorizeInts = !::NoInts;
2004  VectorizeFloats = !::NoFloats;
2005  VectorizePointers = !::NoPointers;
2006  VectorizeCasts = !::NoCasts;
2007  VectorizeMath = !::NoMath;
2008  VectorizeFMA = !::NoFMA;
2009  VectorizeSelect = !::NoSelect;
2010  VectorizeCmp = !::NoCmp;
2011  VectorizeGEP = !::NoGEP;
2012  VectorizeMemOps = !::NoMemOps;
2013  AlignedOnly = ::AlignedOnly;
2014  ReqChainDepth= ::ReqChainDepth;
2015  SearchLimit = ::SearchLimit;
2016  MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
2017  SplatBreaksChain = ::SplatBreaksChain;
2018  MaxInsts = ::MaxInsts;
2019  MaxIter = ::MaxIter;
2020  NoMemOpBoost = ::NoMemOpBoost;
2021  FastDep = ::FastDep;
2022}
2023