BBVectorize.cpp revision 86c88c938aec8006d2ce83325ec1f31e1154620b
1//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a basic-block vectorization pass. The algorithm was
11// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
12// et al. It works by looking for chains of pairable operations and then
13// pairing them.
14//
15//===----------------------------------------------------------------------===//
16
17#define BBV_NAME "bb-vectorize"
18#define DEBUG_TYPE BBV_NAME
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Metadata.h"
27#include "llvm/Pass.h"
28#include "llvm/Type.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/ADT/StringExtras.h"
36#include "llvm/Analysis/AliasAnalysis.h"
37#include "llvm/Analysis/AliasSetTracker.h"
38#include "llvm/Analysis/Dominators.h"
39#include "llvm/Analysis/ScalarEvolution.h"
40#include "llvm/Analysis/ScalarEvolutionExpressions.h"
41#include "llvm/Analysis/ValueTracking.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Support/ValueHandle.h"
46#include "llvm/DataLayout.h"
47#include "llvm/TargetTransformInfo.h"
48#include "llvm/Transforms/Utils/Local.h"
49#include "llvm/Transforms/Vectorize.h"
50#include <algorithm>
51#include <map>
52using namespace llvm;
53
54static cl::opt<bool>
55IgnoreTargetInfo("bb-vectorize-ignore-target-info",  cl::init(false),
56  cl::Hidden, cl::desc("Ignore target information"));
57
58static cl::opt<unsigned>
59ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
60  cl::desc("The required chain depth for vectorization"));
61
62static cl::opt<bool>
63UseChainDepthWithTI("bb-vectorize-use-chain-depth",  cl::init(false),
64  cl::Hidden, cl::desc("Use the chain depth requirement with"
65                       " target information"));
66
67static cl::opt<unsigned>
68SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
69  cl::desc("The maximum search distance for instruction pairs"));
70
71static cl::opt<bool>
72SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
73  cl::desc("Replicating one element to a pair breaks the chain"));
74
75static cl::opt<unsigned>
76VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
77  cl::desc("The size of the native vector registers"));
78
79static cl::opt<unsigned>
80MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
81  cl::desc("The maximum number of pairing iterations"));
82
83static cl::opt<bool>
84Pow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden,
85  cl::desc("Don't try to form non-2^n-length vectors"));
86
87static cl::opt<unsigned>
88MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
89  cl::desc("The maximum number of pairable instructions per group"));
90
91static cl::opt<unsigned>
92MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
93  cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
94                       " a full cycle check"));
95
96static cl::opt<bool>
97NoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden,
98  cl::desc("Don't try to vectorize boolean (i1) values"));
99
100static cl::opt<bool>
101NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
102  cl::desc("Don't try to vectorize integer values"));
103
104static cl::opt<bool>
105NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
106  cl::desc("Don't try to vectorize floating-point values"));
107
108// FIXME: This should default to false once pointer vector support works.
109static cl::opt<bool>
110NoPointers("bb-vectorize-no-pointers", cl::init(/*false*/ true), cl::Hidden,
111  cl::desc("Don't try to vectorize pointer values"));
112
113static cl::opt<bool>
114NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
115  cl::desc("Don't try to vectorize casting (conversion) operations"));
116
117static cl::opt<bool>
118NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
119  cl::desc("Don't try to vectorize floating-point math intrinsics"));
120
121static cl::opt<bool>
122NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
123  cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
124
125static cl::opt<bool>
126NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
127  cl::desc("Don't try to vectorize select instructions"));
128
129static cl::opt<bool>
130NoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden,
131  cl::desc("Don't try to vectorize comparison instructions"));
132
133static cl::opt<bool>
134NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
135  cl::desc("Don't try to vectorize getelementptr instructions"));
136
137static cl::opt<bool>
138NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
139  cl::desc("Don't try to vectorize loads and stores"));
140
141static cl::opt<bool>
142AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
143  cl::desc("Only generate aligned loads and stores"));
144
145static cl::opt<bool>
146NoMemOpBoost("bb-vectorize-no-mem-op-boost",
147  cl::init(false), cl::Hidden,
148  cl::desc("Don't boost the chain-depth contribution of loads and stores"));
149
150static cl::opt<bool>
151FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
152  cl::desc("Use a fast instruction dependency analysis"));
153
154#ifndef NDEBUG
155static cl::opt<bool>
156DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
157  cl::init(false), cl::Hidden,
158  cl::desc("When debugging is enabled, output information on the"
159           " instruction-examination process"));
160static cl::opt<bool>
161DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
162  cl::init(false), cl::Hidden,
163  cl::desc("When debugging is enabled, output information on the"
164           " candidate-selection process"));
165static cl::opt<bool>
166DebugPairSelection("bb-vectorize-debug-pair-selection",
167  cl::init(false), cl::Hidden,
168  cl::desc("When debugging is enabled, output information on the"
169           " pair-selection process"));
170static cl::opt<bool>
171DebugCycleCheck("bb-vectorize-debug-cycle-check",
172  cl::init(false), cl::Hidden,
173  cl::desc("When debugging is enabled, output information on the"
174           " cycle-checking process"));
175
176static cl::opt<bool>
177PrintAfterEveryPair("bb-vectorize-debug-print-after-every-pair",
178  cl::init(false), cl::Hidden,
179  cl::desc("When debugging is enabled, dump the basic block after"
180           " every pair is fused"));
181#endif
182
183STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
184
185namespace {
186  struct BBVectorize : public BasicBlockPass {
187    static char ID; // Pass identification, replacement for typeid
188
189    const VectorizeConfig Config;
190
191    BBVectorize(const VectorizeConfig &C = VectorizeConfig())
192      : BasicBlockPass(ID), Config(C) {
193      initializeBBVectorizePass(*PassRegistry::getPassRegistry());
194    }
195
196    BBVectorize(Pass *P, const VectorizeConfig &C)
197      : BasicBlockPass(ID), Config(C) {
198      AA = &P->getAnalysis<AliasAnalysis>();
199      DT = &P->getAnalysis<DominatorTree>();
200      SE = &P->getAnalysis<ScalarEvolution>();
201      TD = P->getAnalysisIfAvailable<DataLayout>();
202      TTI = IgnoreTargetInfo ? 0 :
203        P->getAnalysisIfAvailable<TargetTransformInfo>();
204      VTTI = TTI ? TTI->getVectorTargetTransformInfo() : 0;
205    }
206
207    typedef std::pair<Value *, Value *> ValuePair;
208    typedef std::pair<ValuePair, int> ValuePairWithCost;
209    typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
210    typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
211    typedef std::pair<VPPair, unsigned> VPPairWithType;
212    typedef std::pair<std::multimap<Value *, Value *>::iterator,
213              std::multimap<Value *, Value *>::iterator> VPIteratorPair;
214    typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
215              std::multimap<ValuePair, ValuePair>::iterator>
216                VPPIteratorPair;
217
218    AliasAnalysis *AA;
219    DominatorTree *DT;
220    ScalarEvolution *SE;
221    DataLayout *TD;
222    TargetTransformInfo *TTI;
223    const VectorTargetTransformInfo *VTTI;
224
225    // FIXME: const correct?
226
227    bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false);
228
229    bool getCandidatePairs(BasicBlock &BB,
230                       BasicBlock::iterator &Start,
231                       std::multimap<Value *, Value *> &CandidatePairs,
232                       DenseSet<ValuePair> &FixedOrderPairs,
233                       DenseMap<ValuePair, int> &CandidatePairCostSavings,
234                       std::vector<Value *> &PairableInsts, bool NonPow2Len);
235
236    // FIXME: The current implementation does not account for pairs that
237    // are connected in multiple ways. For example:
238    //   C1 = A1 / A2; C2 = A2 / A1 (which may be both direct and a swap)
239    enum PairConnectionType {
240      PairConnectionDirect,
241      PairConnectionSwap,
242      PairConnectionSplat
243    };
244
245    void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
246                       std::vector<Value *> &PairableInsts,
247                       std::multimap<ValuePair, ValuePair> &ConnectedPairs,
248                       DenseMap<VPPair, unsigned> &PairConnectionTypes);
249
250    void buildDepMap(BasicBlock &BB,
251                       std::multimap<Value *, Value *> &CandidatePairs,
252                       std::vector<Value *> &PairableInsts,
253                       DenseSet<ValuePair> &PairableInstUsers);
254
255    void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
256                        DenseMap<ValuePair, int> &CandidatePairCostSavings,
257                        std::vector<Value *> &PairableInsts,
258                        DenseSet<ValuePair> &FixedOrderPairs,
259                        DenseMap<VPPair, unsigned> &PairConnectionTypes,
260                        std::multimap<ValuePair, ValuePair> &ConnectedPairs,
261                        std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
262                        DenseSet<ValuePair> &PairableInstUsers,
263                        DenseMap<Value *, Value *>& ChosenPairs);
264
265    void fuseChosenPairs(BasicBlock &BB,
266                     std::vector<Value *> &PairableInsts,
267                     DenseMap<Value *, Value *>& ChosenPairs,
268                     DenseSet<ValuePair> &FixedOrderPairs,
269                     DenseMap<VPPair, unsigned> &PairConnectionTypes,
270                     std::multimap<ValuePair, ValuePair> &ConnectedPairs,
271                     std::multimap<ValuePair, ValuePair> &ConnectedPairDeps);
272
273
274    bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
275
276    bool areInstsCompatible(Instruction *I, Instruction *J,
277                       bool IsSimpleLoadStore, bool NonPow2Len,
278                       int &CostSavings, int &FixedOrder);
279
280    bool trackUsesOfI(DenseSet<Value *> &Users,
281                      AliasSetTracker &WriteSet, Instruction *I,
282                      Instruction *J, bool UpdateUsers = true,
283                      std::multimap<Value *, Value *> *LoadMoveSet = 0);
284
285    void computePairsConnectedTo(
286                      std::multimap<Value *, Value *> &CandidatePairs,
287                      std::vector<Value *> &PairableInsts,
288                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
289                      DenseMap<VPPair, unsigned> &PairConnectionTypes,
290                      ValuePair P);
291
292    bool pairsConflict(ValuePair P, ValuePair Q,
293                 DenseSet<ValuePair> &PairableInstUsers,
294                 std::multimap<ValuePair, ValuePair> *PairableInstUserMap = 0);
295
296    bool pairWillFormCycle(ValuePair P,
297                       std::multimap<ValuePair, ValuePair> &PairableInstUsers,
298                       DenseSet<ValuePair> &CurrentPairs);
299
300    void pruneTreeFor(
301                      std::multimap<Value *, Value *> &CandidatePairs,
302                      std::vector<Value *> &PairableInsts,
303                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
304                      DenseSet<ValuePair> &PairableInstUsers,
305                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
306                      DenseMap<Value *, Value *> &ChosenPairs,
307                      DenseMap<ValuePair, size_t> &Tree,
308                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
309                      bool UseCycleCheck);
310
311    void buildInitialTreeFor(
312                      std::multimap<Value *, Value *> &CandidatePairs,
313                      std::vector<Value *> &PairableInsts,
314                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
315                      DenseSet<ValuePair> &PairableInstUsers,
316                      DenseMap<Value *, Value *> &ChosenPairs,
317                      DenseMap<ValuePair, size_t> &Tree, ValuePair J);
318
319    void findBestTreeFor(
320                      std::multimap<Value *, Value *> &CandidatePairs,
321                      DenseMap<ValuePair, int> &CandidatePairCostSavings,
322                      std::vector<Value *> &PairableInsts,
323                      DenseSet<ValuePair> &FixedOrderPairs,
324                      DenseMap<VPPair, unsigned> &PairConnectionTypes,
325                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
326                      std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
327                      DenseSet<ValuePair> &PairableInstUsers,
328                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
329                      DenseMap<Value *, Value *> &ChosenPairs,
330                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
331                      int &BestEffSize, VPIteratorPair ChoiceRange,
332                      bool UseCycleCheck);
333
334    Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
335                     Instruction *J, unsigned o);
336
337    void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
338                     unsigned MaskOffset, unsigned NumInElem,
339                     unsigned NumInElem1, unsigned IdxOffset,
340                     std::vector<Constant*> &Mask);
341
342    Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
343                     Instruction *J);
344
345    bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J,
346                       unsigned o, Value *&LOp, unsigned numElemL,
347                       Type *ArgTypeL, Type *ArgTypeR, bool IBeforeJ,
348                       unsigned IdxOff = 0);
349
350    Value *getReplacementInput(LLVMContext& Context, Instruction *I,
351                     Instruction *J, unsigned o, bool IBeforeJ);
352
353    void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
354                     Instruction *J, SmallVector<Value *, 3> &ReplacedOperands,
355                     bool IBeforeJ);
356
357    void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
358                     Instruction *J, Instruction *K,
359                     Instruction *&InsertionPt, Instruction *&K1,
360                     Instruction *&K2);
361
362    void collectPairLoadMoveSet(BasicBlock &BB,
363                     DenseMap<Value *, Value *> &ChosenPairs,
364                     std::multimap<Value *, Value *> &LoadMoveSet,
365                     Instruction *I);
366
367    void collectLoadMoveSet(BasicBlock &BB,
368                     std::vector<Value *> &PairableInsts,
369                     DenseMap<Value *, Value *> &ChosenPairs,
370                     std::multimap<Value *, Value *> &LoadMoveSet);
371
372    bool canMoveUsesOfIAfterJ(BasicBlock &BB,
373                     std::multimap<Value *, Value *> &LoadMoveSet,
374                     Instruction *I, Instruction *J);
375
376    void moveUsesOfIAfterJ(BasicBlock &BB,
377                     std::multimap<Value *, Value *> &LoadMoveSet,
378                     Instruction *&InsertionPt,
379                     Instruction *I, Instruction *J);
380
381    void combineMetadata(Instruction *K, const Instruction *J);
382
383    bool vectorizeBB(BasicBlock &BB) {
384      if (!DT->isReachableFromEntry(&BB)) {
385        DEBUG(dbgs() << "BBV: skipping unreachable " << BB.getName() <<
386              " in " << BB.getParent()->getName() << "\n");
387        return false;
388      }
389
390      DEBUG(if (VTTI) dbgs() << "BBV: using target information\n");
391
392      bool changed = false;
393      // Iterate a sufficient number of times to merge types of size 1 bit,
394      // then 2 bits, then 4, etc. up to half of the target vector width of the
395      // target vector register.
396      unsigned n = 1;
397      for (unsigned v = 2;
398           (VTTI || v <= Config.VectorBits) &&
399           (!Config.MaxIter || n <= Config.MaxIter);
400           v *= 2, ++n) {
401        DEBUG(dbgs() << "BBV: fusing loop #" << n <<
402              " for " << BB.getName() << " in " <<
403              BB.getParent()->getName() << "...\n");
404assert(n < 10 && "hrmm, really?");
405        if (vectorizePairs(BB))
406          changed = true;
407        else
408          break;
409      }
410
411      if (changed && !Pow2LenOnly) {
412        ++n;
413        for (; !Config.MaxIter || n <= Config.MaxIter; ++n) {
414          DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " <<
415                n << " for " << BB.getName() << " in " <<
416                BB.getParent()->getName() << "...\n");
417          if (!vectorizePairs(BB, true)) break;
418        }
419      }
420
421      DEBUG(dbgs() << "BBV: done!\n");
422      return changed;
423    }
424
425    virtual bool runOnBasicBlock(BasicBlock &BB) {
426      AA = &getAnalysis<AliasAnalysis>();
427      DT = &getAnalysis<DominatorTree>();
428      SE = &getAnalysis<ScalarEvolution>();
429      TD = getAnalysisIfAvailable<DataLayout>();
430      TTI = IgnoreTargetInfo ? 0 :
431        getAnalysisIfAvailable<TargetTransformInfo>();
432      VTTI = TTI ? TTI->getVectorTargetTransformInfo() : 0;
433
434      return vectorizeBB(BB);
435    }
436
437    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
438      BasicBlockPass::getAnalysisUsage(AU);
439      AU.addRequired<AliasAnalysis>();
440      AU.addRequired<DominatorTree>();
441      AU.addRequired<ScalarEvolution>();
442      AU.addPreserved<AliasAnalysis>();
443      AU.addPreserved<DominatorTree>();
444      AU.addPreserved<ScalarEvolution>();
445      AU.setPreservesCFG();
446    }
447
448    static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) {
449      assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() &&
450             "Cannot form vector from incompatible scalar types");
451      Type *STy = ElemTy->getScalarType();
452
453      unsigned numElem;
454      if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
455        numElem = VTy->getNumElements();
456      } else {
457        numElem = 1;
458      }
459
460      if (VectorType *VTy = dyn_cast<VectorType>(Elem2Ty)) {
461        numElem += VTy->getNumElements();
462      } else {
463        numElem += 1;
464      }
465
466      return VectorType::get(STy, numElem);
467    }
468
469    static inline void getInstructionTypes(Instruction *I,
470                                           Type *&T1, Type *&T2) {
471      if (isa<StoreInst>(I)) {
472        // For stores, it is the value type, not the pointer type that matters
473        // because the value is what will come from a vector register.
474
475        Value *IVal = cast<StoreInst>(I)->getValueOperand();
476        T1 = IVal->getType();
477      } else {
478        T1 = I->getType();
479      }
480
481      if (I->isCast())
482        T2 = cast<CastInst>(I)->getSrcTy();
483      else
484        T2 = T1;
485
486      if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
487        T2 = SI->getCondition()->getType();
488      } else if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(I)) {
489        T2 = SI->getOperand(0)->getType();
490      } else if (CmpInst *CI = dyn_cast<CmpInst>(I)) {
491        T2 = CI->getOperand(0)->getType();
492      }
493    }
494
495    // Returns the weight associated with the provided value. A chain of
496    // candidate pairs has a length given by the sum of the weights of its
497    // members (one weight per pair; the weight of each member of the pair
498    // is assumed to be the same). This length is then compared to the
499    // chain-length threshold to determine if a given chain is significant
500    // enough to be vectorized. The length is also used in comparing
501    // candidate chains where longer chains are considered to be better.
502    // Note: when this function returns 0, the resulting instructions are
503    // not actually fused.
504    inline size_t getDepthFactor(Value *V) {
505      // InsertElement and ExtractElement have a depth factor of zero. This is
506      // for two reasons: First, they cannot be usefully fused. Second, because
507      // the pass generates a lot of these, they can confuse the simple metric
508      // used to compare the trees in the next iteration. Thus, giving them a
509      // weight of zero allows the pass to essentially ignore them in
510      // subsequent iterations when looking for vectorization opportunities
511      // while still tracking dependency chains that flow through those
512      // instructions.
513      if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
514        return 0;
515
516      // Give a load or store half of the required depth so that load/store
517      // pairs will vectorize.
518      if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
519        return Config.ReqChainDepth/2;
520
521      return 1;
522    }
523
524    // Returns the cost of the provided instruction using VTTI.
525    // This does not handle loads and stores.
526    unsigned getInstrCost(unsigned Opcode, Type *T1, Type *T2) {
527      switch (Opcode) {
528      default: break;
529      case Instruction::GetElementPtr:
530        // We mark this instruction as zero-cost because scalar GEPs are usually
531        // lowered to the intruction addressing mode. At the moment we don't
532        // generate vector GEPs.
533        return 0;
534      case Instruction::Br:
535        return VTTI->getCFInstrCost(Opcode);
536      case Instruction::PHI:
537        return 0;
538      case Instruction::Add:
539      case Instruction::FAdd:
540      case Instruction::Sub:
541      case Instruction::FSub:
542      case Instruction::Mul:
543      case Instruction::FMul:
544      case Instruction::UDiv:
545      case Instruction::SDiv:
546      case Instruction::FDiv:
547      case Instruction::URem:
548      case Instruction::SRem:
549      case Instruction::FRem:
550      case Instruction::Shl:
551      case Instruction::LShr:
552      case Instruction::AShr:
553      case Instruction::And:
554      case Instruction::Or:
555      case Instruction::Xor:
556        return VTTI->getArithmeticInstrCost(Opcode, T1);
557      case Instruction::Select:
558      case Instruction::ICmp:
559      case Instruction::FCmp:
560        return VTTI->getCmpSelInstrCost(Opcode, T1, T2);
561      case Instruction::ZExt:
562      case Instruction::SExt:
563      case Instruction::FPToUI:
564      case Instruction::FPToSI:
565      case Instruction::FPExt:
566      case Instruction::PtrToInt:
567      case Instruction::IntToPtr:
568      case Instruction::SIToFP:
569      case Instruction::UIToFP:
570      case Instruction::Trunc:
571      case Instruction::FPTrunc:
572      case Instruction::BitCast:
573      case Instruction::ShuffleVector:
574        return VTTI->getCastInstrCost(Opcode, T1, T2);
575      }
576
577      return 1;
578    }
579
580    // This determines the relative offset of two loads or stores, returning
581    // true if the offset could be determined to be some constant value.
582    // For example, if OffsetInElmts == 1, then J accesses the memory directly
583    // after I; if OffsetInElmts == -1 then I accesses the memory
584    // directly after J.
585    bool getPairPtrInfo(Instruction *I, Instruction *J,
586        Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
587        unsigned &IAddressSpace, unsigned &JAddressSpace,
588        int64_t &OffsetInElmts, bool ComputeOffset = true) {
589      OffsetInElmts = 0;
590      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
591        LoadInst *LJ = cast<LoadInst>(J);
592        IPtr = LI->getPointerOperand();
593        JPtr = LJ->getPointerOperand();
594        IAlignment = LI->getAlignment();
595        JAlignment = LJ->getAlignment();
596        IAddressSpace = LI->getPointerAddressSpace();
597        JAddressSpace = LJ->getPointerAddressSpace();
598      } else {
599        StoreInst *SI = cast<StoreInst>(I), *SJ = cast<StoreInst>(J);
600        IPtr = SI->getPointerOperand();
601        JPtr = SJ->getPointerOperand();
602        IAlignment = SI->getAlignment();
603        JAlignment = SJ->getAlignment();
604        IAddressSpace = SI->getPointerAddressSpace();
605        JAddressSpace = SJ->getPointerAddressSpace();
606      }
607
608      if (!ComputeOffset)
609        return true;
610
611      const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
612      const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
613
614      // If this is a trivial offset, then we'll get something like
615      // 1*sizeof(type). With target data, which we need anyway, this will get
616      // constant folded into a number.
617      const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
618      if (const SCEVConstant *ConstOffSCEV =
619            dyn_cast<SCEVConstant>(OffsetSCEV)) {
620        ConstantInt *IntOff = ConstOffSCEV->getValue();
621        int64_t Offset = IntOff->getSExtValue();
622
623        Type *VTy = cast<PointerType>(IPtr->getType())->getElementType();
624        int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
625
626        Type *VTy2 = cast<PointerType>(JPtr->getType())->getElementType();
627        if (VTy != VTy2 && Offset < 0) {
628          int64_t VTy2TSS = (int64_t) TD->getTypeStoreSize(VTy2);
629          OffsetInElmts = Offset/VTy2TSS;
630          return (abs64(Offset) % VTy2TSS) == 0;
631        }
632
633        OffsetInElmts = Offset/VTyTSS;
634        return (abs64(Offset) % VTyTSS) == 0;
635      }
636
637      return false;
638    }
639
640    // Returns true if the provided CallInst represents an intrinsic that can
641    // be vectorized.
642    bool isVectorizableIntrinsic(CallInst* I) {
643      Function *F = I->getCalledFunction();
644      if (!F) return false;
645
646      unsigned IID = F->getIntrinsicID();
647      if (!IID) return false;
648
649      switch(IID) {
650      default:
651        return false;
652      case Intrinsic::sqrt:
653      case Intrinsic::powi:
654      case Intrinsic::sin:
655      case Intrinsic::cos:
656      case Intrinsic::log:
657      case Intrinsic::log2:
658      case Intrinsic::log10:
659      case Intrinsic::exp:
660      case Intrinsic::exp2:
661      case Intrinsic::pow:
662        return Config.VectorizeMath;
663      case Intrinsic::fma:
664        return Config.VectorizeFMA;
665      }
666    }
667
668    // Returns true if J is the second element in some pair referenced by
669    // some multimap pair iterator pair.
670    template <typename V>
671    bool isSecondInIteratorPair(V J, std::pair<
672           typename std::multimap<V, V>::iterator,
673           typename std::multimap<V, V>::iterator> PairRange) {
674      for (typename std::multimap<V, V>::iterator K = PairRange.first;
675           K != PairRange.second; ++K)
676        if (K->second == J) return true;
677
678      return false;
679    }
680  };
681
682  // This function implements one vectorization iteration on the provided
683  // basic block. It returns true if the block is changed.
684  bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) {
685    bool ShouldContinue;
686    BasicBlock::iterator Start = BB.getFirstInsertionPt();
687
688    std::vector<Value *> AllPairableInsts;
689    DenseMap<Value *, Value *> AllChosenPairs;
690    DenseSet<ValuePair> AllFixedOrderPairs;
691    DenseMap<VPPair, unsigned> AllPairConnectionTypes;
692    std::multimap<ValuePair, ValuePair> AllConnectedPairs, AllConnectedPairDeps;
693
694    do {
695      std::vector<Value *> PairableInsts;
696      std::multimap<Value *, Value *> CandidatePairs;
697      DenseSet<ValuePair> FixedOrderPairs;
698      DenseMap<ValuePair, int> CandidatePairCostSavings;
699      ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
700                                         FixedOrderPairs,
701                                         CandidatePairCostSavings,
702                                         PairableInsts, NonPow2Len);
703      if (PairableInsts.empty()) continue;
704
705      // Now we have a map of all of the pairable instructions and we need to
706      // select the best possible pairing. A good pairing is one such that the
707      // users of the pair are also paired. This defines a (directed) forest
708      // over the pairs such that two pairs are connected iff the second pair
709      // uses the first.
710
711      // Note that it only matters that both members of the second pair use some
712      // element of the first pair (to allow for splatting).
713
714      std::multimap<ValuePair, ValuePair> ConnectedPairs, ConnectedPairDeps;
715      DenseMap<VPPair, unsigned> PairConnectionTypes;
716      computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs,
717                            PairConnectionTypes);
718      if (ConnectedPairs.empty()) continue;
719
720      for (std::multimap<ValuePair, ValuePair>::iterator
721           I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
722           I != IE; ++I) {
723        ConnectedPairDeps.insert(VPPair(I->second, I->first));
724      }
725
726      // Build the pairable-instruction dependency map
727      DenseSet<ValuePair> PairableInstUsers;
728      buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
729
730      // There is now a graph of the connected pairs. For each variable, pick
731      // the pairing with the largest tree meeting the depth requirement on at
732      // least one branch. Then select all pairings that are part of that tree
733      // and remove them from the list of available pairings and pairable
734      // variables.
735
736      DenseMap<Value *, Value *> ChosenPairs;
737      choosePairs(CandidatePairs, CandidatePairCostSavings,
738        PairableInsts, FixedOrderPairs, PairConnectionTypes,
739        ConnectedPairs, ConnectedPairDeps,
740        PairableInstUsers, ChosenPairs);
741
742      if (ChosenPairs.empty()) continue;
743      AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
744                              PairableInsts.end());
745      AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
746
747      // Only for the chosen pairs, propagate information on fixed-order pairs,
748      // pair connections, and their types to the data structures used by the
749      // pair fusion procedures.
750      for (DenseMap<Value *, Value *>::iterator I = ChosenPairs.begin(),
751           IE = ChosenPairs.end(); I != IE; ++I) {
752        if (FixedOrderPairs.count(*I))
753          AllFixedOrderPairs.insert(*I);
754        else if (FixedOrderPairs.count(ValuePair(I->second, I->first)))
755          AllFixedOrderPairs.insert(ValuePair(I->second, I->first));
756
757        for (DenseMap<Value *, Value *>::iterator J = ChosenPairs.begin();
758             J != IE; ++J) {
759          DenseMap<VPPair, unsigned>::iterator K =
760            PairConnectionTypes.find(VPPair(*I, *J));
761          if (K != PairConnectionTypes.end()) {
762            AllPairConnectionTypes.insert(*K);
763          } else {
764            K = PairConnectionTypes.find(VPPair(*J, *I));
765            if (K != PairConnectionTypes.end())
766              AllPairConnectionTypes.insert(*K);
767          }
768        }
769      }
770
771      for (std::multimap<ValuePair, ValuePair>::iterator
772           I = ConnectedPairs.begin(), IE = ConnectedPairs.end();
773           I != IE; ++I) {
774        if (AllPairConnectionTypes.count(*I)) {
775          AllConnectedPairs.insert(*I);
776          AllConnectedPairDeps.insert(VPPair(I->second, I->first));
777        }
778      }
779    } while (ShouldContinue);
780
781    if (AllChosenPairs.empty()) return false;
782    NumFusedOps += AllChosenPairs.size();
783
784    // A set of pairs has now been selected. It is now necessary to replace the
785    // paired instructions with vector instructions. For this procedure each
786    // operand must be replaced with a vector operand. This vector is formed
787    // by using build_vector on the old operands. The replaced values are then
788    // replaced with a vector_extract on the result.  Subsequent optimization
789    // passes should coalesce the build/extract combinations.
790
791    fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs, AllFixedOrderPairs,
792                    AllPairConnectionTypes,
793                    AllConnectedPairs, AllConnectedPairDeps);
794
795    // It is important to cleanup here so that future iterations of this
796    // function have less work to do.
797    (void) SimplifyInstructionsInBlock(&BB, TD, AA->getTargetLibraryInfo());
798    return true;
799  }
800
801  // This function returns true if the provided instruction is capable of being
802  // fused into a vector instruction. This determination is based only on the
803  // type and other attributes of the instruction.
804  bool BBVectorize::isInstVectorizable(Instruction *I,
805                                         bool &IsSimpleLoadStore) {
806    IsSimpleLoadStore = false;
807
808    if (CallInst *C = dyn_cast<CallInst>(I)) {
809      if (!isVectorizableIntrinsic(C))
810        return false;
811    } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
812      // Vectorize simple loads if possbile:
813      IsSimpleLoadStore = L->isSimple();
814      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
815        return false;
816    } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
817      // Vectorize simple stores if possbile:
818      IsSimpleLoadStore = S->isSimple();
819      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
820        return false;
821    } else if (CastInst *C = dyn_cast<CastInst>(I)) {
822      // We can vectorize casts, but not casts of pointer types, etc.
823      if (!Config.VectorizeCasts)
824        return false;
825
826      Type *SrcTy = C->getSrcTy();
827      if (!SrcTy->isSingleValueType())
828        return false;
829
830      Type *DestTy = C->getDestTy();
831      if (!DestTy->isSingleValueType())
832        return false;
833    } else if (isa<SelectInst>(I)) {
834      if (!Config.VectorizeSelect)
835        return false;
836    } else if (isa<CmpInst>(I)) {
837      if (!Config.VectorizeCmp)
838        return false;
839    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
840      if (!Config.VectorizeGEP)
841        return false;
842
843      // Currently, vector GEPs exist only with one index.
844      if (G->getNumIndices() != 1)
845        return false;
846    } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
847        isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
848      return false;
849    }
850
851    // We can't vectorize memory operations without target data
852    if (TD == 0 && IsSimpleLoadStore)
853      return false;
854
855    Type *T1, *T2;
856    getInstructionTypes(I, T1, T2);
857
858    // Not every type can be vectorized...
859    if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
860        !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
861      return false;
862
863    if (T1->getScalarSizeInBits() == 1) {
864      if (!Config.VectorizeBools)
865        return false;
866    } else {
867      if (!Config.VectorizeInts && T1->isIntOrIntVectorTy())
868        return false;
869    }
870
871    if (T2->getScalarSizeInBits() == 1) {
872      if (!Config.VectorizeBools)
873        return false;
874    } else {
875      if (!Config.VectorizeInts && T2->isIntOrIntVectorTy())
876        return false;
877    }
878
879    if (!Config.VectorizeFloats
880        && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
881      return false;
882
883    // Don't vectorize target-specific types.
884    if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy())
885      return false;
886    if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
887      return false;
888
889    if ((!Config.VectorizePointers || TD == 0) &&
890        (T1->getScalarType()->isPointerTy() ||
891         T2->getScalarType()->isPointerTy()))
892      return false;
893
894    if (!VTTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
895                  T2->getPrimitiveSizeInBits() >= Config.VectorBits))
896      return false;
897
898    return true;
899  }
900
901  // This function returns true if the two provided instructions are compatible
902  // (meaning that they can be fused into a vector instruction). This assumes
903  // that I has already been determined to be vectorizable and that J is not
904  // in the use tree of I.
905  bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
906                       bool IsSimpleLoadStore, bool NonPow2Len,
907                       int &CostSavings, int &FixedOrder) {
908    DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
909                     " <-> " << *J << "\n");
910
911    CostSavings = 0;
912    FixedOrder = 0;
913
914    // Loads and stores can be merged if they have different alignments,
915    // but are otherwise the same.
916    if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment |
917                      (NonPow2Len ? Instruction::CompareUsingScalarTypes : 0)))
918      return false;
919
920    Type *IT1, *IT2, *JT1, *JT2;
921    getInstructionTypes(I, IT1, IT2);
922    getInstructionTypes(J, JT1, JT2);
923    unsigned MaxTypeBits = std::max(
924      IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
925      IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
926    if (!VTTI && MaxTypeBits > Config.VectorBits)
927      return false;
928
929    // FIXME: handle addsub-type operations!
930
931    if (IsSimpleLoadStore) {
932      Value *IPtr, *JPtr;
933      unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
934      int64_t OffsetInElmts = 0;
935      if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
936            IAddressSpace, JAddressSpace,
937            OffsetInElmts) && abs64(OffsetInElmts) == 1) {
938        FixedOrder = (int) OffsetInElmts;
939        unsigned BottomAlignment = IAlignment;
940        if (OffsetInElmts < 0) BottomAlignment = JAlignment;
941
942        Type *aTypeI = isa<StoreInst>(I) ?
943          cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
944        Type *aTypeJ = isa<StoreInst>(J) ?
945          cast<StoreInst>(J)->getValueOperand()->getType() : J->getType();
946        Type *VType = getVecTypeForPair(aTypeI, aTypeJ);
947
948        if (Config.AlignedOnly) {
949          // An aligned load or store is possible only if the instruction
950          // with the lower offset has an alignment suitable for the
951          // vector type.
952
953          unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
954          if (BottomAlignment < VecAlignment)
955            return false;
956        }
957
958        if (VTTI) {
959          unsigned ICost = VTTI->getMemoryOpCost(I->getOpcode(), I->getType(),
960                                                 IAlignment, IAddressSpace);
961          unsigned JCost = VTTI->getMemoryOpCost(J->getOpcode(), J->getType(),
962                                                 JAlignment, JAddressSpace);
963          unsigned VCost = VTTI->getMemoryOpCost(I->getOpcode(), VType,
964                                                 BottomAlignment,
965                                                 IAddressSpace);
966          if (VCost > ICost + JCost)
967            return false;
968
969          // We don't want to fuse to a type that will be split, even
970          // if the two input types will also be split and there is no other
971          // associated cost.
972          unsigned VParts = VTTI->getNumberOfParts(VType);
973          if (VParts > 1)
974            return false;
975          else if (!VParts && VCost == ICost + JCost)
976            return false;
977
978          CostSavings = ICost + JCost - VCost;
979        }
980      } else {
981        return false;
982      }
983    } else if (VTTI) {
984      unsigned ICost = getInstrCost(I->getOpcode(), IT1, IT2);
985      unsigned JCost = getInstrCost(J->getOpcode(), JT1, JT2);
986      Type *VT1 = getVecTypeForPair(IT1, JT1),
987           *VT2 = getVecTypeForPair(IT2, JT2);
988      unsigned VCost = getInstrCost(I->getOpcode(), VT1, VT2);
989
990      if (VCost > ICost + JCost)
991        return false;
992
993      // We don't want to fuse to a type that will be split, even
994      // if the two input types will also be split and there is no other
995      // associated cost.
996      unsigned VParts1 = VTTI->getNumberOfParts(VT1),
997               VParts2 = VTTI->getNumberOfParts(VT2);
998      if (VParts1 > 1 || VParts2 > 1)
999        return false;
1000      else if ((!VParts1 || !VParts2) && VCost == ICost + JCost)
1001        return false;
1002
1003      CostSavings = ICost + JCost - VCost;
1004    }
1005
1006    // The powi intrinsic is special because only the first argument is
1007    // vectorized, the second arguments must be equal.
1008    CallInst *CI = dyn_cast<CallInst>(I);
1009    Function *FI;
1010    if (CI && (FI = CI->getCalledFunction()) &&
1011        FI->getIntrinsicID() == Intrinsic::powi) {
1012
1013      Value *A1I = CI->getArgOperand(1),
1014            *A1J = cast<CallInst>(J)->getArgOperand(1);
1015      const SCEV *A1ISCEV = SE->getSCEV(A1I),
1016                 *A1JSCEV = SE->getSCEV(A1J);
1017      return (A1ISCEV == A1JSCEV);
1018    }
1019
1020    return true;
1021  }
1022
1023  // Figure out whether or not J uses I and update the users and write-set
1024  // structures associated with I. Specifically, Users represents the set of
1025  // instructions that depend on I. WriteSet represents the set
1026  // of memory locations that are dependent on I. If UpdateUsers is true,
1027  // and J uses I, then Users is updated to contain J and WriteSet is updated
1028  // to contain any memory locations to which J writes. The function returns
1029  // true if J uses I. By default, alias analysis is used to determine
1030  // whether J reads from memory that overlaps with a location in WriteSet.
1031  // If LoadMoveSet is not null, then it is a previously-computed multimap
1032  // where the key is the memory-based user instruction and the value is
1033  // the instruction to be compared with I. So, if LoadMoveSet is provided,
1034  // then the alias analysis is not used. This is necessary because this
1035  // function is called during the process of moving instructions during
1036  // vectorization and the results of the alias analysis are not stable during
1037  // that process.
1038  bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
1039                       AliasSetTracker &WriteSet, Instruction *I,
1040                       Instruction *J, bool UpdateUsers,
1041                       std::multimap<Value *, Value *> *LoadMoveSet) {
1042    bool UsesI = false;
1043
1044    // This instruction may already be marked as a user due, for example, to
1045    // being a member of a selected pair.
1046    if (Users.count(J))
1047      UsesI = true;
1048
1049    if (!UsesI)
1050      for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
1051           JU != JE; ++JU) {
1052        Value *V = *JU;
1053        if (I == V || Users.count(V)) {
1054          UsesI = true;
1055          break;
1056        }
1057      }
1058    if (!UsesI && J->mayReadFromMemory()) {
1059      if (LoadMoveSet) {
1060        VPIteratorPair JPairRange = LoadMoveSet->equal_range(J);
1061        UsesI = isSecondInIteratorPair<Value*>(I, JPairRange);
1062      } else {
1063        for (AliasSetTracker::iterator W = WriteSet.begin(),
1064             WE = WriteSet.end(); W != WE; ++W) {
1065          if (W->aliasesUnknownInst(J, *AA)) {
1066            UsesI = true;
1067            break;
1068          }
1069        }
1070      }
1071    }
1072
1073    if (UsesI && UpdateUsers) {
1074      if (J->mayWriteToMemory()) WriteSet.add(J);
1075      Users.insert(J);
1076    }
1077
1078    return UsesI;
1079  }
1080
1081  // This function iterates over all instruction pairs in the provided
1082  // basic block and collects all candidate pairs for vectorization.
1083  bool BBVectorize::getCandidatePairs(BasicBlock &BB,
1084                       BasicBlock::iterator &Start,
1085                       std::multimap<Value *, Value *> &CandidatePairs,
1086                       DenseSet<ValuePair> &FixedOrderPairs,
1087                       DenseMap<ValuePair, int> &CandidatePairCostSavings,
1088                       std::vector<Value *> &PairableInsts, bool NonPow2Len) {
1089    BasicBlock::iterator E = BB.end();
1090    if (Start == E) return false;
1091
1092    bool ShouldContinue = false, IAfterStart = false;
1093    for (BasicBlock::iterator I = Start++; I != E; ++I) {
1094      if (I == Start) IAfterStart = true;
1095
1096      bool IsSimpleLoadStore;
1097      if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
1098
1099      // Look for an instruction with which to pair instruction *I...
1100      DenseSet<Value *> Users;
1101      AliasSetTracker WriteSet(*AA);
1102      bool JAfterStart = IAfterStart;
1103      BasicBlock::iterator J = llvm::next(I);
1104      for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
1105        if (J == Start) JAfterStart = true;
1106
1107        // Determine if J uses I, if so, exit the loop.
1108        bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
1109        if (Config.FastDep) {
1110          // Note: For this heuristic to be effective, independent operations
1111          // must tend to be intermixed. This is likely to be true from some
1112          // kinds of grouped loop unrolling (but not the generic LLVM pass),
1113          // but otherwise may require some kind of reordering pass.
1114
1115          // When using fast dependency analysis,
1116          // stop searching after first use:
1117          if (UsesI) break;
1118        } else {
1119          if (UsesI) continue;
1120        }
1121
1122        // J does not use I, and comes before the first use of I, so it can be
1123        // merged with I if the instructions are compatible.
1124        int CostSavings, FixedOrder;
1125        if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len,
1126            CostSavings, FixedOrder)) continue;
1127
1128        // J is a candidate for merging with I.
1129        if (!PairableInsts.size() ||
1130             PairableInsts[PairableInsts.size()-1] != I) {
1131          PairableInsts.push_back(I);
1132        }
1133
1134        CandidatePairs.insert(ValuePair(I, J));
1135        if (VTTI)
1136          CandidatePairCostSavings.insert(ValuePairWithCost(ValuePair(I, J),
1137                                                            CostSavings));
1138
1139        if (FixedOrder == 1)
1140          FixedOrderPairs.insert(ValuePair(I, J));
1141        else if (FixedOrder == -1)
1142          FixedOrderPairs.insert(ValuePair(J, I));
1143
1144        // The next call to this function must start after the last instruction
1145        // selected during this invocation.
1146        if (JAfterStart) {
1147          Start = llvm::next(J);
1148          IAfterStart = JAfterStart = false;
1149        }
1150
1151        DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
1152                     << *I << " <-> " << *J << " (cost savings: " <<
1153                     CostSavings << ")\n");
1154
1155        // If we have already found too many pairs, break here and this function
1156        // will be called again starting after the last instruction selected
1157        // during this invocation.
1158        if (PairableInsts.size() >= Config.MaxInsts) {
1159          ShouldContinue = true;
1160          break;
1161        }
1162      }
1163
1164      if (ShouldContinue)
1165        break;
1166    }
1167
1168    DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
1169           << " instructions with candidate pairs\n");
1170
1171    return ShouldContinue;
1172  }
1173
1174  // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
1175  // it looks for pairs such that both members have an input which is an
1176  // output of PI or PJ.
1177  void BBVectorize::computePairsConnectedTo(
1178                      std::multimap<Value *, Value *> &CandidatePairs,
1179                      std::vector<Value *> &PairableInsts,
1180                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1181                      DenseMap<VPPair, unsigned> &PairConnectionTypes,
1182                      ValuePair P) {
1183    StoreInst *SI, *SJ;
1184
1185    // For each possible pairing for this variable, look at the uses of
1186    // the first value...
1187    for (Value::use_iterator I = P.first->use_begin(),
1188         E = P.first->use_end(); I != E; ++I) {
1189      if (isa<LoadInst>(*I)) {
1190        // A pair cannot be connected to a load because the load only takes one
1191        // operand (the address) and it is a scalar even after vectorization.
1192        continue;
1193      } else if ((SI = dyn_cast<StoreInst>(*I)) &&
1194                 P.first == SI->getPointerOperand()) {
1195        // Similarly, a pair cannot be connected to a store through its
1196        // pointer operand.
1197        continue;
1198      }
1199
1200      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
1201
1202      // For each use of the first variable, look for uses of the second
1203      // variable...
1204      for (Value::use_iterator J = P.second->use_begin(),
1205           E2 = P.second->use_end(); J != E2; ++J) {
1206        if ((SJ = dyn_cast<StoreInst>(*J)) &&
1207            P.second == SJ->getPointerOperand())
1208          continue;
1209
1210        VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
1211
1212        // Look for <I, J>:
1213        if (isSecondInIteratorPair<Value*>(*J, IPairRange)) {
1214          VPPair VP(P, ValuePair(*I, *J));
1215          ConnectedPairs.insert(VP);
1216          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionDirect));
1217        }
1218
1219        // Look for <J, I>:
1220        if (isSecondInIteratorPair<Value*>(*I, JPairRange)) {
1221          VPPair VP(P, ValuePair(*J, *I));
1222          ConnectedPairs.insert(VP);
1223          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSwap));
1224        }
1225      }
1226
1227      if (Config.SplatBreaksChain) continue;
1228      // Look for cases where just the first value in the pair is used by
1229      // both members of another pair (splatting).
1230      for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) {
1231        if ((SJ = dyn_cast<StoreInst>(*J)) &&
1232            P.first == SJ->getPointerOperand())
1233          continue;
1234
1235        if (isSecondInIteratorPair<Value*>(*J, IPairRange)) {
1236          VPPair VP(P, ValuePair(*I, *J));
1237          ConnectedPairs.insert(VP);
1238          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
1239        }
1240      }
1241    }
1242
1243    if (Config.SplatBreaksChain) return;
1244    // Look for cases where just the second value in the pair is used by
1245    // both members of another pair (splatting).
1246    for (Value::use_iterator I = P.second->use_begin(),
1247         E = P.second->use_end(); I != E; ++I) {
1248      if (isa<LoadInst>(*I))
1249        continue;
1250      else if ((SI = dyn_cast<StoreInst>(*I)) &&
1251               P.second == SI->getPointerOperand())
1252        continue;
1253
1254      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
1255
1256      for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
1257        if ((SJ = dyn_cast<StoreInst>(*J)) &&
1258            P.second == SJ->getPointerOperand())
1259          continue;
1260
1261        if (isSecondInIteratorPair<Value*>(*J, IPairRange)) {
1262          VPPair VP(P, ValuePair(*I, *J));
1263          ConnectedPairs.insert(VP);
1264          PairConnectionTypes.insert(VPPairWithType(VP, PairConnectionSplat));
1265        }
1266      }
1267    }
1268  }
1269
1270  // This function figures out which pairs are connected.  Two pairs are
1271  // connected if some output of the first pair forms an input to both members
1272  // of the second pair.
1273  void BBVectorize::computeConnectedPairs(
1274                      std::multimap<Value *, Value *> &CandidatePairs,
1275                      std::vector<Value *> &PairableInsts,
1276                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1277                      DenseMap<VPPair, unsigned> &PairConnectionTypes) {
1278
1279    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
1280         PE = PairableInsts.end(); PI != PE; ++PI) {
1281      VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI);
1282
1283      for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
1284           P != choiceRange.second; ++P)
1285        computePairsConnectedTo(CandidatePairs, PairableInsts,
1286                                ConnectedPairs, PairConnectionTypes, *P);
1287    }
1288
1289    DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
1290                 << " pair connections.\n");
1291  }
1292
1293  // This function builds a set of use tuples such that <A, B> is in the set
1294  // if B is in the use tree of A. If B is in the use tree of A, then B
1295  // depends on the output of A.
1296  void BBVectorize::buildDepMap(
1297                      BasicBlock &BB,
1298                      std::multimap<Value *, Value *> &CandidatePairs,
1299                      std::vector<Value *> &PairableInsts,
1300                      DenseSet<ValuePair> &PairableInstUsers) {
1301    DenseSet<Value *> IsInPair;
1302    for (std::multimap<Value *, Value *>::iterator C = CandidatePairs.begin(),
1303         E = CandidatePairs.end(); C != E; ++C) {
1304      IsInPair.insert(C->first);
1305      IsInPair.insert(C->second);
1306    }
1307
1308    // Iterate through the basic block, recording all Users of each
1309    // pairable instruction.
1310
1311    BasicBlock::iterator E = BB.end();
1312    for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
1313      if (IsInPair.find(I) == IsInPair.end()) continue;
1314
1315      DenseSet<Value *> Users;
1316      AliasSetTracker WriteSet(*AA);
1317      for (BasicBlock::iterator J = llvm::next(I); J != E; ++J)
1318        (void) trackUsesOfI(Users, WriteSet, I, J);
1319
1320      for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
1321           U != E; ++U)
1322        PairableInstUsers.insert(ValuePair(I, *U));
1323    }
1324  }
1325
1326  // Returns true if an input to pair P is an output of pair Q and also an
1327  // input of pair Q is an output of pair P. If this is the case, then these
1328  // two pairs cannot be simultaneously fused.
1329  bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
1330                     DenseSet<ValuePair> &PairableInstUsers,
1331                     std::multimap<ValuePair, ValuePair> *PairableInstUserMap) {
1332    // Two pairs are in conflict if they are mutual Users of eachother.
1333    bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
1334                  PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
1335                  PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
1336                  PairableInstUsers.count(ValuePair(P.second, Q.second));
1337    bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
1338                  PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
1339                  PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
1340                  PairableInstUsers.count(ValuePair(Q.second, P.second));
1341    if (PairableInstUserMap) {
1342      // FIXME: The expensive part of the cycle check is not so much the cycle
1343      // check itself but this edge insertion procedure. This needs some
1344      // profiling and probably a different data structure (same is true of
1345      // most uses of std::multimap).
1346      if (PUsesQ) {
1347        VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q);
1348        if (!isSecondInIteratorPair(P, QPairRange))
1349          PairableInstUserMap->insert(VPPair(Q, P));
1350      }
1351      if (QUsesP) {
1352        VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P);
1353        if (!isSecondInIteratorPair(Q, PPairRange))
1354          PairableInstUserMap->insert(VPPair(P, Q));
1355      }
1356    }
1357
1358    return (QUsesP && PUsesQ);
1359  }
1360
1361  // This function walks the use graph of current pairs to see if, starting
1362  // from P, the walk returns to P.
1363  bool BBVectorize::pairWillFormCycle(ValuePair P,
1364                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1365                       DenseSet<ValuePair> &CurrentPairs) {
1366    DEBUG(if (DebugCycleCheck)
1367            dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
1368                   << *P.second << "\n");
1369    // A lookup table of visisted pairs is kept because the PairableInstUserMap
1370    // contains non-direct associations.
1371    DenseSet<ValuePair> Visited;
1372    SmallVector<ValuePair, 32> Q;
1373    // General depth-first post-order traversal:
1374    Q.push_back(P);
1375    do {
1376      ValuePair QTop = Q.pop_back_val();
1377      Visited.insert(QTop);
1378
1379      DEBUG(if (DebugCycleCheck)
1380              dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
1381                     << *QTop.second << "\n");
1382      VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop);
1383      for (std::multimap<ValuePair, ValuePair>::iterator C = QPairRange.first;
1384           C != QPairRange.second; ++C) {
1385        if (C->second == P) {
1386          DEBUG(dbgs()
1387                 << "BBV: rejected to prevent non-trivial cycle formation: "
1388                 << *C->first.first << " <-> " << *C->first.second << "\n");
1389          return true;
1390        }
1391
1392        if (CurrentPairs.count(C->second) && !Visited.count(C->second))
1393          Q.push_back(C->second);
1394      }
1395    } while (!Q.empty());
1396
1397    return false;
1398  }
1399
1400  // This function builds the initial tree of connected pairs with the
1401  // pair J at the root.
1402  void BBVectorize::buildInitialTreeFor(
1403                      std::multimap<Value *, Value *> &CandidatePairs,
1404                      std::vector<Value *> &PairableInsts,
1405                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1406                      DenseSet<ValuePair> &PairableInstUsers,
1407                      DenseMap<Value *, Value *> &ChosenPairs,
1408                      DenseMap<ValuePair, size_t> &Tree, ValuePair J) {
1409    // Each of these pairs is viewed as the root node of a Tree. The Tree
1410    // is then walked (depth-first). As this happens, we keep track of
1411    // the pairs that compose the Tree and the maximum depth of the Tree.
1412    SmallVector<ValuePairWithDepth, 32> Q;
1413    // General depth-first post-order traversal:
1414    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
1415    do {
1416      ValuePairWithDepth QTop = Q.back();
1417
1418      // Push each child onto the queue:
1419      bool MoreChildren = false;
1420      size_t MaxChildDepth = QTop.second;
1421      VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first);
1422      for (std::multimap<ValuePair, ValuePair>::iterator k = qtRange.first;
1423           k != qtRange.second; ++k) {
1424        // Make sure that this child pair is still a candidate:
1425        bool IsStillCand = false;
1426        VPIteratorPair checkRange =
1427          CandidatePairs.equal_range(k->second.first);
1428        for (std::multimap<Value *, Value *>::iterator m = checkRange.first;
1429             m != checkRange.second; ++m) {
1430          if (m->second == k->second.second) {
1431            IsStillCand = true;
1432            break;
1433          }
1434        }
1435
1436        if (IsStillCand) {
1437          DenseMap<ValuePair, size_t>::iterator C = Tree.find(k->second);
1438          if (C == Tree.end()) {
1439            size_t d = getDepthFactor(k->second.first);
1440            Q.push_back(ValuePairWithDepth(k->second, QTop.second+d));
1441            MoreChildren = true;
1442          } else {
1443            MaxChildDepth = std::max(MaxChildDepth, C->second);
1444          }
1445        }
1446      }
1447
1448      if (!MoreChildren) {
1449        // Record the current pair as part of the Tree:
1450        Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
1451        Q.pop_back();
1452      }
1453    } while (!Q.empty());
1454  }
1455
1456  // Given some initial tree, prune it by removing conflicting pairs (pairs
1457  // that cannot be simultaneously chosen for vectorization).
1458  void BBVectorize::pruneTreeFor(
1459                      std::multimap<Value *, Value *> &CandidatePairs,
1460                      std::vector<Value *> &PairableInsts,
1461                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1462                      DenseSet<ValuePair> &PairableInstUsers,
1463                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1464                      DenseMap<Value *, Value *> &ChosenPairs,
1465                      DenseMap<ValuePair, size_t> &Tree,
1466                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
1467                      bool UseCycleCheck) {
1468    SmallVector<ValuePairWithDepth, 32> Q;
1469    // General depth-first post-order traversal:
1470    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
1471    do {
1472      ValuePairWithDepth QTop = Q.pop_back_val();
1473      PrunedTree.insert(QTop.first);
1474
1475      // Visit each child, pruning as necessary...
1476      DenseMap<ValuePair, size_t> BestChildren;
1477      VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
1478      for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first;
1479           K != QTopRange.second; ++K) {
1480        DenseMap<ValuePair, size_t>::iterator C = Tree.find(K->second);
1481        if (C == Tree.end()) continue;
1482
1483        // This child is in the Tree, now we need to make sure it is the
1484        // best of any conflicting children. There could be multiple
1485        // conflicting children, so first, determine if we're keeping
1486        // this child, then delete conflicting children as necessary.
1487
1488        // It is also necessary to guard against pairing-induced
1489        // dependencies. Consider instructions a .. x .. y .. b
1490        // such that (a,b) are to be fused and (x,y) are to be fused
1491        // but a is an input to x and b is an output from y. This
1492        // means that y cannot be moved after b but x must be moved
1493        // after b for (a,b) to be fused. In other words, after
1494        // fusing (a,b) we have y .. a/b .. x where y is an input
1495        // to a/b and x is an output to a/b: x and y can no longer
1496        // be legally fused. To prevent this condition, we must
1497        // make sure that a child pair added to the Tree is not
1498        // both an input and output of an already-selected pair.
1499
1500        // Pairing-induced dependencies can also form from more complicated
1501        // cycles. The pair vs. pair conflicts are easy to check, and so
1502        // that is done explicitly for "fast rejection", and because for
1503        // child vs. child conflicts, we may prefer to keep the current
1504        // pair in preference to the already-selected child.
1505        DenseSet<ValuePair> CurrentPairs;
1506
1507        bool CanAdd = true;
1508        for (DenseMap<ValuePair, size_t>::iterator C2
1509              = BestChildren.begin(), E2 = BestChildren.end();
1510             C2 != E2; ++C2) {
1511          if (C2->first.first == C->first.first ||
1512              C2->first.first == C->first.second ||
1513              C2->first.second == C->first.first ||
1514              C2->first.second == C->first.second ||
1515              pairsConflict(C2->first, C->first, PairableInstUsers,
1516                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1517            if (C2->second >= C->second) {
1518              CanAdd = false;
1519              break;
1520            }
1521
1522            CurrentPairs.insert(C2->first);
1523          }
1524        }
1525        if (!CanAdd) continue;
1526
1527        // Even worse, this child could conflict with another node already
1528        // selected for the Tree. If that is the case, ignore this child.
1529        for (DenseSet<ValuePair>::iterator T = PrunedTree.begin(),
1530             E2 = PrunedTree.end(); T != E2; ++T) {
1531          if (T->first == C->first.first ||
1532              T->first == C->first.second ||
1533              T->second == C->first.first ||
1534              T->second == C->first.second ||
1535              pairsConflict(*T, C->first, PairableInstUsers,
1536                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1537            CanAdd = false;
1538            break;
1539          }
1540
1541          CurrentPairs.insert(*T);
1542        }
1543        if (!CanAdd) continue;
1544
1545        // And check the queue too...
1546        for (SmallVector<ValuePairWithDepth, 32>::iterator C2 = Q.begin(),
1547             E2 = Q.end(); C2 != E2; ++C2) {
1548          if (C2->first.first == C->first.first ||
1549              C2->first.first == C->first.second ||
1550              C2->first.second == C->first.first ||
1551              C2->first.second == C->first.second ||
1552              pairsConflict(C2->first, C->first, PairableInstUsers,
1553                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1554            CanAdd = false;
1555            break;
1556          }
1557
1558          CurrentPairs.insert(C2->first);
1559        }
1560        if (!CanAdd) continue;
1561
1562        // Last but not least, check for a conflict with any of the
1563        // already-chosen pairs.
1564        for (DenseMap<Value *, Value *>::iterator C2 =
1565              ChosenPairs.begin(), E2 = ChosenPairs.end();
1566             C2 != E2; ++C2) {
1567          if (pairsConflict(*C2, C->first, PairableInstUsers,
1568                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1569            CanAdd = false;
1570            break;
1571          }
1572
1573          CurrentPairs.insert(*C2);
1574        }
1575        if (!CanAdd) continue;
1576
1577        // To check for non-trivial cycles formed by the addition of the
1578        // current pair we've formed a list of all relevant pairs, now use a
1579        // graph walk to check for a cycle. We start from the current pair and
1580        // walk the use tree to see if we again reach the current pair. If we
1581        // do, then the current pair is rejected.
1582
1583        // FIXME: It may be more efficient to use a topological-ordering
1584        // algorithm to improve the cycle check. This should be investigated.
1585        if (UseCycleCheck &&
1586            pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
1587          continue;
1588
1589        // This child can be added, but we may have chosen it in preference
1590        // to an already-selected child. Check for this here, and if a
1591        // conflict is found, then remove the previously-selected child
1592        // before adding this one in its place.
1593        for (DenseMap<ValuePair, size_t>::iterator C2
1594              = BestChildren.begin(); C2 != BestChildren.end();) {
1595          if (C2->first.first == C->first.first ||
1596              C2->first.first == C->first.second ||
1597              C2->first.second == C->first.first ||
1598              C2->first.second == C->first.second ||
1599              pairsConflict(C2->first, C->first, PairableInstUsers))
1600            BestChildren.erase(C2++);
1601          else
1602            ++C2;
1603        }
1604
1605        BestChildren.insert(ValuePairWithDepth(C->first, C->second));
1606      }
1607
1608      for (DenseMap<ValuePair, size_t>::iterator C
1609            = BestChildren.begin(), E2 = BestChildren.end();
1610           C != E2; ++C) {
1611        size_t DepthF = getDepthFactor(C->first.first);
1612        Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
1613      }
1614    } while (!Q.empty());
1615  }
1616
1617  // This function finds the best tree of mututally-compatible connected
1618  // pairs, given the choice of root pairs as an iterator range.
1619  void BBVectorize::findBestTreeFor(
1620                      std::multimap<Value *, Value *> &CandidatePairs,
1621                      DenseMap<ValuePair, int> &CandidatePairCostSavings,
1622                      std::vector<Value *> &PairableInsts,
1623                      DenseSet<ValuePair> &FixedOrderPairs,
1624                      DenseMap<VPPair, unsigned> &PairConnectionTypes,
1625                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1626                      std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
1627                      DenseSet<ValuePair> &PairableInstUsers,
1628                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1629                      DenseMap<Value *, Value *> &ChosenPairs,
1630                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
1631                      int &BestEffSize, VPIteratorPair ChoiceRange,
1632                      bool UseCycleCheck) {
1633    for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
1634         J != ChoiceRange.second; ++J) {
1635
1636      // Before going any further, make sure that this pair does not
1637      // conflict with any already-selected pairs (see comment below
1638      // near the Tree pruning for more details).
1639      DenseSet<ValuePair> ChosenPairSet;
1640      bool DoesConflict = false;
1641      for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
1642           E = ChosenPairs.end(); C != E; ++C) {
1643        if (pairsConflict(*C, *J, PairableInstUsers,
1644                          UseCycleCheck ? &PairableInstUserMap : 0)) {
1645          DoesConflict = true;
1646          break;
1647        }
1648
1649        ChosenPairSet.insert(*C);
1650      }
1651      if (DoesConflict) continue;
1652
1653      if (UseCycleCheck &&
1654          pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet))
1655        continue;
1656
1657      DenseMap<ValuePair, size_t> Tree;
1658      buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1659                          PairableInstUsers, ChosenPairs, Tree, *J);
1660
1661      // Because we'll keep the child with the largest depth, the largest
1662      // depth is still the same in the unpruned Tree.
1663      size_t MaxDepth = Tree.lookup(*J);
1664
1665      DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {"
1666                   << *J->first << " <-> " << *J->second << "} of depth " <<
1667                   MaxDepth << " and size " << Tree.size() << "\n");
1668
1669      // At this point the Tree has been constructed, but, may contain
1670      // contradictory children (meaning that different children of
1671      // some tree node may be attempting to fuse the same instruction).
1672      // So now we walk the tree again, in the case of a conflict,
1673      // keep only the child with the largest depth. To break a tie,
1674      // favor the first child.
1675
1676      DenseSet<ValuePair> PrunedTree;
1677      pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1678                   PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
1679                   PrunedTree, *J, UseCycleCheck);
1680
1681      int EffSize = 0;
1682      if (VTTI) {
1683        DenseSet<Value *> PrunedTreeInstrs;
1684        for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
1685             E = PrunedTree.end(); S != E; ++S) {
1686          PrunedTreeInstrs.insert(S->first);
1687          PrunedTreeInstrs.insert(S->second);
1688        }
1689
1690        // The set of pairs that have already contributed to the total cost.
1691        DenseSet<ValuePair> IncomingPairs;
1692
1693        // The node weights represent the cost savings associated with
1694        // fusing the pair of instructions.
1695        for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
1696             E = PrunedTree.end(); S != E; ++S) {
1697          bool FlipOrder = false;
1698
1699          if (getDepthFactor(S->first)) {
1700            int ESContrib = CandidatePairCostSavings.find(*S)->second;
1701            DEBUG(if (DebugPairSelection) dbgs() << "\tweight {"
1702                   << *S->first << " <-> " << *S->second << "} = " <<
1703                   ESContrib << "\n");
1704            EffSize += ESContrib;
1705          }
1706
1707          // The edge weights contribute in a negative sense: they represent
1708          // the cost of shuffles.
1709          VPPIteratorPair IP = ConnectedPairDeps.equal_range(*S);
1710          if (IP.first != ConnectedPairDeps.end()) {
1711            unsigned NumDepsDirect = 0, NumDepsSwap = 0;
1712            for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
1713                 Q != IP.second; ++Q) {
1714              if (!PrunedTree.count(Q->second))
1715                continue;
1716              DenseMap<VPPair, unsigned>::iterator R =
1717                PairConnectionTypes.find(VPPair(Q->second, Q->first));
1718              assert(R != PairConnectionTypes.end() &&
1719                     "Cannot find pair connection type");
1720              if (R->second == PairConnectionDirect)
1721                ++NumDepsDirect;
1722              else if (R->second == PairConnectionSwap)
1723                ++NumDepsSwap;
1724            }
1725
1726            // If there are more swaps than direct connections, then
1727            // the pair order will be flipped during fusion. So the real
1728            // number of swaps is the minimum number.
1729            FlipOrder = !FixedOrderPairs.count(*S) &&
1730              ((NumDepsSwap > NumDepsDirect) ||
1731                FixedOrderPairs.count(ValuePair(S->second, S->first)));
1732
1733            for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
1734                 Q != IP.second; ++Q) {
1735              if (!PrunedTree.count(Q->second))
1736                continue;
1737              DenseMap<VPPair, unsigned>::iterator R =
1738                PairConnectionTypes.find(VPPair(Q->second, Q->first));
1739              assert(R != PairConnectionTypes.end() &&
1740                     "Cannot find pair connection type");
1741              Type *Ty1 = Q->second.first->getType(),
1742                   *Ty2 = Q->second.second->getType();
1743              Type *VTy = getVecTypeForPair(Ty1, Ty2);
1744              if ((R->second == PairConnectionDirect && FlipOrder) ||
1745                  (R->second == PairConnectionSwap && !FlipOrder)  ||
1746                  R->second == PairConnectionSplat) {
1747                int ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
1748                                                   VTy, VTy);
1749                DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
1750                  *Q->second.first << " <-> " << *Q->second.second <<
1751                    "} -> {" <<
1752                  *S->first << " <-> " << *S->second << "} = " <<
1753                   ESContrib << "\n");
1754                EffSize -= ESContrib;
1755              }
1756            }
1757          }
1758
1759          // Compute the cost of outgoing edges. We assume that edges outgoing
1760          // to shuffles, inserts or extracts can be merged, and so contribute
1761          // no additional cost.
1762          if (!S->first->getType()->isVoidTy()) {
1763            Type *Ty1 = S->first->getType(),
1764                 *Ty2 = S->second->getType();
1765            Type *VTy = getVecTypeForPair(Ty1, Ty2);
1766
1767            bool NeedsExtraction = false;
1768            for (Value::use_iterator I = S->first->use_begin(),
1769                 IE = S->first->use_end(); I != IE; ++I) {
1770              if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(*I)) {
1771                // Shuffle can be folded if it has no other input
1772                if (isa<UndefValue>(SI->getOperand(1)))
1773                  continue;
1774              }
1775              if (isa<ExtractElementInst>(*I))
1776                continue;
1777              if (PrunedTreeInstrs.count(*I))
1778                continue;
1779              NeedsExtraction = true;
1780              break;
1781            }
1782
1783            if (NeedsExtraction) {
1784              int ESContrib;
1785              if (Ty1->isVectorTy())
1786                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
1787                                               Ty1, VTy);
1788              else
1789                ESContrib = (int) VTTI->getVectorInstrCost(
1790                                    Instruction::ExtractElement, VTy, 0);
1791
1792              DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
1793                *S->first << "} = " << ESContrib << "\n");
1794              EffSize -= ESContrib;
1795            }
1796
1797            NeedsExtraction = false;
1798            for (Value::use_iterator I = S->second->use_begin(),
1799                 IE = S->second->use_end(); I != IE; ++I) {
1800              if (ShuffleVectorInst *SI = dyn_cast<ShuffleVectorInst>(*I)) {
1801                // Shuffle can be folded if it has no other input
1802                if (isa<UndefValue>(SI->getOperand(1)))
1803                  continue;
1804              }
1805              if (isa<ExtractElementInst>(*I))
1806                continue;
1807              if (PrunedTreeInstrs.count(*I))
1808                continue;
1809              NeedsExtraction = true;
1810              break;
1811            }
1812
1813            if (NeedsExtraction) {
1814              int ESContrib;
1815              if (Ty2->isVectorTy())
1816                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
1817                                               Ty2, VTy);
1818              else
1819                ESContrib = (int) VTTI->getVectorInstrCost(
1820                                    Instruction::ExtractElement, VTy, 1);
1821              DEBUG(if (DebugPairSelection) dbgs() << "\tcost {" <<
1822                *S->second << "} = " << ESContrib << "\n");
1823              EffSize -= ESContrib;
1824            }
1825          }
1826
1827          // Compute the cost of incoming edges.
1828          if (!isa<LoadInst>(S->first) && !isa<StoreInst>(S->first)) {
1829            Instruction *S1 = cast<Instruction>(S->first),
1830                        *S2 = cast<Instruction>(S->second);
1831            for (unsigned o = 0; o < S1->getNumOperands(); ++o) {
1832              Value *O1 = S1->getOperand(o), *O2 = S2->getOperand(o);
1833
1834              // Combining constants into vector constants (or small vector
1835              // constants into larger ones are assumed free).
1836              if (isa<Constant>(O1) && isa<Constant>(O2))
1837                continue;
1838
1839              if (FlipOrder)
1840                std::swap(O1, O2);
1841
1842              ValuePair VP  = ValuePair(O1, O2);
1843              ValuePair VPR = ValuePair(O2, O1);
1844
1845              // Internal edges are not handled here.
1846              if (PrunedTree.count(VP) || PrunedTree.count(VPR))
1847                continue;
1848
1849              Type *Ty1 = O1->getType(),
1850                   *Ty2 = O2->getType();
1851              Type *VTy = getVecTypeForPair(Ty1, Ty2);
1852
1853              // Combining vector operations of the same type is also assumed
1854              // folded with other operations.
1855              if (Ty1 == Ty2) {
1856                // If both are insert elements, then both can be widened.
1857                if (isa<InsertElementInst>(O1) && isa<InsertElementInst>(O2))
1858                  continue;
1859                // If both are extract elements, and both have the same input
1860                // type, then they can be replaced with a shuffle
1861                ExtractElementInst *EIO1 = dyn_cast<ExtractElementInst>(O1),
1862                                   *EIO2 = dyn_cast<ExtractElementInst>(O2);
1863                if (EIO1 && EIO2 &&
1864                    EIO1->getOperand(0)->getType() ==
1865                      EIO2->getOperand(0)->getType())
1866                  continue;
1867                // If both are a shuffle with equal operand types and only two
1868                // unqiue operands, then they can be replaced with a single
1869                // shuffle
1870                ShuffleVectorInst *SIO1 = dyn_cast<ShuffleVectorInst>(O1),
1871                                  *SIO2 = dyn_cast<ShuffleVectorInst>(O2);
1872                if (SIO1 && SIO2 &&
1873                    SIO1->getOperand(0)->getType() ==
1874                      SIO2->getOperand(0)->getType()) {
1875                  SmallSet<Value *, 4> SIOps;
1876                  SIOps.insert(SIO1->getOperand(0));
1877                  SIOps.insert(SIO1->getOperand(1));
1878                  SIOps.insert(SIO2->getOperand(0));
1879                  SIOps.insert(SIO2->getOperand(1));
1880                  if (SIOps.size() <= 2)
1881                    continue;
1882                }
1883              }
1884
1885              int ESContrib;
1886              // This pair has already been formed.
1887              if (IncomingPairs.count(VP)) {
1888                continue;
1889              } else if (IncomingPairs.count(VPR)) {
1890                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
1891                                               VTy, VTy);
1892              } else if (!Ty1->isVectorTy() && !Ty2->isVectorTy()) {
1893                ESContrib = (int) VTTI->getVectorInstrCost(
1894                                    Instruction::InsertElement, VTy, 0);
1895                ESContrib += (int) VTTI->getVectorInstrCost(
1896                                     Instruction::InsertElement, VTy, 1);
1897              } else if (!Ty1->isVectorTy()) {
1898                // O1 needs to be inserted into a vector of size O2, and then
1899                // both need to be shuffled together.
1900                ESContrib = (int) VTTI->getVectorInstrCost(
1901                                    Instruction::InsertElement, Ty2, 0);
1902                ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
1903                                                VTy, Ty2);
1904              } else if (!Ty2->isVectorTy()) {
1905                // O2 needs to be inserted into a vector of size O1, and then
1906                // both need to be shuffled together.
1907                ESContrib = (int) VTTI->getVectorInstrCost(
1908                                    Instruction::InsertElement, Ty1, 0);
1909                ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
1910                                                VTy, Ty1);
1911              } else {
1912                Type *TyBig = Ty1, *TySmall = Ty2;
1913                if (Ty2->getVectorNumElements() > Ty1->getVectorNumElements())
1914                  std::swap(TyBig, TySmall);
1915
1916                ESContrib = (int) getInstrCost(Instruction::ShuffleVector,
1917                                               VTy, TyBig);
1918                if (TyBig != TySmall)
1919                  ESContrib += (int) getInstrCost(Instruction::ShuffleVector,
1920                                                  TyBig, TySmall);
1921              }
1922
1923              DEBUG(if (DebugPairSelection) dbgs() << "\tcost {"
1924                     << *O1 << " <-> " << *O2 << "} = " <<
1925                     ESContrib << "\n");
1926              EffSize -= ESContrib;
1927              IncomingPairs.insert(VP);
1928            }
1929          }
1930        }
1931      } else {
1932        for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
1933             E = PrunedTree.end(); S != E; ++S)
1934          EffSize += (int) getDepthFactor(S->first);
1935      }
1936
1937      DEBUG(if (DebugPairSelection)
1938             dbgs() << "BBV: found pruned Tree for pair {"
1939             << *J->first << " <-> " << *J->second << "} of depth " <<
1940             MaxDepth << " and size " << PrunedTree.size() <<
1941            " (effective size: " << EffSize << ")\n");
1942      if (((VTTI && !UseChainDepthWithTI) ||
1943            MaxDepth >= Config.ReqChainDepth) &&
1944          EffSize > 0 && EffSize > BestEffSize) {
1945        BestMaxDepth = MaxDepth;
1946        BestEffSize = EffSize;
1947        BestTree = PrunedTree;
1948      }
1949    }
1950  }
1951
1952  // Given the list of candidate pairs, this function selects those
1953  // that will be fused into vector instructions.
1954  void BBVectorize::choosePairs(
1955                      std::multimap<Value *, Value *> &CandidatePairs,
1956                      DenseMap<ValuePair, int> &CandidatePairCostSavings,
1957                      std::vector<Value *> &PairableInsts,
1958                      DenseSet<ValuePair> &FixedOrderPairs,
1959                      DenseMap<VPPair, unsigned> &PairConnectionTypes,
1960                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1961                      std::multimap<ValuePair, ValuePair> &ConnectedPairDeps,
1962                      DenseSet<ValuePair> &PairableInstUsers,
1963                      DenseMap<Value *, Value *>& ChosenPairs) {
1964    bool UseCycleCheck =
1965     CandidatePairs.size() <= Config.MaxCandPairsForCycleCheck;
1966    std::multimap<ValuePair, ValuePair> PairableInstUserMap;
1967    for (std::vector<Value *>::iterator I = PairableInsts.begin(),
1968         E = PairableInsts.end(); I != E; ++I) {
1969      // The number of possible pairings for this variable:
1970      size_t NumChoices = CandidatePairs.count(*I);
1971      if (!NumChoices) continue;
1972
1973      VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
1974
1975      // The best pair to choose and its tree:
1976      size_t BestMaxDepth = 0;
1977      int BestEffSize = 0;
1978      DenseSet<ValuePair> BestTree;
1979      findBestTreeFor(CandidatePairs, CandidatePairCostSavings,
1980                      PairableInsts, FixedOrderPairs, PairConnectionTypes,
1981                      ConnectedPairs, ConnectedPairDeps,
1982                      PairableInstUsers, PairableInstUserMap, ChosenPairs,
1983                      BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
1984                      UseCycleCheck);
1985
1986      // A tree has been chosen (or not) at this point. If no tree was
1987      // chosen, then this instruction, I, cannot be paired (and is no longer
1988      // considered).
1989
1990      DEBUG(if (BestTree.size() > 0)
1991              dbgs() << "BBV: selected pairs in the best tree for: "
1992                     << *cast<Instruction>(*I) << "\n");
1993
1994      for (DenseSet<ValuePair>::iterator S = BestTree.begin(),
1995           SE2 = BestTree.end(); S != SE2; ++S) {
1996        // Insert the members of this tree into the list of chosen pairs.
1997        ChosenPairs.insert(ValuePair(S->first, S->second));
1998        DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
1999               *S->second << "\n");
2000
2001        // Remove all candidate pairs that have values in the chosen tree.
2002        for (std::multimap<Value *, Value *>::iterator K =
2003               CandidatePairs.begin(); K != CandidatePairs.end();) {
2004          if (K->first == S->first || K->second == S->first ||
2005              K->second == S->second || K->first == S->second) {
2006            // Don't remove the actual pair chosen so that it can be used
2007            // in subsequent tree selections.
2008            if (!(K->first == S->first && K->second == S->second))
2009              CandidatePairs.erase(K++);
2010            else
2011              ++K;
2012          } else {
2013            ++K;
2014          }
2015        }
2016      }
2017    }
2018
2019    DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
2020  }
2021
2022  std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
2023                     unsigned n = 0) {
2024    if (!I->hasName())
2025      return "";
2026
2027    return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
2028             (n > 0 ? "." + utostr(n) : "")).str();
2029  }
2030
2031  // Returns the value that is to be used as the pointer input to the vector
2032  // instruction that fuses I with J.
2033  Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
2034                     Instruction *I, Instruction *J, unsigned o) {
2035    Value *IPtr, *JPtr;
2036    unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
2037    int64_t OffsetInElmts;
2038
2039    // Note: the analysis might fail here, that is why the pair order has
2040    // been precomputed (OffsetInElmts must be unused here).
2041    (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
2042                          IAddressSpace, JAddressSpace,
2043                          OffsetInElmts, false);
2044
2045    // The pointer value is taken to be the one with the lowest offset.
2046    Value *VPtr = IPtr;
2047
2048    Type *ArgTypeI = cast<PointerType>(IPtr->getType())->getElementType();
2049    Type *ArgTypeJ = cast<PointerType>(JPtr->getType())->getElementType();
2050    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2051    Type *VArgPtrType = PointerType::get(VArgType,
2052      cast<PointerType>(IPtr->getType())->getAddressSpace());
2053    return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
2054                        /* insert before */ I);
2055  }
2056
2057  void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
2058                     unsigned MaskOffset, unsigned NumInElem,
2059                     unsigned NumInElem1, unsigned IdxOffset,
2060                     std::vector<Constant*> &Mask) {
2061    unsigned NumElem1 = cast<VectorType>(J->getType())->getNumElements();
2062    for (unsigned v = 0; v < NumElem1; ++v) {
2063      int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
2064      if (m < 0) {
2065        Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
2066      } else {
2067        unsigned mm = m + (int) IdxOffset;
2068        if (m >= (int) NumInElem1)
2069          mm += (int) NumInElem;
2070
2071        Mask[v+MaskOffset] =
2072          ConstantInt::get(Type::getInt32Ty(Context), mm);
2073      }
2074    }
2075  }
2076
2077  // Returns the value that is to be used as the vector-shuffle mask to the
2078  // vector instruction that fuses I with J.
2079  Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
2080                     Instruction *I, Instruction *J) {
2081    // This is the shuffle mask. We need to append the second
2082    // mask to the first, and the numbers need to be adjusted.
2083
2084    Type *ArgTypeI = I->getType();
2085    Type *ArgTypeJ = J->getType();
2086    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2087
2088    unsigned NumElemI = cast<VectorType>(ArgTypeI)->getNumElements();
2089
2090    // Get the total number of elements in the fused vector type.
2091    // By definition, this must equal the number of elements in
2092    // the final mask.
2093    unsigned NumElem = cast<VectorType>(VArgType)->getNumElements();
2094    std::vector<Constant*> Mask(NumElem);
2095
2096    Type *OpTypeI = I->getOperand(0)->getType();
2097    unsigned NumInElemI = cast<VectorType>(OpTypeI)->getNumElements();
2098    Type *OpTypeJ = J->getOperand(0)->getType();
2099    unsigned NumInElemJ = cast<VectorType>(OpTypeJ)->getNumElements();
2100
2101    // The fused vector will be:
2102    // -----------------------------------------------------
2103    // | NumInElemI | NumInElemJ | NumInElemI | NumInElemJ |
2104    // -----------------------------------------------------
2105    // from which we'll extract NumElem total elements (where the first NumElemI
2106    // of them come from the mask in I and the remainder come from the mask
2107    // in J.
2108
2109    // For the mask from the first pair...
2110    fillNewShuffleMask(Context, I, 0,        NumInElemJ, NumInElemI,
2111                       0,          Mask);
2112
2113    // For the mask from the second pair...
2114    fillNewShuffleMask(Context, J, NumElemI, NumInElemI, NumInElemJ,
2115                       NumInElemI, Mask);
2116
2117    return ConstantVector::get(Mask);
2118  }
2119
2120  bool BBVectorize::expandIEChain(LLVMContext& Context, Instruction *I,
2121                                  Instruction *J, unsigned o, Value *&LOp,
2122                                  unsigned numElemL,
2123                                  Type *ArgTypeL, Type *ArgTypeH,
2124                                  bool IBeforeJ, unsigned IdxOff) {
2125    bool ExpandedIEChain = false;
2126    if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) {
2127      // If we have a pure insertelement chain, then this can be rewritten
2128      // into a chain that directly builds the larger type.
2129      bool PureChain = true;
2130      InsertElementInst *LIENext = LIE;
2131      do {
2132        if (!isa<UndefValue>(LIENext->getOperand(0)) &&
2133            !isa<InsertElementInst>(LIENext->getOperand(0))) {
2134          PureChain = false;
2135          break;
2136        }
2137      } while ((LIENext =
2138                 dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
2139
2140      if (PureChain) {
2141        SmallVector<Value *, 8> VectElemts(numElemL,
2142          UndefValue::get(ArgTypeL->getScalarType()));
2143        InsertElementInst *LIENext = LIE;
2144        do {
2145          unsigned Idx =
2146            cast<ConstantInt>(LIENext->getOperand(2))->getSExtValue();
2147          VectElemts[Idx] = LIENext->getOperand(1);
2148        } while ((LIENext =
2149                   dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
2150
2151        LIENext = 0;
2152        Value *LIEPrev = UndefValue::get(ArgTypeH);
2153        for (unsigned i = 0; i < numElemL; ++i) {
2154          if (isa<UndefValue>(VectElemts[i])) continue;
2155          LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i],
2156                             ConstantInt::get(Type::getInt32Ty(Context),
2157                                              i + IdxOff),
2158                             getReplacementName(IBeforeJ ? I : J,
2159                                                true, o, i+1));
2160          LIENext->insertBefore(IBeforeJ ? J : I);
2161          LIEPrev = LIENext;
2162        }
2163
2164        LOp = LIENext ? (Value*) LIENext : UndefValue::get(ArgTypeH);
2165        ExpandedIEChain = true;
2166      }
2167    }
2168
2169    return ExpandedIEChain;
2170  }
2171
2172  // Returns the value to be used as the specified operand of the vector
2173  // instruction that fuses I with J.
2174  Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
2175                     Instruction *J, unsigned o, bool IBeforeJ) {
2176    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
2177    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
2178
2179    // Compute the fused vector type for this operand
2180    Type *ArgTypeI = I->getOperand(o)->getType();
2181    Type *ArgTypeJ = J->getOperand(o)->getType();
2182    VectorType *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2183
2184    Instruction *L = I, *H = J;
2185    Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ;
2186
2187    unsigned numElemL;
2188    if (ArgTypeL->isVectorTy())
2189      numElemL = cast<VectorType>(ArgTypeL)->getNumElements();
2190    else
2191      numElemL = 1;
2192
2193    unsigned numElemH;
2194    if (ArgTypeH->isVectorTy())
2195      numElemH = cast<VectorType>(ArgTypeH)->getNumElements();
2196    else
2197      numElemH = 1;
2198
2199    Value *LOp = L->getOperand(o);
2200    Value *HOp = H->getOperand(o);
2201    unsigned numElem = VArgType->getNumElements();
2202
2203    // First, we check if we can reuse the "original" vector outputs (if these
2204    // exist). We might need a shuffle.
2205    ExtractElementInst *LEE = dyn_cast<ExtractElementInst>(LOp);
2206    ExtractElementInst *HEE = dyn_cast<ExtractElementInst>(HOp);
2207    ShuffleVectorInst *LSV = dyn_cast<ShuffleVectorInst>(LOp);
2208    ShuffleVectorInst *HSV = dyn_cast<ShuffleVectorInst>(HOp);
2209
2210    // FIXME: If we're fusing shuffle instructions, then we can't apply this
2211    // optimization. The input vectors to the shuffle might be a different
2212    // length from the shuffle outputs. Unfortunately, the replacement
2213    // shuffle mask has already been formed, and the mask entries are sensitive
2214    // to the sizes of the inputs.
2215    bool IsSizeChangeShuffle =
2216      isa<ShuffleVectorInst>(L) &&
2217        (LOp->getType() != L->getType() || HOp->getType() != H->getType());
2218
2219    if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) {
2220      // We can have at most two unique vector inputs.
2221      bool CanUseInputs = true;
2222      Value *I1, *I2 = 0;
2223      if (LEE) {
2224        I1 = LEE->getOperand(0);
2225      } else {
2226        I1 = LSV->getOperand(0);
2227        I2 = LSV->getOperand(1);
2228        if (I2 == I1 || isa<UndefValue>(I2))
2229          I2 = 0;
2230      }
2231
2232      if (HEE) {
2233        Value *I3 = HEE->getOperand(0);
2234        if (!I2 && I3 != I1)
2235          I2 = I3;
2236        else if (I3 != I1 && I3 != I2)
2237          CanUseInputs = false;
2238      } else {
2239        Value *I3 = HSV->getOperand(0);
2240        if (!I2 && I3 != I1)
2241          I2 = I3;
2242        else if (I3 != I1 && I3 != I2)
2243          CanUseInputs = false;
2244
2245        if (CanUseInputs) {
2246          Value *I4 = HSV->getOperand(1);
2247          if (!isa<UndefValue>(I4)) {
2248            if (!I2 && I4 != I1)
2249              I2 = I4;
2250            else if (I4 != I1 && I4 != I2)
2251              CanUseInputs = false;
2252          }
2253        }
2254      }
2255
2256      if (CanUseInputs) {
2257        unsigned LOpElem =
2258          cast<VectorType>(cast<Instruction>(LOp)->getOperand(0)->getType())
2259            ->getNumElements();
2260        unsigned HOpElem =
2261          cast<VectorType>(cast<Instruction>(HOp)->getOperand(0)->getType())
2262            ->getNumElements();
2263
2264        // We have one or two input vectors. We need to map each index of the
2265        // operands to the index of the original vector.
2266        SmallVector<std::pair<int, int>, 8>  II(numElem);
2267        for (unsigned i = 0; i < numElemL; ++i) {
2268          int Idx, INum;
2269          if (LEE) {
2270            Idx =
2271              cast<ConstantInt>(LEE->getOperand(1))->getSExtValue();
2272            INum = LEE->getOperand(0) == I1 ? 0 : 1;
2273          } else {
2274            Idx = LSV->getMaskValue(i);
2275            if (Idx < (int) LOpElem) {
2276              INum = LSV->getOperand(0) == I1 ? 0 : 1;
2277            } else {
2278              Idx -= LOpElem;
2279              INum = LSV->getOperand(1) == I1 ? 0 : 1;
2280            }
2281          }
2282
2283          II[i] = std::pair<int, int>(Idx, INum);
2284        }
2285        for (unsigned i = 0; i < numElemH; ++i) {
2286          int Idx, INum;
2287          if (HEE) {
2288            Idx =
2289              cast<ConstantInt>(HEE->getOperand(1))->getSExtValue();
2290            INum = HEE->getOperand(0) == I1 ? 0 : 1;
2291          } else {
2292            Idx = HSV->getMaskValue(i);
2293            if (Idx < (int) HOpElem) {
2294              INum = HSV->getOperand(0) == I1 ? 0 : 1;
2295            } else {
2296              Idx -= HOpElem;
2297              INum = HSV->getOperand(1) == I1 ? 0 : 1;
2298            }
2299          }
2300
2301          II[i + numElemL] = std::pair<int, int>(Idx, INum);
2302        }
2303
2304        // We now have an array which tells us from which index of which
2305        // input vector each element of the operand comes.
2306        VectorType *I1T = cast<VectorType>(I1->getType());
2307        unsigned I1Elem = I1T->getNumElements();
2308
2309        if (!I2) {
2310          // In this case there is only one underlying vector input. Check for
2311          // the trivial case where we can use the input directly.
2312          if (I1Elem == numElem) {
2313            bool ElemInOrder = true;
2314            for (unsigned i = 0; i < numElem; ++i) {
2315              if (II[i].first != (int) i && II[i].first != -1) {
2316                ElemInOrder = false;
2317                break;
2318              }
2319            }
2320
2321            if (ElemInOrder)
2322              return I1;
2323          }
2324
2325          // A shuffle is needed.
2326          std::vector<Constant *> Mask(numElem);
2327          for (unsigned i = 0; i < numElem; ++i) {
2328            int Idx = II[i].first;
2329            if (Idx == -1)
2330              Mask[i] = UndefValue::get(Type::getInt32Ty(Context));
2331            else
2332              Mask[i] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
2333          }
2334
2335          Instruction *S =
2336            new ShuffleVectorInst(I1, UndefValue::get(I1T),
2337                                  ConstantVector::get(Mask),
2338                                  getReplacementName(IBeforeJ ? I : J,
2339                                                     true, o));
2340          S->insertBefore(IBeforeJ ? J : I);
2341          return S;
2342        }
2343
2344        VectorType *I2T = cast<VectorType>(I2->getType());
2345        unsigned I2Elem = I2T->getNumElements();
2346
2347        // This input comes from two distinct vectors. The first step is to
2348        // make sure that both vectors are the same length. If not, the
2349        // smaller one will need to grow before they can be shuffled together.
2350        if (I1Elem < I2Elem) {
2351          std::vector<Constant *> Mask(I2Elem);
2352          unsigned v = 0;
2353          for (; v < I1Elem; ++v)
2354            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2355          for (; v < I2Elem; ++v)
2356            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2357
2358          Instruction *NewI1 =
2359            new ShuffleVectorInst(I1, UndefValue::get(I1T),
2360                                  ConstantVector::get(Mask),
2361                                  getReplacementName(IBeforeJ ? I : J,
2362                                                     true, o, 1));
2363          NewI1->insertBefore(IBeforeJ ? J : I);
2364          I1 = NewI1;
2365          I1T = I2T;
2366          I1Elem = I2Elem;
2367        } else if (I1Elem > I2Elem) {
2368          std::vector<Constant *> Mask(I1Elem);
2369          unsigned v = 0;
2370          for (; v < I2Elem; ++v)
2371            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2372          for (; v < I1Elem; ++v)
2373            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2374
2375          Instruction *NewI2 =
2376            new ShuffleVectorInst(I2, UndefValue::get(I2T),
2377                                  ConstantVector::get(Mask),
2378                                  getReplacementName(IBeforeJ ? I : J,
2379                                                     true, o, 1));
2380          NewI2->insertBefore(IBeforeJ ? J : I);
2381          I2 = NewI2;
2382          I2T = I1T;
2383          I2Elem = I1Elem;
2384        }
2385
2386        // Now that both I1 and I2 are the same length we can shuffle them
2387        // together (and use the result).
2388        std::vector<Constant *> Mask(numElem);
2389        for (unsigned v = 0; v < numElem; ++v) {
2390          if (II[v].first == -1) {
2391            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2392          } else {
2393            int Idx = II[v].first + II[v].second * I1Elem;
2394            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
2395          }
2396        }
2397
2398        Instruction *NewOp =
2399          new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask),
2400                                getReplacementName(IBeforeJ ? I : J, true, o));
2401        NewOp->insertBefore(IBeforeJ ? J : I);
2402        return NewOp;
2403      }
2404    }
2405
2406    Type *ArgType = ArgTypeL;
2407    if (numElemL < numElemH) {
2408      if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH,
2409                                         ArgTypeL, VArgType, IBeforeJ, 1)) {
2410        // This is another short-circuit case: we're combining a scalar into
2411        // a vector that is formed by an IE chain. We've just expanded the IE
2412        // chain, now insert the scalar and we're done.
2413
2414        Instruction *S = InsertElementInst::Create(HOp, LOp, CV0,
2415                           getReplacementName(IBeforeJ ? I : J, true, o));
2416        S->insertBefore(IBeforeJ ? J : I);
2417        return S;
2418      } else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL,
2419                                ArgTypeH, IBeforeJ)) {
2420        // The two vector inputs to the shuffle must be the same length,
2421        // so extend the smaller vector to be the same length as the larger one.
2422        Instruction *NLOp;
2423        if (numElemL > 1) {
2424
2425          std::vector<Constant *> Mask(numElemH);
2426          unsigned v = 0;
2427          for (; v < numElemL; ++v)
2428            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2429          for (; v < numElemH; ++v)
2430            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2431
2432          NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL),
2433                                       ConstantVector::get(Mask),
2434                                       getReplacementName(IBeforeJ ? I : J,
2435                                                          true, o, 1));
2436        } else {
2437          NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0,
2438                                           getReplacementName(IBeforeJ ? I : J,
2439                                                              true, o, 1));
2440        }
2441
2442        NLOp->insertBefore(IBeforeJ ? J : I);
2443        LOp = NLOp;
2444      }
2445
2446      ArgType = ArgTypeH;
2447    } else if (numElemL > numElemH) {
2448      if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL,
2449                                         ArgTypeH, VArgType, IBeforeJ)) {
2450        Instruction *S =
2451          InsertElementInst::Create(LOp, HOp,
2452                                    ConstantInt::get(Type::getInt32Ty(Context),
2453                                                     numElemL),
2454                                    getReplacementName(IBeforeJ ? I : J,
2455                                                       true, o));
2456        S->insertBefore(IBeforeJ ? J : I);
2457        return S;
2458      } else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH,
2459                                ArgTypeL, IBeforeJ)) {
2460        Instruction *NHOp;
2461        if (numElemH > 1) {
2462          std::vector<Constant *> Mask(numElemL);
2463          unsigned v = 0;
2464          for (; v < numElemH; ++v)
2465            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2466          for (; v < numElemL; ++v)
2467            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2468
2469          NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH),
2470                                       ConstantVector::get(Mask),
2471                                       getReplacementName(IBeforeJ ? I : J,
2472                                                          true, o, 1));
2473        } else {
2474          NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0,
2475                                           getReplacementName(IBeforeJ ? I : J,
2476                                                              true, o, 1));
2477        }
2478
2479        NHOp->insertBefore(IBeforeJ ? J : I);
2480        HOp = NHOp;
2481      }
2482    }
2483
2484    if (ArgType->isVectorTy()) {
2485      unsigned numElem = cast<VectorType>(VArgType)->getNumElements();
2486      std::vector<Constant*> Mask(numElem);
2487      for (unsigned v = 0; v < numElem; ++v) {
2488        unsigned Idx = v;
2489        // If the low vector was expanded, we need to skip the extra
2490        // undefined entries.
2491        if (v >= numElemL && numElemH > numElemL)
2492          Idx += (numElemH - numElemL);
2493        Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
2494      }
2495
2496      Instruction *BV = new ShuffleVectorInst(LOp, HOp,
2497                          ConstantVector::get(Mask),
2498                          getReplacementName(IBeforeJ ? I : J, true, o));
2499      BV->insertBefore(IBeforeJ ? J : I);
2500      return BV;
2501    }
2502
2503    Instruction *BV1 = InsertElementInst::Create(
2504                                          UndefValue::get(VArgType), LOp, CV0,
2505                                          getReplacementName(IBeforeJ ? I : J,
2506                                                             true, o, 1));
2507    BV1->insertBefore(IBeforeJ ? J : I);
2508    Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1,
2509                                          getReplacementName(IBeforeJ ? I : J,
2510                                                             true, o, 2));
2511    BV2->insertBefore(IBeforeJ ? J : I);
2512    return BV2;
2513  }
2514
2515  // This function creates an array of values that will be used as the inputs
2516  // to the vector instruction that fuses I with J.
2517  void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
2518                     Instruction *I, Instruction *J,
2519                     SmallVector<Value *, 3> &ReplacedOperands,
2520                     bool IBeforeJ) {
2521    unsigned NumOperands = I->getNumOperands();
2522
2523    for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
2524      // Iterate backward so that we look at the store pointer
2525      // first and know whether or not we need to flip the inputs.
2526
2527      if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
2528        // This is the pointer for a load/store instruction.
2529        ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o);
2530        continue;
2531      } else if (isa<CallInst>(I)) {
2532        Function *F = cast<CallInst>(I)->getCalledFunction();
2533        unsigned IID = F->getIntrinsicID();
2534        if (o == NumOperands-1) {
2535          BasicBlock &BB = *I->getParent();
2536
2537          Module *M = BB.getParent()->getParent();
2538          Type *ArgTypeI = I->getType();
2539          Type *ArgTypeJ = J->getType();
2540          Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2541
2542          ReplacedOperands[o] = Intrinsic::getDeclaration(M,
2543            (Intrinsic::ID) IID, VArgType);
2544          continue;
2545        } else if (IID == Intrinsic::powi && o == 1) {
2546          // The second argument of powi is a single integer and we've already
2547          // checked that both arguments are equal. As a result, we just keep
2548          // I's second argument.
2549          ReplacedOperands[o] = I->getOperand(o);
2550          continue;
2551        }
2552      } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
2553        ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
2554        continue;
2555      }
2556
2557      ReplacedOperands[o] = getReplacementInput(Context, I, J, o, IBeforeJ);
2558    }
2559  }
2560
2561  // This function creates two values that represent the outputs of the
2562  // original I and J instructions. These are generally vector shuffles
2563  // or extracts. In many cases, these will end up being unused and, thus,
2564  // eliminated by later passes.
2565  void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
2566                     Instruction *J, Instruction *K,
2567                     Instruction *&InsertionPt,
2568                     Instruction *&K1, Instruction *&K2) {
2569    if (isa<StoreInst>(I)) {
2570      AA->replaceWithNewValue(I, K);
2571      AA->replaceWithNewValue(J, K);
2572    } else {
2573      Type *IType = I->getType();
2574      Type *JType = J->getType();
2575
2576      VectorType *VType = getVecTypeForPair(IType, JType);
2577      unsigned numElem = VType->getNumElements();
2578
2579      unsigned numElemI, numElemJ;
2580      if (IType->isVectorTy())
2581        numElemI = cast<VectorType>(IType)->getNumElements();
2582      else
2583        numElemI = 1;
2584
2585      if (JType->isVectorTy())
2586        numElemJ = cast<VectorType>(JType)->getNumElements();
2587      else
2588        numElemJ = 1;
2589
2590      if (IType->isVectorTy()) {
2591        std::vector<Constant*> Mask1(numElemI), Mask2(numElemI);
2592        for (unsigned v = 0; v < numElemI; ++v) {
2593          Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2594          Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemJ+v);
2595        }
2596
2597        K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
2598                                   ConstantVector::get( Mask1),
2599                                   getReplacementName(K, false, 1));
2600      } else {
2601        Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
2602        K1 = ExtractElementInst::Create(K, CV0,
2603                                          getReplacementName(K, false, 1));
2604      }
2605
2606      if (JType->isVectorTy()) {
2607        std::vector<Constant*> Mask1(numElemJ), Mask2(numElemJ);
2608        for (unsigned v = 0; v < numElemJ; ++v) {
2609          Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2610          Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemI+v);
2611        }
2612
2613        K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
2614                                   ConstantVector::get( Mask2),
2615                                   getReplacementName(K, false, 2));
2616      } else {
2617        Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
2618        K2 = ExtractElementInst::Create(K, CV1,
2619                                          getReplacementName(K, false, 2));
2620      }
2621
2622      K1->insertAfter(K);
2623      K2->insertAfter(K1);
2624      InsertionPt = K2;
2625    }
2626  }
2627
2628  // Move all uses of the function I (including pairing-induced uses) after J.
2629  bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
2630                     std::multimap<Value *, Value *> &LoadMoveSet,
2631                     Instruction *I, Instruction *J) {
2632    // Skip to the first instruction past I.
2633    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2634
2635    DenseSet<Value *> Users;
2636    AliasSetTracker WriteSet(*AA);
2637    for (; cast<Instruction>(L) != J; ++L)
2638      (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet);
2639
2640    assert(cast<Instruction>(L) == J &&
2641      "Tracking has not proceeded far enough to check for dependencies");
2642    // If J is now in the use set of I, then trackUsesOfI will return true
2643    // and we have a dependency cycle (and the fusing operation must abort).
2644    return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet);
2645  }
2646
2647  // Move all uses of the function I (including pairing-induced uses) after J.
2648  void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
2649                     std::multimap<Value *, Value *> &LoadMoveSet,
2650                     Instruction *&InsertionPt,
2651                     Instruction *I, Instruction *J) {
2652    // Skip to the first instruction past I.
2653    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2654
2655    DenseSet<Value *> Users;
2656    AliasSetTracker WriteSet(*AA);
2657    for (; cast<Instruction>(L) != J;) {
2658      if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) {
2659        // Move this instruction
2660        Instruction *InstToMove = L; ++L;
2661
2662        DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
2663                        " to after " << *InsertionPt << "\n");
2664        InstToMove->removeFromParent();
2665        InstToMove->insertAfter(InsertionPt);
2666        InsertionPt = InstToMove;
2667      } else {
2668        ++L;
2669      }
2670    }
2671  }
2672
2673  // Collect all load instruction that are in the move set of a given first
2674  // pair member.  These loads depend on the first instruction, I, and so need
2675  // to be moved after J (the second instruction) when the pair is fused.
2676  void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
2677                     DenseMap<Value *, Value *> &ChosenPairs,
2678                     std::multimap<Value *, Value *> &LoadMoveSet,
2679                     Instruction *I) {
2680    // Skip to the first instruction past I.
2681    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2682
2683    DenseSet<Value *> Users;
2684    AliasSetTracker WriteSet(*AA);
2685
2686    // Note: We cannot end the loop when we reach J because J could be moved
2687    // farther down the use chain by another instruction pairing. Also, J
2688    // could be before I if this is an inverted input.
2689    for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
2690      if (trackUsesOfI(Users, WriteSet, I, L)) {
2691        if (L->mayReadFromMemory())
2692          LoadMoveSet.insert(ValuePair(L, I));
2693      }
2694    }
2695  }
2696
2697  // In cases where both load/stores and the computation of their pointers
2698  // are chosen for vectorization, we can end up in a situation where the
2699  // aliasing analysis starts returning different query results as the
2700  // process of fusing instruction pairs continues. Because the algorithm
2701  // relies on finding the same use trees here as were found earlier, we'll
2702  // need to precompute the necessary aliasing information here and then
2703  // manually update it during the fusion process.
2704  void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
2705                     std::vector<Value *> &PairableInsts,
2706                     DenseMap<Value *, Value *> &ChosenPairs,
2707                     std::multimap<Value *, Value *> &LoadMoveSet) {
2708    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
2709         PIE = PairableInsts.end(); PI != PIE; ++PI) {
2710      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
2711      if (P == ChosenPairs.end()) continue;
2712
2713      Instruction *I = cast<Instruction>(P->first);
2714      collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I);
2715    }
2716  }
2717
2718  // When the first instruction in each pair is cloned, it will inherit its
2719  // parent's metadata. This metadata must be combined with that of the other
2720  // instruction in a safe way.
2721  void BBVectorize::combineMetadata(Instruction *K, const Instruction *J) {
2722    SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
2723    K->getAllMetadataOtherThanDebugLoc(Metadata);
2724    for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
2725      unsigned Kind = Metadata[i].first;
2726      MDNode *JMD = J->getMetadata(Kind);
2727      MDNode *KMD = Metadata[i].second;
2728
2729      switch (Kind) {
2730      default:
2731        K->setMetadata(Kind, 0); // Remove unknown metadata
2732        break;
2733      case LLVMContext::MD_tbaa:
2734        K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2735        break;
2736      case LLVMContext::MD_fpmath:
2737        K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2738        break;
2739      }
2740    }
2741  }
2742
2743  // This function fuses the chosen instruction pairs into vector instructions,
2744  // taking care preserve any needed scalar outputs and, then, it reorders the
2745  // remaining instructions as needed (users of the first member of the pair
2746  // need to be moved to after the location of the second member of the pair
2747  // because the vector instruction is inserted in the location of the pair's
2748  // second member).
2749  void BBVectorize::fuseChosenPairs(BasicBlock &BB,
2750                     std::vector<Value *> &PairableInsts,
2751                     DenseMap<Value *, Value *> &ChosenPairs,
2752                     DenseSet<ValuePair> &FixedOrderPairs,
2753                     DenseMap<VPPair, unsigned> &PairConnectionTypes,
2754                     std::multimap<ValuePair, ValuePair> &ConnectedPairs,
2755                     std::multimap<ValuePair, ValuePair> &ConnectedPairDeps) {
2756    LLVMContext& Context = BB.getContext();
2757
2758    // During the vectorization process, the order of the pairs to be fused
2759    // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
2760    // list. After a pair is fused, the flipped pair is removed from the list.
2761    DenseSet<ValuePair> FlippedPairs;
2762    for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
2763         E = ChosenPairs.end(); P != E; ++P)
2764      FlippedPairs.insert(ValuePair(P->second, P->first));
2765    for (DenseSet<ValuePair>::iterator P = FlippedPairs.begin(),
2766         E = FlippedPairs.end(); P != E; ++P)
2767      ChosenPairs.insert(*P);
2768
2769    std::multimap<Value *, Value *> LoadMoveSet;
2770    collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
2771
2772    DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
2773
2774    for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
2775      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
2776      if (P == ChosenPairs.end()) {
2777        ++PI;
2778        continue;
2779      }
2780
2781      if (getDepthFactor(P->first) == 0) {
2782        // These instructions are not really fused, but are tracked as though
2783        // they are. Any case in which it would be interesting to fuse them
2784        // will be taken care of by InstCombine.
2785        --NumFusedOps;
2786        ++PI;
2787        continue;
2788      }
2789
2790      Instruction *I = cast<Instruction>(P->first),
2791        *J = cast<Instruction>(P->second);
2792
2793      DEBUG(dbgs() << "BBV: fusing: " << *I <<
2794             " <-> " << *J << "\n");
2795
2796      // Remove the pair and flipped pair from the list.
2797      DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
2798      assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
2799      ChosenPairs.erase(FP);
2800      ChosenPairs.erase(P);
2801
2802      if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) {
2803        DEBUG(dbgs() << "BBV: fusion of: " << *I <<
2804               " <-> " << *J <<
2805               " aborted because of non-trivial dependency cycle\n");
2806        --NumFusedOps;
2807        ++PI;
2808        continue;
2809      }
2810
2811      // If the pair must have the other order, then flip it.
2812      bool FlipPairOrder = FixedOrderPairs.count(ValuePair(J, I));
2813      if (!FlipPairOrder && !FixedOrderPairs.count(ValuePair(I, J))) {
2814        // This pair does not have a fixed order, and so we might want to
2815        // flip it if that will yield fewer shuffles. We count the number
2816        // of dependencies connected via swaps, and those directly connected,
2817        // and flip the order if the number of swaps is greater.
2818        bool OrigOrder = true;
2819        VPPIteratorPair IP = ConnectedPairDeps.equal_range(ValuePair(I, J));
2820        if (IP.first == ConnectedPairDeps.end()) {
2821          IP = ConnectedPairDeps.equal_range(ValuePair(J, I));
2822          OrigOrder = false;
2823        }
2824
2825        if (IP.first != ConnectedPairDeps.end()) {
2826          unsigned NumDepsDirect = 0, NumDepsSwap = 0;
2827          for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
2828               Q != IP.second; ++Q) {
2829            DenseMap<VPPair, unsigned>::iterator R =
2830              PairConnectionTypes.find(VPPair(Q->second, Q->first));
2831            assert(R != PairConnectionTypes.end() &&
2832                   "Cannot find pair connection type");
2833            if (R->second == PairConnectionDirect)
2834              ++NumDepsDirect;
2835            else if (R->second == PairConnectionSwap)
2836              ++NumDepsSwap;
2837          }
2838
2839          if (!OrigOrder)
2840            std::swap(NumDepsDirect, NumDepsSwap);
2841
2842          if (NumDepsSwap > NumDepsDirect) {
2843            FlipPairOrder = true;
2844            DEBUG(dbgs() << "BBV: reordering pair: " << *I <<
2845                            " <-> " << *J << "\n");
2846          }
2847        }
2848      }
2849
2850      Instruction *L = I, *H = J;
2851      if (FlipPairOrder)
2852        std::swap(H, L);
2853
2854      // If the pair being fused uses the opposite order from that in the pair
2855      // connection map, then we need to flip the types.
2856      VPPIteratorPair IP = ConnectedPairs.equal_range(ValuePair(H, L));
2857      for (std::multimap<ValuePair, ValuePair>::iterator Q = IP.first;
2858           Q != IP.second; ++Q) {
2859        DenseMap<VPPair, unsigned>::iterator R = PairConnectionTypes.find(*Q);
2860        assert(R != PairConnectionTypes.end() &&
2861               "Cannot find pair connection type");
2862        if (R->second == PairConnectionDirect)
2863          R->second = PairConnectionSwap;
2864        else if (R->second == PairConnectionSwap)
2865          R->second = PairConnectionDirect;
2866      }
2867
2868      bool LBeforeH = !FlipPairOrder;
2869      unsigned NumOperands = I->getNumOperands();
2870      SmallVector<Value *, 3> ReplacedOperands(NumOperands);
2871      getReplacementInputsForPair(Context, L, H, ReplacedOperands,
2872                                  LBeforeH);
2873
2874      // Make a copy of the original operation, change its type to the vector
2875      // type and replace its operands with the vector operands.
2876      Instruction *K = L->clone();
2877      if (L->hasName())
2878        K->takeName(L);
2879      else if (H->hasName())
2880        K->takeName(H);
2881
2882      if (!isa<StoreInst>(K))
2883        K->mutateType(getVecTypeForPair(L->getType(), H->getType()));
2884
2885      combineMetadata(K, H);
2886
2887      for (unsigned o = 0; o < NumOperands; ++o)
2888        K->setOperand(o, ReplacedOperands[o]);
2889
2890      K->insertAfter(J);
2891
2892      // Instruction insertion point:
2893      Instruction *InsertionPt = K;
2894      Instruction *K1 = 0, *K2 = 0;
2895      replaceOutputsOfPair(Context, L, H, K, InsertionPt, K1, K2);
2896
2897      // The use tree of the first original instruction must be moved to after
2898      // the location of the second instruction. The entire use tree of the
2899      // first instruction is disjoint from the input tree of the second
2900      // (by definition), and so commutes with it.
2901
2902      moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
2903
2904      if (!isa<StoreInst>(I)) {
2905        L->replaceAllUsesWith(K1);
2906        H->replaceAllUsesWith(K2);
2907        AA->replaceWithNewValue(L, K1);
2908        AA->replaceWithNewValue(H, K2);
2909      }
2910
2911      // Instructions that may read from memory may be in the load move set.
2912      // Once an instruction is fused, we no longer need its move set, and so
2913      // the values of the map never need to be updated. However, when a load
2914      // is fused, we need to merge the entries from both instructions in the
2915      // pair in case those instructions were in the move set of some other
2916      // yet-to-be-fused pair. The loads in question are the keys of the map.
2917      if (I->mayReadFromMemory()) {
2918        std::vector<ValuePair> NewSetMembers;
2919        VPIteratorPair IPairRange = LoadMoveSet.equal_range(I);
2920        VPIteratorPair JPairRange = LoadMoveSet.equal_range(J);
2921        for (std::multimap<Value *, Value *>::iterator N = IPairRange.first;
2922             N != IPairRange.second; ++N)
2923          NewSetMembers.push_back(ValuePair(K, N->second));
2924        for (std::multimap<Value *, Value *>::iterator N = JPairRange.first;
2925             N != JPairRange.second; ++N)
2926          NewSetMembers.push_back(ValuePair(K, N->second));
2927        for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
2928             AE = NewSetMembers.end(); A != AE; ++A)
2929          LoadMoveSet.insert(*A);
2930      }
2931
2932      // Before removing I, set the iterator to the next instruction.
2933      PI = llvm::next(BasicBlock::iterator(I));
2934      if (cast<Instruction>(PI) == J)
2935        ++PI;
2936
2937      SE->forgetValue(I);
2938      SE->forgetValue(J);
2939      I->eraseFromParent();
2940      J->eraseFromParent();
2941
2942      DEBUG(if (PrintAfterEveryPair) dbgs() << "BBV: block is now: \n" <<
2943                                               BB << "\n");
2944    }
2945
2946    DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
2947  }
2948}
2949
2950char BBVectorize::ID = 0;
2951static const char bb_vectorize_name[] = "Basic-Block Vectorization";
2952INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
2953INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
2954INITIALIZE_PASS_DEPENDENCY(DominatorTree)
2955INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
2956INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
2957
2958BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
2959  return new BBVectorize(C);
2960}
2961
2962bool
2963llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
2964  BBVectorize BBVectorizer(P, C);
2965  return BBVectorizer.vectorizeBB(BB);
2966}
2967
2968//===----------------------------------------------------------------------===//
2969VectorizeConfig::VectorizeConfig() {
2970  VectorBits = ::VectorBits;
2971  VectorizeBools = !::NoBools;
2972  VectorizeInts = !::NoInts;
2973  VectorizeFloats = !::NoFloats;
2974  VectorizePointers = !::NoPointers;
2975  VectorizeCasts = !::NoCasts;
2976  VectorizeMath = !::NoMath;
2977  VectorizeFMA = !::NoFMA;
2978  VectorizeSelect = !::NoSelect;
2979  VectorizeCmp = !::NoCmp;
2980  VectorizeGEP = !::NoGEP;
2981  VectorizeMemOps = !::NoMemOps;
2982  AlignedOnly = ::AlignedOnly;
2983  ReqChainDepth= ::ReqChainDepth;
2984  SearchLimit = ::SearchLimit;
2985  MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
2986  SplatBreaksChain = ::SplatBreaksChain;
2987  MaxInsts = ::MaxInsts;
2988  MaxIter = ::MaxIter;
2989  Pow2LenOnly = ::Pow2LenOnly;
2990  NoMemOpBoost = ::NoMemOpBoost;
2991  FastDep = ::FastDep;
2992}
2993