BBVectorize.cpp revision dc330f75b732b4ce1beace69ae7ed8e19d89bd9f
1//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a basic-block vectorization pass. The algorithm was
11// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
12// et al. It works by looking for chains of pairable operations and then
13// pairing them.
14//
15//===----------------------------------------------------------------------===//
16
17#define BBV_NAME "bb-vectorize"
18#define DEBUG_TYPE BBV_NAME
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Metadata.h"
27#include "llvm/Pass.h"
28#include "llvm/Type.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/AliasSetTracker.h"
37#include "llvm/Analysis/Dominators.h"
38#include "llvm/Analysis/ScalarEvolution.h"
39#include "llvm/Analysis/ScalarEvolutionExpressions.h"
40#include "llvm/Analysis/ValueTracking.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Support/ValueHandle.h"
45#include "llvm/DataLayout.h"
46#include "llvm/TargetTransformInfo.h"
47#include "llvm/Transforms/Utils/Local.h"
48#include "llvm/Transforms/Vectorize.h"
49#include <algorithm>
50#include <map>
51using namespace llvm;
52
53static cl::opt<bool>
54IgnoreTargetInfo("bb-vectorize-ignore-target-info",  cl::init(false),
55  cl::Hidden, cl::desc("Ignore target information"));
56
57static cl::opt<unsigned>
58ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
59  cl::desc("The required chain depth for vectorization"));
60
61static cl::opt<unsigned>
62SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
63  cl::desc("The maximum search distance for instruction pairs"));
64
65static cl::opt<bool>
66SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
67  cl::desc("Replicating one element to a pair breaks the chain"));
68
69static cl::opt<unsigned>
70VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
71  cl::desc("The size of the native vector registers"));
72
73static cl::opt<unsigned>
74MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
75  cl::desc("The maximum number of pairing iterations"));
76
77static cl::opt<bool>
78Pow2LenOnly("bb-vectorize-pow2-len-only", cl::init(false), cl::Hidden,
79  cl::desc("Don't try to form non-2^n-length vectors"));
80
81static cl::opt<unsigned>
82MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
83  cl::desc("The maximum number of pairable instructions per group"));
84
85static cl::opt<unsigned>
86MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
87  cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
88                       " a full cycle check"));
89
90static cl::opt<bool>
91NoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden,
92  cl::desc("Don't try to vectorize boolean (i1) values"));
93
94static cl::opt<bool>
95NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
96  cl::desc("Don't try to vectorize integer values"));
97
98static cl::opt<bool>
99NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
100  cl::desc("Don't try to vectorize floating-point values"));
101
102// FIXME: This should default to false once pointer vector support works.
103static cl::opt<bool>
104NoPointers("bb-vectorize-no-pointers", cl::init(/*false*/ true), cl::Hidden,
105  cl::desc("Don't try to vectorize pointer values"));
106
107static cl::opt<bool>
108NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
109  cl::desc("Don't try to vectorize casting (conversion) operations"));
110
111static cl::opt<bool>
112NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
113  cl::desc("Don't try to vectorize floating-point math intrinsics"));
114
115static cl::opt<bool>
116NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
117  cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
118
119static cl::opt<bool>
120NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
121  cl::desc("Don't try to vectorize select instructions"));
122
123static cl::opt<bool>
124NoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden,
125  cl::desc("Don't try to vectorize comparison instructions"));
126
127static cl::opt<bool>
128NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
129  cl::desc("Don't try to vectorize getelementptr instructions"));
130
131static cl::opt<bool>
132NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
133  cl::desc("Don't try to vectorize loads and stores"));
134
135static cl::opt<bool>
136AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
137  cl::desc("Only generate aligned loads and stores"));
138
139static cl::opt<bool>
140NoMemOpBoost("bb-vectorize-no-mem-op-boost",
141  cl::init(false), cl::Hidden,
142  cl::desc("Don't boost the chain-depth contribution of loads and stores"));
143
144static cl::opt<bool>
145FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
146  cl::desc("Use a fast instruction dependency analysis"));
147
148#ifndef NDEBUG
149static cl::opt<bool>
150DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
151  cl::init(false), cl::Hidden,
152  cl::desc("When debugging is enabled, output information on the"
153           " instruction-examination process"));
154static cl::opt<bool>
155DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
156  cl::init(false), cl::Hidden,
157  cl::desc("When debugging is enabled, output information on the"
158           " candidate-selection process"));
159static cl::opt<bool>
160DebugPairSelection("bb-vectorize-debug-pair-selection",
161  cl::init(false), cl::Hidden,
162  cl::desc("When debugging is enabled, output information on the"
163           " pair-selection process"));
164static cl::opt<bool>
165DebugCycleCheck("bb-vectorize-debug-cycle-check",
166  cl::init(false), cl::Hidden,
167  cl::desc("When debugging is enabled, output information on the"
168           " cycle-checking process"));
169#endif
170
171STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
172
173namespace {
174  struct BBVectorize : public BasicBlockPass {
175    static char ID; // Pass identification, replacement for typeid
176
177    const VectorizeConfig Config;
178
179    BBVectorize(const VectorizeConfig &C = VectorizeConfig())
180      : BasicBlockPass(ID), Config(C) {
181      initializeBBVectorizePass(*PassRegistry::getPassRegistry());
182    }
183
184    BBVectorize(Pass *P, const VectorizeConfig &C)
185      : BasicBlockPass(ID), Config(C) {
186      AA = &P->getAnalysis<AliasAnalysis>();
187      DT = &P->getAnalysis<DominatorTree>();
188      SE = &P->getAnalysis<ScalarEvolution>();
189      TD = P->getAnalysisIfAvailable<DataLayout>();
190      TTI = IgnoreTargetInfo ? 0 :
191        P->getAnalysisIfAvailable<TargetTransformInfo>();
192      VTTI = TTI ? TTI->getVectorTargetTransformInfo() : 0;
193    }
194
195    typedef std::pair<Value *, Value *> ValuePair;
196    typedef std::pair<ValuePair, int> ValuePairWithCost;
197    typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
198    typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
199    typedef std::pair<std::multimap<Value *, Value *>::iterator,
200              std::multimap<Value *, Value *>::iterator> VPIteratorPair;
201    typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
202              std::multimap<ValuePair, ValuePair>::iterator>
203                VPPIteratorPair;
204
205    AliasAnalysis *AA;
206    DominatorTree *DT;
207    ScalarEvolution *SE;
208    DataLayout *TD;
209    TargetTransformInfo *TTI;
210    const VectorTargetTransformInfo *VTTI;
211
212    // FIXME: const correct?
213
214    bool vectorizePairs(BasicBlock &BB, bool NonPow2Len = false);
215
216    bool getCandidatePairs(BasicBlock &BB,
217                       BasicBlock::iterator &Start,
218                       std::multimap<Value *, Value *> &CandidatePairs,
219                       DenseMap<ValuePair, int> &CandidatePairCostSavings,
220                       std::vector<Value *> &PairableInsts, bool NonPow2Len);
221
222    void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
223                       std::vector<Value *> &PairableInsts,
224                       std::multimap<ValuePair, ValuePair> &ConnectedPairs);
225
226    void buildDepMap(BasicBlock &BB,
227                       std::multimap<Value *, Value *> &CandidatePairs,
228                       std::vector<Value *> &PairableInsts,
229                       DenseSet<ValuePair> &PairableInstUsers);
230
231    void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
232                        DenseMap<ValuePair, int> &CandidatePairCostSavings,
233                        std::vector<Value *> &PairableInsts,
234                        std::multimap<ValuePair, ValuePair> &ConnectedPairs,
235                        DenseSet<ValuePair> &PairableInstUsers,
236                        DenseMap<Value *, Value *>& ChosenPairs);
237
238    void fuseChosenPairs(BasicBlock &BB,
239                     std::vector<Value *> &PairableInsts,
240                     DenseMap<Value *, Value *>& ChosenPairs);
241
242    bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
243
244    bool areInstsCompatible(Instruction *I, Instruction *J,
245                       bool IsSimpleLoadStore, bool NonPow2Len,
246                       int &CostSavings);
247
248    bool trackUsesOfI(DenseSet<Value *> &Users,
249                      AliasSetTracker &WriteSet, Instruction *I,
250                      Instruction *J, bool UpdateUsers = true,
251                      std::multimap<Value *, Value *> *LoadMoveSet = 0);
252
253    void computePairsConnectedTo(
254                      std::multimap<Value *, Value *> &CandidatePairs,
255                      std::vector<Value *> &PairableInsts,
256                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
257                      ValuePair P);
258
259    bool pairsConflict(ValuePair P, ValuePair Q,
260                 DenseSet<ValuePair> &PairableInstUsers,
261                 std::multimap<ValuePair, ValuePair> *PairableInstUserMap = 0);
262
263    bool pairWillFormCycle(ValuePair P,
264                       std::multimap<ValuePair, ValuePair> &PairableInstUsers,
265                       DenseSet<ValuePair> &CurrentPairs);
266
267    void pruneTreeFor(
268                      std::multimap<Value *, Value *> &CandidatePairs,
269                      std::vector<Value *> &PairableInsts,
270                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
271                      DenseSet<ValuePair> &PairableInstUsers,
272                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
273                      DenseMap<Value *, Value *> &ChosenPairs,
274                      DenseMap<ValuePair, size_t> &Tree,
275                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
276                      bool UseCycleCheck);
277
278    void buildInitialTreeFor(
279                      std::multimap<Value *, Value *> &CandidatePairs,
280                      std::vector<Value *> &PairableInsts,
281                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
282                      DenseSet<ValuePair> &PairableInstUsers,
283                      DenseMap<Value *, Value *> &ChosenPairs,
284                      DenseMap<ValuePair, size_t> &Tree, ValuePair J);
285
286    void findBestTreeFor(
287                      std::multimap<Value *, Value *> &CandidatePairs,
288                      DenseMap<ValuePair, int> &CandidatePairCostSavings,
289                      std::vector<Value *> &PairableInsts,
290                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
291                      DenseSet<ValuePair> &PairableInstUsers,
292                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
293                      DenseMap<Value *, Value *> &ChosenPairs,
294                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
295                      int &BestEffSize, VPIteratorPair ChoiceRange,
296                      bool UseCycleCheck);
297
298    Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
299                     Instruction *J, unsigned o, bool FlipMemInputs);
300
301    void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
302                     unsigned MaskOffset, unsigned NumInElem,
303                     unsigned NumInElem1, unsigned IdxOffset,
304                     std::vector<Constant*> &Mask);
305
306    Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
307                     Instruction *J);
308
309    bool expandIEChain(LLVMContext& Context, Instruction *I, Instruction *J,
310                       unsigned o, Value *&LOp, unsigned numElemL,
311                       Type *ArgTypeL, Type *ArgTypeR,
312                       unsigned IdxOff = 0);
313
314    Value *getReplacementInput(LLVMContext& Context, Instruction *I,
315                     Instruction *J, unsigned o, bool FlipMemInputs);
316
317    void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
318                     Instruction *J, SmallVector<Value *, 3> &ReplacedOperands,
319                     bool FlipMemInputs);
320
321    void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
322                     Instruction *J, Instruction *K,
323                     Instruction *&InsertionPt, Instruction *&K1,
324                     Instruction *&K2, bool FlipMemInputs);
325
326    void collectPairLoadMoveSet(BasicBlock &BB,
327                     DenseMap<Value *, Value *> &ChosenPairs,
328                     std::multimap<Value *, Value *> &LoadMoveSet,
329                     Instruction *I);
330
331    void collectLoadMoveSet(BasicBlock &BB,
332                     std::vector<Value *> &PairableInsts,
333                     DenseMap<Value *, Value *> &ChosenPairs,
334                     std::multimap<Value *, Value *> &LoadMoveSet);
335
336    void collectPtrInfo(std::vector<Value *> &PairableInsts,
337                        DenseMap<Value *, Value *> &ChosenPairs,
338                        DenseSet<Value *> &LowPtrInsts);
339
340    bool canMoveUsesOfIAfterJ(BasicBlock &BB,
341                     std::multimap<Value *, Value *> &LoadMoveSet,
342                     Instruction *I, Instruction *J);
343
344    void moveUsesOfIAfterJ(BasicBlock &BB,
345                     std::multimap<Value *, Value *> &LoadMoveSet,
346                     Instruction *&InsertionPt,
347                     Instruction *I, Instruction *J);
348
349    void combineMetadata(Instruction *K, const Instruction *J);
350
351    bool vectorizeBB(BasicBlock &BB) {
352      if (!DT->isReachableFromEntry(&BB)) {
353        DEBUG(dbgs() << "BBV: skipping unreachable " << BB.getName() <<
354              " in " << BB.getParent()->getName() << "\n");
355        return false;
356      }
357
358      DEBUG(if (VTTI) dbgs() << "BBV: using target information\n");
359
360      bool changed = false;
361      // Iterate a sufficient number of times to merge types of size 1 bit,
362      // then 2 bits, then 4, etc. up to half of the target vector width of the
363      // target vector register.
364      unsigned n = 1;
365      for (unsigned v = 2;
366           (VTTI || v <= Config.VectorBits) &&
367           (!Config.MaxIter || n <= Config.MaxIter);
368           v *= 2, ++n) {
369        DEBUG(dbgs() << "BBV: fusing loop #" << n <<
370              " for " << BB.getName() << " in " <<
371              BB.getParent()->getName() << "...\n");
372        if (vectorizePairs(BB))
373          changed = true;
374        else
375          break;
376      }
377
378      if (changed && !Pow2LenOnly) {
379        ++n;
380        for (; !Config.MaxIter || n <= Config.MaxIter; ++n) {
381          DEBUG(dbgs() << "BBV: fusing for non-2^n-length vectors loop #: " <<
382                n << " for " << BB.getName() << " in " <<
383                BB.getParent()->getName() << "...\n");
384          if (!vectorizePairs(BB, true)) break;
385        }
386      }
387
388      DEBUG(dbgs() << "BBV: done!\n");
389      return changed;
390    }
391
392    virtual bool runOnBasicBlock(BasicBlock &BB) {
393      AA = &getAnalysis<AliasAnalysis>();
394      DT = &getAnalysis<DominatorTree>();
395      SE = &getAnalysis<ScalarEvolution>();
396      TD = getAnalysisIfAvailable<DataLayout>();
397      TTI = IgnoreTargetInfo ? 0 :
398        getAnalysisIfAvailable<TargetTransformInfo>();
399      VTTI = TTI ? TTI->getVectorTargetTransformInfo() : 0;
400
401      return vectorizeBB(BB);
402    }
403
404    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
405      BasicBlockPass::getAnalysisUsage(AU);
406      AU.addRequired<AliasAnalysis>();
407      AU.addRequired<DominatorTree>();
408      AU.addRequired<ScalarEvolution>();
409      AU.addPreserved<AliasAnalysis>();
410      AU.addPreserved<DominatorTree>();
411      AU.addPreserved<ScalarEvolution>();
412      AU.setPreservesCFG();
413    }
414
415    static inline VectorType *getVecTypeForPair(Type *ElemTy, Type *Elem2Ty) {
416      assert(ElemTy->getScalarType() == Elem2Ty->getScalarType() &&
417             "Cannot form vector from incompatible scalar types");
418      Type *STy = ElemTy->getScalarType();
419
420      unsigned numElem;
421      if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
422        numElem = VTy->getNumElements();
423      } else {
424        numElem = 1;
425      }
426
427      if (VectorType *VTy = dyn_cast<VectorType>(Elem2Ty)) {
428        numElem += VTy->getNumElements();
429      } else {
430        numElem += 1;
431      }
432
433      return VectorType::get(STy, numElem);
434    }
435
436    static inline void getInstructionTypes(Instruction *I,
437                                           Type *&T1, Type *&T2) {
438      if (isa<StoreInst>(I)) {
439        // For stores, it is the value type, not the pointer type that matters
440        // because the value is what will come from a vector register.
441
442        Value *IVal = cast<StoreInst>(I)->getValueOperand();
443        T1 = IVal->getType();
444      } else {
445        T1 = I->getType();
446      }
447
448      if (I->isCast())
449        T2 = cast<CastInst>(I)->getSrcTy();
450      else
451        T2 = T1;
452
453      if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
454        T2 = SI->getCondition()->getType();
455      }
456    }
457
458    // Returns the weight associated with the provided value. A chain of
459    // candidate pairs has a length given by the sum of the weights of its
460    // members (one weight per pair; the weight of each member of the pair
461    // is assumed to be the same). This length is then compared to the
462    // chain-length threshold to determine if a given chain is significant
463    // enough to be vectorized. The length is also used in comparing
464    // candidate chains where longer chains are considered to be better.
465    // Note: when this function returns 0, the resulting instructions are
466    // not actually fused.
467    inline size_t getDepthFactor(Value *V) {
468      // InsertElement and ExtractElement have a depth factor of zero. This is
469      // for two reasons: First, they cannot be usefully fused. Second, because
470      // the pass generates a lot of these, they can confuse the simple metric
471      // used to compare the trees in the next iteration. Thus, giving them a
472      // weight of zero allows the pass to essentially ignore them in
473      // subsequent iterations when looking for vectorization opportunities
474      // while still tracking dependency chains that flow through those
475      // instructions.
476      if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
477        return 0;
478
479      // Give a load or store half of the required depth so that load/store
480      // pairs will vectorize.
481      if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
482        return Config.ReqChainDepth/2;
483
484      return 1;
485    }
486
487    // This determines the relative offset of two loads or stores, returning
488    // true if the offset could be determined to be some constant value.
489    // For example, if OffsetInElmts == 1, then J accesses the memory directly
490    // after I; if OffsetInElmts == -1 then I accesses the memory
491    // directly after J.
492    bool getPairPtrInfo(Instruction *I, Instruction *J,
493        Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
494        unsigned &IAddressSpace, unsigned &JAddressSpace,
495        int64_t &OffsetInElmts) {
496      OffsetInElmts = 0;
497      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
498        LoadInst *LJ = cast<LoadInst>(J);
499        IPtr = LI->getPointerOperand();
500        JPtr = LJ->getPointerOperand();
501        IAlignment = LI->getAlignment();
502        JAlignment = LJ->getAlignment();
503        IAddressSpace = LI->getPointerAddressSpace();
504        JAddressSpace = LJ->getPointerAddressSpace();
505      } else {
506        StoreInst *SI = cast<StoreInst>(I), *SJ = cast<StoreInst>(J);
507        IPtr = SI->getPointerOperand();
508        JPtr = SJ->getPointerOperand();
509        IAlignment = SI->getAlignment();
510        JAlignment = SJ->getAlignment();
511        IAddressSpace = SI->getPointerAddressSpace();
512        JAddressSpace = SJ->getPointerAddressSpace();
513      }
514
515      const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
516      const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
517
518      // If this is a trivial offset, then we'll get something like
519      // 1*sizeof(type). With target data, which we need anyway, this will get
520      // constant folded into a number.
521      const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
522      if (const SCEVConstant *ConstOffSCEV =
523            dyn_cast<SCEVConstant>(OffsetSCEV)) {
524        ConstantInt *IntOff = ConstOffSCEV->getValue();
525        int64_t Offset = IntOff->getSExtValue();
526
527        Type *VTy = cast<PointerType>(IPtr->getType())->getElementType();
528        int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
529
530        Type *VTy2 = cast<PointerType>(JPtr->getType())->getElementType();
531        if (VTy != VTy2 && Offset < 0) {
532          int64_t VTy2TSS = (int64_t) TD->getTypeStoreSize(VTy2);
533          OffsetInElmts = Offset/VTy2TSS;
534          return (abs64(Offset) % VTy2TSS) == 0;
535        }
536
537        OffsetInElmts = Offset/VTyTSS;
538        return (abs64(Offset) % VTyTSS) == 0;
539      }
540
541      return false;
542    }
543
544    // Returns true if the provided CallInst represents an intrinsic that can
545    // be vectorized.
546    bool isVectorizableIntrinsic(CallInst* I) {
547      Function *F = I->getCalledFunction();
548      if (!F) return false;
549
550      unsigned IID = F->getIntrinsicID();
551      if (!IID) return false;
552
553      switch(IID) {
554      default:
555        return false;
556      case Intrinsic::sqrt:
557      case Intrinsic::powi:
558      case Intrinsic::sin:
559      case Intrinsic::cos:
560      case Intrinsic::log:
561      case Intrinsic::log2:
562      case Intrinsic::log10:
563      case Intrinsic::exp:
564      case Intrinsic::exp2:
565      case Intrinsic::pow:
566        return Config.VectorizeMath;
567      case Intrinsic::fma:
568        return Config.VectorizeFMA;
569      }
570    }
571
572    // Returns true if J is the second element in some pair referenced by
573    // some multimap pair iterator pair.
574    template <typename V>
575    bool isSecondInIteratorPair(V J, std::pair<
576           typename std::multimap<V, V>::iterator,
577           typename std::multimap<V, V>::iterator> PairRange) {
578      for (typename std::multimap<V, V>::iterator K = PairRange.first;
579           K != PairRange.second; ++K)
580        if (K->second == J) return true;
581
582      return false;
583    }
584  };
585
586  // This function implements one vectorization iteration on the provided
587  // basic block. It returns true if the block is changed.
588  bool BBVectorize::vectorizePairs(BasicBlock &BB, bool NonPow2Len) {
589    bool ShouldContinue;
590    BasicBlock::iterator Start = BB.getFirstInsertionPt();
591
592    std::vector<Value *> AllPairableInsts;
593    DenseMap<Value *, Value *> AllChosenPairs;
594
595    do {
596      std::vector<Value *> PairableInsts;
597      std::multimap<Value *, Value *> CandidatePairs;
598      DenseMap<ValuePair, int> CandidatePairCostSavings;
599      ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
600                                         CandidatePairCostSavings,
601                                         PairableInsts, NonPow2Len);
602      if (PairableInsts.empty()) continue;
603
604      // Now we have a map of all of the pairable instructions and we need to
605      // select the best possible pairing. A good pairing is one such that the
606      // users of the pair are also paired. This defines a (directed) forest
607      // over the pairs such that two pairs are connected iff the second pair
608      // uses the first.
609
610      // Note that it only matters that both members of the second pair use some
611      // element of the first pair (to allow for splatting).
612
613      std::multimap<ValuePair, ValuePair> ConnectedPairs;
614      computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs);
615      if (ConnectedPairs.empty()) continue;
616
617      // Build the pairable-instruction dependency map
618      DenseSet<ValuePair> PairableInstUsers;
619      buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
620
621      // There is now a graph of the connected pairs. For each variable, pick
622      // the pairing with the largest tree meeting the depth requirement on at
623      // least one branch. Then select all pairings that are part of that tree
624      // and remove them from the list of available pairings and pairable
625      // variables.
626
627      DenseMap<Value *, Value *> ChosenPairs;
628      choosePairs(CandidatePairs, CandidatePairCostSavings,
629        PairableInsts, ConnectedPairs,
630        PairableInstUsers, ChosenPairs);
631
632      if (ChosenPairs.empty()) continue;
633      AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
634                              PairableInsts.end());
635      AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
636    } while (ShouldContinue);
637
638    if (AllChosenPairs.empty()) return false;
639    NumFusedOps += AllChosenPairs.size();
640
641    // A set of pairs has now been selected. It is now necessary to replace the
642    // paired instructions with vector instructions. For this procedure each
643    // operand must be replaced with a vector operand. This vector is formed
644    // by using build_vector on the old operands. The replaced values are then
645    // replaced with a vector_extract on the result.  Subsequent optimization
646    // passes should coalesce the build/extract combinations.
647
648    fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs);
649
650    // It is important to cleanup here so that future iterations of this
651    // function have less work to do.
652    (void) SimplifyInstructionsInBlock(&BB, TD, AA->getTargetLibraryInfo());
653    return true;
654  }
655
656  // This function returns true if the provided instruction is capable of being
657  // fused into a vector instruction. This determination is based only on the
658  // type and other attributes of the instruction.
659  bool BBVectorize::isInstVectorizable(Instruction *I,
660                                         bool &IsSimpleLoadStore) {
661    IsSimpleLoadStore = false;
662
663    if (CallInst *C = dyn_cast<CallInst>(I)) {
664      if (!isVectorizableIntrinsic(C))
665        return false;
666    } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
667      // Vectorize simple loads if possbile:
668      IsSimpleLoadStore = L->isSimple();
669      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
670        return false;
671    } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
672      // Vectorize simple stores if possbile:
673      IsSimpleLoadStore = S->isSimple();
674      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
675        return false;
676    } else if (CastInst *C = dyn_cast<CastInst>(I)) {
677      // We can vectorize casts, but not casts of pointer types, etc.
678      if (!Config.VectorizeCasts)
679        return false;
680
681      Type *SrcTy = C->getSrcTy();
682      if (!SrcTy->isSingleValueType())
683        return false;
684
685      Type *DestTy = C->getDestTy();
686      if (!DestTy->isSingleValueType())
687        return false;
688    } else if (isa<SelectInst>(I)) {
689      if (!Config.VectorizeSelect)
690        return false;
691    } else if (isa<CmpInst>(I)) {
692      if (!Config.VectorizeCmp)
693        return false;
694    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
695      if (!Config.VectorizeGEP)
696        return false;
697
698      // Currently, vector GEPs exist only with one index.
699      if (G->getNumIndices() != 1)
700        return false;
701    } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
702        isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
703      return false;
704    }
705
706    // We can't vectorize memory operations without target data
707    if (TD == 0 && IsSimpleLoadStore)
708      return false;
709
710    Type *T1, *T2;
711    getInstructionTypes(I, T1, T2);
712
713    // Not every type can be vectorized...
714    if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
715        !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
716      return false;
717
718    if (T1->getScalarSizeInBits() == 1) {
719      if (!Config.VectorizeBools)
720        return false;
721    } else {
722      if (!Config.VectorizeInts && T1->isIntOrIntVectorTy())
723        return false;
724    }
725
726    if (T2->getScalarSizeInBits() == 1) {
727      if (!Config.VectorizeBools)
728        return false;
729    } else {
730      if (!Config.VectorizeInts && T2->isIntOrIntVectorTy())
731        return false;
732    }
733
734    if (!Config.VectorizeFloats
735        && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
736      return false;
737
738    // Don't vectorize target-specific types.
739    if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy())
740      return false;
741    if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
742      return false;
743
744    if ((!Config.VectorizePointers || TD == 0) &&
745        (T1->getScalarType()->isPointerTy() ||
746         T2->getScalarType()->isPointerTy()))
747      return false;
748
749    if (!VTTI && (T1->getPrimitiveSizeInBits() >= Config.VectorBits ||
750                  T2->getPrimitiveSizeInBits() >= Config.VectorBits))
751      return false;
752
753    return true;
754  }
755
756  // This function returns true if the two provided instructions are compatible
757  // (meaning that they can be fused into a vector instruction). This assumes
758  // that I has already been determined to be vectorizable and that J is not
759  // in the use tree of I.
760  bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
761                       bool IsSimpleLoadStore, bool NonPow2Len,
762                       int &CostSavings) {
763    DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
764                     " <-> " << *J << "\n");
765
766    CostSavings = 0;
767
768    // Loads and stores can be merged if they have different alignments,
769    // but are otherwise the same.
770    if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment |
771                      (NonPow2Len ? Instruction::CompareUsingScalarTypes : 0)))
772      return false;
773
774    Type *IT1, *IT2, *JT1, *JT2;
775    getInstructionTypes(I, IT1, IT2);
776    getInstructionTypes(J, JT1, JT2);
777    unsigned MaxTypeBits = std::max(
778      IT1->getPrimitiveSizeInBits() + JT1->getPrimitiveSizeInBits(),
779      IT2->getPrimitiveSizeInBits() + JT2->getPrimitiveSizeInBits());
780    if (!VTTI && MaxTypeBits > Config.VectorBits)
781      return false;
782
783    // FIXME: handle addsub-type operations!
784
785    if (IsSimpleLoadStore) {
786      Value *IPtr, *JPtr;
787      unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
788      int64_t OffsetInElmts = 0;
789      if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
790            IAddressSpace, JAddressSpace,
791            OffsetInElmts) && abs64(OffsetInElmts) == 1) {
792        unsigned BottomAlignment = IAlignment;
793        if (OffsetInElmts < 0) BottomAlignment = JAlignment;
794
795        Type *aTypeI = isa<StoreInst>(I) ?
796          cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
797        Type *aTypeJ = isa<StoreInst>(J) ?
798          cast<StoreInst>(J)->getValueOperand()->getType() : J->getType();
799        Type *VType = getVecTypeForPair(aTypeI, aTypeJ);
800
801        if (Config.AlignedOnly) {
802          // An aligned load or store is possible only if the instruction
803          // with the lower offset has an alignment suitable for the
804          // vector type.
805
806          unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
807          if (BottomAlignment < VecAlignment)
808            return false;
809        }
810
811        if (VTTI) {
812          unsigned ICost = VTTI->getMemoryOpCost(I->getOpcode(), I->getType(),
813                                                 IAlignment, IAddressSpace);
814          unsigned JCost = VTTI->getMemoryOpCost(J->getOpcode(), J->getType(),
815                                                 JAlignment, JAddressSpace);
816          unsigned VCost = VTTI->getMemoryOpCost(I->getOpcode(), VType,
817                                                 BottomAlignment,
818                                                 IAddressSpace);
819          if (VCost > ICost + JCost)
820            return false;
821
822          // We don't want to fuse to a type that will be split, even
823          // if the two input types will also be split and there is no other
824          // associated cost.
825          unsigned VParts = VTTI->getNumberOfParts(VType);
826          if (VParts > 1)
827            return false;
828          else if (!VParts && VCost == ICost + JCost)
829            return false;
830
831          CostSavings = ICost + JCost - VCost;
832        }
833      } else {
834        return false;
835      }
836    } else if (VTTI) {
837      unsigned ICost = VTTI->getInstrCost(I->getOpcode(), IT1, IT2);
838      unsigned JCost = VTTI->getInstrCost(J->getOpcode(), JT1, JT2);
839      Type *VT1 = getVecTypeForPair(IT1, JT1),
840           *VT2 = getVecTypeForPair(IT2, JT2);
841      unsigned VCost = VTTI->getInstrCost(I->getOpcode(), VT1, VT2);
842
843      if (VCost > ICost + JCost)
844        return false;
845
846      // We don't want to fuse to a type that will be split, even
847      // if the two input types will also be split and there is no other
848      // associated cost.
849      unsigned VParts = VTTI->getNumberOfParts(VT1);
850      if (VParts > 1)
851        return false;
852      else if (!VParts && VCost == ICost + JCost)
853        return false;
854
855      CostSavings = ICost + JCost - VCost;
856    }
857
858    // The powi intrinsic is special because only the first argument is
859    // vectorized, the second arguments must be equal.
860    CallInst *CI = dyn_cast<CallInst>(I);
861    Function *FI;
862    if (CI && (FI = CI->getCalledFunction()) &&
863        FI->getIntrinsicID() == Intrinsic::powi) {
864
865      Value *A1I = CI->getArgOperand(1),
866            *A1J = cast<CallInst>(J)->getArgOperand(1);
867      const SCEV *A1ISCEV = SE->getSCEV(A1I),
868                 *A1JSCEV = SE->getSCEV(A1J);
869      return (A1ISCEV == A1JSCEV);
870    }
871
872    return true;
873  }
874
875  // Figure out whether or not J uses I and update the users and write-set
876  // structures associated with I. Specifically, Users represents the set of
877  // instructions that depend on I. WriteSet represents the set
878  // of memory locations that are dependent on I. If UpdateUsers is true,
879  // and J uses I, then Users is updated to contain J and WriteSet is updated
880  // to contain any memory locations to which J writes. The function returns
881  // true if J uses I. By default, alias analysis is used to determine
882  // whether J reads from memory that overlaps with a location in WriteSet.
883  // If LoadMoveSet is not null, then it is a previously-computed multimap
884  // where the key is the memory-based user instruction and the value is
885  // the instruction to be compared with I. So, if LoadMoveSet is provided,
886  // then the alias analysis is not used. This is necessary because this
887  // function is called during the process of moving instructions during
888  // vectorization and the results of the alias analysis are not stable during
889  // that process.
890  bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
891                       AliasSetTracker &WriteSet, Instruction *I,
892                       Instruction *J, bool UpdateUsers,
893                       std::multimap<Value *, Value *> *LoadMoveSet) {
894    bool UsesI = false;
895
896    // This instruction may already be marked as a user due, for example, to
897    // being a member of a selected pair.
898    if (Users.count(J))
899      UsesI = true;
900
901    if (!UsesI)
902      for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
903           JU != JE; ++JU) {
904        Value *V = *JU;
905        if (I == V || Users.count(V)) {
906          UsesI = true;
907          break;
908        }
909      }
910    if (!UsesI && J->mayReadFromMemory()) {
911      if (LoadMoveSet) {
912        VPIteratorPair JPairRange = LoadMoveSet->equal_range(J);
913        UsesI = isSecondInIteratorPair<Value*>(I, JPairRange);
914      } else {
915        for (AliasSetTracker::iterator W = WriteSet.begin(),
916             WE = WriteSet.end(); W != WE; ++W) {
917          if (W->aliasesUnknownInst(J, *AA)) {
918            UsesI = true;
919            break;
920          }
921        }
922      }
923    }
924
925    if (UsesI && UpdateUsers) {
926      if (J->mayWriteToMemory()) WriteSet.add(J);
927      Users.insert(J);
928    }
929
930    return UsesI;
931  }
932
933  // This function iterates over all instruction pairs in the provided
934  // basic block and collects all candidate pairs for vectorization.
935  bool BBVectorize::getCandidatePairs(BasicBlock &BB,
936                       BasicBlock::iterator &Start,
937                       std::multimap<Value *, Value *> &CandidatePairs,
938                       DenseMap<ValuePair, int> &CandidatePairCostSavings,
939                       std::vector<Value *> &PairableInsts, bool NonPow2Len) {
940    BasicBlock::iterator E = BB.end();
941    if (Start == E) return false;
942
943    bool ShouldContinue = false, IAfterStart = false;
944    for (BasicBlock::iterator I = Start++; I != E; ++I) {
945      if (I == Start) IAfterStart = true;
946
947      bool IsSimpleLoadStore;
948      if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
949
950      // Look for an instruction with which to pair instruction *I...
951      DenseSet<Value *> Users;
952      AliasSetTracker WriteSet(*AA);
953      bool JAfterStart = IAfterStart;
954      BasicBlock::iterator J = llvm::next(I);
955      for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
956        if (J == Start) JAfterStart = true;
957
958        // Determine if J uses I, if so, exit the loop.
959        bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
960        if (Config.FastDep) {
961          // Note: For this heuristic to be effective, independent operations
962          // must tend to be intermixed. This is likely to be true from some
963          // kinds of grouped loop unrolling (but not the generic LLVM pass),
964          // but otherwise may require some kind of reordering pass.
965
966          // When using fast dependency analysis,
967          // stop searching after first use:
968          if (UsesI) break;
969        } else {
970          if (UsesI) continue;
971        }
972
973        // J does not use I, and comes before the first use of I, so it can be
974        // merged with I if the instructions are compatible.
975        int CostSavings;
976        if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len,
977            CostSavings)) continue;
978
979        // J is a candidate for merging with I.
980        if (!PairableInsts.size() ||
981             PairableInsts[PairableInsts.size()-1] != I) {
982          PairableInsts.push_back(I);
983        }
984
985        CandidatePairs.insert(ValuePair(I, J));
986        if (VTTI)
987          CandidatePairCostSavings.insert(ValuePairWithCost(ValuePair(I, J),
988                                                            CostSavings));
989
990        // The next call to this function must start after the last instruction
991        // selected during this invocation.
992        if (JAfterStart) {
993          Start = llvm::next(J);
994          IAfterStart = JAfterStart = false;
995        }
996
997        DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
998                     << *I << " <-> " << *J << " (cost savings: " <<
999                     CostSavings << ")\n");
1000
1001        // If we have already found too many pairs, break here and this function
1002        // will be called again starting after the last instruction selected
1003        // during this invocation.
1004        if (PairableInsts.size() >= Config.MaxInsts) {
1005          ShouldContinue = true;
1006          break;
1007        }
1008      }
1009
1010      if (ShouldContinue)
1011        break;
1012    }
1013
1014    DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
1015           << " instructions with candidate pairs\n");
1016
1017    return ShouldContinue;
1018  }
1019
1020  // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
1021  // it looks for pairs such that both members have an input which is an
1022  // output of PI or PJ.
1023  void BBVectorize::computePairsConnectedTo(
1024                      std::multimap<Value *, Value *> &CandidatePairs,
1025                      std::vector<Value *> &PairableInsts,
1026                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1027                      ValuePair P) {
1028    StoreInst *SI, *SJ;
1029
1030    // For each possible pairing for this variable, look at the uses of
1031    // the first value...
1032    for (Value::use_iterator I = P.first->use_begin(),
1033         E = P.first->use_end(); I != E; ++I) {
1034      if (isa<LoadInst>(*I)) {
1035        // A pair cannot be connected to a load because the load only takes one
1036        // operand (the address) and it is a scalar even after vectorization.
1037        continue;
1038      } else if ((SI = dyn_cast<StoreInst>(*I)) &&
1039                 P.first == SI->getPointerOperand()) {
1040        // Similarly, a pair cannot be connected to a store through its
1041        // pointer operand.
1042        continue;
1043      }
1044
1045      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
1046
1047      // For each use of the first variable, look for uses of the second
1048      // variable...
1049      for (Value::use_iterator J = P.second->use_begin(),
1050           E2 = P.second->use_end(); J != E2; ++J) {
1051        if ((SJ = dyn_cast<StoreInst>(*J)) &&
1052            P.second == SJ->getPointerOperand())
1053          continue;
1054
1055        VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
1056
1057        // Look for <I, J>:
1058        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
1059          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
1060
1061        // Look for <J, I>:
1062        if (isSecondInIteratorPair<Value*>(*I, JPairRange))
1063          ConnectedPairs.insert(VPPair(P, ValuePair(*J, *I)));
1064      }
1065
1066      if (Config.SplatBreaksChain) continue;
1067      // Look for cases where just the first value in the pair is used by
1068      // both members of another pair (splatting).
1069      for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) {
1070        if ((SJ = dyn_cast<StoreInst>(*J)) &&
1071            P.first == SJ->getPointerOperand())
1072          continue;
1073
1074        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
1075          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
1076      }
1077    }
1078
1079    if (Config.SplatBreaksChain) return;
1080    // Look for cases where just the second value in the pair is used by
1081    // both members of another pair (splatting).
1082    for (Value::use_iterator I = P.second->use_begin(),
1083         E = P.second->use_end(); I != E; ++I) {
1084      if (isa<LoadInst>(*I))
1085        continue;
1086      else if ((SI = dyn_cast<StoreInst>(*I)) &&
1087               P.second == SI->getPointerOperand())
1088        continue;
1089
1090      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
1091
1092      for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
1093        if ((SJ = dyn_cast<StoreInst>(*J)) &&
1094            P.second == SJ->getPointerOperand())
1095          continue;
1096
1097        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
1098          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
1099      }
1100    }
1101  }
1102
1103  // This function figures out which pairs are connected.  Two pairs are
1104  // connected if some output of the first pair forms an input to both members
1105  // of the second pair.
1106  void BBVectorize::computeConnectedPairs(
1107                      std::multimap<Value *, Value *> &CandidatePairs,
1108                      std::vector<Value *> &PairableInsts,
1109                      std::multimap<ValuePair, ValuePair> &ConnectedPairs) {
1110
1111    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
1112         PE = PairableInsts.end(); PI != PE; ++PI) {
1113      VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI);
1114
1115      for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
1116           P != choiceRange.second; ++P)
1117        computePairsConnectedTo(CandidatePairs, PairableInsts,
1118                                ConnectedPairs, *P);
1119    }
1120
1121    DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
1122                 << " pair connections.\n");
1123  }
1124
1125  // This function builds a set of use tuples such that <A, B> is in the set
1126  // if B is in the use tree of A. If B is in the use tree of A, then B
1127  // depends on the output of A.
1128  void BBVectorize::buildDepMap(
1129                      BasicBlock &BB,
1130                      std::multimap<Value *, Value *> &CandidatePairs,
1131                      std::vector<Value *> &PairableInsts,
1132                      DenseSet<ValuePair> &PairableInstUsers) {
1133    DenseSet<Value *> IsInPair;
1134    for (std::multimap<Value *, Value *>::iterator C = CandidatePairs.begin(),
1135         E = CandidatePairs.end(); C != E; ++C) {
1136      IsInPair.insert(C->first);
1137      IsInPair.insert(C->second);
1138    }
1139
1140    // Iterate through the basic block, recording all Users of each
1141    // pairable instruction.
1142
1143    BasicBlock::iterator E = BB.end();
1144    for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
1145      if (IsInPair.find(I) == IsInPair.end()) continue;
1146
1147      DenseSet<Value *> Users;
1148      AliasSetTracker WriteSet(*AA);
1149      for (BasicBlock::iterator J = llvm::next(I); J != E; ++J)
1150        (void) trackUsesOfI(Users, WriteSet, I, J);
1151
1152      for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
1153           U != E; ++U)
1154        PairableInstUsers.insert(ValuePair(I, *U));
1155    }
1156  }
1157
1158  // Returns true if an input to pair P is an output of pair Q and also an
1159  // input of pair Q is an output of pair P. If this is the case, then these
1160  // two pairs cannot be simultaneously fused.
1161  bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
1162                     DenseSet<ValuePair> &PairableInstUsers,
1163                     std::multimap<ValuePair, ValuePair> *PairableInstUserMap) {
1164    // Two pairs are in conflict if they are mutual Users of eachother.
1165    bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
1166                  PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
1167                  PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
1168                  PairableInstUsers.count(ValuePair(P.second, Q.second));
1169    bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
1170                  PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
1171                  PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
1172                  PairableInstUsers.count(ValuePair(Q.second, P.second));
1173    if (PairableInstUserMap) {
1174      // FIXME: The expensive part of the cycle check is not so much the cycle
1175      // check itself but this edge insertion procedure. This needs some
1176      // profiling and probably a different data structure (same is true of
1177      // most uses of std::multimap).
1178      if (PUsesQ) {
1179        VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q);
1180        if (!isSecondInIteratorPair(P, QPairRange))
1181          PairableInstUserMap->insert(VPPair(Q, P));
1182      }
1183      if (QUsesP) {
1184        VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P);
1185        if (!isSecondInIteratorPair(Q, PPairRange))
1186          PairableInstUserMap->insert(VPPair(P, Q));
1187      }
1188    }
1189
1190    return (QUsesP && PUsesQ);
1191  }
1192
1193  // This function walks the use graph of current pairs to see if, starting
1194  // from P, the walk returns to P.
1195  bool BBVectorize::pairWillFormCycle(ValuePair P,
1196                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1197                       DenseSet<ValuePair> &CurrentPairs) {
1198    DEBUG(if (DebugCycleCheck)
1199            dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
1200                   << *P.second << "\n");
1201    // A lookup table of visisted pairs is kept because the PairableInstUserMap
1202    // contains non-direct associations.
1203    DenseSet<ValuePair> Visited;
1204    SmallVector<ValuePair, 32> Q;
1205    // General depth-first post-order traversal:
1206    Q.push_back(P);
1207    do {
1208      ValuePair QTop = Q.pop_back_val();
1209      Visited.insert(QTop);
1210
1211      DEBUG(if (DebugCycleCheck)
1212              dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
1213                     << *QTop.second << "\n");
1214      VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop);
1215      for (std::multimap<ValuePair, ValuePair>::iterator C = QPairRange.first;
1216           C != QPairRange.second; ++C) {
1217        if (C->second == P) {
1218          DEBUG(dbgs()
1219                 << "BBV: rejected to prevent non-trivial cycle formation: "
1220                 << *C->first.first << " <-> " << *C->first.second << "\n");
1221          return true;
1222        }
1223
1224        if (CurrentPairs.count(C->second) && !Visited.count(C->second))
1225          Q.push_back(C->second);
1226      }
1227    } while (!Q.empty());
1228
1229    return false;
1230  }
1231
1232  // This function builds the initial tree of connected pairs with the
1233  // pair J at the root.
1234  void BBVectorize::buildInitialTreeFor(
1235                      std::multimap<Value *, Value *> &CandidatePairs,
1236                      std::vector<Value *> &PairableInsts,
1237                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1238                      DenseSet<ValuePair> &PairableInstUsers,
1239                      DenseMap<Value *, Value *> &ChosenPairs,
1240                      DenseMap<ValuePair, size_t> &Tree, ValuePair J) {
1241    // Each of these pairs is viewed as the root node of a Tree. The Tree
1242    // is then walked (depth-first). As this happens, we keep track of
1243    // the pairs that compose the Tree and the maximum depth of the Tree.
1244    SmallVector<ValuePairWithDepth, 32> Q;
1245    // General depth-first post-order traversal:
1246    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
1247    do {
1248      ValuePairWithDepth QTop = Q.back();
1249
1250      // Push each child onto the queue:
1251      bool MoreChildren = false;
1252      size_t MaxChildDepth = QTop.second;
1253      VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first);
1254      for (std::multimap<ValuePair, ValuePair>::iterator k = qtRange.first;
1255           k != qtRange.second; ++k) {
1256        // Make sure that this child pair is still a candidate:
1257        bool IsStillCand = false;
1258        VPIteratorPair checkRange =
1259          CandidatePairs.equal_range(k->second.first);
1260        for (std::multimap<Value *, Value *>::iterator m = checkRange.first;
1261             m != checkRange.second; ++m) {
1262          if (m->second == k->second.second) {
1263            IsStillCand = true;
1264            break;
1265          }
1266        }
1267
1268        if (IsStillCand) {
1269          DenseMap<ValuePair, size_t>::iterator C = Tree.find(k->second);
1270          if (C == Tree.end()) {
1271            size_t d = getDepthFactor(k->second.first);
1272            Q.push_back(ValuePairWithDepth(k->second, QTop.second+d));
1273            MoreChildren = true;
1274          } else {
1275            MaxChildDepth = std::max(MaxChildDepth, C->second);
1276          }
1277        }
1278      }
1279
1280      if (!MoreChildren) {
1281        // Record the current pair as part of the Tree:
1282        Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
1283        Q.pop_back();
1284      }
1285    } while (!Q.empty());
1286  }
1287
1288  // Given some initial tree, prune it by removing conflicting pairs (pairs
1289  // that cannot be simultaneously chosen for vectorization).
1290  void BBVectorize::pruneTreeFor(
1291                      std::multimap<Value *, Value *> &CandidatePairs,
1292                      std::vector<Value *> &PairableInsts,
1293                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1294                      DenseSet<ValuePair> &PairableInstUsers,
1295                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1296                      DenseMap<Value *, Value *> &ChosenPairs,
1297                      DenseMap<ValuePair, size_t> &Tree,
1298                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
1299                      bool UseCycleCheck) {
1300    SmallVector<ValuePairWithDepth, 32> Q;
1301    // General depth-first post-order traversal:
1302    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
1303    do {
1304      ValuePairWithDepth QTop = Q.pop_back_val();
1305      PrunedTree.insert(QTop.first);
1306
1307      // Visit each child, pruning as necessary...
1308      DenseMap<ValuePair, size_t> BestChildren;
1309      VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
1310      for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first;
1311           K != QTopRange.second; ++K) {
1312        DenseMap<ValuePair, size_t>::iterator C = Tree.find(K->second);
1313        if (C == Tree.end()) continue;
1314
1315        // This child is in the Tree, now we need to make sure it is the
1316        // best of any conflicting children. There could be multiple
1317        // conflicting children, so first, determine if we're keeping
1318        // this child, then delete conflicting children as necessary.
1319
1320        // It is also necessary to guard against pairing-induced
1321        // dependencies. Consider instructions a .. x .. y .. b
1322        // such that (a,b) are to be fused and (x,y) are to be fused
1323        // but a is an input to x and b is an output from y. This
1324        // means that y cannot be moved after b but x must be moved
1325        // after b for (a,b) to be fused. In other words, after
1326        // fusing (a,b) we have y .. a/b .. x where y is an input
1327        // to a/b and x is an output to a/b: x and y can no longer
1328        // be legally fused. To prevent this condition, we must
1329        // make sure that a child pair added to the Tree is not
1330        // both an input and output of an already-selected pair.
1331
1332        // Pairing-induced dependencies can also form from more complicated
1333        // cycles. The pair vs. pair conflicts are easy to check, and so
1334        // that is done explicitly for "fast rejection", and because for
1335        // child vs. child conflicts, we may prefer to keep the current
1336        // pair in preference to the already-selected child.
1337        DenseSet<ValuePair> CurrentPairs;
1338
1339        bool CanAdd = true;
1340        for (DenseMap<ValuePair, size_t>::iterator C2
1341              = BestChildren.begin(), E2 = BestChildren.end();
1342             C2 != E2; ++C2) {
1343          if (C2->first.first == C->first.first ||
1344              C2->first.first == C->first.second ||
1345              C2->first.second == C->first.first ||
1346              C2->first.second == C->first.second ||
1347              pairsConflict(C2->first, C->first, PairableInstUsers,
1348                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1349            if (C2->second >= C->second) {
1350              CanAdd = false;
1351              break;
1352            }
1353
1354            CurrentPairs.insert(C2->first);
1355          }
1356        }
1357        if (!CanAdd) continue;
1358
1359        // Even worse, this child could conflict with another node already
1360        // selected for the Tree. If that is the case, ignore this child.
1361        for (DenseSet<ValuePair>::iterator T = PrunedTree.begin(),
1362             E2 = PrunedTree.end(); T != E2; ++T) {
1363          if (T->first == C->first.first ||
1364              T->first == C->first.second ||
1365              T->second == C->first.first ||
1366              T->second == C->first.second ||
1367              pairsConflict(*T, C->first, PairableInstUsers,
1368                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1369            CanAdd = false;
1370            break;
1371          }
1372
1373          CurrentPairs.insert(*T);
1374        }
1375        if (!CanAdd) continue;
1376
1377        // And check the queue too...
1378        for (SmallVector<ValuePairWithDepth, 32>::iterator C2 = Q.begin(),
1379             E2 = Q.end(); C2 != E2; ++C2) {
1380          if (C2->first.first == C->first.first ||
1381              C2->first.first == C->first.second ||
1382              C2->first.second == C->first.first ||
1383              C2->first.second == C->first.second ||
1384              pairsConflict(C2->first, C->first, PairableInstUsers,
1385                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1386            CanAdd = false;
1387            break;
1388          }
1389
1390          CurrentPairs.insert(C2->first);
1391        }
1392        if (!CanAdd) continue;
1393
1394        // Last but not least, check for a conflict with any of the
1395        // already-chosen pairs.
1396        for (DenseMap<Value *, Value *>::iterator C2 =
1397              ChosenPairs.begin(), E2 = ChosenPairs.end();
1398             C2 != E2; ++C2) {
1399          if (pairsConflict(*C2, C->first, PairableInstUsers,
1400                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1401            CanAdd = false;
1402            break;
1403          }
1404
1405          CurrentPairs.insert(*C2);
1406        }
1407        if (!CanAdd) continue;
1408
1409        // To check for non-trivial cycles formed by the addition of the
1410        // current pair we've formed a list of all relevant pairs, now use a
1411        // graph walk to check for a cycle. We start from the current pair and
1412        // walk the use tree to see if we again reach the current pair. If we
1413        // do, then the current pair is rejected.
1414
1415        // FIXME: It may be more efficient to use a topological-ordering
1416        // algorithm to improve the cycle check. This should be investigated.
1417        if (UseCycleCheck &&
1418            pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
1419          continue;
1420
1421        // This child can be added, but we may have chosen it in preference
1422        // to an already-selected child. Check for this here, and if a
1423        // conflict is found, then remove the previously-selected child
1424        // before adding this one in its place.
1425        for (DenseMap<ValuePair, size_t>::iterator C2
1426              = BestChildren.begin(); C2 != BestChildren.end();) {
1427          if (C2->first.first == C->first.first ||
1428              C2->first.first == C->first.second ||
1429              C2->first.second == C->first.first ||
1430              C2->first.second == C->first.second ||
1431              pairsConflict(C2->first, C->first, PairableInstUsers))
1432            BestChildren.erase(C2++);
1433          else
1434            ++C2;
1435        }
1436
1437        BestChildren.insert(ValuePairWithDepth(C->first, C->second));
1438      }
1439
1440      for (DenseMap<ValuePair, size_t>::iterator C
1441            = BestChildren.begin(), E2 = BestChildren.end();
1442           C != E2; ++C) {
1443        size_t DepthF = getDepthFactor(C->first.first);
1444        Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
1445      }
1446    } while (!Q.empty());
1447  }
1448
1449  // This function finds the best tree of mututally-compatible connected
1450  // pairs, given the choice of root pairs as an iterator range.
1451  void BBVectorize::findBestTreeFor(
1452                      std::multimap<Value *, Value *> &CandidatePairs,
1453                      DenseMap<ValuePair, int> &CandidatePairCostSavings,
1454                      std::vector<Value *> &PairableInsts,
1455                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1456                      DenseSet<ValuePair> &PairableInstUsers,
1457                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1458                      DenseMap<Value *, Value *> &ChosenPairs,
1459                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
1460                      int &BestEffSize, VPIteratorPair ChoiceRange,
1461                      bool UseCycleCheck) {
1462    for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
1463         J != ChoiceRange.second; ++J) {
1464
1465      // Before going any further, make sure that this pair does not
1466      // conflict with any already-selected pairs (see comment below
1467      // near the Tree pruning for more details).
1468      DenseSet<ValuePair> ChosenPairSet;
1469      bool DoesConflict = false;
1470      for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
1471           E = ChosenPairs.end(); C != E; ++C) {
1472        if (pairsConflict(*C, *J, PairableInstUsers,
1473                          UseCycleCheck ? &PairableInstUserMap : 0)) {
1474          DoesConflict = true;
1475          break;
1476        }
1477
1478        ChosenPairSet.insert(*C);
1479      }
1480      if (DoesConflict) continue;
1481
1482      if (UseCycleCheck &&
1483          pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet))
1484        continue;
1485
1486      DenseMap<ValuePair, size_t> Tree;
1487      buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1488                          PairableInstUsers, ChosenPairs, Tree, *J);
1489
1490      // Because we'll keep the child with the largest depth, the largest
1491      // depth is still the same in the unpruned Tree.
1492      size_t MaxDepth = Tree.lookup(*J);
1493
1494      DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {"
1495                   << *J->first << " <-> " << *J->second << "} of depth " <<
1496                   MaxDepth << " and size " << Tree.size() << "\n");
1497
1498      // At this point the Tree has been constructed, but, may contain
1499      // contradictory children (meaning that different children of
1500      // some tree node may be attempting to fuse the same instruction).
1501      // So now we walk the tree again, in the case of a conflict,
1502      // keep only the child with the largest depth. To break a tie,
1503      // favor the first child.
1504
1505      DenseSet<ValuePair> PrunedTree;
1506      pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1507                   PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
1508                   PrunedTree, *J, UseCycleCheck);
1509
1510      int EffSize = 0;
1511      if (VTTI) {
1512        for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
1513             E = PrunedTree.end(); S != E; ++S) {
1514          if (getDepthFactor(S->first))
1515            EffSize += CandidatePairCostSavings.find(*S)->second;
1516        }
1517      } else {
1518        for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
1519             E = PrunedTree.end(); S != E; ++S)
1520          EffSize += (int) getDepthFactor(S->first);
1521      }
1522
1523      DEBUG(if (DebugPairSelection)
1524             dbgs() << "BBV: found pruned Tree for pair {"
1525             << *J->first << " <-> " << *J->second << "} of depth " <<
1526             MaxDepth << " and size " << PrunedTree.size() <<
1527            " (effective size: " << EffSize << ")\n");
1528      if (MaxDepth >= Config.ReqChainDepth &&
1529          EffSize > 0 && EffSize > BestEffSize) {
1530        BestMaxDepth = MaxDepth;
1531        BestEffSize = EffSize;
1532        BestTree = PrunedTree;
1533      }
1534    }
1535  }
1536
1537  // Given the list of candidate pairs, this function selects those
1538  // that will be fused into vector instructions.
1539  void BBVectorize::choosePairs(
1540                      std::multimap<Value *, Value *> &CandidatePairs,
1541                      DenseMap<ValuePair, int> &CandidatePairCostSavings,
1542                      std::vector<Value *> &PairableInsts,
1543                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1544                      DenseSet<ValuePair> &PairableInstUsers,
1545                      DenseMap<Value *, Value *>& ChosenPairs) {
1546    bool UseCycleCheck =
1547     CandidatePairs.size() <= Config.MaxCandPairsForCycleCheck;
1548    std::multimap<ValuePair, ValuePair> PairableInstUserMap;
1549    for (std::vector<Value *>::iterator I = PairableInsts.begin(),
1550         E = PairableInsts.end(); I != E; ++I) {
1551      // The number of possible pairings for this variable:
1552      size_t NumChoices = CandidatePairs.count(*I);
1553      if (!NumChoices) continue;
1554
1555      VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
1556
1557      // The best pair to choose and its tree:
1558      size_t BestMaxDepth = 0;
1559      int BestEffSize = 0;
1560      DenseSet<ValuePair> BestTree;
1561      findBestTreeFor(CandidatePairs, CandidatePairCostSavings,
1562                      PairableInsts, ConnectedPairs,
1563                      PairableInstUsers, PairableInstUserMap, ChosenPairs,
1564                      BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
1565                      UseCycleCheck);
1566
1567      // A tree has been chosen (or not) at this point. If no tree was
1568      // chosen, then this instruction, I, cannot be paired (and is no longer
1569      // considered).
1570
1571      DEBUG(if (BestTree.size() > 0)
1572              dbgs() << "BBV: selected pairs in the best tree for: "
1573                     << *cast<Instruction>(*I) << "\n");
1574
1575      for (DenseSet<ValuePair>::iterator S = BestTree.begin(),
1576           SE2 = BestTree.end(); S != SE2; ++S) {
1577        // Insert the members of this tree into the list of chosen pairs.
1578        ChosenPairs.insert(ValuePair(S->first, S->second));
1579        DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
1580               *S->second << "\n");
1581
1582        // Remove all candidate pairs that have values in the chosen tree.
1583        for (std::multimap<Value *, Value *>::iterator K =
1584               CandidatePairs.begin(); K != CandidatePairs.end();) {
1585          if (K->first == S->first || K->second == S->first ||
1586              K->second == S->second || K->first == S->second) {
1587            // Don't remove the actual pair chosen so that it can be used
1588            // in subsequent tree selections.
1589            if (!(K->first == S->first && K->second == S->second))
1590              CandidatePairs.erase(K++);
1591            else
1592              ++K;
1593          } else {
1594            ++K;
1595          }
1596        }
1597      }
1598    }
1599
1600    DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
1601  }
1602
1603  std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
1604                     unsigned n = 0) {
1605    if (!I->hasName())
1606      return "";
1607
1608    return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
1609             (n > 0 ? "." + utostr(n) : "")).str();
1610  }
1611
1612  // Returns the value that is to be used as the pointer input to the vector
1613  // instruction that fuses I with J.
1614  Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
1615                     Instruction *I, Instruction *J, unsigned o,
1616                     bool FlipMemInputs) {
1617    Value *IPtr, *JPtr;
1618    unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
1619    int64_t OffsetInElmts;
1620
1621    // Note: the analysis might fail here, that is why FlipMemInputs has
1622    // been precomputed (OffsetInElmts must be unused here).
1623    (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
1624                          IAddressSpace, JAddressSpace,
1625                          OffsetInElmts);
1626
1627    // The pointer value is taken to be the one with the lowest offset.
1628    Value *VPtr;
1629    if (!FlipMemInputs) {
1630      VPtr = IPtr;
1631    } else {
1632      VPtr = JPtr;
1633    }
1634
1635    Type *ArgTypeI = cast<PointerType>(IPtr->getType())->getElementType();
1636    Type *ArgTypeJ = cast<PointerType>(JPtr->getType())->getElementType();
1637    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
1638    Type *VArgPtrType = PointerType::get(VArgType,
1639      cast<PointerType>(IPtr->getType())->getAddressSpace());
1640    return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
1641                        /* insert before */ FlipMemInputs ? J : I);
1642  }
1643
1644  void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
1645                     unsigned MaskOffset, unsigned NumInElem,
1646                     unsigned NumInElem1, unsigned IdxOffset,
1647                     std::vector<Constant*> &Mask) {
1648    unsigned NumElem1 = cast<VectorType>(J->getType())->getNumElements();
1649    for (unsigned v = 0; v < NumElem1; ++v) {
1650      int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
1651      if (m < 0) {
1652        Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
1653      } else {
1654        unsigned mm = m + (int) IdxOffset;
1655        if (m >= (int) NumInElem1)
1656          mm += (int) NumInElem;
1657
1658        Mask[v+MaskOffset] =
1659          ConstantInt::get(Type::getInt32Ty(Context), mm);
1660      }
1661    }
1662  }
1663
1664  // Returns the value that is to be used as the vector-shuffle mask to the
1665  // vector instruction that fuses I with J.
1666  Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
1667                     Instruction *I, Instruction *J) {
1668    // This is the shuffle mask. We need to append the second
1669    // mask to the first, and the numbers need to be adjusted.
1670
1671    Type *ArgTypeI = I->getType();
1672    Type *ArgTypeJ = J->getType();
1673    Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
1674
1675    unsigned NumElemI = cast<VectorType>(ArgTypeI)->getNumElements();
1676
1677    // Get the total number of elements in the fused vector type.
1678    // By definition, this must equal the number of elements in
1679    // the final mask.
1680    unsigned NumElem = cast<VectorType>(VArgType)->getNumElements();
1681    std::vector<Constant*> Mask(NumElem);
1682
1683    Type *OpTypeI = I->getOperand(0)->getType();
1684    unsigned NumInElemI = cast<VectorType>(OpTypeI)->getNumElements();
1685    Type *OpTypeJ = J->getOperand(0)->getType();
1686    unsigned NumInElemJ = cast<VectorType>(OpTypeJ)->getNumElements();
1687
1688    // The fused vector will be:
1689    // -----------------------------------------------------
1690    // | NumInElemI | NumInElemJ | NumInElemI | NumInElemJ |
1691    // -----------------------------------------------------
1692    // from which we'll extract NumElem total elements (where the first NumElemI
1693    // of them come from the mask in I and the remainder come from the mask
1694    // in J.
1695
1696    // For the mask from the first pair...
1697    fillNewShuffleMask(Context, I, 0,        NumInElemJ, NumInElemI,
1698                       0,          Mask);
1699
1700    // For the mask from the second pair...
1701    fillNewShuffleMask(Context, J, NumElemI, NumInElemI, NumInElemJ,
1702                       NumInElemI, Mask);
1703
1704    return ConstantVector::get(Mask);
1705  }
1706
1707  bool BBVectorize::expandIEChain(LLVMContext& Context, Instruction *I,
1708                                  Instruction *J, unsigned o, Value *&LOp,
1709                                  unsigned numElemL,
1710                                  Type *ArgTypeL, Type *ArgTypeH,
1711                                  unsigned IdxOff) {
1712    bool ExpandedIEChain = false;
1713    if (InsertElementInst *LIE = dyn_cast<InsertElementInst>(LOp)) {
1714      // If we have a pure insertelement chain, then this can be rewritten
1715      // into a chain that directly builds the larger type.
1716      bool PureChain = true;
1717      InsertElementInst *LIENext = LIE;
1718      do {
1719        if (!isa<UndefValue>(LIENext->getOperand(0)) &&
1720            !isa<InsertElementInst>(LIENext->getOperand(0))) {
1721          PureChain = false;
1722          break;
1723        }
1724      } while ((LIENext =
1725                 dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
1726
1727      if (PureChain) {
1728        SmallVector<Value *, 8> VectElemts(numElemL,
1729          UndefValue::get(ArgTypeL->getScalarType()));
1730        InsertElementInst *LIENext = LIE;
1731        do {
1732          unsigned Idx =
1733            cast<ConstantInt>(LIENext->getOperand(2))->getSExtValue();
1734          VectElemts[Idx] = LIENext->getOperand(1);
1735        } while ((LIENext =
1736                   dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
1737
1738        LIENext = 0;
1739        Value *LIEPrev = UndefValue::get(ArgTypeH);
1740        for (unsigned i = 0; i < numElemL; ++i) {
1741          if (isa<UndefValue>(VectElemts[i])) continue;
1742          LIENext = InsertElementInst::Create(LIEPrev, VectElemts[i],
1743                             ConstantInt::get(Type::getInt32Ty(Context),
1744                                              i + IdxOff),
1745                             getReplacementName(I, true, o, i+1));
1746          LIENext->insertBefore(J);
1747          LIEPrev = LIENext;
1748        }
1749
1750        LOp = LIENext ? (Value*) LIENext : UndefValue::get(ArgTypeH);
1751        ExpandedIEChain = true;
1752      }
1753    }
1754
1755    return ExpandedIEChain;
1756  }
1757
1758  // Returns the value to be used as the specified operand of the vector
1759  // instruction that fuses I with J.
1760  Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
1761                     Instruction *J, unsigned o, bool FlipMemInputs) {
1762    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
1763    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
1764
1765    // Compute the fused vector type for this operand
1766    Type *ArgTypeI = I->getOperand(o)->getType();
1767    Type *ArgTypeJ = J->getOperand(o)->getType();
1768    VectorType *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
1769
1770    Instruction *L = I, *H = J;
1771    Type *ArgTypeL = ArgTypeI, *ArgTypeH = ArgTypeJ;
1772    if (FlipMemInputs) {
1773      L = J;
1774      H = I;
1775      ArgTypeL = ArgTypeJ;
1776      ArgTypeH = ArgTypeI;
1777    }
1778
1779    unsigned numElemL;
1780    if (ArgTypeL->isVectorTy())
1781      numElemL = cast<VectorType>(ArgTypeL)->getNumElements();
1782    else
1783      numElemL = 1;
1784
1785    unsigned numElemH;
1786    if (ArgTypeH->isVectorTy())
1787      numElemH = cast<VectorType>(ArgTypeH)->getNumElements();
1788    else
1789      numElemH = 1;
1790
1791    Value *LOp = L->getOperand(o);
1792    Value *HOp = H->getOperand(o);
1793    unsigned numElem = VArgType->getNumElements();
1794
1795    // First, we check if we can reuse the "original" vector outputs (if these
1796    // exist). We might need a shuffle.
1797    ExtractElementInst *LEE = dyn_cast<ExtractElementInst>(LOp);
1798    ExtractElementInst *HEE = dyn_cast<ExtractElementInst>(HOp);
1799    ShuffleVectorInst *LSV = dyn_cast<ShuffleVectorInst>(LOp);
1800    ShuffleVectorInst *HSV = dyn_cast<ShuffleVectorInst>(HOp);
1801
1802    // FIXME: If we're fusing shuffle instructions, then we can't apply this
1803    // optimization. The input vectors to the shuffle might be a different
1804    // length from the shuffle outputs. Unfortunately, the replacement
1805    // shuffle mask has already been formed, and the mask entries are sensitive
1806    // to the sizes of the inputs.
1807    bool IsSizeChangeShuffle =
1808      isa<ShuffleVectorInst>(L) &&
1809        (LOp->getType() != L->getType() || HOp->getType() != H->getType());
1810
1811    if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) {
1812      // We can have at most two unique vector inputs.
1813      bool CanUseInputs = true;
1814      Value *I1, *I2 = 0;
1815      if (LEE) {
1816        I1 = LEE->getOperand(0);
1817      } else {
1818        I1 = LSV->getOperand(0);
1819        I2 = LSV->getOperand(1);
1820        if (I2 == I1 || isa<UndefValue>(I2))
1821          I2 = 0;
1822      }
1823
1824      if (HEE) {
1825        Value *I3 = HEE->getOperand(0);
1826        if (!I2 && I3 != I1)
1827          I2 = I3;
1828        else if (I3 != I1 && I3 != I2)
1829          CanUseInputs = false;
1830      } else {
1831        Value *I3 = HSV->getOperand(0);
1832        if (!I2 && I3 != I1)
1833          I2 = I3;
1834        else if (I3 != I1 && I3 != I2)
1835          CanUseInputs = false;
1836
1837        if (CanUseInputs) {
1838          Value *I4 = HSV->getOperand(1);
1839          if (!isa<UndefValue>(I4)) {
1840            if (!I2 && I4 != I1)
1841              I2 = I4;
1842            else if (I4 != I1 && I4 != I2)
1843              CanUseInputs = false;
1844          }
1845        }
1846      }
1847
1848      if (CanUseInputs) {
1849        unsigned LOpElem =
1850          cast<VectorType>(cast<Instruction>(LOp)->getOperand(0)->getType())
1851            ->getNumElements();
1852        unsigned HOpElem =
1853          cast<VectorType>(cast<Instruction>(HOp)->getOperand(0)->getType())
1854            ->getNumElements();
1855
1856        // We have one or two input vectors. We need to map each index of the
1857        // operands to the index of the original vector.
1858        SmallVector<std::pair<int, int>, 8>  II(numElem);
1859        for (unsigned i = 0; i < numElemL; ++i) {
1860          int Idx, INum;
1861          if (LEE) {
1862            Idx =
1863              cast<ConstantInt>(LEE->getOperand(1))->getSExtValue();
1864            INum = LEE->getOperand(0) == I1 ? 0 : 1;
1865          } else {
1866            Idx = LSV->getMaskValue(i);
1867            if (Idx < (int) LOpElem) {
1868              INum = LSV->getOperand(0) == I1 ? 0 : 1;
1869            } else {
1870              Idx -= LOpElem;
1871              INum = LSV->getOperand(1) == I1 ? 0 : 1;
1872            }
1873          }
1874
1875          II[i] = std::pair<int, int>(Idx, INum);
1876        }
1877        for (unsigned i = 0; i < numElemH; ++i) {
1878          int Idx, INum;
1879          if (HEE) {
1880            Idx =
1881              cast<ConstantInt>(HEE->getOperand(1))->getSExtValue();
1882            INum = HEE->getOperand(0) == I1 ? 0 : 1;
1883          } else {
1884            Idx = HSV->getMaskValue(i);
1885            if (Idx < (int) HOpElem) {
1886              INum = HSV->getOperand(0) == I1 ? 0 : 1;
1887            } else {
1888              Idx -= HOpElem;
1889              INum = HSV->getOperand(1) == I1 ? 0 : 1;
1890            }
1891          }
1892
1893          II[i + numElemL] = std::pair<int, int>(Idx, INum);
1894        }
1895
1896        // We now have an array which tells us from which index of which
1897        // input vector each element of the operand comes.
1898        VectorType *I1T = cast<VectorType>(I1->getType());
1899        unsigned I1Elem = I1T->getNumElements();
1900
1901        if (!I2) {
1902          // In this case there is only one underlying vector input. Check for
1903          // the trivial case where we can use the input directly.
1904          if (I1Elem == numElem) {
1905            bool ElemInOrder = true;
1906            for (unsigned i = 0; i < numElem; ++i) {
1907              if (II[i].first != (int) i && II[i].first != -1) {
1908                ElemInOrder = false;
1909                break;
1910              }
1911            }
1912
1913            if (ElemInOrder)
1914              return I1;
1915          }
1916
1917          // A shuffle is needed.
1918          std::vector<Constant *> Mask(numElem);
1919          for (unsigned i = 0; i < numElem; ++i) {
1920            int Idx = II[i].first;
1921            if (Idx == -1)
1922              Mask[i] = UndefValue::get(Type::getInt32Ty(Context));
1923            else
1924              Mask[i] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
1925          }
1926
1927          Instruction *S =
1928            new ShuffleVectorInst(I1, UndefValue::get(I1T),
1929                                  ConstantVector::get(Mask),
1930                                  getReplacementName(I, true, o));
1931          S->insertBefore(J);
1932          return S;
1933        }
1934
1935        VectorType *I2T = cast<VectorType>(I2->getType());
1936        unsigned I2Elem = I2T->getNumElements();
1937
1938        // This input comes from two distinct vectors. The first step is to
1939        // make sure that both vectors are the same length. If not, the
1940        // smaller one will need to grow before they can be shuffled together.
1941        if (I1Elem < I2Elem) {
1942          std::vector<Constant *> Mask(I2Elem);
1943          unsigned v = 0;
1944          for (; v < I1Elem; ++v)
1945            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
1946          for (; v < I2Elem; ++v)
1947            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
1948
1949          Instruction *NewI1 =
1950            new ShuffleVectorInst(I1, UndefValue::get(I1T),
1951                                  ConstantVector::get(Mask),
1952                                  getReplacementName(I, true, o, 1));
1953          NewI1->insertBefore(J);
1954          I1 = NewI1;
1955          I1T = I2T;
1956          I1Elem = I2Elem;
1957        } else if (I1Elem > I2Elem) {
1958          std::vector<Constant *> Mask(I1Elem);
1959          unsigned v = 0;
1960          for (; v < I2Elem; ++v)
1961            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
1962          for (; v < I1Elem; ++v)
1963            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
1964
1965          Instruction *NewI2 =
1966            new ShuffleVectorInst(I2, UndefValue::get(I2T),
1967                                  ConstantVector::get(Mask),
1968                                  getReplacementName(I, true, o, 1));
1969          NewI2->insertBefore(J);
1970          I2 = NewI2;
1971          I2T = I1T;
1972          I2Elem = I1Elem;
1973        }
1974
1975        // Now that both I1 and I2 are the same length we can shuffle them
1976        // together (and use the result).
1977        std::vector<Constant *> Mask(numElem);
1978        for (unsigned v = 0; v < numElem; ++v) {
1979          if (II[v].first == -1) {
1980            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
1981          } else {
1982            int Idx = II[v].first + II[v].second * I1Elem;
1983            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
1984          }
1985        }
1986
1987        Instruction *NewOp =
1988          new ShuffleVectorInst(I1, I2, ConstantVector::get(Mask),
1989                                getReplacementName(I, true, o));
1990        NewOp->insertBefore(J);
1991        return NewOp;
1992      }
1993    }
1994
1995    Type *ArgType = ArgTypeL;
1996    if (numElemL < numElemH) {
1997      if (numElemL == 1 && expandIEChain(Context, I, J, o, HOp, numElemH,
1998                                         ArgTypeL, VArgType, 1)) {
1999        // This is another short-circuit case: we're combining a scalar into
2000        // a vector that is formed by an IE chain. We've just expanded the IE
2001        // chain, now insert the scalar and we're done.
2002
2003        Instruction *S = InsertElementInst::Create(HOp, LOp, CV0,
2004                                               getReplacementName(I, true, o));
2005        S->insertBefore(J);
2006        return S;
2007      } else if (!expandIEChain(Context, I, J, o, LOp, numElemL, ArgTypeL,
2008                                ArgTypeH)) {
2009        // The two vector inputs to the shuffle must be the same length,
2010        // so extend the smaller vector to be the same length as the larger one.
2011        Instruction *NLOp;
2012        if (numElemL > 1) {
2013
2014          std::vector<Constant *> Mask(numElemH);
2015          unsigned v = 0;
2016          for (; v < numElemL; ++v)
2017            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2018          for (; v < numElemH; ++v)
2019            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2020
2021          NLOp = new ShuffleVectorInst(LOp, UndefValue::get(ArgTypeL),
2022                                       ConstantVector::get(Mask),
2023                                       getReplacementName(I, true, o, 1));
2024        } else {
2025          NLOp = InsertElementInst::Create(UndefValue::get(ArgTypeH), LOp, CV0,
2026                                           getReplacementName(I, true, o, 1));
2027        }
2028
2029        NLOp->insertBefore(J);
2030        LOp = NLOp;
2031      }
2032
2033      ArgType = ArgTypeH;
2034    } else if (numElemL > numElemH) {
2035      if (numElemH == 1 && expandIEChain(Context, I, J, o, LOp, numElemL,
2036                                         ArgTypeH, VArgType)) {
2037        Instruction *S =
2038          InsertElementInst::Create(LOp, HOp,
2039                                    ConstantInt::get(Type::getInt32Ty(Context),
2040                                                     numElemL),
2041                                    getReplacementName(I, true, o));
2042        S->insertBefore(J);
2043        return S;
2044      } else if (!expandIEChain(Context, I, J, o, HOp, numElemH, ArgTypeH,
2045                                ArgTypeL)) {
2046        Instruction *NHOp;
2047        if (numElemH > 1) {
2048          std::vector<Constant *> Mask(numElemL);
2049          unsigned v = 0;
2050          for (; v < numElemH; ++v)
2051            Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2052          for (; v < numElemL; ++v)
2053            Mask[v] = UndefValue::get(Type::getInt32Ty(Context));
2054
2055          NHOp = new ShuffleVectorInst(HOp, UndefValue::get(ArgTypeH),
2056                                       ConstantVector::get(Mask),
2057                                       getReplacementName(I, true, o, 1));
2058        } else {
2059          NHOp = InsertElementInst::Create(UndefValue::get(ArgTypeL), HOp, CV0,
2060                                           getReplacementName(I, true, o, 1));
2061        }
2062
2063        NHOp->insertBefore(J);
2064        HOp = NHOp;
2065      }
2066    }
2067
2068    if (ArgType->isVectorTy()) {
2069      unsigned numElem = cast<VectorType>(VArgType)->getNumElements();
2070      std::vector<Constant*> Mask(numElem);
2071      for (unsigned v = 0; v < numElem; ++v) {
2072        unsigned Idx = v;
2073        // If the low vector was expanded, we need to skip the extra
2074        // undefined entries.
2075        if (v >= numElemL && numElemH > numElemL)
2076          Idx += (numElemH - numElemL);
2077        Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), Idx);
2078      }
2079
2080      Instruction *BV = new ShuffleVectorInst(LOp, HOp,
2081                                              ConstantVector::get(Mask),
2082                                              getReplacementName(I, true, o));
2083      BV->insertBefore(J);
2084      return BV;
2085    }
2086
2087    Instruction *BV1 = InsertElementInst::Create(
2088                                          UndefValue::get(VArgType), LOp, CV0,
2089                                          getReplacementName(I, true, o, 1));
2090    BV1->insertBefore(I);
2091    Instruction *BV2 = InsertElementInst::Create(BV1, HOp, CV1,
2092                                          getReplacementName(I, true, o, 2));
2093    BV2->insertBefore(J);
2094    return BV2;
2095  }
2096
2097  // This function creates an array of values that will be used as the inputs
2098  // to the vector instruction that fuses I with J.
2099  void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
2100                     Instruction *I, Instruction *J,
2101                     SmallVector<Value *, 3> &ReplacedOperands,
2102                     bool FlipMemInputs) {
2103    unsigned NumOperands = I->getNumOperands();
2104
2105    for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
2106      // Iterate backward so that we look at the store pointer
2107      // first and know whether or not we need to flip the inputs.
2108
2109      if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
2110        // This is the pointer for a load/store instruction.
2111        ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o,
2112                                FlipMemInputs);
2113        continue;
2114      } else if (isa<CallInst>(I)) {
2115        Function *F = cast<CallInst>(I)->getCalledFunction();
2116        unsigned IID = F->getIntrinsicID();
2117        if (o == NumOperands-1) {
2118          BasicBlock &BB = *I->getParent();
2119
2120          Module *M = BB.getParent()->getParent();
2121          Type *ArgTypeI = I->getType();
2122          Type *ArgTypeJ = J->getType();
2123          Type *VArgType = getVecTypeForPair(ArgTypeI, ArgTypeJ);
2124
2125          ReplacedOperands[o] = Intrinsic::getDeclaration(M,
2126            (Intrinsic::ID) IID, VArgType);
2127          continue;
2128        } else if (IID == Intrinsic::powi && o == 1) {
2129          // The second argument of powi is a single integer and we've already
2130          // checked that both arguments are equal. As a result, we just keep
2131          // I's second argument.
2132          ReplacedOperands[o] = I->getOperand(o);
2133          continue;
2134        }
2135      } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
2136        ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
2137        continue;
2138      }
2139
2140      ReplacedOperands[o] =
2141        getReplacementInput(Context, I, J, o, FlipMemInputs);
2142    }
2143  }
2144
2145  // This function creates two values that represent the outputs of the
2146  // original I and J instructions. These are generally vector shuffles
2147  // or extracts. In many cases, these will end up being unused and, thus,
2148  // eliminated by later passes.
2149  void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
2150                     Instruction *J, Instruction *K,
2151                     Instruction *&InsertionPt,
2152                     Instruction *&K1, Instruction *&K2,
2153                     bool FlipMemInputs) {
2154    if (isa<StoreInst>(I)) {
2155      AA->replaceWithNewValue(I, K);
2156      AA->replaceWithNewValue(J, K);
2157    } else {
2158      Type *IType = I->getType();
2159      Type *JType = J->getType();
2160
2161      VectorType *VType = getVecTypeForPair(IType, JType);
2162      unsigned numElem = VType->getNumElements();
2163
2164      unsigned numElemI, numElemJ;
2165      if (IType->isVectorTy())
2166        numElemI = cast<VectorType>(IType)->getNumElements();
2167      else
2168        numElemI = 1;
2169
2170      if (JType->isVectorTy())
2171        numElemJ = cast<VectorType>(JType)->getNumElements();
2172      else
2173        numElemJ = 1;
2174
2175      if (IType->isVectorTy()) {
2176        std::vector<Constant*> Mask1(numElemI), Mask2(numElemI);
2177        for (unsigned v = 0; v < numElemI; ++v) {
2178          Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2179          Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemJ+v);
2180        }
2181
2182        K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
2183                                   ConstantVector::get(
2184                                     FlipMemInputs ? Mask2 : Mask1),
2185                                   getReplacementName(K, false, 1));
2186      } else {
2187        Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
2188        Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
2189        K1 = ExtractElementInst::Create(K, FlipMemInputs ? CV1 : CV0,
2190                                          getReplacementName(K, false, 1));
2191      }
2192
2193      if (JType->isVectorTy()) {
2194        std::vector<Constant*> Mask1(numElemJ), Mask2(numElemJ);
2195        for (unsigned v = 0; v < numElemJ; ++v) {
2196          Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
2197          Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElemI+v);
2198        }
2199
2200        K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
2201                                   ConstantVector::get(
2202                                     FlipMemInputs ? Mask1 : Mask2),
2203                                   getReplacementName(K, false, 2));
2204      } else {
2205        Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
2206        Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), numElem-1);
2207        K2 = ExtractElementInst::Create(K, FlipMemInputs ? CV0 : CV1,
2208                                          getReplacementName(K, false, 2));
2209      }
2210
2211      K1->insertAfter(K);
2212      K2->insertAfter(K1);
2213      InsertionPt = K2;
2214    }
2215  }
2216
2217  // Move all uses of the function I (including pairing-induced uses) after J.
2218  bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
2219                     std::multimap<Value *, Value *> &LoadMoveSet,
2220                     Instruction *I, Instruction *J) {
2221    // Skip to the first instruction past I.
2222    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2223
2224    DenseSet<Value *> Users;
2225    AliasSetTracker WriteSet(*AA);
2226    for (; cast<Instruction>(L) != J; ++L)
2227      (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet);
2228
2229    assert(cast<Instruction>(L) == J &&
2230      "Tracking has not proceeded far enough to check for dependencies");
2231    // If J is now in the use set of I, then trackUsesOfI will return true
2232    // and we have a dependency cycle (and the fusing operation must abort).
2233    return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet);
2234  }
2235
2236  // Move all uses of the function I (including pairing-induced uses) after J.
2237  void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
2238                     std::multimap<Value *, Value *> &LoadMoveSet,
2239                     Instruction *&InsertionPt,
2240                     Instruction *I, Instruction *J) {
2241    // Skip to the first instruction past I.
2242    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2243
2244    DenseSet<Value *> Users;
2245    AliasSetTracker WriteSet(*AA);
2246    for (; cast<Instruction>(L) != J;) {
2247      if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) {
2248        // Move this instruction
2249        Instruction *InstToMove = L; ++L;
2250
2251        DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
2252                        " to after " << *InsertionPt << "\n");
2253        InstToMove->removeFromParent();
2254        InstToMove->insertAfter(InsertionPt);
2255        InsertionPt = InstToMove;
2256      } else {
2257        ++L;
2258      }
2259    }
2260  }
2261
2262  // Collect all load instruction that are in the move set of a given first
2263  // pair member.  These loads depend on the first instruction, I, and so need
2264  // to be moved after J (the second instruction) when the pair is fused.
2265  void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
2266                     DenseMap<Value *, Value *> &ChosenPairs,
2267                     std::multimap<Value *, Value *> &LoadMoveSet,
2268                     Instruction *I) {
2269    // Skip to the first instruction past I.
2270    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
2271
2272    DenseSet<Value *> Users;
2273    AliasSetTracker WriteSet(*AA);
2274
2275    // Note: We cannot end the loop when we reach J because J could be moved
2276    // farther down the use chain by another instruction pairing. Also, J
2277    // could be before I if this is an inverted input.
2278    for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
2279      if (trackUsesOfI(Users, WriteSet, I, L)) {
2280        if (L->mayReadFromMemory())
2281          LoadMoveSet.insert(ValuePair(L, I));
2282      }
2283    }
2284  }
2285
2286  // In cases where both load/stores and the computation of their pointers
2287  // are chosen for vectorization, we can end up in a situation where the
2288  // aliasing analysis starts returning different query results as the
2289  // process of fusing instruction pairs continues. Because the algorithm
2290  // relies on finding the same use trees here as were found earlier, we'll
2291  // need to precompute the necessary aliasing information here and then
2292  // manually update it during the fusion process.
2293  void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
2294                     std::vector<Value *> &PairableInsts,
2295                     DenseMap<Value *, Value *> &ChosenPairs,
2296                     std::multimap<Value *, Value *> &LoadMoveSet) {
2297    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
2298         PIE = PairableInsts.end(); PI != PIE; ++PI) {
2299      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
2300      if (P == ChosenPairs.end()) continue;
2301
2302      Instruction *I = cast<Instruction>(P->first);
2303      collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I);
2304    }
2305  }
2306
2307  // As with the aliasing information, SCEV can also change because of
2308  // vectorization. This information is used to compute relative pointer
2309  // offsets; the necessary information will be cached here prior to
2310  // fusion.
2311  void BBVectorize::collectPtrInfo(std::vector<Value *> &PairableInsts,
2312                                   DenseMap<Value *, Value *> &ChosenPairs,
2313                                   DenseSet<Value *> &LowPtrInsts) {
2314    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
2315      PIE = PairableInsts.end(); PI != PIE; ++PI) {
2316      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
2317      if (P == ChosenPairs.end()) continue;
2318
2319      Instruction *I = cast<Instruction>(P->first);
2320      Instruction *J = cast<Instruction>(P->second);
2321
2322      if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
2323        continue;
2324
2325      Value *IPtr, *JPtr;
2326      unsigned IAlignment, JAlignment, IAddressSpace, JAddressSpace;
2327      int64_t OffsetInElmts;
2328      if (!getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
2329                          IAddressSpace, JAddressSpace,
2330                          OffsetInElmts) || abs64(OffsetInElmts) != 1)
2331        llvm_unreachable("Pre-fusion pointer analysis failed");
2332
2333      Value *LowPI = (OffsetInElmts > 0) ? I : J;
2334      LowPtrInsts.insert(LowPI);
2335    }
2336  }
2337
2338  // When the first instruction in each pair is cloned, it will inherit its
2339  // parent's metadata. This metadata must be combined with that of the other
2340  // instruction in a safe way.
2341  void BBVectorize::combineMetadata(Instruction *K, const Instruction *J) {
2342    SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
2343    K->getAllMetadataOtherThanDebugLoc(Metadata);
2344    for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
2345      unsigned Kind = Metadata[i].first;
2346      MDNode *JMD = J->getMetadata(Kind);
2347      MDNode *KMD = Metadata[i].second;
2348
2349      switch (Kind) {
2350      default:
2351        K->setMetadata(Kind, 0); // Remove unknown metadata
2352        break;
2353      case LLVMContext::MD_tbaa:
2354        K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
2355        break;
2356      case LLVMContext::MD_fpmath:
2357        K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
2358        break;
2359      }
2360    }
2361  }
2362
2363  // This function fuses the chosen instruction pairs into vector instructions,
2364  // taking care preserve any needed scalar outputs and, then, it reorders the
2365  // remaining instructions as needed (users of the first member of the pair
2366  // need to be moved to after the location of the second member of the pair
2367  // because the vector instruction is inserted in the location of the pair's
2368  // second member).
2369  void BBVectorize::fuseChosenPairs(BasicBlock &BB,
2370                     std::vector<Value *> &PairableInsts,
2371                     DenseMap<Value *, Value *> &ChosenPairs) {
2372    LLVMContext& Context = BB.getContext();
2373
2374    // During the vectorization process, the order of the pairs to be fused
2375    // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
2376    // list. After a pair is fused, the flipped pair is removed from the list.
2377    std::vector<ValuePair> FlippedPairs;
2378    FlippedPairs.reserve(ChosenPairs.size());
2379    for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
2380         E = ChosenPairs.end(); P != E; ++P)
2381      FlippedPairs.push_back(ValuePair(P->second, P->first));
2382    for (std::vector<ValuePair>::iterator P = FlippedPairs.begin(),
2383         E = FlippedPairs.end(); P != E; ++P)
2384      ChosenPairs.insert(*P);
2385
2386    std::multimap<Value *, Value *> LoadMoveSet;
2387    collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
2388
2389    DenseSet<Value *> LowPtrInsts;
2390    collectPtrInfo(PairableInsts, ChosenPairs, LowPtrInsts);
2391
2392    DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
2393
2394    for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
2395      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
2396      if (P == ChosenPairs.end()) {
2397        ++PI;
2398        continue;
2399      }
2400
2401      if (getDepthFactor(P->first) == 0) {
2402        // These instructions are not really fused, but are tracked as though
2403        // they are. Any case in which it would be interesting to fuse them
2404        // will be taken care of by InstCombine.
2405        --NumFusedOps;
2406        ++PI;
2407        continue;
2408      }
2409
2410      Instruction *I = cast<Instruction>(P->first),
2411        *J = cast<Instruction>(P->second);
2412
2413      DEBUG(dbgs() << "BBV: fusing: " << *I <<
2414             " <-> " << *J << "\n");
2415
2416      // Remove the pair and flipped pair from the list.
2417      DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
2418      assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
2419      ChosenPairs.erase(FP);
2420      ChosenPairs.erase(P);
2421
2422      if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) {
2423        DEBUG(dbgs() << "BBV: fusion of: " << *I <<
2424               " <-> " << *J <<
2425               " aborted because of non-trivial dependency cycle\n");
2426        --NumFusedOps;
2427        ++PI;
2428        continue;
2429      }
2430
2431      bool FlipMemInputs = false;
2432      if (isa<LoadInst>(I) || isa<StoreInst>(I))
2433        FlipMemInputs = (LowPtrInsts.find(I) == LowPtrInsts.end());
2434
2435      unsigned NumOperands = I->getNumOperands();
2436      SmallVector<Value *, 3> ReplacedOperands(NumOperands);
2437      getReplacementInputsForPair(Context, I, J, ReplacedOperands,
2438        FlipMemInputs);
2439
2440      // Make a copy of the original operation, change its type to the vector
2441      // type and replace its operands with the vector operands.
2442      Instruction *K = I->clone();
2443      if (I->hasName()) K->takeName(I);
2444
2445      if (!isa<StoreInst>(K))
2446        K->mutateType(getVecTypeForPair(I->getType(), J->getType()));
2447
2448      combineMetadata(K, J);
2449
2450      for (unsigned o = 0; o < NumOperands; ++o)
2451        K->setOperand(o, ReplacedOperands[o]);
2452
2453      // If we've flipped the memory inputs, make sure that we take the correct
2454      // alignment.
2455      if (FlipMemInputs) {
2456        if (isa<StoreInst>(K))
2457          cast<StoreInst>(K)->setAlignment(cast<StoreInst>(J)->getAlignment());
2458        else
2459          cast<LoadInst>(K)->setAlignment(cast<LoadInst>(J)->getAlignment());
2460      }
2461
2462      K->insertAfter(J);
2463
2464      // Instruction insertion point:
2465      Instruction *InsertionPt = K;
2466      Instruction *K1 = 0, *K2 = 0;
2467      replaceOutputsOfPair(Context, I, J, K, InsertionPt, K1, K2,
2468        FlipMemInputs);
2469
2470      // The use tree of the first original instruction must be moved to after
2471      // the location of the second instruction. The entire use tree of the
2472      // first instruction is disjoint from the input tree of the second
2473      // (by definition), and so commutes with it.
2474
2475      moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
2476
2477      if (!isa<StoreInst>(I)) {
2478        I->replaceAllUsesWith(K1);
2479        J->replaceAllUsesWith(K2);
2480        AA->replaceWithNewValue(I, K1);
2481        AA->replaceWithNewValue(J, K2);
2482      }
2483
2484      // Instructions that may read from memory may be in the load move set.
2485      // Once an instruction is fused, we no longer need its move set, and so
2486      // the values of the map never need to be updated. However, when a load
2487      // is fused, we need to merge the entries from both instructions in the
2488      // pair in case those instructions were in the move set of some other
2489      // yet-to-be-fused pair. The loads in question are the keys of the map.
2490      if (I->mayReadFromMemory()) {
2491        std::vector<ValuePair> NewSetMembers;
2492        VPIteratorPair IPairRange = LoadMoveSet.equal_range(I);
2493        VPIteratorPair JPairRange = LoadMoveSet.equal_range(J);
2494        for (std::multimap<Value *, Value *>::iterator N = IPairRange.first;
2495             N != IPairRange.second; ++N)
2496          NewSetMembers.push_back(ValuePair(K, N->second));
2497        for (std::multimap<Value *, Value *>::iterator N = JPairRange.first;
2498             N != JPairRange.second; ++N)
2499          NewSetMembers.push_back(ValuePair(K, N->second));
2500        for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
2501             AE = NewSetMembers.end(); A != AE; ++A)
2502          LoadMoveSet.insert(*A);
2503      }
2504
2505      // Before removing I, set the iterator to the next instruction.
2506      PI = llvm::next(BasicBlock::iterator(I));
2507      if (cast<Instruction>(PI) == J)
2508        ++PI;
2509
2510      SE->forgetValue(I);
2511      SE->forgetValue(J);
2512      I->eraseFromParent();
2513      J->eraseFromParent();
2514    }
2515
2516    DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
2517  }
2518}
2519
2520char BBVectorize::ID = 0;
2521static const char bb_vectorize_name[] = "Basic-Block Vectorization";
2522INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
2523INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
2524INITIALIZE_PASS_DEPENDENCY(DominatorTree)
2525INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
2526INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
2527
2528BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
2529  return new BBVectorize(C);
2530}
2531
2532bool
2533llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
2534  BBVectorize BBVectorizer(P, C);
2535  return BBVectorizer.vectorizeBB(BB);
2536}
2537
2538//===----------------------------------------------------------------------===//
2539VectorizeConfig::VectorizeConfig() {
2540  VectorBits = ::VectorBits;
2541  VectorizeBools = !::NoBools;
2542  VectorizeInts = !::NoInts;
2543  VectorizeFloats = !::NoFloats;
2544  VectorizePointers = !::NoPointers;
2545  VectorizeCasts = !::NoCasts;
2546  VectorizeMath = !::NoMath;
2547  VectorizeFMA = !::NoFMA;
2548  VectorizeSelect = !::NoSelect;
2549  VectorizeCmp = !::NoCmp;
2550  VectorizeGEP = !::NoGEP;
2551  VectorizeMemOps = !::NoMemOps;
2552  AlignedOnly = ::AlignedOnly;
2553  ReqChainDepth= ::ReqChainDepth;
2554  SearchLimit = ::SearchLimit;
2555  MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
2556  SplatBreaksChain = ::SplatBreaksChain;
2557  MaxInsts = ::MaxInsts;
2558  MaxIter = ::MaxIter;
2559  Pow2LenOnly = ::Pow2LenOnly;
2560  NoMemOpBoost = ::NoMemOpBoost;
2561  FastDep = ::FastDep;
2562}
2563