BBVectorize.cpp revision ec4e85e3364f50802f2007e4b1e23661d4610366
1//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a basic-block vectorization pass. The algorithm was
11// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
12// et al. It works by looking for chains of pairable operations and then
13// pairing them.
14//
15//===----------------------------------------------------------------------===//
16
17#define BBV_NAME "bb-vectorize"
18#define DEBUG_TYPE BBV_NAME
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Metadata.h"
27#include "llvm/Pass.h"
28#include "llvm/Type.h"
29#include "llvm/ADT/DenseMap.h"
30#include "llvm/ADT/DenseSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/Statistic.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/ADT/StringExtras.h"
35#include "llvm/Analysis/AliasAnalysis.h"
36#include "llvm/Analysis/AliasSetTracker.h"
37#include "llvm/Analysis/ScalarEvolution.h"
38#include "llvm/Analysis/ScalarEvolutionExpressions.h"
39#include "llvm/Analysis/ValueTracking.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Support/ValueHandle.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Vectorize.h"
46#include <algorithm>
47#include <map>
48using namespace llvm;
49
50static cl::opt<unsigned>
51ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
52  cl::desc("The required chain depth for vectorization"));
53
54static cl::opt<unsigned>
55SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
56  cl::desc("The maximum search distance for instruction pairs"));
57
58static cl::opt<bool>
59SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
60  cl::desc("Replicating one element to a pair breaks the chain"));
61
62static cl::opt<unsigned>
63VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
64  cl::desc("The size of the native vector registers"));
65
66static cl::opt<unsigned>
67MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
68  cl::desc("The maximum number of pairing iterations"));
69
70static cl::opt<unsigned>
71MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
72  cl::desc("The maximum number of pairable instructions per group"));
73
74static cl::opt<unsigned>
75MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
76  cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
77                       " a full cycle check"));
78
79static cl::opt<bool>
80NoBools("bb-vectorize-no-bools", cl::init(false), cl::Hidden,
81  cl::desc("Don't try to vectorize boolean (i1) values"));
82
83static cl::opt<bool>
84NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
85  cl::desc("Don't try to vectorize integer values"));
86
87static cl::opt<bool>
88NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
89  cl::desc("Don't try to vectorize floating-point values"));
90
91static cl::opt<bool>
92NoPointers("bb-vectorize-no-pointers", cl::init(false), cl::Hidden,
93  cl::desc("Don't try to vectorize pointer values"));
94
95static cl::opt<bool>
96NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
97  cl::desc("Don't try to vectorize casting (conversion) operations"));
98
99static cl::opt<bool>
100NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
101  cl::desc("Don't try to vectorize floating-point math intrinsics"));
102
103static cl::opt<bool>
104NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
105  cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
106
107static cl::opt<bool>
108NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
109  cl::desc("Don't try to vectorize select instructions"));
110
111static cl::opt<bool>
112NoCmp("bb-vectorize-no-cmp", cl::init(false), cl::Hidden,
113  cl::desc("Don't try to vectorize comparison instructions"));
114
115static cl::opt<bool>
116NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
117  cl::desc("Don't try to vectorize getelementptr instructions"));
118
119static cl::opt<bool>
120NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
121  cl::desc("Don't try to vectorize loads and stores"));
122
123static cl::opt<bool>
124AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
125  cl::desc("Only generate aligned loads and stores"));
126
127static cl::opt<bool>
128NoMemOpBoost("bb-vectorize-no-mem-op-boost",
129  cl::init(false), cl::Hidden,
130  cl::desc("Don't boost the chain-depth contribution of loads and stores"));
131
132static cl::opt<bool>
133FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
134  cl::desc("Use a fast instruction dependency analysis"));
135
136#ifndef NDEBUG
137static cl::opt<bool>
138DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
139  cl::init(false), cl::Hidden,
140  cl::desc("When debugging is enabled, output information on the"
141           " instruction-examination process"));
142static cl::opt<bool>
143DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
144  cl::init(false), cl::Hidden,
145  cl::desc("When debugging is enabled, output information on the"
146           " candidate-selection process"));
147static cl::opt<bool>
148DebugPairSelection("bb-vectorize-debug-pair-selection",
149  cl::init(false), cl::Hidden,
150  cl::desc("When debugging is enabled, output information on the"
151           " pair-selection process"));
152static cl::opt<bool>
153DebugCycleCheck("bb-vectorize-debug-cycle-check",
154  cl::init(false), cl::Hidden,
155  cl::desc("When debugging is enabled, output information on the"
156           " cycle-checking process"));
157#endif
158
159STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
160
161namespace {
162  struct BBVectorize : public BasicBlockPass {
163    static char ID; // Pass identification, replacement for typeid
164
165    const VectorizeConfig Config;
166
167    BBVectorize(const VectorizeConfig &C = VectorizeConfig())
168      : BasicBlockPass(ID), Config(C) {
169      initializeBBVectorizePass(*PassRegistry::getPassRegistry());
170    }
171
172    BBVectorize(Pass *P, const VectorizeConfig &C)
173      : BasicBlockPass(ID), Config(C) {
174      AA = &P->getAnalysis<AliasAnalysis>();
175      SE = &P->getAnalysis<ScalarEvolution>();
176      TD = P->getAnalysisIfAvailable<TargetData>();
177    }
178
179    typedef std::pair<Value *, Value *> ValuePair;
180    typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
181    typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
182    typedef std::pair<std::multimap<Value *, Value *>::iterator,
183              std::multimap<Value *, Value *>::iterator> VPIteratorPair;
184    typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
185              std::multimap<ValuePair, ValuePair>::iterator>
186                VPPIteratorPair;
187
188    AliasAnalysis *AA;
189    ScalarEvolution *SE;
190    TargetData *TD;
191
192    // FIXME: const correct?
193
194    bool vectorizePairs(BasicBlock &BB);
195
196    bool getCandidatePairs(BasicBlock &BB,
197                       BasicBlock::iterator &Start,
198                       std::multimap<Value *, Value *> &CandidatePairs,
199                       std::vector<Value *> &PairableInsts);
200
201    void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
202                       std::vector<Value *> &PairableInsts,
203                       std::multimap<ValuePair, ValuePair> &ConnectedPairs);
204
205    void buildDepMap(BasicBlock &BB,
206                       std::multimap<Value *, Value *> &CandidatePairs,
207                       std::vector<Value *> &PairableInsts,
208                       DenseSet<ValuePair> &PairableInstUsers);
209
210    void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
211                        std::vector<Value *> &PairableInsts,
212                        std::multimap<ValuePair, ValuePair> &ConnectedPairs,
213                        DenseSet<ValuePair> &PairableInstUsers,
214                        DenseMap<Value *, Value *>& ChosenPairs);
215
216    void fuseChosenPairs(BasicBlock &BB,
217                     std::vector<Value *> &PairableInsts,
218                     DenseMap<Value *, Value *>& ChosenPairs);
219
220    bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
221
222    bool areInstsCompatible(Instruction *I, Instruction *J,
223                       bool IsSimpleLoadStore);
224
225    bool trackUsesOfI(DenseSet<Value *> &Users,
226                      AliasSetTracker &WriteSet, Instruction *I,
227                      Instruction *J, bool UpdateUsers = true,
228                      std::multimap<Value *, Value *> *LoadMoveSet = 0);
229
230    void computePairsConnectedTo(
231                      std::multimap<Value *, Value *> &CandidatePairs,
232                      std::vector<Value *> &PairableInsts,
233                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
234                      ValuePair P);
235
236    bool pairsConflict(ValuePair P, ValuePair Q,
237                 DenseSet<ValuePair> &PairableInstUsers,
238                 std::multimap<ValuePair, ValuePair> *PairableInstUserMap = 0);
239
240    bool pairWillFormCycle(ValuePair P,
241                       std::multimap<ValuePair, ValuePair> &PairableInstUsers,
242                       DenseSet<ValuePair> &CurrentPairs);
243
244    void pruneTreeFor(
245                      std::multimap<Value *, Value *> &CandidatePairs,
246                      std::vector<Value *> &PairableInsts,
247                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
248                      DenseSet<ValuePair> &PairableInstUsers,
249                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
250                      DenseMap<Value *, Value *> &ChosenPairs,
251                      DenseMap<ValuePair, size_t> &Tree,
252                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
253                      bool UseCycleCheck);
254
255    void buildInitialTreeFor(
256                      std::multimap<Value *, Value *> &CandidatePairs,
257                      std::vector<Value *> &PairableInsts,
258                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
259                      DenseSet<ValuePair> &PairableInstUsers,
260                      DenseMap<Value *, Value *> &ChosenPairs,
261                      DenseMap<ValuePair, size_t> &Tree, ValuePair J);
262
263    void findBestTreeFor(
264                      std::multimap<Value *, Value *> &CandidatePairs,
265                      std::vector<Value *> &PairableInsts,
266                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
267                      DenseSet<ValuePair> &PairableInstUsers,
268                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
269                      DenseMap<Value *, Value *> &ChosenPairs,
270                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
271                      size_t &BestEffSize, VPIteratorPair ChoiceRange,
272                      bool UseCycleCheck);
273
274    Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
275                     Instruction *J, unsigned o, bool &FlipMemInputs);
276
277    void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
278                     unsigned NumElem, unsigned MaskOffset, unsigned NumInElem,
279                     unsigned IdxOffset, std::vector<Constant*> &Mask);
280
281    Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
282                     Instruction *J);
283
284    Value *getReplacementInput(LLVMContext& Context, Instruction *I,
285                     Instruction *J, unsigned o, bool FlipMemInputs);
286
287    void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
288                     Instruction *J, SmallVector<Value *, 3> &ReplacedOperands,
289                     bool &FlipMemInputs);
290
291    void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
292                     Instruction *J, Instruction *K,
293                     Instruction *&InsertionPt, Instruction *&K1,
294                     Instruction *&K2, bool &FlipMemInputs);
295
296    void collectPairLoadMoveSet(BasicBlock &BB,
297                     DenseMap<Value *, Value *> &ChosenPairs,
298                     std::multimap<Value *, Value *> &LoadMoveSet,
299                     Instruction *I);
300
301    void collectLoadMoveSet(BasicBlock &BB,
302                     std::vector<Value *> &PairableInsts,
303                     DenseMap<Value *, Value *> &ChosenPairs,
304                     std::multimap<Value *, Value *> &LoadMoveSet);
305
306    bool canMoveUsesOfIAfterJ(BasicBlock &BB,
307                     std::multimap<Value *, Value *> &LoadMoveSet,
308                     Instruction *I, Instruction *J);
309
310    void moveUsesOfIAfterJ(BasicBlock &BB,
311                     std::multimap<Value *, Value *> &LoadMoveSet,
312                     Instruction *&InsertionPt,
313                     Instruction *I, Instruction *J);
314
315    void combineMetadata(Instruction *K, const Instruction *J);
316
317    bool vectorizeBB(BasicBlock &BB) {
318      bool changed = false;
319      // Iterate a sufficient number of times to merge types of size 1 bit,
320      // then 2 bits, then 4, etc. up to half of the target vector width of the
321      // target vector register.
322      for (unsigned v = 2, n = 1;
323           v <= Config.VectorBits && (!Config.MaxIter || n <= Config.MaxIter);
324           v *= 2, ++n) {
325        DEBUG(dbgs() << "BBV: fusing loop #" << n <<
326              " for " << BB.getName() << " in " <<
327              BB.getParent()->getName() << "...\n");
328        if (vectorizePairs(BB))
329          changed = true;
330        else
331          break;
332      }
333
334      DEBUG(dbgs() << "BBV: done!\n");
335      return changed;
336    }
337
338    virtual bool runOnBasicBlock(BasicBlock &BB) {
339      AA = &getAnalysis<AliasAnalysis>();
340      SE = &getAnalysis<ScalarEvolution>();
341      TD = getAnalysisIfAvailable<TargetData>();
342
343      return vectorizeBB(BB);
344    }
345
346    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
347      BasicBlockPass::getAnalysisUsage(AU);
348      AU.addRequired<AliasAnalysis>();
349      AU.addRequired<ScalarEvolution>();
350      AU.addPreserved<AliasAnalysis>();
351      AU.addPreserved<ScalarEvolution>();
352      AU.setPreservesCFG();
353    }
354
355    // This returns the vector type that holds a pair of the provided type.
356    // If the provided type is already a vector, then its length is doubled.
357    static inline VectorType *getVecTypeForPair(Type *ElemTy) {
358      if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
359        unsigned numElem = VTy->getNumElements();
360        return VectorType::get(ElemTy->getScalarType(), numElem*2);
361      }
362
363      return VectorType::get(ElemTy, 2);
364    }
365
366    // Returns the weight associated with the provided value. A chain of
367    // candidate pairs has a length given by the sum of the weights of its
368    // members (one weight per pair; the weight of each member of the pair
369    // is assumed to be the same). This length is then compared to the
370    // chain-length threshold to determine if a given chain is significant
371    // enough to be vectorized. The length is also used in comparing
372    // candidate chains where longer chains are considered to be better.
373    // Note: when this function returns 0, the resulting instructions are
374    // not actually fused.
375    inline size_t getDepthFactor(Value *V) {
376      // InsertElement and ExtractElement have a depth factor of zero. This is
377      // for two reasons: First, they cannot be usefully fused. Second, because
378      // the pass generates a lot of these, they can confuse the simple metric
379      // used to compare the trees in the next iteration. Thus, giving them a
380      // weight of zero allows the pass to essentially ignore them in
381      // subsequent iterations when looking for vectorization opportunities
382      // while still tracking dependency chains that flow through those
383      // instructions.
384      if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
385        return 0;
386
387      // Give a load or store half of the required depth so that load/store
388      // pairs will vectorize.
389      if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
390        return Config.ReqChainDepth/2;
391
392      return 1;
393    }
394
395    // This determines the relative offset of two loads or stores, returning
396    // true if the offset could be determined to be some constant value.
397    // For example, if OffsetInElmts == 1, then J accesses the memory directly
398    // after I; if OffsetInElmts == -1 then I accesses the memory
399    // directly after J. This function assumes that both instructions
400    // have the same type.
401    bool getPairPtrInfo(Instruction *I, Instruction *J,
402        Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
403        int64_t &OffsetInElmts) {
404      OffsetInElmts = 0;
405      if (isa<LoadInst>(I)) {
406        IPtr = cast<LoadInst>(I)->getPointerOperand();
407        JPtr = cast<LoadInst>(J)->getPointerOperand();
408        IAlignment = cast<LoadInst>(I)->getAlignment();
409        JAlignment = cast<LoadInst>(J)->getAlignment();
410      } else {
411        IPtr = cast<StoreInst>(I)->getPointerOperand();
412        JPtr = cast<StoreInst>(J)->getPointerOperand();
413        IAlignment = cast<StoreInst>(I)->getAlignment();
414        JAlignment = cast<StoreInst>(J)->getAlignment();
415      }
416
417      const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
418      const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
419
420      // If this is a trivial offset, then we'll get something like
421      // 1*sizeof(type). With target data, which we need anyway, this will get
422      // constant folded into a number.
423      const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
424      if (const SCEVConstant *ConstOffSCEV =
425            dyn_cast<SCEVConstant>(OffsetSCEV)) {
426        ConstantInt *IntOff = ConstOffSCEV->getValue();
427        int64_t Offset = IntOff->getSExtValue();
428
429        Type *VTy = cast<PointerType>(IPtr->getType())->getElementType();
430        int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
431
432        assert(VTy == cast<PointerType>(JPtr->getType())->getElementType());
433
434        OffsetInElmts = Offset/VTyTSS;
435        return (abs64(Offset) % VTyTSS) == 0;
436      }
437
438      return false;
439    }
440
441    // Returns true if the provided CallInst represents an intrinsic that can
442    // be vectorized.
443    bool isVectorizableIntrinsic(CallInst* I) {
444      Function *F = I->getCalledFunction();
445      if (!F) return false;
446
447      unsigned IID = F->getIntrinsicID();
448      if (!IID) return false;
449
450      switch(IID) {
451      default:
452        return false;
453      case Intrinsic::sqrt:
454      case Intrinsic::powi:
455      case Intrinsic::sin:
456      case Intrinsic::cos:
457      case Intrinsic::log:
458      case Intrinsic::log2:
459      case Intrinsic::log10:
460      case Intrinsic::exp:
461      case Intrinsic::exp2:
462      case Intrinsic::pow:
463        return Config.VectorizeMath;
464      case Intrinsic::fma:
465        return Config.VectorizeFMA;
466      }
467    }
468
469    // Returns true if J is the second element in some pair referenced by
470    // some multimap pair iterator pair.
471    template <typename V>
472    bool isSecondInIteratorPair(V J, std::pair<
473           typename std::multimap<V, V>::iterator,
474           typename std::multimap<V, V>::iterator> PairRange) {
475      for (typename std::multimap<V, V>::iterator K = PairRange.first;
476           K != PairRange.second; ++K)
477        if (K->second == J) return true;
478
479      return false;
480    }
481  };
482
483  // This function implements one vectorization iteration on the provided
484  // basic block. It returns true if the block is changed.
485  bool BBVectorize::vectorizePairs(BasicBlock &BB) {
486    bool ShouldContinue;
487    BasicBlock::iterator Start = BB.getFirstInsertionPt();
488
489    std::vector<Value *> AllPairableInsts;
490    DenseMap<Value *, Value *> AllChosenPairs;
491
492    do {
493      std::vector<Value *> PairableInsts;
494      std::multimap<Value *, Value *> CandidatePairs;
495      ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
496                                         PairableInsts);
497      if (PairableInsts.empty()) continue;
498
499      // Now we have a map of all of the pairable instructions and we need to
500      // select the best possible pairing. A good pairing is one such that the
501      // users of the pair are also paired. This defines a (directed) forest
502      // over the pairs such that two pairs are connected iff the second pair
503      // uses the first.
504
505      // Note that it only matters that both members of the second pair use some
506      // element of the first pair (to allow for splatting).
507
508      std::multimap<ValuePair, ValuePair> ConnectedPairs;
509      computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs);
510      if (ConnectedPairs.empty()) continue;
511
512      // Build the pairable-instruction dependency map
513      DenseSet<ValuePair> PairableInstUsers;
514      buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
515
516      // There is now a graph of the connected pairs. For each variable, pick
517      // the pairing with the largest tree meeting the depth requirement on at
518      // least one branch. Then select all pairings that are part of that tree
519      // and remove them from the list of available pairings and pairable
520      // variables.
521
522      DenseMap<Value *, Value *> ChosenPairs;
523      choosePairs(CandidatePairs, PairableInsts, ConnectedPairs,
524        PairableInstUsers, ChosenPairs);
525
526      if (ChosenPairs.empty()) continue;
527      AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
528                              PairableInsts.end());
529      AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
530    } while (ShouldContinue);
531
532    if (AllChosenPairs.empty()) return false;
533    NumFusedOps += AllChosenPairs.size();
534
535    // A set of pairs has now been selected. It is now necessary to replace the
536    // paired instructions with vector instructions. For this procedure each
537    // operand must be replaced with a vector operand. This vector is formed
538    // by using build_vector on the old operands. The replaced values are then
539    // replaced with a vector_extract on the result.  Subsequent optimization
540    // passes should coalesce the build/extract combinations.
541
542    fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs);
543    return true;
544  }
545
546  // This function returns true if the provided instruction is capable of being
547  // fused into a vector instruction. This determination is based only on the
548  // type and other attributes of the instruction.
549  bool BBVectorize::isInstVectorizable(Instruction *I,
550                                         bool &IsSimpleLoadStore) {
551    IsSimpleLoadStore = false;
552
553    if (CallInst *C = dyn_cast<CallInst>(I)) {
554      if (!isVectorizableIntrinsic(C))
555        return false;
556    } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
557      // Vectorize simple loads if possbile:
558      IsSimpleLoadStore = L->isSimple();
559      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
560        return false;
561    } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
562      // Vectorize simple stores if possbile:
563      IsSimpleLoadStore = S->isSimple();
564      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
565        return false;
566    } else if (CastInst *C = dyn_cast<CastInst>(I)) {
567      // We can vectorize casts, but not casts of pointer types, etc.
568      if (!Config.VectorizeCasts)
569        return false;
570
571      Type *SrcTy = C->getSrcTy();
572      if (!SrcTy->isSingleValueType())
573        return false;
574
575      Type *DestTy = C->getDestTy();
576      if (!DestTy->isSingleValueType())
577        return false;
578    } else if (isa<SelectInst>(I)) {
579      if (!Config.VectorizeSelect)
580        return false;
581    } else if (isa<CmpInst>(I)) {
582      if (!Config.VectorizeCmp)
583        return false;
584    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
585      if (!Config.VectorizeGEP)
586        return false;
587
588      // Currently, vector GEPs exist only with one index.
589      if (G->getNumIndices() != 1)
590        return false;
591    } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
592        isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
593      return false;
594    }
595
596    // We can't vectorize memory operations without target data
597    if (TD == 0 && IsSimpleLoadStore)
598      return false;
599
600    Type *T1, *T2;
601    if (isa<StoreInst>(I)) {
602      // For stores, it is the value type, not the pointer type that matters
603      // because the value is what will come from a vector register.
604
605      Value *IVal = cast<StoreInst>(I)->getValueOperand();
606      T1 = IVal->getType();
607    } else {
608      T1 = I->getType();
609    }
610
611    if (I->isCast())
612      T2 = cast<CastInst>(I)->getSrcTy();
613    else
614      T2 = T1;
615
616    // Not every type can be vectorized...
617    if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
618        !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
619      return false;
620
621    if (T1->getScalarSizeInBits() == 1 && T2->getScalarSizeInBits() == 1) {
622      if (!Config.VectorizeBools)
623        return false;
624    } else {
625      if (!Config.VectorizeInts
626          && (T1->isIntOrIntVectorTy() || T2->isIntOrIntVectorTy()))
627        return false;
628    }
629
630    if (!Config.VectorizeFloats
631        && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
632      return false;
633
634    // Don't vectorize target-specific types.
635    if (T1->isX86_FP80Ty() || T1->isPPC_FP128Ty() || T1->isX86_MMXTy())
636      return false;
637    if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
638      return false;
639
640    if ((!Config.VectorizePointers || TD == 0) &&
641        (T1->getScalarType()->isPointerTy() ||
642         T2->getScalarType()->isPointerTy()))
643      return false;
644
645    if (T1->getPrimitiveSizeInBits() > Config.VectorBits/2 ||
646        T2->getPrimitiveSizeInBits() > Config.VectorBits/2)
647      return false;
648
649    return true;
650  }
651
652  // This function returns true if the two provided instructions are compatible
653  // (meaning that they can be fused into a vector instruction). This assumes
654  // that I has already been determined to be vectorizable and that J is not
655  // in the use tree of I.
656  bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
657                       bool IsSimpleLoadStore) {
658    DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
659                     " <-> " << *J << "\n");
660
661    // Loads and stores can be merged if they have different alignments,
662    // but are otherwise the same.
663    if (!J->isSameOperationAs(I, Instruction::CompareIgnoringAlignment))
664      return false;
665
666    // FIXME: handle addsub-type operations!
667
668    if (IsSimpleLoadStore) {
669      Value *IPtr, *JPtr;
670      unsigned IAlignment, JAlignment;
671      int64_t OffsetInElmts = 0;
672      if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
673            OffsetInElmts) && abs64(OffsetInElmts) == 1) {
674        if (Config.AlignedOnly) {
675          Type *aType = isa<StoreInst>(I) ?
676            cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
677          // An aligned load or store is possible only if the instruction
678          // with the lower offset has an alignment suitable for the
679          // vector type.
680
681          unsigned BottomAlignment = IAlignment;
682          if (OffsetInElmts < 0) BottomAlignment = JAlignment;
683
684          Type *VType = getVecTypeForPair(aType);
685          unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
686          if (BottomAlignment < VecAlignment)
687            return false;
688        }
689      } else {
690        return false;
691      }
692    } else if (isa<ShuffleVectorInst>(I)) {
693      // Only merge two shuffles if they're both constant
694      return isa<Constant>(I->getOperand(2)) &&
695             isa<Constant>(J->getOperand(2));
696      // FIXME: We may want to vectorize non-constant shuffles also.
697    }
698
699    // The powi intrinsic is special because only the first argument is
700    // vectorized, the second arguments must be equal.
701    CallInst *CI = dyn_cast<CallInst>(I);
702    Function *FI;
703    if (CI && (FI = CI->getCalledFunction()) &&
704        FI->getIntrinsicID() == Intrinsic::powi) {
705
706      Value *A1I = CI->getArgOperand(1),
707            *A1J = cast<CallInst>(J)->getArgOperand(1);
708      const SCEV *A1ISCEV = SE->getSCEV(A1I),
709                 *A1JSCEV = SE->getSCEV(A1J);
710      return (A1ISCEV == A1JSCEV);
711    }
712
713    return true;
714  }
715
716  // Figure out whether or not J uses I and update the users and write-set
717  // structures associated with I. Specifically, Users represents the set of
718  // instructions that depend on I. WriteSet represents the set
719  // of memory locations that are dependent on I. If UpdateUsers is true,
720  // and J uses I, then Users is updated to contain J and WriteSet is updated
721  // to contain any memory locations to which J writes. The function returns
722  // true if J uses I. By default, alias analysis is used to determine
723  // whether J reads from memory that overlaps with a location in WriteSet.
724  // If LoadMoveSet is not null, then it is a previously-computed multimap
725  // where the key is the memory-based user instruction and the value is
726  // the instruction to be compared with I. So, if LoadMoveSet is provided,
727  // then the alias analysis is not used. This is necessary because this
728  // function is called during the process of moving instructions during
729  // vectorization and the results of the alias analysis are not stable during
730  // that process.
731  bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
732                       AliasSetTracker &WriteSet, Instruction *I,
733                       Instruction *J, bool UpdateUsers,
734                       std::multimap<Value *, Value *> *LoadMoveSet) {
735    bool UsesI = false;
736
737    // This instruction may already be marked as a user due, for example, to
738    // being a member of a selected pair.
739    if (Users.count(J))
740      UsesI = true;
741
742    if (!UsesI)
743      for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
744           JU != JE; ++JU) {
745        Value *V = *JU;
746        if (I == V || Users.count(V)) {
747          UsesI = true;
748          break;
749        }
750      }
751    if (!UsesI && J->mayReadFromMemory()) {
752      if (LoadMoveSet) {
753        VPIteratorPair JPairRange = LoadMoveSet->equal_range(J);
754        UsesI = isSecondInIteratorPair<Value*>(I, JPairRange);
755      } else {
756        for (AliasSetTracker::iterator W = WriteSet.begin(),
757             WE = WriteSet.end(); W != WE; ++W) {
758          if (W->aliasesUnknownInst(J, *AA)) {
759            UsesI = true;
760            break;
761          }
762        }
763      }
764    }
765
766    if (UsesI && UpdateUsers) {
767      if (J->mayWriteToMemory()) WriteSet.add(J);
768      Users.insert(J);
769    }
770
771    return UsesI;
772  }
773
774  // This function iterates over all instruction pairs in the provided
775  // basic block and collects all candidate pairs for vectorization.
776  bool BBVectorize::getCandidatePairs(BasicBlock &BB,
777                       BasicBlock::iterator &Start,
778                       std::multimap<Value *, Value *> &CandidatePairs,
779                       std::vector<Value *> &PairableInsts) {
780    BasicBlock::iterator E = BB.end();
781    if (Start == E) return false;
782
783    bool ShouldContinue = false, IAfterStart = false;
784    for (BasicBlock::iterator I = Start++; I != E; ++I) {
785      if (I == Start) IAfterStart = true;
786
787      bool IsSimpleLoadStore;
788      if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
789
790      // Look for an instruction with which to pair instruction *I...
791      DenseSet<Value *> Users;
792      AliasSetTracker WriteSet(*AA);
793      bool JAfterStart = IAfterStart;
794      BasicBlock::iterator J = llvm::next(I);
795      for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
796        if (J == Start) JAfterStart = true;
797
798        // Determine if J uses I, if so, exit the loop.
799        bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
800        if (Config.FastDep) {
801          // Note: For this heuristic to be effective, independent operations
802          // must tend to be intermixed. This is likely to be true from some
803          // kinds of grouped loop unrolling (but not the generic LLVM pass),
804          // but otherwise may require some kind of reordering pass.
805
806          // When using fast dependency analysis,
807          // stop searching after first use:
808          if (UsesI) break;
809        } else {
810          if (UsesI) continue;
811        }
812
813        // J does not use I, and comes before the first use of I, so it can be
814        // merged with I if the instructions are compatible.
815        if (!areInstsCompatible(I, J, IsSimpleLoadStore)) continue;
816
817        // J is a candidate for merging with I.
818        if (!PairableInsts.size() ||
819             PairableInsts[PairableInsts.size()-1] != I) {
820          PairableInsts.push_back(I);
821        }
822
823        CandidatePairs.insert(ValuePair(I, J));
824
825        // The next call to this function must start after the last instruction
826        // selected during this invocation.
827        if (JAfterStart) {
828          Start = llvm::next(J);
829          IAfterStart = JAfterStart = false;
830        }
831
832        DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
833                     << *I << " <-> " << *J << "\n");
834
835        // If we have already found too many pairs, break here and this function
836        // will be called again starting after the last instruction selected
837        // during this invocation.
838        if (PairableInsts.size() >= Config.MaxInsts) {
839          ShouldContinue = true;
840          break;
841        }
842      }
843
844      if (ShouldContinue)
845        break;
846    }
847
848    DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
849           << " instructions with candidate pairs\n");
850
851    return ShouldContinue;
852  }
853
854  // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
855  // it looks for pairs such that both members have an input which is an
856  // output of PI or PJ.
857  void BBVectorize::computePairsConnectedTo(
858                      std::multimap<Value *, Value *> &CandidatePairs,
859                      std::vector<Value *> &PairableInsts,
860                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
861                      ValuePair P) {
862    StoreInst *SI, *SJ;
863
864    // For each possible pairing for this variable, look at the uses of
865    // the first value...
866    for (Value::use_iterator I = P.first->use_begin(),
867         E = P.first->use_end(); I != E; ++I) {
868      if (isa<LoadInst>(*I)) {
869        // A pair cannot be connected to a load because the load only takes one
870        // operand (the address) and it is a scalar even after vectorization.
871        continue;
872      } else if ((SI = dyn_cast<StoreInst>(*I)) &&
873                 P.first == SI->getPointerOperand()) {
874        // Similarly, a pair cannot be connected to a store through its
875        // pointer operand.
876        continue;
877      }
878
879      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
880
881      // For each use of the first variable, look for uses of the second
882      // variable...
883      for (Value::use_iterator J = P.second->use_begin(),
884           E2 = P.second->use_end(); J != E2; ++J) {
885        if ((SJ = dyn_cast<StoreInst>(*J)) &&
886            P.second == SJ->getPointerOperand())
887          continue;
888
889        VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
890
891        // Look for <I, J>:
892        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
893          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
894
895        // Look for <J, I>:
896        if (isSecondInIteratorPair<Value*>(*I, JPairRange))
897          ConnectedPairs.insert(VPPair(P, ValuePair(*J, *I)));
898      }
899
900      if (Config.SplatBreaksChain) continue;
901      // Look for cases where just the first value in the pair is used by
902      // both members of another pair (splatting).
903      for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) {
904        if ((SJ = dyn_cast<StoreInst>(*J)) &&
905            P.first == SJ->getPointerOperand())
906          continue;
907
908        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
909          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
910      }
911    }
912
913    if (Config.SplatBreaksChain) return;
914    // Look for cases where just the second value in the pair is used by
915    // both members of another pair (splatting).
916    for (Value::use_iterator I = P.second->use_begin(),
917         E = P.second->use_end(); I != E; ++I) {
918      if (isa<LoadInst>(*I))
919        continue;
920      else if ((SI = dyn_cast<StoreInst>(*I)) &&
921               P.second == SI->getPointerOperand())
922        continue;
923
924      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
925
926      for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
927        if ((SJ = dyn_cast<StoreInst>(*J)) &&
928            P.second == SJ->getPointerOperand())
929          continue;
930
931        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
932          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
933      }
934    }
935  }
936
937  // This function figures out which pairs are connected.  Two pairs are
938  // connected if some output of the first pair forms an input to both members
939  // of the second pair.
940  void BBVectorize::computeConnectedPairs(
941                      std::multimap<Value *, Value *> &CandidatePairs,
942                      std::vector<Value *> &PairableInsts,
943                      std::multimap<ValuePair, ValuePair> &ConnectedPairs) {
944
945    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
946         PE = PairableInsts.end(); PI != PE; ++PI) {
947      VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI);
948
949      for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
950           P != choiceRange.second; ++P)
951        computePairsConnectedTo(CandidatePairs, PairableInsts,
952                                ConnectedPairs, *P);
953    }
954
955    DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
956                 << " pair connections.\n");
957  }
958
959  // This function builds a set of use tuples such that <A, B> is in the set
960  // if B is in the use tree of A. If B is in the use tree of A, then B
961  // depends on the output of A.
962  void BBVectorize::buildDepMap(
963                      BasicBlock &BB,
964                      std::multimap<Value *, Value *> &CandidatePairs,
965                      std::vector<Value *> &PairableInsts,
966                      DenseSet<ValuePair> &PairableInstUsers) {
967    DenseSet<Value *> IsInPair;
968    for (std::multimap<Value *, Value *>::iterator C = CandidatePairs.begin(),
969         E = CandidatePairs.end(); C != E; ++C) {
970      IsInPair.insert(C->first);
971      IsInPair.insert(C->second);
972    }
973
974    // Iterate through the basic block, recording all Users of each
975    // pairable instruction.
976
977    BasicBlock::iterator E = BB.end();
978    for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
979      if (IsInPair.find(I) == IsInPair.end()) continue;
980
981      DenseSet<Value *> Users;
982      AliasSetTracker WriteSet(*AA);
983      for (BasicBlock::iterator J = llvm::next(I); J != E; ++J)
984        (void) trackUsesOfI(Users, WriteSet, I, J);
985
986      for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
987           U != E; ++U)
988        PairableInstUsers.insert(ValuePair(I, *U));
989    }
990  }
991
992  // Returns true if an input to pair P is an output of pair Q and also an
993  // input of pair Q is an output of pair P. If this is the case, then these
994  // two pairs cannot be simultaneously fused.
995  bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
996                     DenseSet<ValuePair> &PairableInstUsers,
997                     std::multimap<ValuePair, ValuePair> *PairableInstUserMap) {
998    // Two pairs are in conflict if they are mutual Users of eachother.
999    bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
1000                  PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
1001                  PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
1002                  PairableInstUsers.count(ValuePair(P.second, Q.second));
1003    bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
1004                  PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
1005                  PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
1006                  PairableInstUsers.count(ValuePair(Q.second, P.second));
1007    if (PairableInstUserMap) {
1008      // FIXME: The expensive part of the cycle check is not so much the cycle
1009      // check itself but this edge insertion procedure. This needs some
1010      // profiling and probably a different data structure (same is true of
1011      // most uses of std::multimap).
1012      if (PUsesQ) {
1013        VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q);
1014        if (!isSecondInIteratorPair(P, QPairRange))
1015          PairableInstUserMap->insert(VPPair(Q, P));
1016      }
1017      if (QUsesP) {
1018        VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P);
1019        if (!isSecondInIteratorPair(Q, PPairRange))
1020          PairableInstUserMap->insert(VPPair(P, Q));
1021      }
1022    }
1023
1024    return (QUsesP && PUsesQ);
1025  }
1026
1027  // This function walks the use graph of current pairs to see if, starting
1028  // from P, the walk returns to P.
1029  bool BBVectorize::pairWillFormCycle(ValuePair P,
1030                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1031                       DenseSet<ValuePair> &CurrentPairs) {
1032    DEBUG(if (DebugCycleCheck)
1033            dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
1034                   << *P.second << "\n");
1035    // A lookup table of visisted pairs is kept because the PairableInstUserMap
1036    // contains non-direct associations.
1037    DenseSet<ValuePair> Visited;
1038    SmallVector<ValuePair, 32> Q;
1039    // General depth-first post-order traversal:
1040    Q.push_back(P);
1041    do {
1042      ValuePair QTop = Q.pop_back_val();
1043      Visited.insert(QTop);
1044
1045      DEBUG(if (DebugCycleCheck)
1046              dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
1047                     << *QTop.second << "\n");
1048      VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop);
1049      for (std::multimap<ValuePair, ValuePair>::iterator C = QPairRange.first;
1050           C != QPairRange.second; ++C) {
1051        if (C->second == P) {
1052          DEBUG(dbgs()
1053                 << "BBV: rejected to prevent non-trivial cycle formation: "
1054                 << *C->first.first << " <-> " << *C->first.second << "\n");
1055          return true;
1056        }
1057
1058        if (CurrentPairs.count(C->second) && !Visited.count(C->second))
1059          Q.push_back(C->second);
1060      }
1061    } while (!Q.empty());
1062
1063    return false;
1064  }
1065
1066  // This function builds the initial tree of connected pairs with the
1067  // pair J at the root.
1068  void BBVectorize::buildInitialTreeFor(
1069                      std::multimap<Value *, Value *> &CandidatePairs,
1070                      std::vector<Value *> &PairableInsts,
1071                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1072                      DenseSet<ValuePair> &PairableInstUsers,
1073                      DenseMap<Value *, Value *> &ChosenPairs,
1074                      DenseMap<ValuePair, size_t> &Tree, ValuePair J) {
1075    // Each of these pairs is viewed as the root node of a Tree. The Tree
1076    // is then walked (depth-first). As this happens, we keep track of
1077    // the pairs that compose the Tree and the maximum depth of the Tree.
1078    SmallVector<ValuePairWithDepth, 32> Q;
1079    // General depth-first post-order traversal:
1080    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
1081    do {
1082      ValuePairWithDepth QTop = Q.back();
1083
1084      // Push each child onto the queue:
1085      bool MoreChildren = false;
1086      size_t MaxChildDepth = QTop.second;
1087      VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first);
1088      for (std::multimap<ValuePair, ValuePair>::iterator k = qtRange.first;
1089           k != qtRange.second; ++k) {
1090        // Make sure that this child pair is still a candidate:
1091        bool IsStillCand = false;
1092        VPIteratorPair checkRange =
1093          CandidatePairs.equal_range(k->second.first);
1094        for (std::multimap<Value *, Value *>::iterator m = checkRange.first;
1095             m != checkRange.second; ++m) {
1096          if (m->second == k->second.second) {
1097            IsStillCand = true;
1098            break;
1099          }
1100        }
1101
1102        if (IsStillCand) {
1103          DenseMap<ValuePair, size_t>::iterator C = Tree.find(k->second);
1104          if (C == Tree.end()) {
1105            size_t d = getDepthFactor(k->second.first);
1106            Q.push_back(ValuePairWithDepth(k->second, QTop.second+d));
1107            MoreChildren = true;
1108          } else {
1109            MaxChildDepth = std::max(MaxChildDepth, C->second);
1110          }
1111        }
1112      }
1113
1114      if (!MoreChildren) {
1115        // Record the current pair as part of the Tree:
1116        Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
1117        Q.pop_back();
1118      }
1119    } while (!Q.empty());
1120  }
1121
1122  // Given some initial tree, prune it by removing conflicting pairs (pairs
1123  // that cannot be simultaneously chosen for vectorization).
1124  void BBVectorize::pruneTreeFor(
1125                      std::multimap<Value *, Value *> &CandidatePairs,
1126                      std::vector<Value *> &PairableInsts,
1127                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1128                      DenseSet<ValuePair> &PairableInstUsers,
1129                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1130                      DenseMap<Value *, Value *> &ChosenPairs,
1131                      DenseMap<ValuePair, size_t> &Tree,
1132                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
1133                      bool UseCycleCheck) {
1134    SmallVector<ValuePairWithDepth, 32> Q;
1135    // General depth-first post-order traversal:
1136    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
1137    do {
1138      ValuePairWithDepth QTop = Q.pop_back_val();
1139      PrunedTree.insert(QTop.first);
1140
1141      // Visit each child, pruning as necessary...
1142      DenseMap<ValuePair, size_t> BestChildren;
1143      VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
1144      for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first;
1145           K != QTopRange.second; ++K) {
1146        DenseMap<ValuePair, size_t>::iterator C = Tree.find(K->second);
1147        if (C == Tree.end()) continue;
1148
1149        // This child is in the Tree, now we need to make sure it is the
1150        // best of any conflicting children. There could be multiple
1151        // conflicting children, so first, determine if we're keeping
1152        // this child, then delete conflicting children as necessary.
1153
1154        // It is also necessary to guard against pairing-induced
1155        // dependencies. Consider instructions a .. x .. y .. b
1156        // such that (a,b) are to be fused and (x,y) are to be fused
1157        // but a is an input to x and b is an output from y. This
1158        // means that y cannot be moved after b but x must be moved
1159        // after b for (a,b) to be fused. In other words, after
1160        // fusing (a,b) we have y .. a/b .. x where y is an input
1161        // to a/b and x is an output to a/b: x and y can no longer
1162        // be legally fused. To prevent this condition, we must
1163        // make sure that a child pair added to the Tree is not
1164        // both an input and output of an already-selected pair.
1165
1166        // Pairing-induced dependencies can also form from more complicated
1167        // cycles. The pair vs. pair conflicts are easy to check, and so
1168        // that is done explicitly for "fast rejection", and because for
1169        // child vs. child conflicts, we may prefer to keep the current
1170        // pair in preference to the already-selected child.
1171        DenseSet<ValuePair> CurrentPairs;
1172
1173        bool CanAdd = true;
1174        for (DenseMap<ValuePair, size_t>::iterator C2
1175              = BestChildren.begin(), E2 = BestChildren.end();
1176             C2 != E2; ++C2) {
1177          if (C2->first.first == C->first.first ||
1178              C2->first.first == C->first.second ||
1179              C2->first.second == C->first.first ||
1180              C2->first.second == C->first.second ||
1181              pairsConflict(C2->first, C->first, PairableInstUsers,
1182                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1183            if (C2->second >= C->second) {
1184              CanAdd = false;
1185              break;
1186            }
1187
1188            CurrentPairs.insert(C2->first);
1189          }
1190        }
1191        if (!CanAdd) continue;
1192
1193        // Even worse, this child could conflict with another node already
1194        // selected for the Tree. If that is the case, ignore this child.
1195        for (DenseSet<ValuePair>::iterator T = PrunedTree.begin(),
1196             E2 = PrunedTree.end(); T != E2; ++T) {
1197          if (T->first == C->first.first ||
1198              T->first == C->first.second ||
1199              T->second == C->first.first ||
1200              T->second == C->first.second ||
1201              pairsConflict(*T, C->first, PairableInstUsers,
1202                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1203            CanAdd = false;
1204            break;
1205          }
1206
1207          CurrentPairs.insert(*T);
1208        }
1209        if (!CanAdd) continue;
1210
1211        // And check the queue too...
1212        for (SmallVector<ValuePairWithDepth, 32>::iterator C2 = Q.begin(),
1213             E2 = Q.end(); C2 != E2; ++C2) {
1214          if (C2->first.first == C->first.first ||
1215              C2->first.first == C->first.second ||
1216              C2->first.second == C->first.first ||
1217              C2->first.second == C->first.second ||
1218              pairsConflict(C2->first, C->first, PairableInstUsers,
1219                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1220            CanAdd = false;
1221            break;
1222          }
1223
1224          CurrentPairs.insert(C2->first);
1225        }
1226        if (!CanAdd) continue;
1227
1228        // Last but not least, check for a conflict with any of the
1229        // already-chosen pairs.
1230        for (DenseMap<Value *, Value *>::iterator C2 =
1231              ChosenPairs.begin(), E2 = ChosenPairs.end();
1232             C2 != E2; ++C2) {
1233          if (pairsConflict(*C2, C->first, PairableInstUsers,
1234                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1235            CanAdd = false;
1236            break;
1237          }
1238
1239          CurrentPairs.insert(*C2);
1240        }
1241        if (!CanAdd) continue;
1242
1243        // To check for non-trivial cycles formed by the addition of the
1244        // current pair we've formed a list of all relevant pairs, now use a
1245        // graph walk to check for a cycle. We start from the current pair and
1246        // walk the use tree to see if we again reach the current pair. If we
1247        // do, then the current pair is rejected.
1248
1249        // FIXME: It may be more efficient to use a topological-ordering
1250        // algorithm to improve the cycle check. This should be investigated.
1251        if (UseCycleCheck &&
1252            pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
1253          continue;
1254
1255        // This child can be added, but we may have chosen it in preference
1256        // to an already-selected child. Check for this here, and if a
1257        // conflict is found, then remove the previously-selected child
1258        // before adding this one in its place.
1259        for (DenseMap<ValuePair, size_t>::iterator C2
1260              = BestChildren.begin(); C2 != BestChildren.end();) {
1261          if (C2->first.first == C->first.first ||
1262              C2->first.first == C->first.second ||
1263              C2->first.second == C->first.first ||
1264              C2->first.second == C->first.second ||
1265              pairsConflict(C2->first, C->first, PairableInstUsers))
1266            BestChildren.erase(C2++);
1267          else
1268            ++C2;
1269        }
1270
1271        BestChildren.insert(ValuePairWithDepth(C->first, C->second));
1272      }
1273
1274      for (DenseMap<ValuePair, size_t>::iterator C
1275            = BestChildren.begin(), E2 = BestChildren.end();
1276           C != E2; ++C) {
1277        size_t DepthF = getDepthFactor(C->first.first);
1278        Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
1279      }
1280    } while (!Q.empty());
1281  }
1282
1283  // This function finds the best tree of mututally-compatible connected
1284  // pairs, given the choice of root pairs as an iterator range.
1285  void BBVectorize::findBestTreeFor(
1286                      std::multimap<Value *, Value *> &CandidatePairs,
1287                      std::vector<Value *> &PairableInsts,
1288                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1289                      DenseSet<ValuePair> &PairableInstUsers,
1290                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1291                      DenseMap<Value *, Value *> &ChosenPairs,
1292                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
1293                      size_t &BestEffSize, VPIteratorPair ChoiceRange,
1294                      bool UseCycleCheck) {
1295    for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
1296         J != ChoiceRange.second; ++J) {
1297
1298      // Before going any further, make sure that this pair does not
1299      // conflict with any already-selected pairs (see comment below
1300      // near the Tree pruning for more details).
1301      DenseSet<ValuePair> ChosenPairSet;
1302      bool DoesConflict = false;
1303      for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
1304           E = ChosenPairs.end(); C != E; ++C) {
1305        if (pairsConflict(*C, *J, PairableInstUsers,
1306                          UseCycleCheck ? &PairableInstUserMap : 0)) {
1307          DoesConflict = true;
1308          break;
1309        }
1310
1311        ChosenPairSet.insert(*C);
1312      }
1313      if (DoesConflict) continue;
1314
1315      if (UseCycleCheck &&
1316          pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet))
1317        continue;
1318
1319      DenseMap<ValuePair, size_t> Tree;
1320      buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1321                          PairableInstUsers, ChosenPairs, Tree, *J);
1322
1323      // Because we'll keep the child with the largest depth, the largest
1324      // depth is still the same in the unpruned Tree.
1325      size_t MaxDepth = Tree.lookup(*J);
1326
1327      DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {"
1328                   << *J->first << " <-> " << *J->second << "} of depth " <<
1329                   MaxDepth << " and size " << Tree.size() << "\n");
1330
1331      // At this point the Tree has been constructed, but, may contain
1332      // contradictory children (meaning that different children of
1333      // some tree node may be attempting to fuse the same instruction).
1334      // So now we walk the tree again, in the case of a conflict,
1335      // keep only the child with the largest depth. To break a tie,
1336      // favor the first child.
1337
1338      DenseSet<ValuePair> PrunedTree;
1339      pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1340                   PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
1341                   PrunedTree, *J, UseCycleCheck);
1342
1343      size_t EffSize = 0;
1344      for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
1345           E = PrunedTree.end(); S != E; ++S)
1346        EffSize += getDepthFactor(S->first);
1347
1348      DEBUG(if (DebugPairSelection)
1349             dbgs() << "BBV: found pruned Tree for pair {"
1350             << *J->first << " <-> " << *J->second << "} of depth " <<
1351             MaxDepth << " and size " << PrunedTree.size() <<
1352            " (effective size: " << EffSize << ")\n");
1353      if (MaxDepth >= Config.ReqChainDepth && EffSize > BestEffSize) {
1354        BestMaxDepth = MaxDepth;
1355        BestEffSize = EffSize;
1356        BestTree = PrunedTree;
1357      }
1358    }
1359  }
1360
1361  // Given the list of candidate pairs, this function selects those
1362  // that will be fused into vector instructions.
1363  void BBVectorize::choosePairs(
1364                      std::multimap<Value *, Value *> &CandidatePairs,
1365                      std::vector<Value *> &PairableInsts,
1366                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1367                      DenseSet<ValuePair> &PairableInstUsers,
1368                      DenseMap<Value *, Value *>& ChosenPairs) {
1369    bool UseCycleCheck =
1370     CandidatePairs.size() <= Config.MaxCandPairsForCycleCheck;
1371    std::multimap<ValuePair, ValuePair> PairableInstUserMap;
1372    for (std::vector<Value *>::iterator I = PairableInsts.begin(),
1373         E = PairableInsts.end(); I != E; ++I) {
1374      // The number of possible pairings for this variable:
1375      size_t NumChoices = CandidatePairs.count(*I);
1376      if (!NumChoices) continue;
1377
1378      VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
1379
1380      // The best pair to choose and its tree:
1381      size_t BestMaxDepth = 0, BestEffSize = 0;
1382      DenseSet<ValuePair> BestTree;
1383      findBestTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1384                      PairableInstUsers, PairableInstUserMap, ChosenPairs,
1385                      BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
1386                      UseCycleCheck);
1387
1388      // A tree has been chosen (or not) at this point. If no tree was
1389      // chosen, then this instruction, I, cannot be paired (and is no longer
1390      // considered).
1391
1392      DEBUG(if (BestTree.size() > 0)
1393              dbgs() << "BBV: selected pairs in the best tree for: "
1394                     << *cast<Instruction>(*I) << "\n");
1395
1396      for (DenseSet<ValuePair>::iterator S = BestTree.begin(),
1397           SE2 = BestTree.end(); S != SE2; ++S) {
1398        // Insert the members of this tree into the list of chosen pairs.
1399        ChosenPairs.insert(ValuePair(S->first, S->second));
1400        DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
1401               *S->second << "\n");
1402
1403        // Remove all candidate pairs that have values in the chosen tree.
1404        for (std::multimap<Value *, Value *>::iterator K =
1405               CandidatePairs.begin(); K != CandidatePairs.end();) {
1406          if (K->first == S->first || K->second == S->first ||
1407              K->second == S->second || K->first == S->second) {
1408            // Don't remove the actual pair chosen so that it can be used
1409            // in subsequent tree selections.
1410            if (!(K->first == S->first && K->second == S->second))
1411              CandidatePairs.erase(K++);
1412            else
1413              ++K;
1414          } else {
1415            ++K;
1416          }
1417        }
1418      }
1419    }
1420
1421    DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
1422  }
1423
1424  std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
1425                     unsigned n = 0) {
1426    if (!I->hasName())
1427      return "";
1428
1429    return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
1430             (n > 0 ? "." + utostr(n) : "")).str();
1431  }
1432
1433  // Returns the value that is to be used as the pointer input to the vector
1434  // instruction that fuses I with J.
1435  Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
1436                     Instruction *I, Instruction *J, unsigned o,
1437                     bool &FlipMemInputs) {
1438    Value *IPtr, *JPtr;
1439    unsigned IAlignment, JAlignment;
1440    int64_t OffsetInElmts;
1441    (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
1442                          OffsetInElmts);
1443
1444    // The pointer value is taken to be the one with the lowest offset.
1445    Value *VPtr;
1446    if (OffsetInElmts > 0) {
1447      VPtr = IPtr;
1448    } else {
1449      FlipMemInputs = true;
1450      VPtr = JPtr;
1451    }
1452
1453    Type *ArgType = cast<PointerType>(IPtr->getType())->getElementType();
1454    Type *VArgType = getVecTypeForPair(ArgType);
1455    Type *VArgPtrType = PointerType::get(VArgType,
1456      cast<PointerType>(IPtr->getType())->getAddressSpace());
1457    return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
1458                        /* insert before */ FlipMemInputs ? J : I);
1459  }
1460
1461  void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
1462                     unsigned NumElem, unsigned MaskOffset, unsigned NumInElem,
1463                     unsigned IdxOffset, std::vector<Constant*> &Mask) {
1464    for (unsigned v = 0; v < NumElem/2; ++v) {
1465      int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
1466      if (m < 0) {
1467        Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
1468      } else {
1469        unsigned mm = m + (int) IdxOffset;
1470        if (m >= (int) NumInElem)
1471          mm += (int) NumInElem;
1472
1473        Mask[v+MaskOffset] =
1474          ConstantInt::get(Type::getInt32Ty(Context), mm);
1475      }
1476    }
1477  }
1478
1479  // Returns the value that is to be used as the vector-shuffle mask to the
1480  // vector instruction that fuses I with J.
1481  Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
1482                     Instruction *I, Instruction *J) {
1483    // This is the shuffle mask. We need to append the second
1484    // mask to the first, and the numbers need to be adjusted.
1485
1486    Type *ArgType = I->getType();
1487    Type *VArgType = getVecTypeForPair(ArgType);
1488
1489    // Get the total number of elements in the fused vector type.
1490    // By definition, this must equal the number of elements in
1491    // the final mask.
1492    unsigned NumElem = cast<VectorType>(VArgType)->getNumElements();
1493    std::vector<Constant*> Mask(NumElem);
1494
1495    Type *OpType = I->getOperand(0)->getType();
1496    unsigned NumInElem = cast<VectorType>(OpType)->getNumElements();
1497
1498    // For the mask from the first pair...
1499    fillNewShuffleMask(Context, I, NumElem, 0, NumInElem, 0, Mask);
1500
1501    // For the mask from the second pair...
1502    fillNewShuffleMask(Context, J, NumElem, NumElem/2, NumInElem, NumInElem,
1503                       Mask);
1504
1505    return ConstantVector::get(Mask);
1506  }
1507
1508  // Returns the value to be used as the specified operand of the vector
1509  // instruction that fuses I with J.
1510  Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
1511                     Instruction *J, unsigned o, bool FlipMemInputs) {
1512    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
1513    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
1514
1515      // Compute the fused vector type for this operand
1516    Type *ArgType = I->getOperand(o)->getType();
1517    VectorType *VArgType = getVecTypeForPair(ArgType);
1518
1519    Instruction *L = I, *H = J;
1520    if (FlipMemInputs) {
1521      L = J;
1522      H = I;
1523    }
1524
1525    if (ArgType->isVectorTy()) {
1526      unsigned numElem = cast<VectorType>(VArgType)->getNumElements();
1527      std::vector<Constant*> Mask(numElem);
1528      for (unsigned v = 0; v < numElem; ++v)
1529        Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
1530
1531      Instruction *BV = new ShuffleVectorInst(L->getOperand(o),
1532                                              H->getOperand(o),
1533                                              ConstantVector::get(Mask),
1534                                              getReplacementName(I, true, o));
1535      BV->insertBefore(J);
1536      return BV;
1537    }
1538
1539    // If these two inputs are the output of another vector instruction,
1540    // then we should use that output directly. It might be necessary to
1541    // permute it first. [When pairings are fused recursively, you can
1542    // end up with cases where a large vector is decomposed into scalars
1543    // using extractelement instructions, then built into size-2
1544    // vectors using insertelement and the into larger vectors using
1545    // shuffles. InstCombine does not simplify all of these cases well,
1546    // and so we make sure that shuffles are generated here when possible.
1547    ExtractElementInst *LEE
1548      = dyn_cast<ExtractElementInst>(L->getOperand(o));
1549    ExtractElementInst *HEE
1550      = dyn_cast<ExtractElementInst>(H->getOperand(o));
1551
1552    if (LEE && HEE &&
1553        LEE->getOperand(0)->getType() == HEE->getOperand(0)->getType()) {
1554      VectorType *EEType = cast<VectorType>(LEE->getOperand(0)->getType());
1555      unsigned LowIndx = cast<ConstantInt>(LEE->getOperand(1))->getZExtValue();
1556      unsigned HighIndx = cast<ConstantInt>(HEE->getOperand(1))->getZExtValue();
1557      if (LEE->getOperand(0) == HEE->getOperand(0)) {
1558        if (LowIndx == 0 && HighIndx == 1)
1559          return LEE->getOperand(0);
1560
1561        std::vector<Constant*> Mask(2);
1562        Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx);
1563        Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx);
1564
1565        Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0),
1566                                          UndefValue::get(EEType),
1567                                          ConstantVector::get(Mask),
1568                                          getReplacementName(I, true, o));
1569        BV->insertBefore(J);
1570        return BV;
1571      }
1572
1573      std::vector<Constant*> Mask(2);
1574      HighIndx += EEType->getNumElements();
1575      Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx);
1576      Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx);
1577
1578      Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0),
1579                                          HEE->getOperand(0),
1580                                          ConstantVector::get(Mask),
1581                                          getReplacementName(I, true, o));
1582      BV->insertBefore(J);
1583      return BV;
1584    }
1585
1586    Instruction *BV1 = InsertElementInst::Create(
1587                                          UndefValue::get(VArgType),
1588                                          L->getOperand(o), CV0,
1589                                          getReplacementName(I, true, o, 1));
1590    BV1->insertBefore(I);
1591    Instruction *BV2 = InsertElementInst::Create(BV1, H->getOperand(o),
1592                                          CV1,
1593                                          getReplacementName(I, true, o, 2));
1594    BV2->insertBefore(J);
1595    return BV2;
1596  }
1597
1598  // This function creates an array of values that will be used as the inputs
1599  // to the vector instruction that fuses I with J.
1600  void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
1601                     Instruction *I, Instruction *J,
1602                     SmallVector<Value *, 3> &ReplacedOperands,
1603                     bool &FlipMemInputs) {
1604    FlipMemInputs = false;
1605    unsigned NumOperands = I->getNumOperands();
1606
1607    for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
1608      // Iterate backward so that we look at the store pointer
1609      // first and know whether or not we need to flip the inputs.
1610
1611      if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
1612        // This is the pointer for a load/store instruction.
1613        ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o,
1614                                FlipMemInputs);
1615        continue;
1616      } else if (isa<CallInst>(I)) {
1617        Function *F = cast<CallInst>(I)->getCalledFunction();
1618        unsigned IID = F->getIntrinsicID();
1619        if (o == NumOperands-1) {
1620          BasicBlock &BB = *I->getParent();
1621
1622          Module *M = BB.getParent()->getParent();
1623          Type *ArgType = I->getType();
1624          Type *VArgType = getVecTypeForPair(ArgType);
1625
1626          // FIXME: is it safe to do this here?
1627          ReplacedOperands[o] = Intrinsic::getDeclaration(M,
1628            (Intrinsic::ID) IID, VArgType);
1629          continue;
1630        } else if (IID == Intrinsic::powi && o == 1) {
1631          // The second argument of powi is a single integer and we've already
1632          // checked that both arguments are equal. As a result, we just keep
1633          // I's second argument.
1634          ReplacedOperands[o] = I->getOperand(o);
1635          continue;
1636        }
1637      } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
1638        ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
1639        continue;
1640      }
1641
1642      ReplacedOperands[o] =
1643        getReplacementInput(Context, I, J, o, FlipMemInputs);
1644    }
1645  }
1646
1647  // This function creates two values that represent the outputs of the
1648  // original I and J instructions. These are generally vector shuffles
1649  // or extracts. In many cases, these will end up being unused and, thus,
1650  // eliminated by later passes.
1651  void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
1652                     Instruction *J, Instruction *K,
1653                     Instruction *&InsertionPt,
1654                     Instruction *&K1, Instruction *&K2,
1655                     bool &FlipMemInputs) {
1656    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
1657    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
1658
1659    if (isa<StoreInst>(I)) {
1660      AA->replaceWithNewValue(I, K);
1661      AA->replaceWithNewValue(J, K);
1662    } else {
1663      Type *IType = I->getType();
1664      Type *VType = getVecTypeForPair(IType);
1665
1666      if (IType->isVectorTy()) {
1667          unsigned numElem = cast<VectorType>(IType)->getNumElements();
1668          std::vector<Constant*> Mask1(numElem), Mask2(numElem);
1669          for (unsigned v = 0; v < numElem; ++v) {
1670            Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
1671            Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElem+v);
1672          }
1673
1674          K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
1675                                       ConstantVector::get(
1676                                         FlipMemInputs ? Mask2 : Mask1),
1677                                       getReplacementName(K, false, 1));
1678          K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
1679                                       ConstantVector::get(
1680                                         FlipMemInputs ? Mask1 : Mask2),
1681                                       getReplacementName(K, false, 2));
1682      } else {
1683        K1 = ExtractElementInst::Create(K, FlipMemInputs ? CV1 : CV0,
1684                                          getReplacementName(K, false, 1));
1685        K2 = ExtractElementInst::Create(K, FlipMemInputs ? CV0 : CV1,
1686                                          getReplacementName(K, false, 2));
1687      }
1688
1689      K1->insertAfter(K);
1690      K2->insertAfter(K1);
1691      InsertionPt = K2;
1692    }
1693  }
1694
1695  // Move all uses of the function I (including pairing-induced uses) after J.
1696  bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
1697                     std::multimap<Value *, Value *> &LoadMoveSet,
1698                     Instruction *I, Instruction *J) {
1699    // Skip to the first instruction past I.
1700    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
1701
1702    DenseSet<Value *> Users;
1703    AliasSetTracker WriteSet(*AA);
1704    for (; cast<Instruction>(L) != J; ++L)
1705      (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet);
1706
1707    assert(cast<Instruction>(L) == J &&
1708      "Tracking has not proceeded far enough to check for dependencies");
1709    // If J is now in the use set of I, then trackUsesOfI will return true
1710    // and we have a dependency cycle (and the fusing operation must abort).
1711    return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet);
1712  }
1713
1714  // Move all uses of the function I (including pairing-induced uses) after J.
1715  void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
1716                     std::multimap<Value *, Value *> &LoadMoveSet,
1717                     Instruction *&InsertionPt,
1718                     Instruction *I, Instruction *J) {
1719    // Skip to the first instruction past I.
1720    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
1721
1722    DenseSet<Value *> Users;
1723    AliasSetTracker WriteSet(*AA);
1724    for (; cast<Instruction>(L) != J;) {
1725      if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) {
1726        // Move this instruction
1727        Instruction *InstToMove = L; ++L;
1728
1729        DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
1730                        " to after " << *InsertionPt << "\n");
1731        InstToMove->removeFromParent();
1732        InstToMove->insertAfter(InsertionPt);
1733        InsertionPt = InstToMove;
1734      } else {
1735        ++L;
1736      }
1737    }
1738  }
1739
1740  // Collect all load instruction that are in the move set of a given first
1741  // pair member.  These loads depend on the first instruction, I, and so need
1742  // to be moved after J (the second instruction) when the pair is fused.
1743  void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
1744                     DenseMap<Value *, Value *> &ChosenPairs,
1745                     std::multimap<Value *, Value *> &LoadMoveSet,
1746                     Instruction *I) {
1747    // Skip to the first instruction past I.
1748    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
1749
1750    DenseSet<Value *> Users;
1751    AliasSetTracker WriteSet(*AA);
1752
1753    // Note: We cannot end the loop when we reach J because J could be moved
1754    // farther down the use chain by another instruction pairing. Also, J
1755    // could be before I if this is an inverted input.
1756    for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
1757      if (trackUsesOfI(Users, WriteSet, I, L)) {
1758        if (L->mayReadFromMemory())
1759          LoadMoveSet.insert(ValuePair(L, I));
1760      }
1761    }
1762  }
1763
1764  // In cases where both load/stores and the computation of their pointers
1765  // are chosen for vectorization, we can end up in a situation where the
1766  // aliasing analysis starts returning different query results as the
1767  // process of fusing instruction pairs continues. Because the algorithm
1768  // relies on finding the same use trees here as were found earlier, we'll
1769  // need to precompute the necessary aliasing information here and then
1770  // manually update it during the fusion process.
1771  void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
1772                     std::vector<Value *> &PairableInsts,
1773                     DenseMap<Value *, Value *> &ChosenPairs,
1774                     std::multimap<Value *, Value *> &LoadMoveSet) {
1775    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
1776         PIE = PairableInsts.end(); PI != PIE; ++PI) {
1777      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
1778      if (P == ChosenPairs.end()) continue;
1779
1780      Instruction *I = cast<Instruction>(P->first);
1781      collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I);
1782    }
1783  }
1784
1785  // When the first instruction in each pair is cloned, it will inherit its
1786  // parent's metadata. This metadata must be combined with that of the other
1787  // instruction in a safe way.
1788  void BBVectorize::combineMetadata(Instruction *K, const Instruction *J) {
1789    SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata;
1790    K->getAllMetadataOtherThanDebugLoc(Metadata);
1791    for (unsigned i = 0, n = Metadata.size(); i < n; ++i) {
1792      unsigned Kind = Metadata[i].first;
1793      MDNode *JMD = J->getMetadata(Kind);
1794      MDNode *KMD = Metadata[i].second;
1795
1796      switch (Kind) {
1797      default:
1798        K->setMetadata(Kind, 0); // Remove unknown metadata
1799        break;
1800      case LLVMContext::MD_tbaa:
1801        K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
1802        break;
1803      case LLVMContext::MD_fpmath:
1804        K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
1805        break;
1806      }
1807    }
1808  }
1809
1810  // This function fuses the chosen instruction pairs into vector instructions,
1811  // taking care preserve any needed scalar outputs and, then, it reorders the
1812  // remaining instructions as needed (users of the first member of the pair
1813  // need to be moved to after the location of the second member of the pair
1814  // because the vector instruction is inserted in the location of the pair's
1815  // second member).
1816  void BBVectorize::fuseChosenPairs(BasicBlock &BB,
1817                     std::vector<Value *> &PairableInsts,
1818                     DenseMap<Value *, Value *> &ChosenPairs) {
1819    LLVMContext& Context = BB.getContext();
1820
1821    // During the vectorization process, the order of the pairs to be fused
1822    // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
1823    // list. After a pair is fused, the flipped pair is removed from the list.
1824    std::vector<ValuePair> FlippedPairs;
1825    FlippedPairs.reserve(ChosenPairs.size());
1826    for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
1827         E = ChosenPairs.end(); P != E; ++P)
1828      FlippedPairs.push_back(ValuePair(P->second, P->first));
1829    for (std::vector<ValuePair>::iterator P = FlippedPairs.begin(),
1830         E = FlippedPairs.end(); P != E; ++P)
1831      ChosenPairs.insert(*P);
1832
1833    std::multimap<Value *, Value *> LoadMoveSet;
1834    collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
1835
1836    DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
1837
1838    for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
1839      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
1840      if (P == ChosenPairs.end()) {
1841        ++PI;
1842        continue;
1843      }
1844
1845      if (getDepthFactor(P->first) == 0) {
1846        // These instructions are not really fused, but are tracked as though
1847        // they are. Any case in which it would be interesting to fuse them
1848        // will be taken care of by InstCombine.
1849        --NumFusedOps;
1850        ++PI;
1851        continue;
1852      }
1853
1854      Instruction *I = cast<Instruction>(P->first),
1855        *J = cast<Instruction>(P->second);
1856
1857      DEBUG(dbgs() << "BBV: fusing: " << *I <<
1858             " <-> " << *J << "\n");
1859
1860      // Remove the pair and flipped pair from the list.
1861      DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
1862      assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
1863      ChosenPairs.erase(FP);
1864      ChosenPairs.erase(P);
1865
1866      if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) {
1867        DEBUG(dbgs() << "BBV: fusion of: " << *I <<
1868               " <-> " << *J <<
1869               " aborted because of non-trivial dependency cycle\n");
1870        --NumFusedOps;
1871        ++PI;
1872        continue;
1873      }
1874
1875      bool FlipMemInputs;
1876      unsigned NumOperands = I->getNumOperands();
1877      SmallVector<Value *, 3> ReplacedOperands(NumOperands);
1878      getReplacementInputsForPair(Context, I, J, ReplacedOperands,
1879        FlipMemInputs);
1880
1881      // Make a copy of the original operation, change its type to the vector
1882      // type and replace its operands with the vector operands.
1883      Instruction *K = I->clone();
1884      if (I->hasName()) K->takeName(I);
1885
1886      if (!isa<StoreInst>(K))
1887        K->mutateType(getVecTypeForPair(I->getType()));
1888
1889      combineMetadata(K, J);
1890
1891      for (unsigned o = 0; o < NumOperands; ++o)
1892        K->setOperand(o, ReplacedOperands[o]);
1893
1894      // If we've flipped the memory inputs, make sure that we take the correct
1895      // alignment.
1896      if (FlipMemInputs) {
1897        if (isa<StoreInst>(K))
1898          cast<StoreInst>(K)->setAlignment(cast<StoreInst>(J)->getAlignment());
1899        else
1900          cast<LoadInst>(K)->setAlignment(cast<LoadInst>(J)->getAlignment());
1901      }
1902
1903      K->insertAfter(J);
1904
1905      // Instruction insertion point:
1906      Instruction *InsertionPt = K;
1907      Instruction *K1 = 0, *K2 = 0;
1908      replaceOutputsOfPair(Context, I, J, K, InsertionPt, K1, K2,
1909        FlipMemInputs);
1910
1911      // The use tree of the first original instruction must be moved to after
1912      // the location of the second instruction. The entire use tree of the
1913      // first instruction is disjoint from the input tree of the second
1914      // (by definition), and so commutes with it.
1915
1916      moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
1917
1918      if (!isa<StoreInst>(I)) {
1919        I->replaceAllUsesWith(K1);
1920        J->replaceAllUsesWith(K2);
1921        AA->replaceWithNewValue(I, K1);
1922        AA->replaceWithNewValue(J, K2);
1923      }
1924
1925      // Instructions that may read from memory may be in the load move set.
1926      // Once an instruction is fused, we no longer need its move set, and so
1927      // the values of the map never need to be updated. However, when a load
1928      // is fused, we need to merge the entries from both instructions in the
1929      // pair in case those instructions were in the move set of some other
1930      // yet-to-be-fused pair. The loads in question are the keys of the map.
1931      if (I->mayReadFromMemory()) {
1932        std::vector<ValuePair> NewSetMembers;
1933        VPIteratorPair IPairRange = LoadMoveSet.equal_range(I);
1934        VPIteratorPair JPairRange = LoadMoveSet.equal_range(J);
1935        for (std::multimap<Value *, Value *>::iterator N = IPairRange.first;
1936             N != IPairRange.second; ++N)
1937          NewSetMembers.push_back(ValuePair(K, N->second));
1938        for (std::multimap<Value *, Value *>::iterator N = JPairRange.first;
1939             N != JPairRange.second; ++N)
1940          NewSetMembers.push_back(ValuePair(K, N->second));
1941        for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
1942             AE = NewSetMembers.end(); A != AE; ++A)
1943          LoadMoveSet.insert(*A);
1944      }
1945
1946      // Before removing I, set the iterator to the next instruction.
1947      PI = llvm::next(BasicBlock::iterator(I));
1948      if (cast<Instruction>(PI) == J)
1949        ++PI;
1950
1951      SE->forgetValue(I);
1952      SE->forgetValue(J);
1953      I->eraseFromParent();
1954      J->eraseFromParent();
1955    }
1956
1957    DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
1958  }
1959}
1960
1961char BBVectorize::ID = 0;
1962static const char bb_vectorize_name[] = "Basic-Block Vectorization";
1963INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
1964INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
1965INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
1966INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
1967
1968BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
1969  return new BBVectorize(C);
1970}
1971
1972bool
1973llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
1974  BBVectorize BBVectorizer(P, C);
1975  return BBVectorizer.vectorizeBB(BB);
1976}
1977
1978//===----------------------------------------------------------------------===//
1979VectorizeConfig::VectorizeConfig() {
1980  VectorBits = ::VectorBits;
1981  VectorizeBools = !::NoBools;
1982  VectorizeInts = !::NoInts;
1983  VectorizeFloats = !::NoFloats;
1984  VectorizePointers = !::NoPointers;
1985  VectorizeCasts = !::NoCasts;
1986  VectorizeMath = !::NoMath;
1987  VectorizeFMA = !::NoFMA;
1988  VectorizeSelect = !::NoSelect;
1989  VectorizeCmp = !::NoCmp;
1990  VectorizeGEP = !::NoGEP;
1991  VectorizeMemOps = !::NoMemOps;
1992  AlignedOnly = ::AlignedOnly;
1993  ReqChainDepth= ::ReqChainDepth;
1994  SearchLimit = ::SearchLimit;
1995  MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
1996  SplatBreaksChain = ::SplatBreaksChain;
1997  MaxInsts = ::MaxInsts;
1998  MaxIter = ::MaxIter;
1999  NoMemOpBoost = ::NoMemOpBoost;
2000  FastDep = ::FastDep;
2001}
2002