BBVectorize.cpp revision f3f5a1e6f77a842ccb24cc81766437da5197d712
1//===- BBVectorize.cpp - A Basic-Block Vectorizer -------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a basic-block vectorization pass. The algorithm was
11// inspired by that used by the Vienna MAP Vectorizor by Franchetti and Kral,
12// et al. It works by looking for chains of pairable operations and then
13// pairing them.
14//
15//===----------------------------------------------------------------------===//
16
17#define BBV_NAME "bb-vectorize"
18#define DEBUG_TYPE BBV_NAME
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/Instructions.h"
23#include "llvm/IntrinsicInst.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/LLVMContext.h"
26#include "llvm/Pass.h"
27#include "llvm/Type.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DenseSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Analysis/AliasAnalysis.h"
35#include "llvm/Analysis/AliasSetTracker.h"
36#include "llvm/Analysis/ScalarEvolution.h"
37#include "llvm/Analysis/ScalarEvolutionExpressions.h"
38#include "llvm/Analysis/ValueTracking.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Support/ValueHandle.h"
43#include "llvm/Target/TargetData.h"
44#include "llvm/Transforms/Vectorize.h"
45#include <algorithm>
46#include <map>
47using namespace llvm;
48
49static cl::opt<unsigned>
50ReqChainDepth("bb-vectorize-req-chain-depth", cl::init(6), cl::Hidden,
51  cl::desc("The required chain depth for vectorization"));
52
53static cl::opt<unsigned>
54SearchLimit("bb-vectorize-search-limit", cl::init(400), cl::Hidden,
55  cl::desc("The maximum search distance for instruction pairs"));
56
57static cl::opt<bool>
58SplatBreaksChain("bb-vectorize-splat-breaks-chain", cl::init(false), cl::Hidden,
59  cl::desc("Replicating one element to a pair breaks the chain"));
60
61static cl::opt<unsigned>
62VectorBits("bb-vectorize-vector-bits", cl::init(128), cl::Hidden,
63  cl::desc("The size of the native vector registers"));
64
65static cl::opt<unsigned>
66MaxIter("bb-vectorize-max-iter", cl::init(0), cl::Hidden,
67  cl::desc("The maximum number of pairing iterations"));
68
69static cl::opt<unsigned>
70MaxInsts("bb-vectorize-max-instr-per-group", cl::init(500), cl::Hidden,
71  cl::desc("The maximum number of pairable instructions per group"));
72
73static cl::opt<unsigned>
74MaxCandPairsForCycleCheck("bb-vectorize-max-cycle-check-pairs", cl::init(200),
75  cl::Hidden, cl::desc("The maximum number of candidate pairs with which to use"
76                       " a full cycle check"));
77
78static cl::opt<bool>
79NoInts("bb-vectorize-no-ints", cl::init(false), cl::Hidden,
80  cl::desc("Don't try to vectorize integer values"));
81
82static cl::opt<bool>
83NoFloats("bb-vectorize-no-floats", cl::init(false), cl::Hidden,
84  cl::desc("Don't try to vectorize floating-point values"));
85
86static cl::opt<bool>
87NoPointers("bb-vectorize-no-pointers", cl::init(false), cl::Hidden,
88  cl::desc("Don't try to vectorize pointer values"));
89
90static cl::opt<bool>
91NoCasts("bb-vectorize-no-casts", cl::init(false), cl::Hidden,
92  cl::desc("Don't try to vectorize casting (conversion) operations"));
93
94static cl::opt<bool>
95NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
96  cl::desc("Don't try to vectorize floating-point math intrinsics"));
97
98static cl::opt<bool>
99NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
100  cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
101
102static cl::opt<bool>
103NoSelect("bb-vectorize-no-select", cl::init(false), cl::Hidden,
104  cl::desc("Don't try to vectorize select instructions"));
105
106static cl::opt<bool>
107NoGEP("bb-vectorize-no-gep", cl::init(false), cl::Hidden,
108  cl::desc("Don't try to vectorize getelementptr instructions"));
109
110static cl::opt<bool>
111NoMemOps("bb-vectorize-no-mem-ops", cl::init(false), cl::Hidden,
112  cl::desc("Don't try to vectorize loads and stores"));
113
114static cl::opt<bool>
115AlignedOnly("bb-vectorize-aligned-only", cl::init(false), cl::Hidden,
116  cl::desc("Only generate aligned loads and stores"));
117
118static cl::opt<bool>
119NoMemOpBoost("bb-vectorize-no-mem-op-boost",
120  cl::init(false), cl::Hidden,
121  cl::desc("Don't boost the chain-depth contribution of loads and stores"));
122
123static cl::opt<bool>
124FastDep("bb-vectorize-fast-dep", cl::init(false), cl::Hidden,
125  cl::desc("Use a fast instruction dependency analysis"));
126
127#ifndef NDEBUG
128static cl::opt<bool>
129DebugInstructionExamination("bb-vectorize-debug-instruction-examination",
130  cl::init(false), cl::Hidden,
131  cl::desc("When debugging is enabled, output information on the"
132           " instruction-examination process"));
133static cl::opt<bool>
134DebugCandidateSelection("bb-vectorize-debug-candidate-selection",
135  cl::init(false), cl::Hidden,
136  cl::desc("When debugging is enabled, output information on the"
137           " candidate-selection process"));
138static cl::opt<bool>
139DebugPairSelection("bb-vectorize-debug-pair-selection",
140  cl::init(false), cl::Hidden,
141  cl::desc("When debugging is enabled, output information on the"
142           " pair-selection process"));
143static cl::opt<bool>
144DebugCycleCheck("bb-vectorize-debug-cycle-check",
145  cl::init(false), cl::Hidden,
146  cl::desc("When debugging is enabled, output information on the"
147           " cycle-checking process"));
148#endif
149
150STATISTIC(NumFusedOps, "Number of operations fused by bb-vectorize");
151
152namespace {
153  struct BBVectorize : public BasicBlockPass {
154    static char ID; // Pass identification, replacement for typeid
155
156    const VectorizeConfig Config;
157
158    BBVectorize(const VectorizeConfig &C = VectorizeConfig())
159      : BasicBlockPass(ID), Config(C) {
160      initializeBBVectorizePass(*PassRegistry::getPassRegistry());
161    }
162
163    BBVectorize(Pass *P, const VectorizeConfig &C)
164      : BasicBlockPass(ID), Config(C) {
165      AA = &P->getAnalysis<AliasAnalysis>();
166      SE = &P->getAnalysis<ScalarEvolution>();
167      TD = P->getAnalysisIfAvailable<TargetData>();
168    }
169
170    typedef std::pair<Value *, Value *> ValuePair;
171    typedef std::pair<ValuePair, size_t> ValuePairWithDepth;
172    typedef std::pair<ValuePair, ValuePair> VPPair; // A ValuePair pair
173    typedef std::pair<std::multimap<Value *, Value *>::iterator,
174              std::multimap<Value *, Value *>::iterator> VPIteratorPair;
175    typedef std::pair<std::multimap<ValuePair, ValuePair>::iterator,
176              std::multimap<ValuePair, ValuePair>::iterator>
177                VPPIteratorPair;
178
179    AliasAnalysis *AA;
180    ScalarEvolution *SE;
181    TargetData *TD;
182
183    // FIXME: const correct?
184
185    bool vectorizePairs(BasicBlock &BB);
186
187    bool getCandidatePairs(BasicBlock &BB,
188                       BasicBlock::iterator &Start,
189                       std::multimap<Value *, Value *> &CandidatePairs,
190                       std::vector<Value *> &PairableInsts);
191
192    void computeConnectedPairs(std::multimap<Value *, Value *> &CandidatePairs,
193                       std::vector<Value *> &PairableInsts,
194                       std::multimap<ValuePair, ValuePair> &ConnectedPairs);
195
196    void buildDepMap(BasicBlock &BB,
197                       std::multimap<Value *, Value *> &CandidatePairs,
198                       std::vector<Value *> &PairableInsts,
199                       DenseSet<ValuePair> &PairableInstUsers);
200
201    void choosePairs(std::multimap<Value *, Value *> &CandidatePairs,
202                        std::vector<Value *> &PairableInsts,
203                        std::multimap<ValuePair, ValuePair> &ConnectedPairs,
204                        DenseSet<ValuePair> &PairableInstUsers,
205                        DenseMap<Value *, Value *>& ChosenPairs);
206
207    void fuseChosenPairs(BasicBlock &BB,
208                     std::vector<Value *> &PairableInsts,
209                     DenseMap<Value *, Value *>& ChosenPairs);
210
211    bool isInstVectorizable(Instruction *I, bool &IsSimpleLoadStore);
212
213    bool areInstsCompatible(Instruction *I, Instruction *J,
214                       bool IsSimpleLoadStore);
215
216    bool trackUsesOfI(DenseSet<Value *> &Users,
217                      AliasSetTracker &WriteSet, Instruction *I,
218                      Instruction *J, bool UpdateUsers = true,
219                      std::multimap<Value *, Value *> *LoadMoveSet = 0);
220
221    void computePairsConnectedTo(
222                      std::multimap<Value *, Value *> &CandidatePairs,
223                      std::vector<Value *> &PairableInsts,
224                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
225                      ValuePair P);
226
227    bool pairsConflict(ValuePair P, ValuePair Q,
228                 DenseSet<ValuePair> &PairableInstUsers,
229                 std::multimap<ValuePair, ValuePair> *PairableInstUserMap = 0);
230
231    bool pairWillFormCycle(ValuePair P,
232                       std::multimap<ValuePair, ValuePair> &PairableInstUsers,
233                       DenseSet<ValuePair> &CurrentPairs);
234
235    void pruneTreeFor(
236                      std::multimap<Value *, Value *> &CandidatePairs,
237                      std::vector<Value *> &PairableInsts,
238                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
239                      DenseSet<ValuePair> &PairableInstUsers,
240                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
241                      DenseMap<Value *, Value *> &ChosenPairs,
242                      DenseMap<ValuePair, size_t> &Tree,
243                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
244                      bool UseCycleCheck);
245
246    void buildInitialTreeFor(
247                      std::multimap<Value *, Value *> &CandidatePairs,
248                      std::vector<Value *> &PairableInsts,
249                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
250                      DenseSet<ValuePair> &PairableInstUsers,
251                      DenseMap<Value *, Value *> &ChosenPairs,
252                      DenseMap<ValuePair, size_t> &Tree, ValuePair J);
253
254    void findBestTreeFor(
255                      std::multimap<Value *, Value *> &CandidatePairs,
256                      std::vector<Value *> &PairableInsts,
257                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
258                      DenseSet<ValuePair> &PairableInstUsers,
259                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
260                      DenseMap<Value *, Value *> &ChosenPairs,
261                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
262                      size_t &BestEffSize, VPIteratorPair ChoiceRange,
263                      bool UseCycleCheck);
264
265    Value *getReplacementPointerInput(LLVMContext& Context, Instruction *I,
266                     Instruction *J, unsigned o, bool &FlipMemInputs);
267
268    void fillNewShuffleMask(LLVMContext& Context, Instruction *J,
269                     unsigned NumElem, unsigned MaskOffset, unsigned NumInElem,
270                     unsigned IdxOffset, std::vector<Constant*> &Mask);
271
272    Value *getReplacementShuffleMask(LLVMContext& Context, Instruction *I,
273                     Instruction *J);
274
275    Value *getReplacementInput(LLVMContext& Context, Instruction *I,
276                     Instruction *J, unsigned o, bool FlipMemInputs);
277
278    void getReplacementInputsForPair(LLVMContext& Context, Instruction *I,
279                     Instruction *J, SmallVector<Value *, 3> &ReplacedOperands,
280                     bool &FlipMemInputs);
281
282    void replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
283                     Instruction *J, Instruction *K,
284                     Instruction *&InsertionPt, Instruction *&K1,
285                     Instruction *&K2, bool &FlipMemInputs);
286
287    void collectPairLoadMoveSet(BasicBlock &BB,
288                     DenseMap<Value *, Value *> &ChosenPairs,
289                     std::multimap<Value *, Value *> &LoadMoveSet,
290                     Instruction *I);
291
292    void collectLoadMoveSet(BasicBlock &BB,
293                     std::vector<Value *> &PairableInsts,
294                     DenseMap<Value *, Value *> &ChosenPairs,
295                     std::multimap<Value *, Value *> &LoadMoveSet);
296
297    bool canMoveUsesOfIAfterJ(BasicBlock &BB,
298                     std::multimap<Value *, Value *> &LoadMoveSet,
299                     Instruction *I, Instruction *J);
300
301    void moveUsesOfIAfterJ(BasicBlock &BB,
302                     std::multimap<Value *, Value *> &LoadMoveSet,
303                     Instruction *&InsertionPt,
304                     Instruction *I, Instruction *J);
305
306    bool vectorizeBB(BasicBlock &BB) {
307      bool changed = false;
308      // Iterate a sufficient number of times to merge types of size 1 bit,
309      // then 2 bits, then 4, etc. up to half of the target vector width of the
310      // target vector register.
311      for (unsigned v = 2, n = 1;
312           v <= Config.VectorBits && (!Config.MaxIter || n <= Config.MaxIter);
313           v *= 2, ++n) {
314        DEBUG(dbgs() << "BBV: fusing loop #" << n <<
315              " for " << BB.getName() << " in " <<
316              BB.getParent()->getName() << "...\n");
317        if (vectorizePairs(BB))
318          changed = true;
319        else
320          break;
321      }
322
323      DEBUG(dbgs() << "BBV: done!\n");
324      return changed;
325    }
326
327    virtual bool runOnBasicBlock(BasicBlock &BB) {
328      AA = &getAnalysis<AliasAnalysis>();
329      SE = &getAnalysis<ScalarEvolution>();
330      TD = getAnalysisIfAvailable<TargetData>();
331
332      return vectorizeBB(BB);
333    }
334
335    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
336      BasicBlockPass::getAnalysisUsage(AU);
337      AU.addRequired<AliasAnalysis>();
338      AU.addRequired<ScalarEvolution>();
339      AU.addPreserved<AliasAnalysis>();
340      AU.addPreserved<ScalarEvolution>();
341      AU.setPreservesCFG();
342    }
343
344    // This returns the vector type that holds a pair of the provided type.
345    // If the provided type is already a vector, then its length is doubled.
346    static inline VectorType *getVecTypeForPair(Type *ElemTy) {
347      if (VectorType *VTy = dyn_cast<VectorType>(ElemTy)) {
348        unsigned numElem = VTy->getNumElements();
349        return VectorType::get(ElemTy->getScalarType(), numElem*2);
350      }
351
352      return VectorType::get(ElemTy, 2);
353    }
354
355    // Returns the weight associated with the provided value. A chain of
356    // candidate pairs has a length given by the sum of the weights of its
357    // members (one weight per pair; the weight of each member of the pair
358    // is assumed to be the same). This length is then compared to the
359    // chain-length threshold to determine if a given chain is significant
360    // enough to be vectorized. The length is also used in comparing
361    // candidate chains where longer chains are considered to be better.
362    // Note: when this function returns 0, the resulting instructions are
363    // not actually fused.
364    inline size_t getDepthFactor(Value *V) {
365      // InsertElement and ExtractElement have a depth factor of zero. This is
366      // for two reasons: First, they cannot be usefully fused. Second, because
367      // the pass generates a lot of these, they can confuse the simple metric
368      // used to compare the trees in the next iteration. Thus, giving them a
369      // weight of zero allows the pass to essentially ignore them in
370      // subsequent iterations when looking for vectorization opportunities
371      // while still tracking dependency chains that flow through those
372      // instructions.
373      if (isa<InsertElementInst>(V) || isa<ExtractElementInst>(V))
374        return 0;
375
376      // Give a load or store half of the required depth so that load/store
377      // pairs will vectorize.
378      if (!Config.NoMemOpBoost && (isa<LoadInst>(V) || isa<StoreInst>(V)))
379        return Config.ReqChainDepth/2;
380
381      return 1;
382    }
383
384    // This determines the relative offset of two loads or stores, returning
385    // true if the offset could be determined to be some constant value.
386    // For example, if OffsetInElmts == 1, then J accesses the memory directly
387    // after I; if OffsetInElmts == -1 then I accesses the memory
388    // directly after J. This function assumes that both instructions
389    // have the same type.
390    bool getPairPtrInfo(Instruction *I, Instruction *J,
391        Value *&IPtr, Value *&JPtr, unsigned &IAlignment, unsigned &JAlignment,
392        int64_t &OffsetInElmts) {
393      OffsetInElmts = 0;
394      if (isa<LoadInst>(I)) {
395        IPtr = cast<LoadInst>(I)->getPointerOperand();
396        JPtr = cast<LoadInst>(J)->getPointerOperand();
397        IAlignment = cast<LoadInst>(I)->getAlignment();
398        JAlignment = cast<LoadInst>(J)->getAlignment();
399      } else {
400        IPtr = cast<StoreInst>(I)->getPointerOperand();
401        JPtr = cast<StoreInst>(J)->getPointerOperand();
402        IAlignment = cast<StoreInst>(I)->getAlignment();
403        JAlignment = cast<StoreInst>(J)->getAlignment();
404      }
405
406      const SCEV *IPtrSCEV = SE->getSCEV(IPtr);
407      const SCEV *JPtrSCEV = SE->getSCEV(JPtr);
408
409      // If this is a trivial offset, then we'll get something like
410      // 1*sizeof(type). With target data, which we need anyway, this will get
411      // constant folded into a number.
412      const SCEV *OffsetSCEV = SE->getMinusSCEV(JPtrSCEV, IPtrSCEV);
413      if (const SCEVConstant *ConstOffSCEV =
414            dyn_cast<SCEVConstant>(OffsetSCEV)) {
415        ConstantInt *IntOff = ConstOffSCEV->getValue();
416        int64_t Offset = IntOff->getSExtValue();
417
418        Type *VTy = cast<PointerType>(IPtr->getType())->getElementType();
419        int64_t VTyTSS = (int64_t) TD->getTypeStoreSize(VTy);
420
421        assert(VTy == cast<PointerType>(JPtr->getType())->getElementType());
422
423        OffsetInElmts = Offset/VTyTSS;
424        return (abs64(Offset) % VTyTSS) == 0;
425      }
426
427      return false;
428    }
429
430    // Returns true if the provided CallInst represents an intrinsic that can
431    // be vectorized.
432    bool isVectorizableIntrinsic(CallInst* I) {
433      Function *F = I->getCalledFunction();
434      if (!F) return false;
435
436      unsigned IID = F->getIntrinsicID();
437      if (!IID) return false;
438
439      switch(IID) {
440      default:
441        return false;
442      case Intrinsic::sqrt:
443      case Intrinsic::powi:
444      case Intrinsic::sin:
445      case Intrinsic::cos:
446      case Intrinsic::log:
447      case Intrinsic::log2:
448      case Intrinsic::log10:
449      case Intrinsic::exp:
450      case Intrinsic::exp2:
451      case Intrinsic::pow:
452        return Config.VectorizeMath;
453      case Intrinsic::fma:
454        return Config.VectorizeFMA;
455      }
456    }
457
458    // Returns true if J is the second element in some pair referenced by
459    // some multimap pair iterator pair.
460    template <typename V>
461    bool isSecondInIteratorPair(V J, std::pair<
462           typename std::multimap<V, V>::iterator,
463           typename std::multimap<V, V>::iterator> PairRange) {
464      for (typename std::multimap<V, V>::iterator K = PairRange.first;
465           K != PairRange.second; ++K)
466        if (K->second == J) return true;
467
468      return false;
469    }
470  };
471
472  // This function implements one vectorization iteration on the provided
473  // basic block. It returns true if the block is changed.
474  bool BBVectorize::vectorizePairs(BasicBlock &BB) {
475    bool ShouldContinue;
476    BasicBlock::iterator Start = BB.getFirstInsertionPt();
477
478    std::vector<Value *> AllPairableInsts;
479    DenseMap<Value *, Value *> AllChosenPairs;
480
481    do {
482      std::vector<Value *> PairableInsts;
483      std::multimap<Value *, Value *> CandidatePairs;
484      ShouldContinue = getCandidatePairs(BB, Start, CandidatePairs,
485                                         PairableInsts);
486      if (PairableInsts.empty()) continue;
487
488      // Now we have a map of all of the pairable instructions and we need to
489      // select the best possible pairing. A good pairing is one such that the
490      // users of the pair are also paired. This defines a (directed) forest
491      // over the pairs such that two pairs are connected iff the second pair
492      // uses the first.
493
494      // Note that it only matters that both members of the second pair use some
495      // element of the first pair (to allow for splatting).
496
497      std::multimap<ValuePair, ValuePair> ConnectedPairs;
498      computeConnectedPairs(CandidatePairs, PairableInsts, ConnectedPairs);
499      if (ConnectedPairs.empty()) continue;
500
501      // Build the pairable-instruction dependency map
502      DenseSet<ValuePair> PairableInstUsers;
503      buildDepMap(BB, CandidatePairs, PairableInsts, PairableInstUsers);
504
505      // There is now a graph of the connected pairs. For each variable, pick
506      // the pairing with the largest tree meeting the depth requirement on at
507      // least one branch. Then select all pairings that are part of that tree
508      // and remove them from the list of available pairings and pairable
509      // variables.
510
511      DenseMap<Value *, Value *> ChosenPairs;
512      choosePairs(CandidatePairs, PairableInsts, ConnectedPairs,
513        PairableInstUsers, ChosenPairs);
514
515      if (ChosenPairs.empty()) continue;
516      AllPairableInsts.insert(AllPairableInsts.end(), PairableInsts.begin(),
517                              PairableInsts.end());
518      AllChosenPairs.insert(ChosenPairs.begin(), ChosenPairs.end());
519    } while (ShouldContinue);
520
521    if (AllChosenPairs.empty()) return false;
522    NumFusedOps += AllChosenPairs.size();
523
524    // A set of pairs has now been selected. It is now necessary to replace the
525    // paired instructions with vector instructions. For this procedure each
526    // operand must be replaced with a vector operand. This vector is formed
527    // by using build_vector on the old operands. The replaced values are then
528    // replaced with a vector_extract on the result.  Subsequent optimization
529    // passes should coalesce the build/extract combinations.
530
531    fuseChosenPairs(BB, AllPairableInsts, AllChosenPairs);
532    return true;
533  }
534
535  // This function returns true if the provided instruction is capable of being
536  // fused into a vector instruction. This determination is based only on the
537  // type and other attributes of the instruction.
538  bool BBVectorize::isInstVectorizable(Instruction *I,
539                                         bool &IsSimpleLoadStore) {
540    IsSimpleLoadStore = false;
541
542    if (CallInst *C = dyn_cast<CallInst>(I)) {
543      if (!isVectorizableIntrinsic(C))
544        return false;
545    } else if (LoadInst *L = dyn_cast<LoadInst>(I)) {
546      // Vectorize simple loads if possbile:
547      IsSimpleLoadStore = L->isSimple();
548      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
549        return false;
550    } else if (StoreInst *S = dyn_cast<StoreInst>(I)) {
551      // Vectorize simple stores if possbile:
552      IsSimpleLoadStore = S->isSimple();
553      if (!IsSimpleLoadStore || !Config.VectorizeMemOps)
554        return false;
555    } else if (CastInst *C = dyn_cast<CastInst>(I)) {
556      // We can vectorize casts, but not casts of pointer types, etc.
557      if (!Config.VectorizeCasts)
558        return false;
559
560      Type *SrcTy = C->getSrcTy();
561      if (!SrcTy->isSingleValueType())
562        return false;
563
564      Type *DestTy = C->getDestTy();
565      if (!DestTy->isSingleValueType())
566        return false;
567    } else if (isa<SelectInst>(I)) {
568      if (!Config.VectorizeSelect)
569        return false;
570    } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(I)) {
571      if (!Config.VectorizeGEP)
572        return false;
573
574      // Currently, vector GEPs exist only with one index.
575      if (G->getNumIndices() != 1)
576        return false;
577    } else if (!(I->isBinaryOp() || isa<ShuffleVectorInst>(I) ||
578        isa<ExtractElementInst>(I) || isa<InsertElementInst>(I))) {
579      return false;
580    }
581
582    // We can't vectorize memory operations without target data
583    if (TD == 0 && IsSimpleLoadStore)
584      return false;
585
586    Type *T1, *T2;
587    if (isa<StoreInst>(I)) {
588      // For stores, it is the value type, not the pointer type that matters
589      // because the value is what will come from a vector register.
590
591      Value *IVal = cast<StoreInst>(I)->getValueOperand();
592      T1 = IVal->getType();
593    } else {
594      T1 = I->getType();
595    }
596
597    if (I->isCast())
598      T2 = cast<CastInst>(I)->getSrcTy();
599    else
600      T2 = T1;
601
602    // Not every type can be vectorized...
603    if (!(VectorType::isValidElementType(T1) || T1->isVectorTy()) ||
604        !(VectorType::isValidElementType(T2) || T2->isVectorTy()))
605      return false;
606
607    if (!Config.VectorizeInts
608        && (T1->isIntOrIntVectorTy() || T2->isIntOrIntVectorTy()))
609      return false;
610
611    if (!Config.VectorizeFloats
612        && (T1->isFPOrFPVectorTy() || T2->isFPOrFPVectorTy()))
613      return false;
614
615    if ((!Config.VectorizePointers || TD == 0)
616        && ((T1->isPointerTy() ||
617              (T1->isVectorTy() && T1->getScalarType()->isPointerTy())) ||
618            (T2->isPointerTy() ||
619              (T2->isVectorTy() && T2->getScalarType()->isPointerTy()))
620           ))
621      return false;
622
623    if (T1->getPrimitiveSizeInBits() > Config.VectorBits/2 ||
624        T2->getPrimitiveSizeInBits() > Config.VectorBits/2)
625      return false;
626
627    return true;
628  }
629
630  // This function returns true if the two provided instructions are compatible
631  // (meaning that they can be fused into a vector instruction). This assumes
632  // that I has already been determined to be vectorizable and that J is not
633  // in the use tree of I.
634  bool BBVectorize::areInstsCompatible(Instruction *I, Instruction *J,
635                       bool IsSimpleLoadStore) {
636    DEBUG(if (DebugInstructionExamination) dbgs() << "BBV: looking at " << *I <<
637                     " <-> " << *J << "\n");
638
639    // Loads and stores can be merged if they have different alignments,
640    // but are otherwise the same.
641    LoadInst *LI, *LJ;
642    StoreInst *SI, *SJ;
643    if ((LI = dyn_cast<LoadInst>(I)) && (LJ = dyn_cast<LoadInst>(J))) {
644      if (I->getType() != J->getType())
645        return false;
646
647      if (LI->getPointerOperand()->getType() !=
648            LJ->getPointerOperand()->getType() ||
649          LI->isVolatile() != LJ->isVolatile() ||
650          LI->getOrdering() != LJ->getOrdering() ||
651          LI->getSynchScope() != LJ->getSynchScope())
652        return false;
653    } else if ((SI = dyn_cast<StoreInst>(I)) && (SJ = dyn_cast<StoreInst>(J))) {
654      if (SI->getValueOperand()->getType() !=
655            SJ->getValueOperand()->getType() ||
656          SI->getPointerOperand()->getType() !=
657            SJ->getPointerOperand()->getType() ||
658          SI->isVolatile() != SJ->isVolatile() ||
659          SI->getOrdering() != SJ->getOrdering() ||
660          SI->getSynchScope() != SJ->getSynchScope())
661        return false;
662    } else if (!J->isSameOperationAs(I)) {
663      return false;
664    }
665    // FIXME: handle addsub-type operations!
666
667    if (IsSimpleLoadStore) {
668      Value *IPtr, *JPtr;
669      unsigned IAlignment, JAlignment;
670      int64_t OffsetInElmts = 0;
671      if (getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
672            OffsetInElmts) && abs64(OffsetInElmts) == 1) {
673        if (Config.AlignedOnly) {
674          Type *aType = isa<StoreInst>(I) ?
675            cast<StoreInst>(I)->getValueOperand()->getType() : I->getType();
676          // An aligned load or store is possible only if the instruction
677          // with the lower offset has an alignment suitable for the
678          // vector type.
679
680          unsigned BottomAlignment = IAlignment;
681          if (OffsetInElmts < 0) BottomAlignment = JAlignment;
682
683          Type *VType = getVecTypeForPair(aType);
684          unsigned VecAlignment = TD->getPrefTypeAlignment(VType);
685          if (BottomAlignment < VecAlignment)
686            return false;
687        }
688      } else {
689        return false;
690      }
691    } else if (isa<ShuffleVectorInst>(I)) {
692      // Only merge two shuffles if they're both constant
693      return isa<Constant>(I->getOperand(2)) &&
694             isa<Constant>(J->getOperand(2));
695      // FIXME: We may want to vectorize non-constant shuffles also.
696    }
697
698    // The powi intrinsic is special because only the first argument is
699    // vectorized, the second arguments must be equal.
700    CallInst *CI = dyn_cast<CallInst>(I);
701    Function *FI;
702    if (CI && (FI = CI->getCalledFunction()) &&
703        FI->getIntrinsicID() == Intrinsic::powi) {
704
705      Value *A1I = CI->getArgOperand(1),
706            *A1J = cast<CallInst>(J)->getArgOperand(1);
707      const SCEV *A1ISCEV = SE->getSCEV(A1I),
708                 *A1JSCEV = SE->getSCEV(A1J);
709      return (A1ISCEV == A1JSCEV);
710    }
711
712    return true;
713  }
714
715  // Figure out whether or not J uses I and update the users and write-set
716  // structures associated with I. Specifically, Users represents the set of
717  // instructions that depend on I. WriteSet represents the set
718  // of memory locations that are dependent on I. If UpdateUsers is true,
719  // and J uses I, then Users is updated to contain J and WriteSet is updated
720  // to contain any memory locations to which J writes. The function returns
721  // true if J uses I. By default, alias analysis is used to determine
722  // whether J reads from memory that overlaps with a location in WriteSet.
723  // If LoadMoveSet is not null, then it is a previously-computed multimap
724  // where the key is the memory-based user instruction and the value is
725  // the instruction to be compared with I. So, if LoadMoveSet is provided,
726  // then the alias analysis is not used. This is necessary because this
727  // function is called during the process of moving instructions during
728  // vectorization and the results of the alias analysis are not stable during
729  // that process.
730  bool BBVectorize::trackUsesOfI(DenseSet<Value *> &Users,
731                       AliasSetTracker &WriteSet, Instruction *I,
732                       Instruction *J, bool UpdateUsers,
733                       std::multimap<Value *, Value *> *LoadMoveSet) {
734    bool UsesI = false;
735
736    // This instruction may already be marked as a user due, for example, to
737    // being a member of a selected pair.
738    if (Users.count(J))
739      UsesI = true;
740
741    if (!UsesI)
742      for (User::op_iterator JU = J->op_begin(), JE = J->op_end();
743           JU != JE; ++JU) {
744        Value *V = *JU;
745        if (I == V || Users.count(V)) {
746          UsesI = true;
747          break;
748        }
749      }
750    if (!UsesI && J->mayReadFromMemory()) {
751      if (LoadMoveSet) {
752        VPIteratorPair JPairRange = LoadMoveSet->equal_range(J);
753        UsesI = isSecondInIteratorPair<Value*>(I, JPairRange);
754      } else {
755        for (AliasSetTracker::iterator W = WriteSet.begin(),
756             WE = WriteSet.end(); W != WE; ++W) {
757          if (W->aliasesUnknownInst(J, *AA)) {
758            UsesI = true;
759            break;
760          }
761        }
762      }
763    }
764
765    if (UsesI && UpdateUsers) {
766      if (J->mayWriteToMemory()) WriteSet.add(J);
767      Users.insert(J);
768    }
769
770    return UsesI;
771  }
772
773  // This function iterates over all instruction pairs in the provided
774  // basic block and collects all candidate pairs for vectorization.
775  bool BBVectorize::getCandidatePairs(BasicBlock &BB,
776                       BasicBlock::iterator &Start,
777                       std::multimap<Value *, Value *> &CandidatePairs,
778                       std::vector<Value *> &PairableInsts) {
779    BasicBlock::iterator E = BB.end();
780    if (Start == E) return false;
781
782    bool ShouldContinue = false, IAfterStart = false;
783    for (BasicBlock::iterator I = Start++; I != E; ++I) {
784      if (I == Start) IAfterStart = true;
785
786      bool IsSimpleLoadStore;
787      if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
788
789      // Look for an instruction with which to pair instruction *I...
790      DenseSet<Value *> Users;
791      AliasSetTracker WriteSet(*AA);
792      bool JAfterStart = IAfterStart;
793      BasicBlock::iterator J = llvm::next(I);
794      for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
795        if (J == Start) JAfterStart = true;
796
797        // Determine if J uses I, if so, exit the loop.
798        bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
799        if (Config.FastDep) {
800          // Note: For this heuristic to be effective, independent operations
801          // must tend to be intermixed. This is likely to be true from some
802          // kinds of grouped loop unrolling (but not the generic LLVM pass),
803          // but otherwise may require some kind of reordering pass.
804
805          // When using fast dependency analysis,
806          // stop searching after first use:
807          if (UsesI) break;
808        } else {
809          if (UsesI) continue;
810        }
811
812        // J does not use I, and comes before the first use of I, so it can be
813        // merged with I if the instructions are compatible.
814        if (!areInstsCompatible(I, J, IsSimpleLoadStore)) continue;
815
816        // J is a candidate for merging with I.
817        if (!PairableInsts.size() ||
818             PairableInsts[PairableInsts.size()-1] != I) {
819          PairableInsts.push_back(I);
820        }
821
822        CandidatePairs.insert(ValuePair(I, J));
823
824        // The next call to this function must start after the last instruction
825        // selected during this invocation.
826        if (JAfterStart) {
827          Start = llvm::next(J);
828          IAfterStart = JAfterStart = false;
829        }
830
831        DEBUG(if (DebugCandidateSelection) dbgs() << "BBV: candidate pair "
832                     << *I << " <-> " << *J << "\n");
833
834        // If we have already found too many pairs, break here and this function
835        // will be called again starting after the last instruction selected
836        // during this invocation.
837        if (PairableInsts.size() >= Config.MaxInsts) {
838          ShouldContinue = true;
839          break;
840        }
841      }
842
843      if (ShouldContinue)
844        break;
845    }
846
847    DEBUG(dbgs() << "BBV: found " << PairableInsts.size()
848           << " instructions with candidate pairs\n");
849
850    return ShouldContinue;
851  }
852
853  // Finds candidate pairs connected to the pair P = <PI, PJ>. This means that
854  // it looks for pairs such that both members have an input which is an
855  // output of PI or PJ.
856  void BBVectorize::computePairsConnectedTo(
857                      std::multimap<Value *, Value *> &CandidatePairs,
858                      std::vector<Value *> &PairableInsts,
859                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
860                      ValuePair P) {
861    // For each possible pairing for this variable, look at the uses of
862    // the first value...
863    for (Value::use_iterator I = P.first->use_begin(),
864         E = P.first->use_end(); I != E; ++I) {
865      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
866
867      // For each use of the first variable, look for uses of the second
868      // variable...
869      for (Value::use_iterator J = P.second->use_begin(),
870           E2 = P.second->use_end(); J != E2; ++J) {
871        VPIteratorPair JPairRange = CandidatePairs.equal_range(*J);
872
873        // Look for <I, J>:
874        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
875          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
876
877        // Look for <J, I>:
878        if (isSecondInIteratorPair<Value*>(*I, JPairRange))
879          ConnectedPairs.insert(VPPair(P, ValuePair(*J, *I)));
880      }
881
882      if (Config.SplatBreaksChain) continue;
883      // Look for cases where just the first value in the pair is used by
884      // both members of another pair (splatting).
885      for (Value::use_iterator J = P.first->use_begin(); J != E; ++J) {
886        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
887          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
888      }
889    }
890
891    if (Config.SplatBreaksChain) return;
892    // Look for cases where just the second value in the pair is used by
893    // both members of another pair (splatting).
894    for (Value::use_iterator I = P.second->use_begin(),
895         E = P.second->use_end(); I != E; ++I) {
896      VPIteratorPair IPairRange = CandidatePairs.equal_range(*I);
897
898      for (Value::use_iterator J = P.second->use_begin(); J != E; ++J) {
899        if (isSecondInIteratorPair<Value*>(*J, IPairRange))
900          ConnectedPairs.insert(VPPair(P, ValuePair(*I, *J)));
901      }
902    }
903  }
904
905  // This function figures out which pairs are connected.  Two pairs are
906  // connected if some output of the first pair forms an input to both members
907  // of the second pair.
908  void BBVectorize::computeConnectedPairs(
909                      std::multimap<Value *, Value *> &CandidatePairs,
910                      std::vector<Value *> &PairableInsts,
911                      std::multimap<ValuePair, ValuePair> &ConnectedPairs) {
912
913    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
914         PE = PairableInsts.end(); PI != PE; ++PI) {
915      VPIteratorPair choiceRange = CandidatePairs.equal_range(*PI);
916
917      for (std::multimap<Value *, Value *>::iterator P = choiceRange.first;
918           P != choiceRange.second; ++P)
919        computePairsConnectedTo(CandidatePairs, PairableInsts,
920                                ConnectedPairs, *P);
921    }
922
923    DEBUG(dbgs() << "BBV: found " << ConnectedPairs.size()
924                 << " pair connections.\n");
925  }
926
927  // This function builds a set of use tuples such that <A, B> is in the set
928  // if B is in the use tree of A. If B is in the use tree of A, then B
929  // depends on the output of A.
930  void BBVectorize::buildDepMap(
931                      BasicBlock &BB,
932                      std::multimap<Value *, Value *> &CandidatePairs,
933                      std::vector<Value *> &PairableInsts,
934                      DenseSet<ValuePair> &PairableInstUsers) {
935    DenseSet<Value *> IsInPair;
936    for (std::multimap<Value *, Value *>::iterator C = CandidatePairs.begin(),
937         E = CandidatePairs.end(); C != E; ++C) {
938      IsInPair.insert(C->first);
939      IsInPair.insert(C->second);
940    }
941
942    // Iterate through the basic block, recording all Users of each
943    // pairable instruction.
944
945    BasicBlock::iterator E = BB.end();
946    for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
947      if (IsInPair.find(I) == IsInPair.end()) continue;
948
949      DenseSet<Value *> Users;
950      AliasSetTracker WriteSet(*AA);
951      for (BasicBlock::iterator J = llvm::next(I); J != E; ++J)
952        (void) trackUsesOfI(Users, WriteSet, I, J);
953
954      for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
955           U != E; ++U)
956        PairableInstUsers.insert(ValuePair(I, *U));
957    }
958  }
959
960  // Returns true if an input to pair P is an output of pair Q and also an
961  // input of pair Q is an output of pair P. If this is the case, then these
962  // two pairs cannot be simultaneously fused.
963  bool BBVectorize::pairsConflict(ValuePair P, ValuePair Q,
964                     DenseSet<ValuePair> &PairableInstUsers,
965                     std::multimap<ValuePair, ValuePair> *PairableInstUserMap) {
966    // Two pairs are in conflict if they are mutual Users of eachother.
967    bool QUsesP = PairableInstUsers.count(ValuePair(P.first,  Q.first))  ||
968                  PairableInstUsers.count(ValuePair(P.first,  Q.second)) ||
969                  PairableInstUsers.count(ValuePair(P.second, Q.first))  ||
970                  PairableInstUsers.count(ValuePair(P.second, Q.second));
971    bool PUsesQ = PairableInstUsers.count(ValuePair(Q.first,  P.first))  ||
972                  PairableInstUsers.count(ValuePair(Q.first,  P.second)) ||
973                  PairableInstUsers.count(ValuePair(Q.second, P.first))  ||
974                  PairableInstUsers.count(ValuePair(Q.second, P.second));
975    if (PairableInstUserMap) {
976      // FIXME: The expensive part of the cycle check is not so much the cycle
977      // check itself but this edge insertion procedure. This needs some
978      // profiling and probably a different data structure (same is true of
979      // most uses of std::multimap).
980      if (PUsesQ) {
981        VPPIteratorPair QPairRange = PairableInstUserMap->equal_range(Q);
982        if (!isSecondInIteratorPair(P, QPairRange))
983          PairableInstUserMap->insert(VPPair(Q, P));
984      }
985      if (QUsesP) {
986        VPPIteratorPair PPairRange = PairableInstUserMap->equal_range(P);
987        if (!isSecondInIteratorPair(Q, PPairRange))
988          PairableInstUserMap->insert(VPPair(P, Q));
989      }
990    }
991
992    return (QUsesP && PUsesQ);
993  }
994
995  // This function walks the use graph of current pairs to see if, starting
996  // from P, the walk returns to P.
997  bool BBVectorize::pairWillFormCycle(ValuePair P,
998                       std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
999                       DenseSet<ValuePair> &CurrentPairs) {
1000    DEBUG(if (DebugCycleCheck)
1001            dbgs() << "BBV: starting cycle check for : " << *P.first << " <-> "
1002                   << *P.second << "\n");
1003    // A lookup table of visisted pairs is kept because the PairableInstUserMap
1004    // contains non-direct associations.
1005    DenseSet<ValuePair> Visited;
1006    SmallVector<ValuePair, 32> Q;
1007    // General depth-first post-order traversal:
1008    Q.push_back(P);
1009    do {
1010      ValuePair QTop = Q.pop_back_val();
1011      Visited.insert(QTop);
1012
1013      DEBUG(if (DebugCycleCheck)
1014              dbgs() << "BBV: cycle check visiting: " << *QTop.first << " <-> "
1015                     << *QTop.second << "\n");
1016      VPPIteratorPair QPairRange = PairableInstUserMap.equal_range(QTop);
1017      for (std::multimap<ValuePair, ValuePair>::iterator C = QPairRange.first;
1018           C != QPairRange.second; ++C) {
1019        if (C->second == P) {
1020          DEBUG(dbgs()
1021                 << "BBV: rejected to prevent non-trivial cycle formation: "
1022                 << *C->first.first << " <-> " << *C->first.second << "\n");
1023          return true;
1024        }
1025
1026        if (CurrentPairs.count(C->second) && !Visited.count(C->second))
1027          Q.push_back(C->second);
1028      }
1029    } while (!Q.empty());
1030
1031    return false;
1032  }
1033
1034  // This function builds the initial tree of connected pairs with the
1035  // pair J at the root.
1036  void BBVectorize::buildInitialTreeFor(
1037                      std::multimap<Value *, Value *> &CandidatePairs,
1038                      std::vector<Value *> &PairableInsts,
1039                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1040                      DenseSet<ValuePair> &PairableInstUsers,
1041                      DenseMap<Value *, Value *> &ChosenPairs,
1042                      DenseMap<ValuePair, size_t> &Tree, ValuePair J) {
1043    // Each of these pairs is viewed as the root node of a Tree. The Tree
1044    // is then walked (depth-first). As this happens, we keep track of
1045    // the pairs that compose the Tree and the maximum depth of the Tree.
1046    SmallVector<ValuePairWithDepth, 32> Q;
1047    // General depth-first post-order traversal:
1048    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
1049    do {
1050      ValuePairWithDepth QTop = Q.back();
1051
1052      // Push each child onto the queue:
1053      bool MoreChildren = false;
1054      size_t MaxChildDepth = QTop.second;
1055      VPPIteratorPair qtRange = ConnectedPairs.equal_range(QTop.first);
1056      for (std::multimap<ValuePair, ValuePair>::iterator k = qtRange.first;
1057           k != qtRange.second; ++k) {
1058        // Make sure that this child pair is still a candidate:
1059        bool IsStillCand = false;
1060        VPIteratorPair checkRange =
1061          CandidatePairs.equal_range(k->second.first);
1062        for (std::multimap<Value *, Value *>::iterator m = checkRange.first;
1063             m != checkRange.second; ++m) {
1064          if (m->second == k->second.second) {
1065            IsStillCand = true;
1066            break;
1067          }
1068        }
1069
1070        if (IsStillCand) {
1071          DenseMap<ValuePair, size_t>::iterator C = Tree.find(k->second);
1072          if (C == Tree.end()) {
1073            size_t d = getDepthFactor(k->second.first);
1074            Q.push_back(ValuePairWithDepth(k->second, QTop.second+d));
1075            MoreChildren = true;
1076          } else {
1077            MaxChildDepth = std::max(MaxChildDepth, C->second);
1078          }
1079        }
1080      }
1081
1082      if (!MoreChildren) {
1083        // Record the current pair as part of the Tree:
1084        Tree.insert(ValuePairWithDepth(QTop.first, MaxChildDepth));
1085        Q.pop_back();
1086      }
1087    } while (!Q.empty());
1088  }
1089
1090  // Given some initial tree, prune it by removing conflicting pairs (pairs
1091  // that cannot be simultaneously chosen for vectorization).
1092  void BBVectorize::pruneTreeFor(
1093                      std::multimap<Value *, Value *> &CandidatePairs,
1094                      std::vector<Value *> &PairableInsts,
1095                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1096                      DenseSet<ValuePair> &PairableInstUsers,
1097                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1098                      DenseMap<Value *, Value *> &ChosenPairs,
1099                      DenseMap<ValuePair, size_t> &Tree,
1100                      DenseSet<ValuePair> &PrunedTree, ValuePair J,
1101                      bool UseCycleCheck) {
1102    SmallVector<ValuePairWithDepth, 32> Q;
1103    // General depth-first post-order traversal:
1104    Q.push_back(ValuePairWithDepth(J, getDepthFactor(J.first)));
1105    do {
1106      ValuePairWithDepth QTop = Q.pop_back_val();
1107      PrunedTree.insert(QTop.first);
1108
1109      // Visit each child, pruning as necessary...
1110      DenseMap<ValuePair, size_t> BestChildren;
1111      VPPIteratorPair QTopRange = ConnectedPairs.equal_range(QTop.first);
1112      for (std::multimap<ValuePair, ValuePair>::iterator K = QTopRange.first;
1113           K != QTopRange.second; ++K) {
1114        DenseMap<ValuePair, size_t>::iterator C = Tree.find(K->second);
1115        if (C == Tree.end()) continue;
1116
1117        // This child is in the Tree, now we need to make sure it is the
1118        // best of any conflicting children. There could be multiple
1119        // conflicting children, so first, determine if we're keeping
1120        // this child, then delete conflicting children as necessary.
1121
1122        // It is also necessary to guard against pairing-induced
1123        // dependencies. Consider instructions a .. x .. y .. b
1124        // such that (a,b) are to be fused and (x,y) are to be fused
1125        // but a is an input to x and b is an output from y. This
1126        // means that y cannot be moved after b but x must be moved
1127        // after b for (a,b) to be fused. In other words, after
1128        // fusing (a,b) we have y .. a/b .. x where y is an input
1129        // to a/b and x is an output to a/b: x and y can no longer
1130        // be legally fused. To prevent this condition, we must
1131        // make sure that a child pair added to the Tree is not
1132        // both an input and output of an already-selected pair.
1133
1134        // Pairing-induced dependencies can also form from more complicated
1135        // cycles. The pair vs. pair conflicts are easy to check, and so
1136        // that is done explicitly for "fast rejection", and because for
1137        // child vs. child conflicts, we may prefer to keep the current
1138        // pair in preference to the already-selected child.
1139        DenseSet<ValuePair> CurrentPairs;
1140
1141        bool CanAdd = true;
1142        for (DenseMap<ValuePair, size_t>::iterator C2
1143              = BestChildren.begin(), E2 = BestChildren.end();
1144             C2 != E2; ++C2) {
1145          if (C2->first.first == C->first.first ||
1146              C2->first.first == C->first.second ||
1147              C2->first.second == C->first.first ||
1148              C2->first.second == C->first.second ||
1149              pairsConflict(C2->first, C->first, PairableInstUsers,
1150                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1151            if (C2->second >= C->second) {
1152              CanAdd = false;
1153              break;
1154            }
1155
1156            CurrentPairs.insert(C2->first);
1157          }
1158        }
1159        if (!CanAdd) continue;
1160
1161        // Even worse, this child could conflict with another node already
1162        // selected for the Tree. If that is the case, ignore this child.
1163        for (DenseSet<ValuePair>::iterator T = PrunedTree.begin(),
1164             E2 = PrunedTree.end(); T != E2; ++T) {
1165          if (T->first == C->first.first ||
1166              T->first == C->first.second ||
1167              T->second == C->first.first ||
1168              T->second == C->first.second ||
1169              pairsConflict(*T, C->first, PairableInstUsers,
1170                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1171            CanAdd = false;
1172            break;
1173          }
1174
1175          CurrentPairs.insert(*T);
1176        }
1177        if (!CanAdd) continue;
1178
1179        // And check the queue too...
1180        for (SmallVector<ValuePairWithDepth, 32>::iterator C2 = Q.begin(),
1181             E2 = Q.end(); C2 != E2; ++C2) {
1182          if (C2->first.first == C->first.first ||
1183              C2->first.first == C->first.second ||
1184              C2->first.second == C->first.first ||
1185              C2->first.second == C->first.second ||
1186              pairsConflict(C2->first, C->first, PairableInstUsers,
1187                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1188            CanAdd = false;
1189            break;
1190          }
1191
1192          CurrentPairs.insert(C2->first);
1193        }
1194        if (!CanAdd) continue;
1195
1196        // Last but not least, check for a conflict with any of the
1197        // already-chosen pairs.
1198        for (DenseMap<Value *, Value *>::iterator C2 =
1199              ChosenPairs.begin(), E2 = ChosenPairs.end();
1200             C2 != E2; ++C2) {
1201          if (pairsConflict(*C2, C->first, PairableInstUsers,
1202                            UseCycleCheck ? &PairableInstUserMap : 0)) {
1203            CanAdd = false;
1204            break;
1205          }
1206
1207          CurrentPairs.insert(*C2);
1208        }
1209        if (!CanAdd) continue;
1210
1211        // To check for non-trivial cycles formed by the addition of the
1212        // current pair we've formed a list of all relevant pairs, now use a
1213        // graph walk to check for a cycle. We start from the current pair and
1214        // walk the use tree to see if we again reach the current pair. If we
1215        // do, then the current pair is rejected.
1216
1217        // FIXME: It may be more efficient to use a topological-ordering
1218        // algorithm to improve the cycle check. This should be investigated.
1219        if (UseCycleCheck &&
1220            pairWillFormCycle(C->first, PairableInstUserMap, CurrentPairs))
1221          continue;
1222
1223        // This child can be added, but we may have chosen it in preference
1224        // to an already-selected child. Check for this here, and if a
1225        // conflict is found, then remove the previously-selected child
1226        // before adding this one in its place.
1227        for (DenseMap<ValuePair, size_t>::iterator C2
1228              = BestChildren.begin(); C2 != BestChildren.end();) {
1229          if (C2->first.first == C->first.first ||
1230              C2->first.first == C->first.second ||
1231              C2->first.second == C->first.first ||
1232              C2->first.second == C->first.second ||
1233              pairsConflict(C2->first, C->first, PairableInstUsers))
1234            BestChildren.erase(C2++);
1235          else
1236            ++C2;
1237        }
1238
1239        BestChildren.insert(ValuePairWithDepth(C->first, C->second));
1240      }
1241
1242      for (DenseMap<ValuePair, size_t>::iterator C
1243            = BestChildren.begin(), E2 = BestChildren.end();
1244           C != E2; ++C) {
1245        size_t DepthF = getDepthFactor(C->first.first);
1246        Q.push_back(ValuePairWithDepth(C->first, QTop.second+DepthF));
1247      }
1248    } while (!Q.empty());
1249  }
1250
1251  // This function finds the best tree of mututally-compatible connected
1252  // pairs, given the choice of root pairs as an iterator range.
1253  void BBVectorize::findBestTreeFor(
1254                      std::multimap<Value *, Value *> &CandidatePairs,
1255                      std::vector<Value *> &PairableInsts,
1256                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1257                      DenseSet<ValuePair> &PairableInstUsers,
1258                      std::multimap<ValuePair, ValuePair> &PairableInstUserMap,
1259                      DenseMap<Value *, Value *> &ChosenPairs,
1260                      DenseSet<ValuePair> &BestTree, size_t &BestMaxDepth,
1261                      size_t &BestEffSize, VPIteratorPair ChoiceRange,
1262                      bool UseCycleCheck) {
1263    for (std::multimap<Value *, Value *>::iterator J = ChoiceRange.first;
1264         J != ChoiceRange.second; ++J) {
1265
1266      // Before going any further, make sure that this pair does not
1267      // conflict with any already-selected pairs (see comment below
1268      // near the Tree pruning for more details).
1269      DenseSet<ValuePair> ChosenPairSet;
1270      bool DoesConflict = false;
1271      for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
1272           E = ChosenPairs.end(); C != E; ++C) {
1273        if (pairsConflict(*C, *J, PairableInstUsers,
1274                          UseCycleCheck ? &PairableInstUserMap : 0)) {
1275          DoesConflict = true;
1276          break;
1277        }
1278
1279        ChosenPairSet.insert(*C);
1280      }
1281      if (DoesConflict) continue;
1282
1283      if (UseCycleCheck &&
1284          pairWillFormCycle(*J, PairableInstUserMap, ChosenPairSet))
1285        continue;
1286
1287      DenseMap<ValuePair, size_t> Tree;
1288      buildInitialTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1289                          PairableInstUsers, ChosenPairs, Tree, *J);
1290
1291      // Because we'll keep the child with the largest depth, the largest
1292      // depth is still the same in the unpruned Tree.
1293      size_t MaxDepth = Tree.lookup(*J);
1294
1295      DEBUG(if (DebugPairSelection) dbgs() << "BBV: found Tree for pair {"
1296                   << *J->first << " <-> " << *J->second << "} of depth " <<
1297                   MaxDepth << " and size " << Tree.size() << "\n");
1298
1299      // At this point the Tree has been constructed, but, may contain
1300      // contradictory children (meaning that different children of
1301      // some tree node may be attempting to fuse the same instruction).
1302      // So now we walk the tree again, in the case of a conflict,
1303      // keep only the child with the largest depth. To break a tie,
1304      // favor the first child.
1305
1306      DenseSet<ValuePair> PrunedTree;
1307      pruneTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1308                   PairableInstUsers, PairableInstUserMap, ChosenPairs, Tree,
1309                   PrunedTree, *J, UseCycleCheck);
1310
1311      size_t EffSize = 0;
1312      for (DenseSet<ValuePair>::iterator S = PrunedTree.begin(),
1313           E = PrunedTree.end(); S != E; ++S)
1314        EffSize += getDepthFactor(S->first);
1315
1316      DEBUG(if (DebugPairSelection)
1317             dbgs() << "BBV: found pruned Tree for pair {"
1318             << *J->first << " <-> " << *J->second << "} of depth " <<
1319             MaxDepth << " and size " << PrunedTree.size() <<
1320            " (effective size: " << EffSize << ")\n");
1321      if (MaxDepth >= Config.ReqChainDepth && EffSize > BestEffSize) {
1322        BestMaxDepth = MaxDepth;
1323        BestEffSize = EffSize;
1324        BestTree = PrunedTree;
1325      }
1326    }
1327  }
1328
1329  // Given the list of candidate pairs, this function selects those
1330  // that will be fused into vector instructions.
1331  void BBVectorize::choosePairs(
1332                      std::multimap<Value *, Value *> &CandidatePairs,
1333                      std::vector<Value *> &PairableInsts,
1334                      std::multimap<ValuePair, ValuePair> &ConnectedPairs,
1335                      DenseSet<ValuePair> &PairableInstUsers,
1336                      DenseMap<Value *, Value *>& ChosenPairs) {
1337    bool UseCycleCheck =
1338     CandidatePairs.size() <= Config.MaxCandPairsForCycleCheck;
1339    std::multimap<ValuePair, ValuePair> PairableInstUserMap;
1340    for (std::vector<Value *>::iterator I = PairableInsts.begin(),
1341         E = PairableInsts.end(); I != E; ++I) {
1342      // The number of possible pairings for this variable:
1343      size_t NumChoices = CandidatePairs.count(*I);
1344      if (!NumChoices) continue;
1345
1346      VPIteratorPair ChoiceRange = CandidatePairs.equal_range(*I);
1347
1348      // The best pair to choose and its tree:
1349      size_t BestMaxDepth = 0, BestEffSize = 0;
1350      DenseSet<ValuePair> BestTree;
1351      findBestTreeFor(CandidatePairs, PairableInsts, ConnectedPairs,
1352                      PairableInstUsers, PairableInstUserMap, ChosenPairs,
1353                      BestTree, BestMaxDepth, BestEffSize, ChoiceRange,
1354                      UseCycleCheck);
1355
1356      // A tree has been chosen (or not) at this point. If no tree was
1357      // chosen, then this instruction, I, cannot be paired (and is no longer
1358      // considered).
1359
1360      DEBUG(if (BestTree.size() > 0)
1361              dbgs() << "BBV: selected pairs in the best tree for: "
1362                     << *cast<Instruction>(*I) << "\n");
1363
1364      for (DenseSet<ValuePair>::iterator S = BestTree.begin(),
1365           SE2 = BestTree.end(); S != SE2; ++S) {
1366        // Insert the members of this tree into the list of chosen pairs.
1367        ChosenPairs.insert(ValuePair(S->first, S->second));
1368        DEBUG(dbgs() << "BBV: selected pair: " << *S->first << " <-> " <<
1369               *S->second << "\n");
1370
1371        // Remove all candidate pairs that have values in the chosen tree.
1372        for (std::multimap<Value *, Value *>::iterator K =
1373               CandidatePairs.begin(); K != CandidatePairs.end();) {
1374          if (K->first == S->first || K->second == S->first ||
1375              K->second == S->second || K->first == S->second) {
1376            // Don't remove the actual pair chosen so that it can be used
1377            // in subsequent tree selections.
1378            if (!(K->first == S->first && K->second == S->second))
1379              CandidatePairs.erase(K++);
1380            else
1381              ++K;
1382          } else {
1383            ++K;
1384          }
1385        }
1386      }
1387    }
1388
1389    DEBUG(dbgs() << "BBV: selected " << ChosenPairs.size() << " pairs.\n");
1390  }
1391
1392  std::string getReplacementName(Instruction *I, bool IsInput, unsigned o,
1393                     unsigned n = 0) {
1394    if (!I->hasName())
1395      return "";
1396
1397    return (I->getName() + (IsInput ? ".v.i" : ".v.r") + utostr(o) +
1398             (n > 0 ? "." + utostr(n) : "")).str();
1399  }
1400
1401  // Returns the value that is to be used as the pointer input to the vector
1402  // instruction that fuses I with J.
1403  Value *BBVectorize::getReplacementPointerInput(LLVMContext& Context,
1404                     Instruction *I, Instruction *J, unsigned o,
1405                     bool &FlipMemInputs) {
1406    Value *IPtr, *JPtr;
1407    unsigned IAlignment, JAlignment;
1408    int64_t OffsetInElmts;
1409    (void) getPairPtrInfo(I, J, IPtr, JPtr, IAlignment, JAlignment,
1410                          OffsetInElmts);
1411
1412    // The pointer value is taken to be the one with the lowest offset.
1413    Value *VPtr;
1414    if (OffsetInElmts > 0) {
1415      VPtr = IPtr;
1416    } else {
1417      FlipMemInputs = true;
1418      VPtr = JPtr;
1419    }
1420
1421    Type *ArgType = cast<PointerType>(IPtr->getType())->getElementType();
1422    Type *VArgType = getVecTypeForPair(ArgType);
1423    Type *VArgPtrType = PointerType::get(VArgType,
1424      cast<PointerType>(IPtr->getType())->getAddressSpace());
1425    return new BitCastInst(VPtr, VArgPtrType, getReplacementName(I, true, o),
1426                        /* insert before */ FlipMemInputs ? J : I);
1427  }
1428
1429  void BBVectorize::fillNewShuffleMask(LLVMContext& Context, Instruction *J,
1430                     unsigned NumElem, unsigned MaskOffset, unsigned NumInElem,
1431                     unsigned IdxOffset, std::vector<Constant*> &Mask) {
1432    for (unsigned v = 0; v < NumElem/2; ++v) {
1433      int m = cast<ShuffleVectorInst>(J)->getMaskValue(v);
1434      if (m < 0) {
1435        Mask[v+MaskOffset] = UndefValue::get(Type::getInt32Ty(Context));
1436      } else {
1437        unsigned mm = m + (int) IdxOffset;
1438        if (m >= (int) NumInElem)
1439          mm += (int) NumInElem;
1440
1441        Mask[v+MaskOffset] =
1442          ConstantInt::get(Type::getInt32Ty(Context), mm);
1443      }
1444    }
1445  }
1446
1447  // Returns the value that is to be used as the vector-shuffle mask to the
1448  // vector instruction that fuses I with J.
1449  Value *BBVectorize::getReplacementShuffleMask(LLVMContext& Context,
1450                     Instruction *I, Instruction *J) {
1451    // This is the shuffle mask. We need to append the second
1452    // mask to the first, and the numbers need to be adjusted.
1453
1454    Type *ArgType = I->getType();
1455    Type *VArgType = getVecTypeForPair(ArgType);
1456
1457    // Get the total number of elements in the fused vector type.
1458    // By definition, this must equal the number of elements in
1459    // the final mask.
1460    unsigned NumElem = cast<VectorType>(VArgType)->getNumElements();
1461    std::vector<Constant*> Mask(NumElem);
1462
1463    Type *OpType = I->getOperand(0)->getType();
1464    unsigned NumInElem = cast<VectorType>(OpType)->getNumElements();
1465
1466    // For the mask from the first pair...
1467    fillNewShuffleMask(Context, I, NumElem, 0, NumInElem, 0, Mask);
1468
1469    // For the mask from the second pair...
1470    fillNewShuffleMask(Context, J, NumElem, NumElem/2, NumInElem, NumInElem,
1471                       Mask);
1472
1473    return ConstantVector::get(Mask);
1474  }
1475
1476  // Returns the value to be used as the specified operand of the vector
1477  // instruction that fuses I with J.
1478  Value *BBVectorize::getReplacementInput(LLVMContext& Context, Instruction *I,
1479                     Instruction *J, unsigned o, bool FlipMemInputs) {
1480    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
1481    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
1482
1483      // Compute the fused vector type for this operand
1484    Type *ArgType = I->getOperand(o)->getType();
1485    VectorType *VArgType = getVecTypeForPair(ArgType);
1486
1487    Instruction *L = I, *H = J;
1488    if (FlipMemInputs) {
1489      L = J;
1490      H = I;
1491    }
1492
1493    if (ArgType->isVectorTy()) {
1494      unsigned numElem = cast<VectorType>(VArgType)->getNumElements();
1495      std::vector<Constant*> Mask(numElem);
1496      for (unsigned v = 0; v < numElem; ++v)
1497        Mask[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
1498
1499      Instruction *BV = new ShuffleVectorInst(L->getOperand(o),
1500                                              H->getOperand(o),
1501                                              ConstantVector::get(Mask),
1502                                              getReplacementName(I, true, o));
1503      BV->insertBefore(J);
1504      return BV;
1505    }
1506
1507    // If these two inputs are the output of another vector instruction,
1508    // then we should use that output directly. It might be necessary to
1509    // permute it first. [When pairings are fused recursively, you can
1510    // end up with cases where a large vector is decomposed into scalars
1511    // using extractelement instructions, then built into size-2
1512    // vectors using insertelement and the into larger vectors using
1513    // shuffles. InstCombine does not simplify all of these cases well,
1514    // and so we make sure that shuffles are generated here when possible.
1515    ExtractElementInst *LEE
1516      = dyn_cast<ExtractElementInst>(L->getOperand(o));
1517    ExtractElementInst *HEE
1518      = dyn_cast<ExtractElementInst>(H->getOperand(o));
1519
1520    if (LEE && HEE &&
1521        LEE->getOperand(0)->getType() == HEE->getOperand(0)->getType()) {
1522      VectorType *EEType = cast<VectorType>(LEE->getOperand(0)->getType());
1523      unsigned LowIndx = cast<ConstantInt>(LEE->getOperand(1))->getZExtValue();
1524      unsigned HighIndx = cast<ConstantInt>(HEE->getOperand(1))->getZExtValue();
1525      if (LEE->getOperand(0) == HEE->getOperand(0)) {
1526        if (LowIndx == 0 && HighIndx == 1)
1527          return LEE->getOperand(0);
1528
1529        std::vector<Constant*> Mask(2);
1530        Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx);
1531        Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx);
1532
1533        Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0),
1534                                          UndefValue::get(EEType),
1535                                          ConstantVector::get(Mask),
1536                                          getReplacementName(I, true, o));
1537        BV->insertBefore(J);
1538        return BV;
1539      }
1540
1541      std::vector<Constant*> Mask(2);
1542      HighIndx += EEType->getNumElements();
1543      Mask[0] = ConstantInt::get(Type::getInt32Ty(Context), LowIndx);
1544      Mask[1] = ConstantInt::get(Type::getInt32Ty(Context), HighIndx);
1545
1546      Instruction *BV = new ShuffleVectorInst(LEE->getOperand(0),
1547                                          HEE->getOperand(0),
1548                                          ConstantVector::get(Mask),
1549                                          getReplacementName(I, true, o));
1550      BV->insertBefore(J);
1551      return BV;
1552    }
1553
1554    Instruction *BV1 = InsertElementInst::Create(
1555                                          UndefValue::get(VArgType),
1556                                          L->getOperand(o), CV0,
1557                                          getReplacementName(I, true, o, 1));
1558    BV1->insertBefore(I);
1559    Instruction *BV2 = InsertElementInst::Create(BV1, H->getOperand(o),
1560                                          CV1,
1561                                          getReplacementName(I, true, o, 2));
1562    BV2->insertBefore(J);
1563    return BV2;
1564  }
1565
1566  // This function creates an array of values that will be used as the inputs
1567  // to the vector instruction that fuses I with J.
1568  void BBVectorize::getReplacementInputsForPair(LLVMContext& Context,
1569                     Instruction *I, Instruction *J,
1570                     SmallVector<Value *, 3> &ReplacedOperands,
1571                     bool &FlipMemInputs) {
1572    FlipMemInputs = false;
1573    unsigned NumOperands = I->getNumOperands();
1574
1575    for (unsigned p = 0, o = NumOperands-1; p < NumOperands; ++p, --o) {
1576      // Iterate backward so that we look at the store pointer
1577      // first and know whether or not we need to flip the inputs.
1578
1579      if (isa<LoadInst>(I) || (o == 1 && isa<StoreInst>(I))) {
1580        // This is the pointer for a load/store instruction.
1581        ReplacedOperands[o] = getReplacementPointerInput(Context, I, J, o,
1582                                FlipMemInputs);
1583        continue;
1584      } else if (isa<CallInst>(I)) {
1585        Function *F = cast<CallInst>(I)->getCalledFunction();
1586        unsigned IID = F->getIntrinsicID();
1587        if (o == NumOperands-1) {
1588          BasicBlock &BB = *I->getParent();
1589
1590          Module *M = BB.getParent()->getParent();
1591          Type *ArgType = I->getType();
1592          Type *VArgType = getVecTypeForPair(ArgType);
1593
1594          // FIXME: is it safe to do this here?
1595          ReplacedOperands[o] = Intrinsic::getDeclaration(M,
1596            (Intrinsic::ID) IID, VArgType);
1597          continue;
1598        } else if (IID == Intrinsic::powi && o == 1) {
1599          // The second argument of powi is a single integer and we've already
1600          // checked that both arguments are equal. As a result, we just keep
1601          // I's second argument.
1602          ReplacedOperands[o] = I->getOperand(o);
1603          continue;
1604        }
1605      } else if (isa<ShuffleVectorInst>(I) && o == NumOperands-1) {
1606        ReplacedOperands[o] = getReplacementShuffleMask(Context, I, J);
1607        continue;
1608      }
1609
1610      ReplacedOperands[o] =
1611        getReplacementInput(Context, I, J, o, FlipMemInputs);
1612    }
1613  }
1614
1615  // This function creates two values that represent the outputs of the
1616  // original I and J instructions. These are generally vector shuffles
1617  // or extracts. In many cases, these will end up being unused and, thus,
1618  // eliminated by later passes.
1619  void BBVectorize::replaceOutputsOfPair(LLVMContext& Context, Instruction *I,
1620                     Instruction *J, Instruction *K,
1621                     Instruction *&InsertionPt,
1622                     Instruction *&K1, Instruction *&K2,
1623                     bool &FlipMemInputs) {
1624    Value *CV0 = ConstantInt::get(Type::getInt32Ty(Context), 0);
1625    Value *CV1 = ConstantInt::get(Type::getInt32Ty(Context), 1);
1626
1627    if (isa<StoreInst>(I)) {
1628      AA->replaceWithNewValue(I, K);
1629      AA->replaceWithNewValue(J, K);
1630    } else {
1631      Type *IType = I->getType();
1632      Type *VType = getVecTypeForPair(IType);
1633
1634      if (IType->isVectorTy()) {
1635          unsigned numElem = cast<VectorType>(IType)->getNumElements();
1636          std::vector<Constant*> Mask1(numElem), Mask2(numElem);
1637          for (unsigned v = 0; v < numElem; ++v) {
1638            Mask1[v] = ConstantInt::get(Type::getInt32Ty(Context), v);
1639            Mask2[v] = ConstantInt::get(Type::getInt32Ty(Context), numElem+v);
1640          }
1641
1642          K1 = new ShuffleVectorInst(K, UndefValue::get(VType),
1643                                       ConstantVector::get(
1644                                         FlipMemInputs ? Mask2 : Mask1),
1645                                       getReplacementName(K, false, 1));
1646          K2 = new ShuffleVectorInst(K, UndefValue::get(VType),
1647                                       ConstantVector::get(
1648                                         FlipMemInputs ? Mask1 : Mask2),
1649                                       getReplacementName(K, false, 2));
1650      } else {
1651        K1 = ExtractElementInst::Create(K, FlipMemInputs ? CV1 : CV0,
1652                                          getReplacementName(K, false, 1));
1653        K2 = ExtractElementInst::Create(K, FlipMemInputs ? CV0 : CV1,
1654                                          getReplacementName(K, false, 2));
1655      }
1656
1657      K1->insertAfter(K);
1658      K2->insertAfter(K1);
1659      InsertionPt = K2;
1660    }
1661  }
1662
1663  // Move all uses of the function I (including pairing-induced uses) after J.
1664  bool BBVectorize::canMoveUsesOfIAfterJ(BasicBlock &BB,
1665                     std::multimap<Value *, Value *> &LoadMoveSet,
1666                     Instruction *I, Instruction *J) {
1667    // Skip to the first instruction past I.
1668    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
1669
1670    DenseSet<Value *> Users;
1671    AliasSetTracker WriteSet(*AA);
1672    for (; cast<Instruction>(L) != J; ++L)
1673      (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet);
1674
1675    assert(cast<Instruction>(L) == J &&
1676      "Tracking has not proceeded far enough to check for dependencies");
1677    // If J is now in the use set of I, then trackUsesOfI will return true
1678    // and we have a dependency cycle (and the fusing operation must abort).
1679    return !trackUsesOfI(Users, WriteSet, I, J, true, &LoadMoveSet);
1680  }
1681
1682  // Move all uses of the function I (including pairing-induced uses) after J.
1683  void BBVectorize::moveUsesOfIAfterJ(BasicBlock &BB,
1684                     std::multimap<Value *, Value *> &LoadMoveSet,
1685                     Instruction *&InsertionPt,
1686                     Instruction *I, Instruction *J) {
1687    // Skip to the first instruction past I.
1688    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
1689
1690    DenseSet<Value *> Users;
1691    AliasSetTracker WriteSet(*AA);
1692    for (; cast<Instruction>(L) != J;) {
1693      if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSet)) {
1694        // Move this instruction
1695        Instruction *InstToMove = L; ++L;
1696
1697        DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
1698                        " to after " << *InsertionPt << "\n");
1699        InstToMove->removeFromParent();
1700        InstToMove->insertAfter(InsertionPt);
1701        InsertionPt = InstToMove;
1702      } else {
1703        ++L;
1704      }
1705    }
1706  }
1707
1708  // Collect all load instruction that are in the move set of a given first
1709  // pair member.  These loads depend on the first instruction, I, and so need
1710  // to be moved after J (the second instruction) when the pair is fused.
1711  void BBVectorize::collectPairLoadMoveSet(BasicBlock &BB,
1712                     DenseMap<Value *, Value *> &ChosenPairs,
1713                     std::multimap<Value *, Value *> &LoadMoveSet,
1714                     Instruction *I) {
1715    // Skip to the first instruction past I.
1716    BasicBlock::iterator L = llvm::next(BasicBlock::iterator(I));
1717
1718    DenseSet<Value *> Users;
1719    AliasSetTracker WriteSet(*AA);
1720
1721    // Note: We cannot end the loop when we reach J because J could be moved
1722    // farther down the use chain by another instruction pairing. Also, J
1723    // could be before I if this is an inverted input.
1724    for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
1725      if (trackUsesOfI(Users, WriteSet, I, L)) {
1726        if (L->mayReadFromMemory())
1727          LoadMoveSet.insert(ValuePair(L, I));
1728      }
1729    }
1730  }
1731
1732  // In cases where both load/stores and the computation of their pointers
1733  // are chosen for vectorization, we can end up in a situation where the
1734  // aliasing analysis starts returning different query results as the
1735  // process of fusing instruction pairs continues. Because the algorithm
1736  // relies on finding the same use trees here as were found earlier, we'll
1737  // need to precompute the necessary aliasing information here and then
1738  // manually update it during the fusion process.
1739  void BBVectorize::collectLoadMoveSet(BasicBlock &BB,
1740                     std::vector<Value *> &PairableInsts,
1741                     DenseMap<Value *, Value *> &ChosenPairs,
1742                     std::multimap<Value *, Value *> &LoadMoveSet) {
1743    for (std::vector<Value *>::iterator PI = PairableInsts.begin(),
1744         PIE = PairableInsts.end(); PI != PIE; ++PI) {
1745      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(*PI);
1746      if (P == ChosenPairs.end()) continue;
1747
1748      Instruction *I = cast<Instruction>(P->first);
1749      collectPairLoadMoveSet(BB, ChosenPairs, LoadMoveSet, I);
1750    }
1751  }
1752
1753  // This function fuses the chosen instruction pairs into vector instructions,
1754  // taking care preserve any needed scalar outputs and, then, it reorders the
1755  // remaining instructions as needed (users of the first member of the pair
1756  // need to be moved to after the location of the second member of the pair
1757  // because the vector instruction is inserted in the location of the pair's
1758  // second member).
1759  void BBVectorize::fuseChosenPairs(BasicBlock &BB,
1760                     std::vector<Value *> &PairableInsts,
1761                     DenseMap<Value *, Value *> &ChosenPairs) {
1762    LLVMContext& Context = BB.getContext();
1763
1764    // During the vectorization process, the order of the pairs to be fused
1765    // could be flipped. So we'll add each pair, flipped, into the ChosenPairs
1766    // list. After a pair is fused, the flipped pair is removed from the list.
1767    std::vector<ValuePair> FlippedPairs;
1768    FlippedPairs.reserve(ChosenPairs.size());
1769    for (DenseMap<Value *, Value *>::iterator P = ChosenPairs.begin(),
1770         E = ChosenPairs.end(); P != E; ++P)
1771      FlippedPairs.push_back(ValuePair(P->second, P->first));
1772    for (std::vector<ValuePair>::iterator P = FlippedPairs.begin(),
1773         E = FlippedPairs.end(); P != E; ++P)
1774      ChosenPairs.insert(*P);
1775
1776    std::multimap<Value *, Value *> LoadMoveSet;
1777    collectLoadMoveSet(BB, PairableInsts, ChosenPairs, LoadMoveSet);
1778
1779    DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
1780
1781    for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
1782      DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
1783      if (P == ChosenPairs.end()) {
1784        ++PI;
1785        continue;
1786      }
1787
1788      if (getDepthFactor(P->first) == 0) {
1789        // These instructions are not really fused, but are tracked as though
1790        // they are. Any case in which it would be interesting to fuse them
1791        // will be taken care of by InstCombine.
1792        --NumFusedOps;
1793        ++PI;
1794        continue;
1795      }
1796
1797      Instruction *I = cast<Instruction>(P->first),
1798        *J = cast<Instruction>(P->second);
1799
1800      DEBUG(dbgs() << "BBV: fusing: " << *I <<
1801             " <-> " << *J << "\n");
1802
1803      // Remove the pair and flipped pair from the list.
1804      DenseMap<Value *, Value *>::iterator FP = ChosenPairs.find(P->second);
1805      assert(FP != ChosenPairs.end() && "Flipped pair not found in list");
1806      ChosenPairs.erase(FP);
1807      ChosenPairs.erase(P);
1808
1809      if (!canMoveUsesOfIAfterJ(BB, LoadMoveSet, I, J)) {
1810        DEBUG(dbgs() << "BBV: fusion of: " << *I <<
1811               " <-> " << *J <<
1812               " aborted because of non-trivial dependency cycle\n");
1813        --NumFusedOps;
1814        ++PI;
1815        continue;
1816      }
1817
1818      bool FlipMemInputs;
1819      unsigned NumOperands = I->getNumOperands();
1820      SmallVector<Value *, 3> ReplacedOperands(NumOperands);
1821      getReplacementInputsForPair(Context, I, J, ReplacedOperands,
1822        FlipMemInputs);
1823
1824      // Make a copy of the original operation, change its type to the vector
1825      // type and replace its operands with the vector operands.
1826      Instruction *K = I->clone();
1827      if (I->hasName()) K->takeName(I);
1828
1829      if (!isa<StoreInst>(K))
1830        K->mutateType(getVecTypeForPair(I->getType()));
1831
1832      for (unsigned o = 0; o < NumOperands; ++o)
1833        K->setOperand(o, ReplacedOperands[o]);
1834
1835      // If we've flipped the memory inputs, make sure that we take the correct
1836      // alignment.
1837      if (FlipMemInputs) {
1838        if (isa<StoreInst>(K))
1839          cast<StoreInst>(K)->setAlignment(cast<StoreInst>(J)->getAlignment());
1840        else
1841          cast<LoadInst>(K)->setAlignment(cast<LoadInst>(J)->getAlignment());
1842      }
1843
1844      K->insertAfter(J);
1845
1846      // Instruction insertion point:
1847      Instruction *InsertionPt = K;
1848      Instruction *K1 = 0, *K2 = 0;
1849      replaceOutputsOfPair(Context, I, J, K, InsertionPt, K1, K2,
1850        FlipMemInputs);
1851
1852      // The use tree of the first original instruction must be moved to after
1853      // the location of the second instruction. The entire use tree of the
1854      // first instruction is disjoint from the input tree of the second
1855      // (by definition), and so commutes with it.
1856
1857      moveUsesOfIAfterJ(BB, LoadMoveSet, InsertionPt, I, J);
1858
1859      if (!isa<StoreInst>(I)) {
1860        I->replaceAllUsesWith(K1);
1861        J->replaceAllUsesWith(K2);
1862        AA->replaceWithNewValue(I, K1);
1863        AA->replaceWithNewValue(J, K2);
1864      }
1865
1866      // Instructions that may read from memory may be in the load move set.
1867      // Once an instruction is fused, we no longer need its move set, and so
1868      // the values of the map never need to be updated. However, when a load
1869      // is fused, we need to merge the entries from both instructions in the
1870      // pair in case those instructions were in the move set of some other
1871      // yet-to-be-fused pair. The loads in question are the keys of the map.
1872      if (I->mayReadFromMemory()) {
1873        std::vector<ValuePair> NewSetMembers;
1874        VPIteratorPair IPairRange = LoadMoveSet.equal_range(I);
1875        VPIteratorPair JPairRange = LoadMoveSet.equal_range(J);
1876        for (std::multimap<Value *, Value *>::iterator N = IPairRange.first;
1877             N != IPairRange.second; ++N)
1878          NewSetMembers.push_back(ValuePair(K, N->second));
1879        for (std::multimap<Value *, Value *>::iterator N = JPairRange.first;
1880             N != JPairRange.second; ++N)
1881          NewSetMembers.push_back(ValuePair(K, N->second));
1882        for (std::vector<ValuePair>::iterator A = NewSetMembers.begin(),
1883             AE = NewSetMembers.end(); A != AE; ++A)
1884          LoadMoveSet.insert(*A);
1885      }
1886
1887      // Before removing I, set the iterator to the next instruction.
1888      PI = llvm::next(BasicBlock::iterator(I));
1889      if (cast<Instruction>(PI) == J)
1890        ++PI;
1891
1892      SE->forgetValue(I);
1893      SE->forgetValue(J);
1894      I->eraseFromParent();
1895      J->eraseFromParent();
1896    }
1897
1898    DEBUG(dbgs() << "BBV: final: \n" << BB << "\n");
1899  }
1900}
1901
1902char BBVectorize::ID = 0;
1903static const char bb_vectorize_name[] = "Basic-Block Vectorization";
1904INITIALIZE_PASS_BEGIN(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
1905INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
1906INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
1907INITIALIZE_PASS_END(BBVectorize, BBV_NAME, bb_vectorize_name, false, false)
1908
1909BasicBlockPass *llvm::createBBVectorizePass(const VectorizeConfig &C) {
1910  return new BBVectorize(C);
1911}
1912
1913bool
1914llvm::vectorizeBasicBlock(Pass *P, BasicBlock &BB, const VectorizeConfig &C) {
1915  BBVectorize BBVectorizer(P, C);
1916  return BBVectorizer.vectorizeBB(BB);
1917}
1918
1919//===----------------------------------------------------------------------===//
1920VectorizeConfig::VectorizeConfig() {
1921  VectorBits = ::VectorBits;
1922  VectorizeInts = !::NoInts;
1923  VectorizeFloats = !::NoFloats;
1924  VectorizePointers = !::NoPointers;
1925  VectorizeCasts = !::NoCasts;
1926  VectorizeMath = !::NoMath;
1927  VectorizeFMA = !::NoFMA;
1928  VectorizeSelect = !::NoSelect;
1929  VectorizeGEP = !::NoGEP;
1930  VectorizeMemOps = !::NoMemOps;
1931  AlignedOnly = ::AlignedOnly;
1932  ReqChainDepth= ::ReqChainDepth;
1933  SearchLimit = ::SearchLimit;
1934  MaxCandPairsForCycleCheck = ::MaxCandPairsForCycleCheck;
1935  SplatBreaksChain = ::SplatBreaksChain;
1936  MaxInsts = ::MaxInsts;
1937  MaxIter = ::MaxIter;
1938  NoMemOpBoost = ::NoMemOpBoost;
1939  FastDep = ::FastDep;
1940}
1941