LoopVectorize.cpp revision 07a3c481c656c9cc1e0ace3d599eef1fa81e3cc6
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11// and generates target-independent LLVM-IR.
12// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13// of instructions in order to estimate the profitability of vectorization.
14//
15// The loop vectorizer combines consecutive loop iterations into a single
16// 'wide' iteration. After this transformation the index is incremented
17// by the SIMD vector width, and not by one.
18//
19// This pass has three parts:
20// 1. The main loop pass that drives the different parts.
21// 2. LoopVectorizationLegality - A unit that checks for the legality
22//    of the vectorization.
23// 3. InnerLoopVectorizer - A unit that performs the actual
24//    widening of instructions.
25// 4. LoopVectorizationCostModel - A unit that checks for the profitability
26//    of vectorization. It decides on the optimal vector width, which
27//    can be one, if vectorization is not profitable.
28//
29//===----------------------------------------------------------------------===//
30//
31// The reduction-variable vectorization is based on the paper:
32//  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33//
34// Variable uniformity checks are inspired by:
35//  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36//
37// Other ideas/concepts are from:
38//  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39//
40//  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
41//  Vectorizing Compilers.
42//
43//===----------------------------------------------------------------------===//
44
45#define LV_NAME "loop-vectorize"
46#define DEBUG_TYPE LV_NAME
47
48#include "llvm/Transforms/Vectorize.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/EquivalenceClasses.h"
51#include "llvm/ADT/Hashing.h"
52#include "llvm/ADT/MapVector.h"
53#include "llvm/ADT/SetVector.h"
54#include "llvm/ADT/SmallPtrSet.h"
55#include "llvm/ADT/SmallSet.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/StringExtras.h"
58#include "llvm/Analysis/AliasAnalysis.h"
59#include "llvm/Analysis/Dominators.h"
60#include "llvm/Analysis/LoopInfo.h"
61#include "llvm/Analysis/LoopIterator.h"
62#include "llvm/Analysis/LoopPass.h"
63#include "llvm/Analysis/ScalarEvolution.h"
64#include "llvm/Analysis/ScalarEvolutionExpander.h"
65#include "llvm/Analysis/ScalarEvolutionExpressions.h"
66#include "llvm/Analysis/TargetTransformInfo.h"
67#include "llvm/Analysis/ValueTracking.h"
68#include "llvm/Analysis/Verifier.h"
69#include "llvm/IR/Constants.h"
70#include "llvm/IR/DataLayout.h"
71#include "llvm/IR/DerivedTypes.h"
72#include "llvm/IR/Function.h"
73#include "llvm/IR/IRBuilder.h"
74#include "llvm/IR/Instructions.h"
75#include "llvm/IR/IntrinsicInst.h"
76#include "llvm/IR/LLVMContext.h"
77#include "llvm/IR/Module.h"
78#include "llvm/IR/Type.h"
79#include "llvm/IR/Value.h"
80#include "llvm/Pass.h"
81#include "llvm/Support/CommandLine.h"
82#include "llvm/Support/Debug.h"
83#include "llvm/Support/PatternMatch.h"
84#include "llvm/Support/raw_ostream.h"
85#include "llvm/Support/ValueHandle.h"
86#include "llvm/Target/TargetLibraryInfo.h"
87#include "llvm/Transforms/Scalar.h"
88#include "llvm/Transforms/Utils/BasicBlockUtils.h"
89#include "llvm/Transforms/Utils/Local.h"
90#include <algorithm>
91#include <map>
92
93using namespace llvm;
94using namespace llvm::PatternMatch;
95
96static cl::opt<unsigned>
97VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
98                    cl::desc("Sets the SIMD width. Zero is autoselect."));
99
100static cl::opt<unsigned>
101VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
102                    cl::desc("Sets the vectorization unroll count. "
103                             "Zero is autoselect."));
104
105static cl::opt<bool>
106EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
107                   cl::desc("Enable if-conversion during vectorization."));
108
109/// We don't vectorize loops with a known constant trip count below this number.
110static cl::opt<unsigned>
111TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
112                             cl::Hidden,
113                             cl::desc("Don't vectorize loops with a constant "
114                                      "trip count that is smaller than this "
115                                      "value."));
116
117/// We don't unroll loops with a known constant trip count below this number.
118static const unsigned TinyTripCountUnrollThreshold = 128;
119
120/// When performing memory disambiguation checks at runtime do not make more
121/// than this number of comparisons.
122static const unsigned RuntimeMemoryCheckThreshold = 8;
123
124/// Maximum simd width.
125static const unsigned MaxVectorWidth = 64;
126
127/// Maximum vectorization unroll count.
128static const unsigned MaxUnrollFactor = 16;
129
130/// The cost of a loop that is considered 'small' by the unroller.
131static const unsigned SmallLoopCost = 20;
132
133namespace {
134
135// Forward declarations.
136class LoopVectorizationLegality;
137class LoopVectorizationCostModel;
138
139/// InnerLoopVectorizer vectorizes loops which contain only one basic
140/// block to a specified vectorization factor (VF).
141/// This class performs the widening of scalars into vectors, or multiple
142/// scalars. This class also implements the following features:
143/// * It inserts an epilogue loop for handling loops that don't have iteration
144///   counts that are known to be a multiple of the vectorization factor.
145/// * It handles the code generation for reduction variables.
146/// * Scalarization (implementation using scalars) of un-vectorizable
147///   instructions.
148/// InnerLoopVectorizer does not perform any vectorization-legality
149/// checks, and relies on the caller to check for the different legality
150/// aspects. The InnerLoopVectorizer relies on the
151/// LoopVectorizationLegality class to provide information about the induction
152/// and reduction variables that were found to a given vectorization factor.
153class InnerLoopVectorizer {
154public:
155  InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
156                      DominatorTree *DT, DataLayout *DL,
157                      const TargetLibraryInfo *TLI, unsigned VecWidth,
158                      unsigned UnrollFactor)
159      : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
160        VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
161        OldInduction(0), WidenMap(UnrollFactor) {}
162
163  // Perform the actual loop widening (vectorization).
164  void vectorize(LoopVectorizationLegality *Legal) {
165    // Create a new empty loop. Unlink the old loop and connect the new one.
166    createEmptyLoop(Legal);
167    // Widen each instruction in the old loop to a new one in the new loop.
168    // Use the Legality module to find the induction and reduction variables.
169    vectorizeLoop(Legal);
170    // Register the new loop and update the analysis passes.
171    updateAnalysis();
172  }
173
174  virtual ~InnerLoopVectorizer() {}
175
176protected:
177  /// A small list of PHINodes.
178  typedef SmallVector<PHINode*, 4> PhiVector;
179  /// When we unroll loops we have multiple vector values for each scalar.
180  /// This data structure holds the unrolled and vectorized values that
181  /// originated from one scalar instruction.
182  typedef SmallVector<Value*, 2> VectorParts;
183
184  // When we if-convert we need create edge masks. We have to cache values so
185  // that we don't end up with exponential recursion/IR.
186  typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
187                   VectorParts> EdgeMaskCache;
188
189  /// Add code that checks at runtime if the accessed arrays overlap.
190  /// Returns the comparator value or NULL if no check is needed.
191  Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
192                               Instruction *Loc);
193  /// Create an empty loop, based on the loop ranges of the old loop.
194  void createEmptyLoop(LoopVectorizationLegality *Legal);
195  /// Copy and widen the instructions from the old loop.
196  virtual void vectorizeLoop(LoopVectorizationLegality *Legal);
197
198  /// \brief The Loop exit block may have single value PHI nodes where the
199  /// incoming value is 'Undef'. While vectorizing we only handled real values
200  /// that were defined inside the loop. Here we fix the 'undef case'.
201  /// See PR14725.
202  void fixLCSSAPHIs();
203
204  /// A helper function that computes the predicate of the block BB, assuming
205  /// that the header block of the loop is set to True. It returns the *entry*
206  /// mask for the block BB.
207  VectorParts createBlockInMask(BasicBlock *BB);
208  /// A helper function that computes the predicate of the edge between SRC
209  /// and DST.
210  VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
211
212  /// A helper function to vectorize a single BB within the innermost loop.
213  void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
214                            PhiVector *PV);
215
216  /// Vectorize a single PHINode in a block. This method handles the induction
217  /// variable canonicalization. It supports both VF = 1 for unrolled loops and
218  /// arbitrary length vectors.
219  void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
220                           LoopVectorizationLegality *Legal,
221                           unsigned UF, unsigned VF, PhiVector *PV);
222
223  /// Insert the new loop to the loop hierarchy and pass manager
224  /// and update the analysis passes.
225  void updateAnalysis();
226
227  /// This instruction is un-vectorizable. Implement it as a sequence
228  /// of scalars.
229  virtual void scalarizeInstruction(Instruction *Instr);
230
231  /// Vectorize Load and Store instructions,
232  virtual void vectorizeMemoryInstruction(Instruction *Instr,
233                                  LoopVectorizationLegality *Legal);
234
235  /// Create a broadcast instruction. This method generates a broadcast
236  /// instruction (shuffle) for loop invariant values and for the induction
237  /// value. If this is the induction variable then we extend it to N, N+1, ...
238  /// this is needed because each iteration in the loop corresponds to a SIMD
239  /// element.
240  virtual Value *getBroadcastInstrs(Value *V);
241
242  /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
243  /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
244  /// The sequence starts at StartIndex.
245  virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
246
247  /// When we go over instructions in the basic block we rely on previous
248  /// values within the current basic block or on loop invariant values.
249  /// When we widen (vectorize) values we place them in the map. If the values
250  /// are not within the map, they have to be loop invariant, so we simply
251  /// broadcast them into a vector.
252  VectorParts &getVectorValue(Value *V);
253
254  /// Generate a shuffle sequence that will reverse the vector Vec.
255  virtual Value *reverseVector(Value *Vec);
256
257  /// This is a helper class that holds the vectorizer state. It maps scalar
258  /// instructions to vector instructions. When the code is 'unrolled' then
259  /// then a single scalar value is mapped to multiple vector parts. The parts
260  /// are stored in the VectorPart type.
261  struct ValueMap {
262    /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
263    /// are mapped.
264    ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
265
266    /// \return True if 'Key' is saved in the Value Map.
267    bool has(Value *Key) const { return MapStorage.count(Key); }
268
269    /// Initializes a new entry in the map. Sets all of the vector parts to the
270    /// save value in 'Val'.
271    /// \return A reference to a vector with splat values.
272    VectorParts &splat(Value *Key, Value *Val) {
273      VectorParts &Entry = MapStorage[Key];
274      Entry.assign(UF, Val);
275      return Entry;
276    }
277
278    ///\return A reference to the value that is stored at 'Key'.
279    VectorParts &get(Value *Key) {
280      VectorParts &Entry = MapStorage[Key];
281      if (Entry.empty())
282        Entry.resize(UF);
283      assert(Entry.size() == UF);
284      return Entry;
285    }
286
287  private:
288    /// The unroll factor. Each entry in the map stores this number of vector
289    /// elements.
290    unsigned UF;
291
292    /// Map storage. We use std::map and not DenseMap because insertions to a
293    /// dense map invalidates its iterators.
294    std::map<Value *, VectorParts> MapStorage;
295  };
296
297  /// The original loop.
298  Loop *OrigLoop;
299  /// Scev analysis to use.
300  ScalarEvolution *SE;
301  /// Loop Info.
302  LoopInfo *LI;
303  /// Dominator Tree.
304  DominatorTree *DT;
305  /// Data Layout.
306  DataLayout *DL;
307  /// Target Library Info.
308  const TargetLibraryInfo *TLI;
309
310  /// The vectorization SIMD factor to use. Each vector will have this many
311  /// vector elements.
312  unsigned VF;
313
314protected:
315  /// The vectorization unroll factor to use. Each scalar is vectorized to this
316  /// many different vector instructions.
317  unsigned UF;
318
319  /// The builder that we use
320  IRBuilder<> Builder;
321
322  // --- Vectorization state ---
323
324  /// The vector-loop preheader.
325  BasicBlock *LoopVectorPreHeader;
326  /// The scalar-loop preheader.
327  BasicBlock *LoopScalarPreHeader;
328  /// Middle Block between the vector and the scalar.
329  BasicBlock *LoopMiddleBlock;
330  ///The ExitBlock of the scalar loop.
331  BasicBlock *LoopExitBlock;
332  ///The vector loop body.
333  BasicBlock *LoopVectorBody;
334  ///The scalar loop body.
335  BasicBlock *LoopScalarBody;
336  /// A list of all bypass blocks. The first block is the entry of the loop.
337  SmallVector<BasicBlock *, 4> LoopBypassBlocks;
338
339  /// The new Induction variable which was added to the new block.
340  PHINode *Induction;
341  /// The induction variable of the old basic block.
342  PHINode *OldInduction;
343  /// Holds the extended (to the widest induction type) start index.
344  Value *ExtendedIdx;
345  /// Maps scalars to widened vectors.
346  ValueMap WidenMap;
347  EdgeMaskCache MaskCache;
348};
349
350class InnerLoopUnroller : public InnerLoopVectorizer {
351public:
352  InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
353                    DominatorTree *DT, DataLayout *DL,
354                    const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
355    InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
356
357private:
358  virtual void scalarizeInstruction(Instruction *Instr);
359  virtual void vectorizeMemoryInstruction(Instruction *Instr,
360                                          LoopVectorizationLegality *Legal);
361  virtual Value *getBroadcastInstrs(Value *V);
362  virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
363  virtual Value *reverseVector(Value *Vec);
364};
365
366/// \brief Look for a meaningful debug location on the instruction or it's
367/// operands.
368static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
369  if (!I)
370    return I;
371
372  DebugLoc Empty;
373  if (I->getDebugLoc() != Empty)
374    return I;
375
376  for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
377    if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
378      if (OpInst->getDebugLoc() != Empty)
379        return OpInst;
380  }
381
382  return I;
383}
384
385/// \brief Set the debug location in the builder using the debug location in the
386/// instruction.
387static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
388  if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
389    B.SetCurrentDebugLocation(Inst->getDebugLoc());
390  else
391    B.SetCurrentDebugLocation(DebugLoc());
392}
393
394/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
395/// to what vectorization factor.
396/// This class does not look at the profitability of vectorization, only the
397/// legality. This class has two main kinds of checks:
398/// * Memory checks - The code in canVectorizeMemory checks if vectorization
399///   will change the order of memory accesses in a way that will change the
400///   correctness of the program.
401/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
402/// checks for a number of different conditions, such as the availability of a
403/// single induction variable, that all types are supported and vectorize-able,
404/// etc. This code reflects the capabilities of InnerLoopVectorizer.
405/// This class is also used by InnerLoopVectorizer for identifying
406/// induction variable and the different reduction variables.
407class LoopVectorizationLegality {
408public:
409  LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
410                            DominatorTree *DT, TargetLibraryInfo *TLI)
411      : TheLoop(L), SE(SE), DL(DL), DT(DT), TLI(TLI),
412        Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false),
413        MaxSafeDepDistBytes(-1U) {}
414
415  /// This enum represents the kinds of reductions that we support.
416  enum ReductionKind {
417    RK_NoReduction, ///< Not a reduction.
418    RK_IntegerAdd,  ///< Sum of integers.
419    RK_IntegerMult, ///< Product of integers.
420    RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
421    RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
422    RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
423    RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
424    RK_FloatAdd,    ///< Sum of floats.
425    RK_FloatMult,   ///< Product of floats.
426    RK_FloatMinMax  ///< Min/max implemented in terms of select(cmp()).
427  };
428
429  /// This enum represents the kinds of inductions that we support.
430  enum InductionKind {
431    IK_NoInduction,         ///< Not an induction variable.
432    IK_IntInduction,        ///< Integer induction variable. Step = 1.
433    IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
434    IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
435    IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
436  };
437
438  // This enum represents the kind of minmax reduction.
439  enum MinMaxReductionKind {
440    MRK_Invalid,
441    MRK_UIntMin,
442    MRK_UIntMax,
443    MRK_SIntMin,
444    MRK_SIntMax,
445    MRK_FloatMin,
446    MRK_FloatMax
447  };
448
449  /// This struct holds information about reduction variables.
450  struct ReductionDescriptor {
451    ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
452      Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
453
454    ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
455                        MinMaxReductionKind MK)
456        : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
457
458    // The starting value of the reduction.
459    // It does not have to be zero!
460    TrackingVH<Value> StartValue;
461    // The instruction who's value is used outside the loop.
462    Instruction *LoopExitInstr;
463    // The kind of the reduction.
464    ReductionKind Kind;
465    // If this a min/max reduction the kind of reduction.
466    MinMaxReductionKind MinMaxKind;
467  };
468
469  /// This POD struct holds information about a potential reduction operation.
470  struct ReductionInstDesc {
471    ReductionInstDesc(bool IsRedux, Instruction *I) :
472      IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
473
474    ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
475      IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
476
477    // Is this instruction a reduction candidate.
478    bool IsReduction;
479    // The last instruction in a min/max pattern (select of the select(icmp())
480    // pattern), or the current reduction instruction otherwise.
481    Instruction *PatternLastInst;
482    // If this is a min/max pattern the comparison predicate.
483    MinMaxReductionKind MinMaxKind;
484  };
485
486  /// This struct holds information about the memory runtime legality
487  /// check that a group of pointers do not overlap.
488  struct RuntimePointerCheck {
489    RuntimePointerCheck() : Need(false) {}
490
491    /// Reset the state of the pointer runtime information.
492    void reset() {
493      Need = false;
494      Pointers.clear();
495      Starts.clear();
496      Ends.clear();
497      IsWritePtr.clear();
498      DependencySetId.clear();
499    }
500
501    /// Insert a pointer and calculate the start and end SCEVs.
502    void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
503                unsigned DepSetId);
504
505    /// This flag indicates if we need to add the runtime check.
506    bool Need;
507    /// Holds the pointers that we need to check.
508    SmallVector<TrackingVH<Value>, 2> Pointers;
509    /// Holds the pointer value at the beginning of the loop.
510    SmallVector<const SCEV*, 2> Starts;
511    /// Holds the pointer value at the end of the loop.
512    SmallVector<const SCEV*, 2> Ends;
513    /// Holds the information if this pointer is used for writing to memory.
514    SmallVector<bool, 2> IsWritePtr;
515    /// Holds the id of the set of pointers that could be dependent because of a
516    /// shared underlying object.
517    SmallVector<unsigned, 2> DependencySetId;
518  };
519
520  /// A struct for saving information about induction variables.
521  struct InductionInfo {
522    InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
523    InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
524    /// Start value.
525    TrackingVH<Value> StartValue;
526    /// Induction kind.
527    InductionKind IK;
528  };
529
530  /// ReductionList contains the reduction descriptors for all
531  /// of the reductions that were found in the loop.
532  typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
533
534  /// InductionList saves induction variables and maps them to the
535  /// induction descriptor.
536  typedef MapVector<PHINode*, InductionInfo> InductionList;
537
538  /// Returns true if it is legal to vectorize this loop.
539  /// This does not mean that it is profitable to vectorize this
540  /// loop, only that it is legal to do so.
541  bool canVectorize();
542
543  /// Returns the Induction variable.
544  PHINode *getInduction() { return Induction; }
545
546  /// Returns the reduction variables found in the loop.
547  ReductionList *getReductionVars() { return &Reductions; }
548
549  /// Returns the induction variables found in the loop.
550  InductionList *getInductionVars() { return &Inductions; }
551
552  /// Returns the widest induction type.
553  Type *getWidestInductionType() { return WidestIndTy; }
554
555  /// Returns True if V is an induction variable in this loop.
556  bool isInductionVariable(const Value *V);
557
558  /// Return true if the block BB needs to be predicated in order for the loop
559  /// to be vectorized.
560  bool blockNeedsPredication(BasicBlock *BB);
561
562  /// Check if this  pointer is consecutive when vectorizing. This happens
563  /// when the last index of the GEP is the induction variable, or that the
564  /// pointer itself is an induction variable.
565  /// This check allows us to vectorize A[idx] into a wide load/store.
566  /// Returns:
567  /// 0 - Stride is unknown or non consecutive.
568  /// 1 - Address is consecutive.
569  /// -1 - Address is consecutive, and decreasing.
570  int isConsecutivePtr(Value *Ptr);
571
572  /// Returns true if the value V is uniform within the loop.
573  bool isUniform(Value *V);
574
575  /// Returns true if this instruction will remain scalar after vectorization.
576  bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
577
578  /// Returns the information that we collected about runtime memory check.
579  RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
580
581  /// This function returns the identity element (or neutral element) for
582  /// the operation K.
583  static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
584
585  unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
586
587private:
588  /// Check if a single basic block loop is vectorizable.
589  /// At this point we know that this is a loop with a constant trip count
590  /// and we only need to check individual instructions.
591  bool canVectorizeInstrs();
592
593  /// When we vectorize loops we may change the order in which
594  /// we read and write from memory. This method checks if it is
595  /// legal to vectorize the code, considering only memory constrains.
596  /// Returns true if the loop is vectorizable
597  bool canVectorizeMemory();
598
599  /// Return true if we can vectorize this loop using the IF-conversion
600  /// transformation.
601  bool canVectorizeWithIfConvert();
602
603  /// Collect the variables that need to stay uniform after vectorization.
604  void collectLoopUniforms();
605
606  /// Return true if all of the instructions in the block can be speculatively
607  /// executed. \p SafePtrs is a list of addresses that are known to be legal
608  /// and we know that we can read from them without segfault.
609  bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs);
610
611  /// Returns True, if 'Phi' is the kind of reduction variable for type
612  /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
613  bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
614  /// Returns a struct describing if the instruction 'I' can be a reduction
615  /// variable of type 'Kind'. If the reduction is a min/max pattern of
616  /// select(icmp()) this function advances the instruction pointer 'I' from the
617  /// compare instruction to the select instruction and stores this pointer in
618  /// 'PatternLastInst' member of the returned struct.
619  ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
620                                     ReductionInstDesc &Desc);
621  /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
622  /// pattern corresponding to a min(X, Y) or max(X, Y).
623  static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
624                                                    ReductionInstDesc &Prev);
625  /// Returns the induction kind of Phi. This function may return NoInduction
626  /// if the PHI is not an induction variable.
627  InductionKind isInductionVariable(PHINode *Phi);
628
629  /// The loop that we evaluate.
630  Loop *TheLoop;
631  /// Scev analysis.
632  ScalarEvolution *SE;
633  /// DataLayout analysis.
634  DataLayout *DL;
635  /// Dominators.
636  DominatorTree *DT;
637  /// Target Library Info.
638  TargetLibraryInfo *TLI;
639
640  //  ---  vectorization state --- //
641
642  /// Holds the integer induction variable. This is the counter of the
643  /// loop.
644  PHINode *Induction;
645  /// Holds the reduction variables.
646  ReductionList Reductions;
647  /// Holds all of the induction variables that we found in the loop.
648  /// Notice that inductions don't need to start at zero and that induction
649  /// variables can be pointers.
650  InductionList Inductions;
651  /// Holds the widest induction type encountered.
652  Type *WidestIndTy;
653
654  /// Allowed outside users. This holds the reduction
655  /// vars which can be accessed from outside the loop.
656  SmallPtrSet<Value*, 4> AllowedExit;
657  /// This set holds the variables which are known to be uniform after
658  /// vectorization.
659  SmallPtrSet<Instruction*, 4> Uniforms;
660  /// We need to check that all of the pointers in this list are disjoint
661  /// at runtime.
662  RuntimePointerCheck PtrRtCheck;
663  /// Can we assume the absence of NaNs.
664  bool HasFunNoNaNAttr;
665
666  unsigned MaxSafeDepDistBytes;
667};
668
669/// LoopVectorizationCostModel - estimates the expected speedups due to
670/// vectorization.
671/// In many cases vectorization is not profitable. This can happen because of
672/// a number of reasons. In this class we mainly attempt to predict the
673/// expected speedup/slowdowns due to the supported instruction set. We use the
674/// TargetTransformInfo to query the different backends for the cost of
675/// different operations.
676class LoopVectorizationCostModel {
677public:
678  LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
679                             LoopVectorizationLegality *Legal,
680                             const TargetTransformInfo &TTI,
681                             DataLayout *DL, const TargetLibraryInfo *TLI)
682      : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
683
684  /// Information about vectorization costs
685  struct VectorizationFactor {
686    unsigned Width; // Vector width with best cost
687    unsigned Cost; // Cost of the loop with that width
688  };
689  /// \return The most profitable vectorization factor and the cost of that VF.
690  /// This method checks every power of two up to VF. If UserVF is not ZERO
691  /// then this vectorization factor will be selected if vectorization is
692  /// possible.
693  VectorizationFactor selectVectorizationFactor(bool OptForSize,
694                                                unsigned UserVF);
695
696  /// \return The size (in bits) of the widest type in the code that
697  /// needs to be vectorized. We ignore values that remain scalar such as
698  /// 64 bit loop indices.
699  unsigned getWidestType();
700
701  /// \return The most profitable unroll factor.
702  /// If UserUF is non-zero then this method finds the best unroll-factor
703  /// based on register pressure and other parameters.
704  /// VF and LoopCost are the selected vectorization factor and the cost of the
705  /// selected VF.
706  unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
707                              unsigned LoopCost);
708
709  /// \brief A struct that represents some properties of the register usage
710  /// of a loop.
711  struct RegisterUsage {
712    /// Holds the number of loop invariant values that are used in the loop.
713    unsigned LoopInvariantRegs;
714    /// Holds the maximum number of concurrent live intervals in the loop.
715    unsigned MaxLocalUsers;
716    /// Holds the number of instructions in the loop.
717    unsigned NumInstructions;
718  };
719
720  /// \return  information about the register usage of the loop.
721  RegisterUsage calculateRegisterUsage();
722
723private:
724  /// Returns the expected execution cost. The unit of the cost does
725  /// not matter because we use the 'cost' units to compare different
726  /// vector widths. The cost that is returned is *not* normalized by
727  /// the factor width.
728  unsigned expectedCost(unsigned VF);
729
730  /// Returns the execution time cost of an instruction for a given vector
731  /// width. Vector width of one means scalar.
732  unsigned getInstructionCost(Instruction *I, unsigned VF);
733
734  /// A helper function for converting Scalar types to vector types.
735  /// If the incoming type is void, we return void. If the VF is 1, we return
736  /// the scalar type.
737  static Type* ToVectorTy(Type *Scalar, unsigned VF);
738
739  /// Returns whether the instruction is a load or store and will be a emitted
740  /// as a vector operation.
741  bool isConsecutiveLoadOrStore(Instruction *I);
742
743  /// The loop that we evaluate.
744  Loop *TheLoop;
745  /// Scev analysis.
746  ScalarEvolution *SE;
747  /// Loop Info analysis.
748  LoopInfo *LI;
749  /// Vectorization legality.
750  LoopVectorizationLegality *Legal;
751  /// Vector target information.
752  const TargetTransformInfo &TTI;
753  /// Target data layout information.
754  DataLayout *DL;
755  /// Target Library Info.
756  const TargetLibraryInfo *TLI;
757};
758
759/// Utility class for getting and setting loop vectorizer hints in the form
760/// of loop metadata.
761struct LoopVectorizeHints {
762  /// Vectorization width.
763  unsigned Width;
764  /// Vectorization unroll factor.
765  unsigned Unroll;
766
767  LoopVectorizeHints(const Loop *L, bool DisableUnrolling)
768  : Width(VectorizationFactor)
769  , Unroll(DisableUnrolling ? 1 : VectorizationUnroll)
770  , LoopID(L->getLoopID()) {
771    getHints(L);
772    // The command line options override any loop metadata except for when
773    // width == 1 which is used to indicate the loop is already vectorized.
774    if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1)
775      Width = VectorizationFactor;
776    if (VectorizationUnroll.getNumOccurrences() > 0)
777      Unroll = VectorizationUnroll;
778
779    DEBUG(if (DisableUnrolling && Unroll == 1)
780            dbgs() << "LV: Unrolling disabled by the pass manager\n");
781  }
782
783  /// Return the loop vectorizer metadata prefix.
784  static StringRef Prefix() { return "llvm.vectorizer."; }
785
786  MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) {
787    SmallVector<Value*, 2> Vals;
788    Vals.push_back(MDString::get(Context, Name));
789    Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
790    return MDNode::get(Context, Vals);
791  }
792
793  /// Mark the loop L as already vectorized by setting the width to 1.
794  void setAlreadyVectorized(Loop *L) {
795    LLVMContext &Context = L->getHeader()->getContext();
796
797    Width = 1;
798
799    // Create a new loop id with one more operand for the already_vectorized
800    // hint. If the loop already has a loop id then copy the existing operands.
801    SmallVector<Value*, 4> Vals(1);
802    if (LoopID)
803      for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
804        Vals.push_back(LoopID->getOperand(i));
805
806    Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width));
807    Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1));
808
809    MDNode *NewLoopID = MDNode::get(Context, Vals);
810    // Set operand 0 to refer to the loop id itself.
811    NewLoopID->replaceOperandWith(0, NewLoopID);
812
813    L->setLoopID(NewLoopID);
814    if (LoopID)
815      LoopID->replaceAllUsesWith(NewLoopID);
816
817    LoopID = NewLoopID;
818  }
819
820private:
821  MDNode *LoopID;
822
823  /// Find hints specified in the loop metadata.
824  void getHints(const Loop *L) {
825    if (!LoopID)
826      return;
827
828    // First operand should refer to the loop id itself.
829    assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
830    assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
831
832    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
833      const MDString *S = 0;
834      SmallVector<Value*, 4> Args;
835
836      // The expected hint is either a MDString or a MDNode with the first
837      // operand a MDString.
838      if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
839        if (!MD || MD->getNumOperands() == 0)
840          continue;
841        S = dyn_cast<MDString>(MD->getOperand(0));
842        for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
843          Args.push_back(MD->getOperand(i));
844      } else {
845        S = dyn_cast<MDString>(LoopID->getOperand(i));
846        assert(Args.size() == 0 && "too many arguments for MDString");
847      }
848
849      if (!S)
850        continue;
851
852      // Check if the hint starts with the vectorizer prefix.
853      StringRef Hint = S->getString();
854      if (!Hint.startswith(Prefix()))
855        continue;
856      // Remove the prefix.
857      Hint = Hint.substr(Prefix().size(), StringRef::npos);
858
859      if (Args.size() == 1)
860        getHint(Hint, Args[0]);
861    }
862  }
863
864  // Check string hint with one operand.
865  void getHint(StringRef Hint, Value *Arg) {
866    const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
867    if (!C) return;
868    unsigned Val = C->getZExtValue();
869
870    if (Hint == "width") {
871      if (isPowerOf2_32(Val) && Val <= MaxVectorWidth)
872        Width = Val;
873      else
874        DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n");
875    } else if (Hint == "unroll") {
876      if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor)
877        Unroll = Val;
878      else
879        DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n");
880    } else {
881      DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n');
882    }
883  }
884};
885
886/// The LoopVectorize Pass.
887struct LoopVectorize : public LoopPass {
888  /// Pass identification, replacement for typeid
889  static char ID;
890
891  explicit LoopVectorize(bool NoUnrolling = false)
892    : LoopPass(ID), DisableUnrolling(NoUnrolling) {
893    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
894  }
895
896  ScalarEvolution *SE;
897  DataLayout *DL;
898  LoopInfo *LI;
899  TargetTransformInfo *TTI;
900  DominatorTree *DT;
901  TargetLibraryInfo *TLI;
902  bool DisableUnrolling;
903
904  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
905    // We only vectorize innermost loops.
906    if (!L->empty())
907      return false;
908
909    SE = &getAnalysis<ScalarEvolution>();
910    DL = getAnalysisIfAvailable<DataLayout>();
911    LI = &getAnalysis<LoopInfo>();
912    TTI = &getAnalysis<TargetTransformInfo>();
913    DT = &getAnalysis<DominatorTree>();
914    TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
915
916    // If the target claims to have no vector registers don't attempt
917    // vectorization.
918    if (!TTI->getNumberOfRegisters(true))
919      return false;
920
921    if (DL == NULL) {
922      DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout\n");
923      return false;
924    }
925
926    DEBUG(dbgs() << "LV: Checking a loop in \"" <<
927          L->getHeader()->getParent()->getName() << "\"\n");
928
929    LoopVectorizeHints Hints(L, DisableUnrolling);
930
931    if (Hints.Width == 1 && Hints.Unroll == 1) {
932      DEBUG(dbgs() << "LV: Not vectorizing.\n");
933      return false;
934    }
935
936    // Check if it is legal to vectorize the loop.
937    LoopVectorizationLegality LVL(L, SE, DL, DT, TLI);
938    if (!LVL.canVectorize()) {
939      DEBUG(dbgs() << "LV: Not vectorizing.\n");
940      return false;
941    }
942
943    // Use the cost model.
944    LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
945
946    // Check the function attributes to find out if this function should be
947    // optimized for size.
948    Function *F = L->getHeader()->getParent();
949    Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
950    Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
951    unsigned FnIndex = AttributeSet::FunctionIndex;
952    bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
953    bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
954
955    if (NoFloat) {
956      DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
957            "attribute is used.\n");
958      return false;
959    }
960
961    // Select the optimal vectorization factor.
962    LoopVectorizationCostModel::VectorizationFactor VF;
963    VF = CM.selectVectorizationFactor(OptForSize, Hints.Width);
964    // Select the unroll factor.
965    unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width,
966                                        VF.Cost);
967
968    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
969          F->getParent()->getModuleIdentifier() << '\n');
970    DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
971
972    if (VF.Width == 1) {
973      DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
974      if (UF == 1)
975        return false;
976      // We decided not to vectorize, but we may want to unroll.
977      InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
978      Unroller.vectorize(&LVL);
979    } else {
980      // If we decided that it is *legal* to vectorize the loop then do it.
981      InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
982      LB.vectorize(&LVL);
983    }
984
985    // Mark the loop as already vectorized to avoid vectorizing again.
986    Hints.setAlreadyVectorized(L);
987
988    DEBUG(verifyFunction(*L->getHeader()->getParent()));
989    return true;
990  }
991
992  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
993    LoopPass::getAnalysisUsage(AU);
994    AU.addRequiredID(LoopSimplifyID);
995    AU.addRequiredID(LCSSAID);
996    AU.addRequired<DominatorTree>();
997    AU.addRequired<LoopInfo>();
998    AU.addRequired<ScalarEvolution>();
999    AU.addRequired<TargetTransformInfo>();
1000    AU.addPreserved<LoopInfo>();
1001    AU.addPreserved<DominatorTree>();
1002  }
1003
1004};
1005
1006} // end anonymous namespace
1007
1008//===----------------------------------------------------------------------===//
1009// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1010// LoopVectorizationCostModel.
1011//===----------------------------------------------------------------------===//
1012
1013void
1014LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
1015                                                       Loop *Lp, Value *Ptr,
1016                                                       bool WritePtr,
1017                                                       unsigned DepSetId) {
1018  const SCEV *Sc = SE->getSCEV(Ptr);
1019  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
1020  assert(AR && "Invalid addrec expression");
1021  const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
1022  const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
1023  Pointers.push_back(Ptr);
1024  Starts.push_back(AR->getStart());
1025  Ends.push_back(ScEnd);
1026  IsWritePtr.push_back(WritePtr);
1027  DependencySetId.push_back(DepSetId);
1028}
1029
1030Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1031  // We need to place the broadcast of invariant variables outside the loop.
1032  Instruction *Instr = dyn_cast<Instruction>(V);
1033  bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
1034  bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1035
1036  // Place the code for broadcasting invariant variables in the new preheader.
1037  IRBuilder<>::InsertPointGuard Guard(Builder);
1038  if (Invariant)
1039    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1040
1041  // Broadcast the scalar into all locations in the vector.
1042  Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1043
1044  return Shuf;
1045}
1046
1047Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
1048                                                 bool Negate) {
1049  assert(Val->getType()->isVectorTy() && "Must be a vector");
1050  assert(Val->getType()->getScalarType()->isIntegerTy() &&
1051         "Elem must be an integer");
1052  // Create the types.
1053  Type *ITy = Val->getType()->getScalarType();
1054  VectorType *Ty = cast<VectorType>(Val->getType());
1055  int VLen = Ty->getNumElements();
1056  SmallVector<Constant*, 8> Indices;
1057
1058  // Create a vector of consecutive numbers from zero to VF.
1059  for (int i = 0; i < VLen; ++i) {
1060    int64_t Idx = Negate ? (-i) : i;
1061    Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
1062  }
1063
1064  // Add the consecutive indices to the vector value.
1065  Constant *Cv = ConstantVector::get(Indices);
1066  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1067  return Builder.CreateAdd(Val, Cv, "induction");
1068}
1069
1070/// \brief Find the operand of the GEP that should be checked for consecutive
1071/// stores. This ignores trailing indices that have no effect on the final
1072/// pointer.
1073static unsigned getGEPInductionOperand(DataLayout *DL,
1074                                       const GetElementPtrInst *Gep) {
1075  unsigned LastOperand = Gep->getNumOperands() - 1;
1076  unsigned GEPAllocSize = DL->getTypeAllocSize(
1077      cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
1078
1079  // Walk backwards and try to peel off zeros.
1080  while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
1081    // Find the type we're currently indexing into.
1082    gep_type_iterator GEPTI = gep_type_begin(Gep);
1083    std::advance(GEPTI, LastOperand - 1);
1084
1085    // If it's a type with the same allocation size as the result of the GEP we
1086    // can peel off the zero index.
1087    if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
1088      break;
1089    --LastOperand;
1090  }
1091
1092  return LastOperand;
1093}
1094
1095int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1096  assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
1097  // Make sure that the pointer does not point to structs.
1098  if (Ptr->getType()->getPointerElementType()->isAggregateType())
1099    return 0;
1100
1101  // If this value is a pointer induction variable we know it is consecutive.
1102  PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1103  if (Phi && Inductions.count(Phi)) {
1104    InductionInfo II = Inductions[Phi];
1105    if (IK_PtrInduction == II.IK)
1106      return 1;
1107    else if (IK_ReversePtrInduction == II.IK)
1108      return -1;
1109  }
1110
1111  GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
1112  if (!Gep)
1113    return 0;
1114
1115  unsigned NumOperands = Gep->getNumOperands();
1116  Value *GpPtr = Gep->getPointerOperand();
1117  // If this GEP value is a consecutive pointer induction variable and all of
1118  // the indices are constant then we know it is consecutive. We can
1119  Phi = dyn_cast<PHINode>(GpPtr);
1120  if (Phi && Inductions.count(Phi)) {
1121
1122    // Make sure that the pointer does not point to structs.
1123    PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
1124    if (GepPtrType->getElementType()->isAggregateType())
1125      return 0;
1126
1127    // Make sure that all of the index operands are loop invariant.
1128    for (unsigned i = 1; i < NumOperands; ++i)
1129      if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1130        return 0;
1131
1132    InductionInfo II = Inductions[Phi];
1133    if (IK_PtrInduction == II.IK)
1134      return 1;
1135    else if (IK_ReversePtrInduction == II.IK)
1136      return -1;
1137  }
1138
1139  unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1140
1141  // Check that all of the gep indices are uniform except for our induction
1142  // operand.
1143  for (unsigned i = 0; i != NumOperands; ++i)
1144    if (i != InductionOperand &&
1145        !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1146      return 0;
1147
1148  // We can emit wide load/stores only if the last non-zero index is the
1149  // induction variable.
1150  const SCEV *Last = SE->getSCEV(Gep->getOperand(InductionOperand));
1151  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
1152    const SCEV *Step = AR->getStepRecurrence(*SE);
1153
1154    // The memory is consecutive because the last index is consecutive
1155    // and all other indices are loop invariant.
1156    if (Step->isOne())
1157      return 1;
1158    if (Step->isAllOnesValue())
1159      return -1;
1160  }
1161
1162  return 0;
1163}
1164
1165bool LoopVectorizationLegality::isUniform(Value *V) {
1166  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1167}
1168
1169InnerLoopVectorizer::VectorParts&
1170InnerLoopVectorizer::getVectorValue(Value *V) {
1171  assert(V != Induction && "The new induction variable should not be used.");
1172  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
1173
1174  // If we have this scalar in the map, return it.
1175  if (WidenMap.has(V))
1176    return WidenMap.get(V);
1177
1178  // If this scalar is unknown, assume that it is a constant or that it is
1179  // loop invariant. Broadcast V and save the value for future uses.
1180  Value *B = getBroadcastInstrs(V);
1181  return WidenMap.splat(V, B);
1182}
1183
1184Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
1185  assert(Vec->getType()->isVectorTy() && "Invalid type");
1186  SmallVector<Constant*, 8> ShuffleMask;
1187  for (unsigned i = 0; i < VF; ++i)
1188    ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
1189
1190  return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
1191                                     ConstantVector::get(ShuffleMask),
1192                                     "reverse");
1193}
1194
1195
1196void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
1197                                             LoopVectorizationLegality *Legal) {
1198  // Attempt to issue a wide load.
1199  LoadInst *LI = dyn_cast<LoadInst>(Instr);
1200  StoreInst *SI = dyn_cast<StoreInst>(Instr);
1201
1202  assert((LI || SI) && "Invalid Load/Store instruction");
1203
1204  Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
1205  Type *DataTy = VectorType::get(ScalarDataTy, VF);
1206  Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
1207  unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
1208  // An alignment of 0 means target abi alignment. We need to use the scalar's
1209  // target abi alignment in such a case.
1210  if (!Alignment)
1211    Alignment = DL->getABITypeAlignment(ScalarDataTy);
1212  unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
1213  unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
1214  unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
1215
1216  if (ScalarAllocatedSize != VectorElementSize)
1217    return scalarizeInstruction(Instr);
1218
1219  // If the pointer is loop invariant or if it is non consecutive,
1220  // scalarize the load.
1221  int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
1222  bool Reverse = ConsecutiveStride < 0;
1223  bool UniformLoad = LI && Legal->isUniform(Ptr);
1224  if (!ConsecutiveStride || UniformLoad)
1225    return scalarizeInstruction(Instr);
1226
1227  Constant *Zero = Builder.getInt32(0);
1228  VectorParts &Entry = WidenMap.get(Instr);
1229
1230  // Handle consecutive loads/stores.
1231  GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1232  if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
1233    setDebugLocFromInst(Builder, Gep);
1234    Value *PtrOperand = Gep->getPointerOperand();
1235    Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
1236    FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
1237
1238    // Create the new GEP with the new induction variable.
1239    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1240    Gep2->setOperand(0, FirstBasePtr);
1241    Gep2->setName("gep.indvar.base");
1242    Ptr = Builder.Insert(Gep2);
1243  } else if (Gep) {
1244    setDebugLocFromInst(Builder, Gep);
1245    assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
1246                               OrigLoop) && "Base ptr must be invariant");
1247
1248    // The last index does not have to be the induction. It can be
1249    // consecutive and be a function of the index. For example A[I+1];
1250    unsigned NumOperands = Gep->getNumOperands();
1251    unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1252    // Create the new GEP with the new induction variable.
1253    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1254
1255    for (unsigned i = 0; i < NumOperands; ++i) {
1256      Value *GepOperand = Gep->getOperand(i);
1257      Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
1258
1259      // Update last index or loop invariant instruction anchored in loop.
1260      if (i == InductionOperand ||
1261          (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
1262        assert((i == InductionOperand ||
1263               SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
1264               "Must be last index or loop invariant");
1265
1266        VectorParts &GEPParts = getVectorValue(GepOperand);
1267        Value *Index = GEPParts[0];
1268        Index = Builder.CreateExtractElement(Index, Zero);
1269        Gep2->setOperand(i, Index);
1270        Gep2->setName("gep.indvar.idx");
1271      }
1272    }
1273    Ptr = Builder.Insert(Gep2);
1274  } else {
1275    // Use the induction element ptr.
1276    assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1277    setDebugLocFromInst(Builder, Ptr);
1278    VectorParts &PtrVal = getVectorValue(Ptr);
1279    Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1280  }
1281
1282  // Handle Stores:
1283  if (SI) {
1284    assert(!Legal->isUniform(SI->getPointerOperand()) &&
1285           "We do not allow storing to uniform addresses");
1286    setDebugLocFromInst(Builder, SI);
1287    // We don't want to update the value in the map as it might be used in
1288    // another expression. So don't use a reference type for "StoredVal".
1289    VectorParts StoredVal = getVectorValue(SI->getValueOperand());
1290
1291    for (unsigned Part = 0; Part < UF; ++Part) {
1292      // Calculate the pointer for the specific unroll-part.
1293      Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1294
1295      if (Reverse) {
1296        // If we store to reverse consecutive memory locations then we need
1297        // to reverse the order of elements in the stored value.
1298        StoredVal[Part] = reverseVector(StoredVal[Part]);
1299        // If the address is consecutive but reversed, then the
1300        // wide store needs to start at the last vector element.
1301        PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1302        PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1303      }
1304
1305      Value *VecPtr = Builder.CreateBitCast(PartPtr,
1306                                            DataTy->getPointerTo(AddressSpace));
1307      Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
1308    }
1309    return;
1310  }
1311
1312  // Handle loads.
1313  assert(LI && "Must have a load instruction");
1314  setDebugLocFromInst(Builder, LI);
1315  for (unsigned Part = 0; Part < UF; ++Part) {
1316    // Calculate the pointer for the specific unroll-part.
1317    Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1318
1319    if (Reverse) {
1320      // If the address is consecutive but reversed, then the
1321      // wide store needs to start at the last vector element.
1322      PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1323      PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1324    }
1325
1326    Value *VecPtr = Builder.CreateBitCast(PartPtr,
1327                                          DataTy->getPointerTo(AddressSpace));
1328    Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
1329    cast<LoadInst>(LI)->setAlignment(Alignment);
1330    Entry[Part] = Reverse ? reverseVector(LI) :  LI;
1331  }
1332}
1333
1334void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
1335  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1336  // Holds vector parameters or scalars, in case of uniform vals.
1337  SmallVector<VectorParts, 4> Params;
1338
1339  setDebugLocFromInst(Builder, Instr);
1340
1341  // Find all of the vectorized parameters.
1342  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1343    Value *SrcOp = Instr->getOperand(op);
1344
1345    // If we are accessing the old induction variable, use the new one.
1346    if (SrcOp == OldInduction) {
1347      Params.push_back(getVectorValue(SrcOp));
1348      continue;
1349    }
1350
1351    // Try using previously calculated values.
1352    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1353
1354    // If the src is an instruction that appeared earlier in the basic block
1355    // then it should already be vectorized.
1356    if (SrcInst && OrigLoop->contains(SrcInst)) {
1357      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
1358      // The parameter is a vector value from earlier.
1359      Params.push_back(WidenMap.get(SrcInst));
1360    } else {
1361      // The parameter is a scalar from outside the loop. Maybe even a constant.
1362      VectorParts Scalars;
1363      Scalars.append(UF, SrcOp);
1364      Params.push_back(Scalars);
1365    }
1366  }
1367
1368  assert(Params.size() == Instr->getNumOperands() &&
1369         "Invalid number of operands");
1370
1371  // Does this instruction return a value ?
1372  bool IsVoidRetTy = Instr->getType()->isVoidTy();
1373
1374  Value *UndefVec = IsVoidRetTy ? 0 :
1375    UndefValue::get(VectorType::get(Instr->getType(), VF));
1376  // Create a new entry in the WidenMap and initialize it to Undef or Null.
1377  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1378
1379  // For each vector unroll 'part':
1380  for (unsigned Part = 0; Part < UF; ++Part) {
1381    // For each scalar that we create:
1382    for (unsigned Width = 0; Width < VF; ++Width) {
1383      Instruction *Cloned = Instr->clone();
1384      if (!IsVoidRetTy)
1385        Cloned->setName(Instr->getName() + ".cloned");
1386      // Replace the operands of the cloned instructions with extracted scalars.
1387      for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1388        Value *Op = Params[op][Part];
1389        // Param is a vector. Need to extract the right lane.
1390        if (Op->getType()->isVectorTy())
1391          Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
1392        Cloned->setOperand(op, Op);
1393      }
1394
1395      // Place the cloned scalar in the new loop.
1396      Builder.Insert(Cloned);
1397
1398      // If the original scalar returns a value we need to place it in a vector
1399      // so that future users will be able to use it.
1400      if (!IsVoidRetTy)
1401        VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
1402                                                       Builder.getInt32(Width));
1403    }
1404  }
1405}
1406
1407Instruction *
1408InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
1409                                     Instruction *Loc) {
1410  LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
1411  Legal->getRuntimePointerCheck();
1412
1413  if (!PtrRtCheck->Need)
1414    return NULL;
1415
1416  unsigned NumPointers = PtrRtCheck->Pointers.size();
1417  SmallVector<TrackingVH<Value> , 2> Starts;
1418  SmallVector<TrackingVH<Value> , 2> Ends;
1419
1420  LLVMContext &Ctx = Loc->getContext();
1421  SCEVExpander Exp(*SE, "induction");
1422
1423  for (unsigned i = 0; i < NumPointers; ++i) {
1424    Value *Ptr = PtrRtCheck->Pointers[i];
1425    const SCEV *Sc = SE->getSCEV(Ptr);
1426
1427    if (SE->isLoopInvariant(Sc, OrigLoop)) {
1428      DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
1429            *Ptr <<"\n");
1430      Starts.push_back(Ptr);
1431      Ends.push_back(Ptr);
1432    } else {
1433      DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
1434      unsigned AS = Ptr->getType()->getPointerAddressSpace();
1435
1436      // Use this type for pointer arithmetic.
1437      Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1438
1439      Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
1440      Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
1441      Starts.push_back(Start);
1442      Ends.push_back(End);
1443    }
1444  }
1445
1446  IRBuilder<> ChkBuilder(Loc);
1447  // Our instructions might fold to a constant.
1448  Value *MemoryRuntimeCheck = 0;
1449  for (unsigned i = 0; i < NumPointers; ++i) {
1450    for (unsigned j = i+1; j < NumPointers; ++j) {
1451      // No need to check if two readonly pointers intersect.
1452      if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
1453        continue;
1454
1455      // Only need to check pointers between two different dependency sets.
1456      if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
1457       continue;
1458
1459      unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
1460      unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
1461
1462      assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
1463             (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
1464             "Trying to bounds check pointers with different address spaces");
1465
1466      Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1467      Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1468
1469      Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
1470      Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
1471      Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy1, "bc");
1472      Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy0, "bc");
1473
1474      Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1475      Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1476      Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1477      if (MemoryRuntimeCheck)
1478        IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1479                                         "conflict.rdx");
1480      MemoryRuntimeCheck = IsConflict;
1481    }
1482  }
1483
1484  // We have to do this trickery because the IRBuilder might fold the check to a
1485  // constant expression in which case there is no Instruction anchored in a
1486  // the block.
1487  Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1488                                                 ConstantInt::getTrue(Ctx));
1489  ChkBuilder.Insert(Check, "memcheck.conflict");
1490  return Check;
1491}
1492
1493void
1494InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
1495  /*
1496   In this function we generate a new loop. The new loop will contain
1497   the vectorized instructions while the old loop will continue to run the
1498   scalar remainder.
1499
1500       [ ] <-- vector loop bypass (may consist of multiple blocks).
1501     /  |
1502    /   v
1503   |   [ ]     <-- vector pre header.
1504   |    |
1505   |    v
1506   |   [  ] \
1507   |   [  ]_|   <-- vector loop.
1508   |    |
1509    \   v
1510      >[ ]   <--- middle-block.
1511     /  |
1512    /   v
1513   |   [ ]     <--- new preheader.
1514   |    |
1515   |    v
1516   |   [ ] \
1517   |   [ ]_|   <-- old scalar loop to handle remainder.
1518    \   |
1519     \  v
1520      >[ ]     <-- exit block.
1521   ...
1522   */
1523
1524  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
1525  BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
1526  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
1527  assert(ExitBlock && "Must have an exit block");
1528
1529  // Some loops have a single integer induction variable, while other loops
1530  // don't. One example is c++ iterators that often have multiple pointer
1531  // induction variables. In the code below we also support a case where we
1532  // don't have a single induction variable.
1533  OldInduction = Legal->getInduction();
1534  Type *IdxTy = Legal->getWidestInductionType();
1535
1536  // Find the loop boundaries.
1537  const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
1538  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
1539
1540  ExitCount = SE->getNoopOrZeroExtend(ExitCount, IdxTy);
1541  // Get the total trip count from the count by adding 1.
1542  ExitCount = SE->getAddExpr(ExitCount,
1543                             SE->getConstant(ExitCount->getType(), 1));
1544
1545  // Expand the trip count and place the new instructions in the preheader.
1546  // Notice that the pre-header does not change, only the loop body.
1547  SCEVExpander Exp(*SE, "induction");
1548
1549  // Count holds the overall loop count (N).
1550  Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
1551                                   BypassBlock->getTerminator());
1552
1553  // The loop index does not have to start at Zero. Find the original start
1554  // value from the induction PHI node. If we don't have an induction variable
1555  // then we know that it starts at zero.
1556  Builder.SetInsertPoint(BypassBlock->getTerminator());
1557  Value *StartIdx = ExtendedIdx = OldInduction ?
1558    Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
1559                       IdxTy):
1560    ConstantInt::get(IdxTy, 0);
1561
1562  assert(BypassBlock && "Invalid loop structure");
1563  LoopBypassBlocks.push_back(BypassBlock);
1564
1565  // Split the single block loop into the two loop structure described above.
1566  BasicBlock *VectorPH =
1567  BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
1568  BasicBlock *VecBody =
1569  VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
1570  BasicBlock *MiddleBlock =
1571  VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
1572  BasicBlock *ScalarPH =
1573  MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
1574
1575  // Create and register the new vector loop.
1576  Loop* Lp = new Loop();
1577  Loop *ParentLoop = OrigLoop->getParentLoop();
1578
1579  // Insert the new loop into the loop nest and register the new basic blocks
1580  // before calling any utilities such as SCEV that require valid LoopInfo.
1581  if (ParentLoop) {
1582    ParentLoop->addChildLoop(Lp);
1583    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
1584    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
1585    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
1586  } else {
1587    LI->addTopLevelLoop(Lp);
1588  }
1589  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
1590
1591  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
1592  // inside the loop.
1593  Builder.SetInsertPoint(VecBody->getFirstNonPHI());
1594
1595  // Generate the induction variable.
1596  setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
1597  Induction = Builder.CreatePHI(IdxTy, 2, "index");
1598  // The loop step is equal to the vectorization factor (num of SIMD elements)
1599  // times the unroll factor (num of SIMD instructions).
1600  Constant *Step = ConstantInt::get(IdxTy, VF * UF);
1601
1602  // This is the IR builder that we use to add all of the logic for bypassing
1603  // the new vector loop.
1604  IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
1605  setDebugLocFromInst(BypassBuilder,
1606                      getDebugLocFromInstOrOperands(OldInduction));
1607
1608  // We may need to extend the index in case there is a type mismatch.
1609  // We know that the count starts at zero and does not overflow.
1610  if (Count->getType() != IdxTy) {
1611    // The exit count can be of pointer type. Convert it to the correct
1612    // integer type.
1613    if (ExitCount->getType()->isPointerTy())
1614      Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
1615    else
1616      Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
1617  }
1618
1619  // Add the start index to the loop count to get the new end index.
1620  Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
1621
1622  // Now we need to generate the expression for N - (N % VF), which is
1623  // the part that the vectorized body will execute.
1624  Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
1625  Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
1626  Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
1627                                                     "end.idx.rnd.down");
1628
1629  // Now, compare the new count to zero. If it is zero skip the vector loop and
1630  // jump to the scalar loop.
1631  Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
1632                                          "cmp.zero");
1633
1634  BasicBlock *LastBypassBlock = BypassBlock;
1635
1636  // Generate the code that checks in runtime if arrays overlap. We put the
1637  // checks into a separate block to make the more common case of few elements
1638  // faster.
1639  Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
1640                                                 BypassBlock->getTerminator());
1641  if (MemRuntimeCheck) {
1642    // Create a new block containing the memory check.
1643    BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
1644                                                          "vector.memcheck");
1645    if (ParentLoop)
1646      ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
1647    LoopBypassBlocks.push_back(CheckBlock);
1648
1649    // Replace the branch into the memory check block with a conditional branch
1650    // for the "few elements case".
1651    Instruction *OldTerm = BypassBlock->getTerminator();
1652    BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
1653    OldTerm->eraseFromParent();
1654
1655    Cmp = MemRuntimeCheck;
1656    LastBypassBlock = CheckBlock;
1657  }
1658
1659  LastBypassBlock->getTerminator()->eraseFromParent();
1660  BranchInst::Create(MiddleBlock, VectorPH, Cmp,
1661                     LastBypassBlock);
1662
1663  // We are going to resume the execution of the scalar loop.
1664  // Go over all of the induction variables that we found and fix the
1665  // PHIs that are left in the scalar version of the loop.
1666  // The starting values of PHI nodes depend on the counter of the last
1667  // iteration in the vectorized loop.
1668  // If we come from a bypass edge then we need to start from the original
1669  // start value.
1670
1671  // This variable saves the new starting index for the scalar loop.
1672  PHINode *ResumeIndex = 0;
1673  LoopVectorizationLegality::InductionList::iterator I, E;
1674  LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
1675  // Set builder to point to last bypass block.
1676  BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
1677  for (I = List->begin(), E = List->end(); I != E; ++I) {
1678    PHINode *OrigPhi = I->first;
1679    LoopVectorizationLegality::InductionInfo II = I->second;
1680
1681    Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
1682    PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
1683                                         MiddleBlock->getTerminator());
1684    // We might have extended the type of the induction variable but we need a
1685    // truncated version for the scalar loop.
1686    PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
1687      PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
1688                      MiddleBlock->getTerminator()) : 0;
1689
1690    Value *EndValue = 0;
1691    switch (II.IK) {
1692    case LoopVectorizationLegality::IK_NoInduction:
1693      llvm_unreachable("Unknown induction");
1694    case LoopVectorizationLegality::IK_IntInduction: {
1695      // Handle the integer induction counter.
1696      assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
1697
1698      // We have the canonical induction variable.
1699      if (OrigPhi == OldInduction) {
1700        // Create a truncated version of the resume value for the scalar loop,
1701        // we might have promoted the type to a larger width.
1702        EndValue =
1703          BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
1704        // The new PHI merges the original incoming value, in case of a bypass,
1705        // or the value at the end of the vectorized loop.
1706        for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1707          TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1708        TruncResumeVal->addIncoming(EndValue, VecBody);
1709
1710        // We know what the end value is.
1711        EndValue = IdxEndRoundDown;
1712        // We also know which PHI node holds it.
1713        ResumeIndex = ResumeVal;
1714        break;
1715      }
1716
1717      // Not the canonical induction variable - add the vector loop count to the
1718      // start value.
1719      Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1720                                                   II.StartValue->getType(),
1721                                                   "cast.crd");
1722      EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
1723      break;
1724    }
1725    case LoopVectorizationLegality::IK_ReverseIntInduction: {
1726      // Convert the CountRoundDown variable to the PHI size.
1727      Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1728                                                   II.StartValue->getType(),
1729                                                   "cast.crd");
1730      // Handle reverse integer induction counter.
1731      EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
1732      break;
1733    }
1734    case LoopVectorizationLegality::IK_PtrInduction: {
1735      // For pointer induction variables, calculate the offset using
1736      // the end index.
1737      EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
1738                                         "ptr.ind.end");
1739      break;
1740    }
1741    case LoopVectorizationLegality::IK_ReversePtrInduction: {
1742      // The value at the end of the loop for the reverse pointer is calculated
1743      // by creating a GEP with a negative index starting from the start value.
1744      Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
1745      Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
1746                                              "rev.ind.end");
1747      EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
1748                                         "rev.ptr.ind.end");
1749      break;
1750    }
1751    }// end of case
1752
1753    // The new PHI merges the original incoming value, in case of a bypass,
1754    // or the value at the end of the vectorized loop.
1755    for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) {
1756      if (OrigPhi == OldInduction)
1757        ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
1758      else
1759        ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1760    }
1761    ResumeVal->addIncoming(EndValue, VecBody);
1762
1763    // Fix the scalar body counter (PHI node).
1764    unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
1765    // The old inductions phi node in the scalar body needs the truncated value.
1766    if (OrigPhi == OldInduction)
1767      OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal);
1768    else
1769      OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
1770  }
1771
1772  // If we are generating a new induction variable then we also need to
1773  // generate the code that calculates the exit value. This value is not
1774  // simply the end of the counter because we may skip the vectorized body
1775  // in case of a runtime check.
1776  if (!OldInduction){
1777    assert(!ResumeIndex && "Unexpected resume value found");
1778    ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
1779                                  MiddleBlock->getTerminator());
1780    for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1781      ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
1782    ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
1783  }
1784
1785  // Make sure that we found the index where scalar loop needs to continue.
1786  assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
1787         "Invalid resume Index");
1788
1789  // Add a check in the middle block to see if we have completed
1790  // all of the iterations in the first vector loop.
1791  // If (N - N%VF) == N, then we *don't* need to run the remainder.
1792  Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
1793                                ResumeIndex, "cmp.n",
1794                                MiddleBlock->getTerminator());
1795
1796  BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
1797  // Remove the old terminator.
1798  MiddleBlock->getTerminator()->eraseFromParent();
1799
1800  // Create i+1 and fill the PHINode.
1801  Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
1802  Induction->addIncoming(StartIdx, VectorPH);
1803  Induction->addIncoming(NextIdx, VecBody);
1804  // Create the compare.
1805  Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
1806  Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
1807
1808  // Now we have two terminators. Remove the old one from the block.
1809  VecBody->getTerminator()->eraseFromParent();
1810
1811  // Get ready to start creating new instructions into the vectorized body.
1812  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1813
1814  // Save the state.
1815  LoopVectorPreHeader = VectorPH;
1816  LoopScalarPreHeader = ScalarPH;
1817  LoopMiddleBlock = MiddleBlock;
1818  LoopExitBlock = ExitBlock;
1819  LoopVectorBody = VecBody;
1820  LoopScalarBody = OldBasicBlock;
1821
1822  LoopVectorizeHints Hints(Lp, true);
1823  Hints.setAlreadyVectorized(Lp);
1824}
1825
1826/// This function returns the identity element (or neutral element) for
1827/// the operation K.
1828Constant*
1829LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
1830  switch (K) {
1831  case RK_IntegerXor:
1832  case RK_IntegerAdd:
1833  case RK_IntegerOr:
1834    // Adding, Xoring, Oring zero to a number does not change it.
1835    return ConstantInt::get(Tp, 0);
1836  case RK_IntegerMult:
1837    // Multiplying a number by 1 does not change it.
1838    return ConstantInt::get(Tp, 1);
1839  case RK_IntegerAnd:
1840    // AND-ing a number with an all-1 value does not change it.
1841    return ConstantInt::get(Tp, -1, true);
1842  case  RK_FloatMult:
1843    // Multiplying a number by 1 does not change it.
1844    return ConstantFP::get(Tp, 1.0L);
1845  case  RK_FloatAdd:
1846    // Adding zero to a number does not change it.
1847    return ConstantFP::get(Tp, 0.0L);
1848  default:
1849    llvm_unreachable("Unknown reduction kind");
1850  }
1851}
1852
1853static Intrinsic::ID checkUnaryFloatSignature(const CallInst &I,
1854                                              Intrinsic::ID ValidIntrinsicID) {
1855  if (I.getNumArgOperands() != 1 ||
1856      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
1857      I.getType() != I.getArgOperand(0)->getType() ||
1858      !I.onlyReadsMemory())
1859    return Intrinsic::not_intrinsic;
1860
1861  return ValidIntrinsicID;
1862}
1863
1864static Intrinsic::ID checkBinaryFloatSignature(const CallInst &I,
1865                                               Intrinsic::ID ValidIntrinsicID) {
1866  if (I.getNumArgOperands() != 2 ||
1867      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
1868      !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
1869      I.getType() != I.getArgOperand(0)->getType() ||
1870      I.getType() != I.getArgOperand(1)->getType() ||
1871      !I.onlyReadsMemory())
1872    return Intrinsic::not_intrinsic;
1873
1874  return ValidIntrinsicID;
1875}
1876
1877
1878static Intrinsic::ID
1879getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
1880  // If we have an intrinsic call, check if it is trivially vectorizable.
1881  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1882    switch (II->getIntrinsicID()) {
1883    case Intrinsic::sqrt:
1884    case Intrinsic::sin:
1885    case Intrinsic::cos:
1886    case Intrinsic::exp:
1887    case Intrinsic::exp2:
1888    case Intrinsic::log:
1889    case Intrinsic::log10:
1890    case Intrinsic::log2:
1891    case Intrinsic::fabs:
1892    case Intrinsic::copysign:
1893    case Intrinsic::floor:
1894    case Intrinsic::ceil:
1895    case Intrinsic::trunc:
1896    case Intrinsic::rint:
1897    case Intrinsic::nearbyint:
1898    case Intrinsic::round:
1899    case Intrinsic::pow:
1900    case Intrinsic::fma:
1901    case Intrinsic::fmuladd:
1902    case Intrinsic::lifetime_start:
1903    case Intrinsic::lifetime_end:
1904      return II->getIntrinsicID();
1905    default:
1906      return Intrinsic::not_intrinsic;
1907    }
1908  }
1909
1910  if (!TLI)
1911    return Intrinsic::not_intrinsic;
1912
1913  LibFunc::Func Func;
1914  Function *F = CI->getCalledFunction();
1915  // We're going to make assumptions on the semantics of the functions, check
1916  // that the target knows that it's available in this environment and it does
1917  // not have local linkage.
1918  if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
1919    return Intrinsic::not_intrinsic;
1920
1921  // Otherwise check if we have a call to a function that can be turned into a
1922  // vector intrinsic.
1923  switch (Func) {
1924  default:
1925    break;
1926  case LibFunc::sin:
1927  case LibFunc::sinf:
1928  case LibFunc::sinl:
1929    return checkUnaryFloatSignature(*CI, Intrinsic::sin);
1930  case LibFunc::cos:
1931  case LibFunc::cosf:
1932  case LibFunc::cosl:
1933    return checkUnaryFloatSignature(*CI, Intrinsic::cos);
1934  case LibFunc::exp:
1935  case LibFunc::expf:
1936  case LibFunc::expl:
1937    return checkUnaryFloatSignature(*CI, Intrinsic::exp);
1938  case LibFunc::exp2:
1939  case LibFunc::exp2f:
1940  case LibFunc::exp2l:
1941    return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
1942  case LibFunc::log:
1943  case LibFunc::logf:
1944  case LibFunc::logl:
1945    return checkUnaryFloatSignature(*CI, Intrinsic::log);
1946  case LibFunc::log10:
1947  case LibFunc::log10f:
1948  case LibFunc::log10l:
1949    return checkUnaryFloatSignature(*CI, Intrinsic::log10);
1950  case LibFunc::log2:
1951  case LibFunc::log2f:
1952  case LibFunc::log2l:
1953    return checkUnaryFloatSignature(*CI, Intrinsic::log2);
1954  case LibFunc::fabs:
1955  case LibFunc::fabsf:
1956  case LibFunc::fabsl:
1957    return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
1958  case LibFunc::copysign:
1959  case LibFunc::copysignf:
1960  case LibFunc::copysignl:
1961    return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
1962  case LibFunc::floor:
1963  case LibFunc::floorf:
1964  case LibFunc::floorl:
1965    return checkUnaryFloatSignature(*CI, Intrinsic::floor);
1966  case LibFunc::ceil:
1967  case LibFunc::ceilf:
1968  case LibFunc::ceill:
1969    return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
1970  case LibFunc::trunc:
1971  case LibFunc::truncf:
1972  case LibFunc::truncl:
1973    return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
1974  case LibFunc::rint:
1975  case LibFunc::rintf:
1976  case LibFunc::rintl:
1977    return checkUnaryFloatSignature(*CI, Intrinsic::rint);
1978  case LibFunc::nearbyint:
1979  case LibFunc::nearbyintf:
1980  case LibFunc::nearbyintl:
1981    return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
1982  case LibFunc::round:
1983  case LibFunc::roundf:
1984  case LibFunc::roundl:
1985    return checkUnaryFloatSignature(*CI, Intrinsic::round);
1986  case LibFunc::pow:
1987  case LibFunc::powf:
1988  case LibFunc::powl:
1989    return checkBinaryFloatSignature(*CI, Intrinsic::pow);
1990  }
1991
1992  return Intrinsic::not_intrinsic;
1993}
1994
1995/// This function translates the reduction kind to an LLVM binary operator.
1996static unsigned
1997getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
1998  switch (Kind) {
1999    case LoopVectorizationLegality::RK_IntegerAdd:
2000      return Instruction::Add;
2001    case LoopVectorizationLegality::RK_IntegerMult:
2002      return Instruction::Mul;
2003    case LoopVectorizationLegality::RK_IntegerOr:
2004      return Instruction::Or;
2005    case LoopVectorizationLegality::RK_IntegerAnd:
2006      return Instruction::And;
2007    case LoopVectorizationLegality::RK_IntegerXor:
2008      return Instruction::Xor;
2009    case LoopVectorizationLegality::RK_FloatMult:
2010      return Instruction::FMul;
2011    case LoopVectorizationLegality::RK_FloatAdd:
2012      return Instruction::FAdd;
2013    case LoopVectorizationLegality::RK_IntegerMinMax:
2014      return Instruction::ICmp;
2015    case LoopVectorizationLegality::RK_FloatMinMax:
2016      return Instruction::FCmp;
2017    default:
2018      llvm_unreachable("Unknown reduction operation");
2019  }
2020}
2021
2022Value *createMinMaxOp(IRBuilder<> &Builder,
2023                      LoopVectorizationLegality::MinMaxReductionKind RK,
2024                      Value *Left,
2025                      Value *Right) {
2026  CmpInst::Predicate P = CmpInst::ICMP_NE;
2027  switch (RK) {
2028  default:
2029    llvm_unreachable("Unknown min/max reduction kind");
2030  case LoopVectorizationLegality::MRK_UIntMin:
2031    P = CmpInst::ICMP_ULT;
2032    break;
2033  case LoopVectorizationLegality::MRK_UIntMax:
2034    P = CmpInst::ICMP_UGT;
2035    break;
2036  case LoopVectorizationLegality::MRK_SIntMin:
2037    P = CmpInst::ICMP_SLT;
2038    break;
2039  case LoopVectorizationLegality::MRK_SIntMax:
2040    P = CmpInst::ICMP_SGT;
2041    break;
2042  case LoopVectorizationLegality::MRK_FloatMin:
2043    P = CmpInst::FCMP_OLT;
2044    break;
2045  case LoopVectorizationLegality::MRK_FloatMax:
2046    P = CmpInst::FCMP_OGT;
2047    break;
2048  }
2049
2050  Value *Cmp;
2051  if (RK == LoopVectorizationLegality::MRK_FloatMin ||
2052      RK == LoopVectorizationLegality::MRK_FloatMax)
2053    Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
2054  else
2055    Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
2056
2057  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
2058  return Select;
2059}
2060
2061namespace {
2062struct CSEDenseMapInfo {
2063  static bool canHandle(Instruction *I) {
2064    return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
2065           isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
2066  }
2067  static inline Instruction *getEmptyKey() {
2068    return DenseMapInfo<Instruction *>::getEmptyKey();
2069  }
2070  static inline Instruction *getTombstoneKey() {
2071    return DenseMapInfo<Instruction *>::getTombstoneKey();
2072  }
2073  static unsigned getHashValue(Instruction *I) {
2074    assert(canHandle(I) && "Unknown instruction!");
2075    return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
2076                                                           I->value_op_end()));
2077  }
2078  static bool isEqual(Instruction *LHS, Instruction *RHS) {
2079    if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2080        LHS == getTombstoneKey() || RHS == getTombstoneKey())
2081      return LHS == RHS;
2082    return LHS->isIdenticalTo(RHS);
2083  }
2084};
2085}
2086
2087///\brief Perform cse of induction variable instructions.
2088static void cse(BasicBlock *BB) {
2089  // Perform simple cse.
2090  SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
2091  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2092    Instruction *In = I++;
2093
2094    if (!CSEDenseMapInfo::canHandle(In))
2095      continue;
2096
2097    // Check if we can replace this instruction with any of the
2098    // visited instructions.
2099    if (Instruction *V = CSEMap.lookup(In)) {
2100      In->replaceAllUsesWith(V);
2101      In->eraseFromParent();
2102      continue;
2103    }
2104
2105    CSEMap[In] = In;
2106  }
2107}
2108
2109void
2110InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
2111  //===------------------------------------------------===//
2112  //
2113  // Notice: any optimization or new instruction that go
2114  // into the code below should be also be implemented in
2115  // the cost-model.
2116  //
2117  //===------------------------------------------------===//
2118  Constant *Zero = Builder.getInt32(0);
2119
2120  // In order to support reduction variables we need to be able to vectorize
2121  // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
2122  // stages. First, we create a new vector PHI node with no incoming edges.
2123  // We use this value when we vectorize all of the instructions that use the
2124  // PHI. Next, after all of the instructions in the block are complete we
2125  // add the new incoming edges to the PHI. At this point all of the
2126  // instructions in the basic block are vectorized, so we can use them to
2127  // construct the PHI.
2128  PhiVector RdxPHIsToFix;
2129
2130  // Scan the loop in a topological order to ensure that defs are vectorized
2131  // before users.
2132  LoopBlocksDFS DFS(OrigLoop);
2133  DFS.perform(LI);
2134
2135  // Vectorize all of the blocks in the original loop.
2136  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
2137       be = DFS.endRPO(); bb != be; ++bb)
2138    vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
2139
2140  // At this point every instruction in the original loop is widened to
2141  // a vector form. We are almost done. Now, we need to fix the PHI nodes
2142  // that we vectorized. The PHI nodes are currently empty because we did
2143  // not want to introduce cycles. Notice that the remaining PHI nodes
2144  // that we need to fix are reduction variables.
2145
2146  // Create the 'reduced' values for each of the induction vars.
2147  // The reduced values are the vector values that we scalarize and combine
2148  // after the loop is finished.
2149  for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
2150       it != e; ++it) {
2151    PHINode *RdxPhi = *it;
2152    assert(RdxPhi && "Unable to recover vectorized PHI");
2153
2154    // Find the reduction variable descriptor.
2155    assert(Legal->getReductionVars()->count(RdxPhi) &&
2156           "Unable to find the reduction variable");
2157    LoopVectorizationLegality::ReductionDescriptor RdxDesc =
2158    (*Legal->getReductionVars())[RdxPhi];
2159
2160    setDebugLocFromInst(Builder, RdxDesc.StartValue);
2161
2162    // We need to generate a reduction vector from the incoming scalar.
2163    // To do so, we need to generate the 'identity' vector and overide
2164    // one of the elements with the incoming scalar reduction. We need
2165    // to do it in the vector-loop preheader.
2166    Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
2167
2168    // This is the vector-clone of the value that leaves the loop.
2169    VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
2170    Type *VecTy = VectorExit[0]->getType();
2171
2172    // Find the reduction identity variable. Zero for addition, or, xor,
2173    // one for multiplication, -1 for And.
2174    Value *Identity;
2175    Value *VectorStart;
2176    if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
2177        RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
2178      // MinMax reduction have the start value as their identify.
2179      if (VF == 1) {
2180        VectorStart = Identity = RdxDesc.StartValue;
2181      } else {
2182        VectorStart = Identity = Builder.CreateVectorSplat(VF,
2183                                                           RdxDesc.StartValue,
2184                                                           "minmax.ident");
2185      }
2186    } else {
2187      // Handle other reduction kinds:
2188      Constant *Iden =
2189      LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
2190                                                      VecTy->getScalarType());
2191      if (VF == 1) {
2192        Identity = Iden;
2193        // This vector is the Identity vector where the first element is the
2194        // incoming scalar reduction.
2195        VectorStart = RdxDesc.StartValue;
2196      } else {
2197        Identity = ConstantVector::getSplat(VF, Iden);
2198
2199        // This vector is the Identity vector where the first element is the
2200        // incoming scalar reduction.
2201        VectorStart = Builder.CreateInsertElement(Identity,
2202                                                  RdxDesc.StartValue, Zero);
2203      }
2204    }
2205
2206    // Fix the vector-loop phi.
2207    // We created the induction variable so we know that the
2208    // preheader is the first entry.
2209    BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
2210
2211    // Reductions do not have to start at zero. They can start with
2212    // any loop invariant values.
2213    VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
2214    BasicBlock *Latch = OrigLoop->getLoopLatch();
2215    Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
2216    VectorParts &Val = getVectorValue(LoopVal);
2217    for (unsigned part = 0; part < UF; ++part) {
2218      // Make sure to add the reduction stat value only to the
2219      // first unroll part.
2220      Value *StartVal = (part == 0) ? VectorStart : Identity;
2221      cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
2222      cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
2223    }
2224
2225    // Before each round, move the insertion point right between
2226    // the PHIs and the values we are going to write.
2227    // This allows us to write both PHINodes and the extractelement
2228    // instructions.
2229    Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
2230
2231    VectorParts RdxParts;
2232    setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
2233    for (unsigned part = 0; part < UF; ++part) {
2234      // This PHINode contains the vectorized reduction variable, or
2235      // the initial value vector, if we bypass the vector loop.
2236      VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
2237      PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
2238      Value *StartVal = (part == 0) ? VectorStart : Identity;
2239      for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
2240        NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
2241      NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
2242      RdxParts.push_back(NewPhi);
2243    }
2244
2245    // Reduce all of the unrolled parts into a single vector.
2246    Value *ReducedPartRdx = RdxParts[0];
2247    unsigned Op = getReductionBinOp(RdxDesc.Kind);
2248    setDebugLocFromInst(Builder, ReducedPartRdx);
2249    for (unsigned part = 1; part < UF; ++part) {
2250      if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2251        ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op,
2252                                             RdxParts[part], ReducedPartRdx,
2253                                             "bin.rdx");
2254      else
2255        ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
2256                                        ReducedPartRdx, RdxParts[part]);
2257    }
2258
2259    if (VF > 1) {
2260      // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
2261      // and vector ops, reducing the set of values being computed by half each
2262      // round.
2263      assert(isPowerOf2_32(VF) &&
2264             "Reduction emission only supported for pow2 vectors!");
2265      Value *TmpVec = ReducedPartRdx;
2266      SmallVector<Constant*, 32> ShuffleMask(VF, 0);
2267      for (unsigned i = VF; i != 1; i >>= 1) {
2268        // Move the upper half of the vector to the lower half.
2269        for (unsigned j = 0; j != i/2; ++j)
2270          ShuffleMask[j] = Builder.getInt32(i/2 + j);
2271
2272        // Fill the rest of the mask with undef.
2273        std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
2274                  UndefValue::get(Builder.getInt32Ty()));
2275
2276        Value *Shuf =
2277        Builder.CreateShuffleVector(TmpVec,
2278                                    UndefValue::get(TmpVec->getType()),
2279                                    ConstantVector::get(ShuffleMask),
2280                                    "rdx.shuf");
2281
2282        if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2283          TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
2284                                       "bin.rdx");
2285        else
2286          TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
2287      }
2288
2289      // The result is in the first element of the vector.
2290      ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
2291                                                    Builder.getInt32(0));
2292    }
2293
2294    // Now, we need to fix the users of the reduction variable
2295    // inside and outside of the scalar remainder loop.
2296    // We know that the loop is in LCSSA form. We need to update the
2297    // PHI nodes in the exit blocks.
2298    for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2299         LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2300      PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2301      if (!LCSSAPhi) break;
2302
2303      // All PHINodes need to have a single entry edge, or two if
2304      // we already fixed them.
2305      assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
2306
2307      // We found our reduction value exit-PHI. Update it with the
2308      // incoming bypass edge.
2309      if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
2310        // Add an edge coming from the bypass.
2311        LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
2312        break;
2313      }
2314    }// end of the LCSSA phi scan.
2315
2316    // Fix the scalar loop reduction variable with the incoming reduction sum
2317    // from the vector body and from the backedge value.
2318    int IncomingEdgeBlockIdx =
2319    (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
2320    assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
2321    // Pick the other block.
2322    int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
2323    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, ReducedPartRdx);
2324    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
2325  }// end of for each redux variable.
2326
2327  fixLCSSAPHIs();
2328
2329  // Remove redundant induction instructions.
2330  cse(LoopVectorBody);
2331}
2332
2333void InnerLoopVectorizer::fixLCSSAPHIs() {
2334  for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2335       LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2336    PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2337    if (!LCSSAPhi) break;
2338    if (LCSSAPhi->getNumIncomingValues() == 1)
2339      LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
2340                            LoopMiddleBlock);
2341  }
2342}
2343
2344InnerLoopVectorizer::VectorParts
2345InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
2346  assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
2347         "Invalid edge");
2348
2349  // Look for cached value.
2350  std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
2351  EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
2352  if (ECEntryIt != MaskCache.end())
2353    return ECEntryIt->second;
2354
2355  VectorParts SrcMask = createBlockInMask(Src);
2356
2357  // The terminator has to be a branch inst!
2358  BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
2359  assert(BI && "Unexpected terminator found");
2360
2361  if (BI->isConditional()) {
2362    VectorParts EdgeMask = getVectorValue(BI->getCondition());
2363
2364    if (BI->getSuccessor(0) != Dst)
2365      for (unsigned part = 0; part < UF; ++part)
2366        EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
2367
2368    for (unsigned part = 0; part < UF; ++part)
2369      EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
2370
2371    MaskCache[Edge] = EdgeMask;
2372    return EdgeMask;
2373  }
2374
2375  MaskCache[Edge] = SrcMask;
2376  return SrcMask;
2377}
2378
2379InnerLoopVectorizer::VectorParts
2380InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
2381  assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
2382
2383  // Loop incoming mask is all-one.
2384  if (OrigLoop->getHeader() == BB) {
2385    Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
2386    return getVectorValue(C);
2387  }
2388
2389  // This is the block mask. We OR all incoming edges, and with zero.
2390  Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
2391  VectorParts BlockMask = getVectorValue(Zero);
2392
2393  // For each pred:
2394  for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
2395    VectorParts EM = createEdgeMask(*it, BB);
2396    for (unsigned part = 0; part < UF; ++part)
2397      BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
2398  }
2399
2400  return BlockMask;
2401}
2402
2403void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
2404                                              InnerLoopVectorizer::VectorParts &Entry,
2405                                              LoopVectorizationLegality *Legal,
2406                                              unsigned UF, unsigned VF, PhiVector *PV) {
2407  PHINode* P = cast<PHINode>(PN);
2408  // Handle reduction variables:
2409  if (Legal->getReductionVars()->count(P)) {
2410    for (unsigned part = 0; part < UF; ++part) {
2411      // This is phase one of vectorizing PHIs.
2412      Type *VecTy = (VF == 1) ? PN->getType() :
2413      VectorType::get(PN->getType(), VF);
2414      Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
2415                                    LoopVectorBody-> getFirstInsertionPt());
2416    }
2417    PV->push_back(P);
2418    return;
2419  }
2420
2421  setDebugLocFromInst(Builder, P);
2422  // Check for PHI nodes that are lowered to vector selects.
2423  if (P->getParent() != OrigLoop->getHeader()) {
2424    // We know that all PHIs in non header blocks are converted into
2425    // selects, so we don't have to worry about the insertion order and we
2426    // can just use the builder.
2427    // At this point we generate the predication tree. There may be
2428    // duplications since this is a simple recursive scan, but future
2429    // optimizations will clean it up.
2430
2431    unsigned NumIncoming = P->getNumIncomingValues();
2432
2433    // Generate a sequence of selects of the form:
2434    // SELECT(Mask3, In3,
2435    //      SELECT(Mask2, In2,
2436    //                   ( ...)))
2437    for (unsigned In = 0; In < NumIncoming; In++) {
2438      VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
2439                                        P->getParent());
2440      VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
2441
2442      for (unsigned part = 0; part < UF; ++part) {
2443        // We might have single edge PHIs (blocks) - use an identity
2444        // 'select' for the first PHI operand.
2445        if (In == 0)
2446          Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2447                                             In0[part]);
2448        else
2449          // Select between the current value and the previous incoming edge
2450          // based on the incoming mask.
2451          Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2452                                             Entry[part], "predphi");
2453      }
2454    }
2455    return;
2456  }
2457
2458  // This PHINode must be an induction variable.
2459  // Make sure that we know about it.
2460  assert(Legal->getInductionVars()->count(P) &&
2461         "Not an induction variable");
2462
2463  LoopVectorizationLegality::InductionInfo II =
2464  Legal->getInductionVars()->lookup(P);
2465
2466  switch (II.IK) {
2467    case LoopVectorizationLegality::IK_NoInduction:
2468      llvm_unreachable("Unknown induction");
2469    case LoopVectorizationLegality::IK_IntInduction: {
2470      assert(P->getType() == II.StartValue->getType() && "Types must match");
2471      Type *PhiTy = P->getType();
2472      Value *Broadcasted;
2473      if (P == OldInduction) {
2474        // Handle the canonical induction variable. We might have had to
2475        // extend the type.
2476        Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
2477      } else {
2478        // Handle other induction variables that are now based on the
2479        // canonical one.
2480        Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
2481                                                 "normalized.idx");
2482        NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
2483        Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
2484                                        "offset.idx");
2485      }
2486      Broadcasted = getBroadcastInstrs(Broadcasted);
2487      // After broadcasting the induction variable we need to make the vector
2488      // consecutive by adding 0, 1, 2, etc.
2489      for (unsigned part = 0; part < UF; ++part)
2490        Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
2491      return;
2492    }
2493    case LoopVectorizationLegality::IK_ReverseIntInduction:
2494    case LoopVectorizationLegality::IK_PtrInduction:
2495    case LoopVectorizationLegality::IK_ReversePtrInduction:
2496      // Handle reverse integer and pointer inductions.
2497      Value *StartIdx = ExtendedIdx;
2498      // This is the normalized GEP that starts counting at zero.
2499      Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
2500                                               "normalized.idx");
2501
2502      // Handle the reverse integer induction variable case.
2503      if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
2504        IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
2505        Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
2506                                               "resize.norm.idx");
2507        Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
2508                                               "reverse.idx");
2509
2510        // This is a new value so do not hoist it out.
2511        Value *Broadcasted = getBroadcastInstrs(ReverseInd);
2512        // After broadcasting the induction variable we need to make the
2513        // vector consecutive by adding  ... -3, -2, -1, 0.
2514        for (unsigned part = 0; part < UF; ++part)
2515          Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
2516                                             true);
2517        return;
2518      }
2519
2520      // Handle the pointer induction variable case.
2521      assert(P->getType()->isPointerTy() && "Unexpected type.");
2522
2523      // Is this a reverse induction ptr or a consecutive induction ptr.
2524      bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
2525                      II.IK);
2526
2527      // This is the vector of results. Notice that we don't generate
2528      // vector geps because scalar geps result in better code.
2529      for (unsigned part = 0; part < UF; ++part) {
2530        if (VF == 1) {
2531          int EltIndex = (part) * (Reverse ? -1 : 1);
2532          Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
2533          Value *GlobalIdx;
2534          if (Reverse)
2535            GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
2536          else
2537            GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
2538
2539          Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
2540                                             "next.gep");
2541          Entry[part] = SclrGep;
2542          continue;
2543        }
2544
2545        Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
2546        for (unsigned int i = 0; i < VF; ++i) {
2547          int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
2548          Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
2549          Value *GlobalIdx;
2550          if (!Reverse)
2551            GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
2552          else
2553            GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
2554
2555          Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
2556                                             "next.gep");
2557          VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
2558                                               Builder.getInt32(i),
2559                                               "insert.gep");
2560        }
2561        Entry[part] = VecVal;
2562      }
2563      return;
2564  }
2565}
2566
2567void
2568InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
2569                                          BasicBlock *BB, PhiVector *PV) {
2570  // For each instruction in the old loop.
2571  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2572    VectorParts &Entry = WidenMap.get(it);
2573    switch (it->getOpcode()) {
2574    case Instruction::Br:
2575      // Nothing to do for PHIs and BR, since we already took care of the
2576      // loop control flow instructions.
2577      continue;
2578    case Instruction::PHI:{
2579      // Vectorize PHINodes.
2580      widenPHIInstruction(it, Entry, Legal, UF, VF, PV);
2581      continue;
2582    }// End of PHI.
2583
2584    case Instruction::Add:
2585    case Instruction::FAdd:
2586    case Instruction::Sub:
2587    case Instruction::FSub:
2588    case Instruction::Mul:
2589    case Instruction::FMul:
2590    case Instruction::UDiv:
2591    case Instruction::SDiv:
2592    case Instruction::FDiv:
2593    case Instruction::URem:
2594    case Instruction::SRem:
2595    case Instruction::FRem:
2596    case Instruction::Shl:
2597    case Instruction::LShr:
2598    case Instruction::AShr:
2599    case Instruction::And:
2600    case Instruction::Or:
2601    case Instruction::Xor: {
2602      // Just widen binops.
2603      BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
2604      setDebugLocFromInst(Builder, BinOp);
2605      VectorParts &A = getVectorValue(it->getOperand(0));
2606      VectorParts &B = getVectorValue(it->getOperand(1));
2607
2608      // Use this vector value for all users of the original instruction.
2609      for (unsigned Part = 0; Part < UF; ++Part) {
2610        Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
2611
2612        // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
2613        BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
2614        if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
2615          VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
2616          VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
2617        }
2618        if (VecOp && isa<PossiblyExactOperator>(VecOp))
2619          VecOp->setIsExact(BinOp->isExact());
2620
2621        Entry[Part] = V;
2622      }
2623      break;
2624    }
2625    case Instruction::Select: {
2626      // Widen selects.
2627      // If the selector is loop invariant we can create a select
2628      // instruction with a scalar condition. Otherwise, use vector-select.
2629      bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
2630                                               OrigLoop);
2631      setDebugLocFromInst(Builder, it);
2632
2633      // The condition can be loop invariant  but still defined inside the
2634      // loop. This means that we can't just use the original 'cond' value.
2635      // We have to take the 'vectorized' value and pick the first lane.
2636      // Instcombine will make this a no-op.
2637      VectorParts &Cond = getVectorValue(it->getOperand(0));
2638      VectorParts &Op0  = getVectorValue(it->getOperand(1));
2639      VectorParts &Op1  = getVectorValue(it->getOperand(2));
2640
2641      Value *ScalarCond = (VF == 1) ? Cond[0] :
2642        Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
2643
2644      for (unsigned Part = 0; Part < UF; ++Part) {
2645        Entry[Part] = Builder.CreateSelect(
2646          InvariantCond ? ScalarCond : Cond[Part],
2647          Op0[Part],
2648          Op1[Part]);
2649      }
2650      break;
2651    }
2652
2653    case Instruction::ICmp:
2654    case Instruction::FCmp: {
2655      // Widen compares. Generate vector compares.
2656      bool FCmp = (it->getOpcode() == Instruction::FCmp);
2657      CmpInst *Cmp = dyn_cast<CmpInst>(it);
2658      setDebugLocFromInst(Builder, it);
2659      VectorParts &A = getVectorValue(it->getOperand(0));
2660      VectorParts &B = getVectorValue(it->getOperand(1));
2661      for (unsigned Part = 0; Part < UF; ++Part) {
2662        Value *C = 0;
2663        if (FCmp)
2664          C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
2665        else
2666          C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
2667        Entry[Part] = C;
2668      }
2669      break;
2670    }
2671
2672    case Instruction::Store:
2673    case Instruction::Load:
2674        vectorizeMemoryInstruction(it, Legal);
2675        break;
2676    case Instruction::ZExt:
2677    case Instruction::SExt:
2678    case Instruction::FPToUI:
2679    case Instruction::FPToSI:
2680    case Instruction::FPExt:
2681    case Instruction::PtrToInt:
2682    case Instruction::IntToPtr:
2683    case Instruction::SIToFP:
2684    case Instruction::UIToFP:
2685    case Instruction::Trunc:
2686    case Instruction::FPTrunc:
2687    case Instruction::BitCast: {
2688      CastInst *CI = dyn_cast<CastInst>(it);
2689      setDebugLocFromInst(Builder, it);
2690      /// Optimize the special case where the source is the induction
2691      /// variable. Notice that we can only optimize the 'trunc' case
2692      /// because: a. FP conversions lose precision, b. sext/zext may wrap,
2693      /// c. other casts depend on pointer size.
2694      if (CI->getOperand(0) == OldInduction &&
2695          it->getOpcode() == Instruction::Trunc) {
2696        Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
2697                                               CI->getType());
2698        Value *Broadcasted = getBroadcastInstrs(ScalarCast);
2699        for (unsigned Part = 0; Part < UF; ++Part)
2700          Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
2701        break;
2702      }
2703      /// Vectorize casts.
2704      Type *DestTy = (VF == 1) ? CI->getType() :
2705                                 VectorType::get(CI->getType(), VF);
2706
2707      VectorParts &A = getVectorValue(it->getOperand(0));
2708      for (unsigned Part = 0; Part < UF; ++Part)
2709        Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
2710      break;
2711    }
2712
2713    case Instruction::Call: {
2714      // Ignore dbg intrinsics.
2715      if (isa<DbgInfoIntrinsic>(it))
2716        break;
2717      setDebugLocFromInst(Builder, it);
2718
2719      Module *M = BB->getParent()->getParent();
2720      CallInst *CI = cast<CallInst>(it);
2721      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
2722      assert(ID && "Not an intrinsic call!");
2723      switch (ID) {
2724      case Intrinsic::lifetime_end:
2725      case Intrinsic::lifetime_start:
2726        scalarizeInstruction(it);
2727        break;
2728      default:
2729        for (unsigned Part = 0; Part < UF; ++Part) {
2730          SmallVector<Value *, 4> Args;
2731          for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
2732            VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
2733            Args.push_back(Arg[Part]);
2734          }
2735          Type *Tys[] = {CI->getType()};
2736          if (VF > 1)
2737            Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF);
2738
2739          Function *F = Intrinsic::getDeclaration(M, ID, Tys);
2740          Entry[Part] = Builder.CreateCall(F, Args);
2741        }
2742        break;
2743      }
2744      break;
2745    }
2746
2747    default:
2748      // All other instructions are unsupported. Scalarize them.
2749      scalarizeInstruction(it);
2750      break;
2751    }// end of switch.
2752  }// end of for_each instr.
2753}
2754
2755void InnerLoopVectorizer::updateAnalysis() {
2756  // Forget the original basic block.
2757  SE->forgetLoop(OrigLoop);
2758
2759  // Update the dominator tree information.
2760  assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
2761         "Entry does not dominate exit.");
2762
2763  for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2764    DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
2765  DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
2766  DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
2767  DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
2768  DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
2769  DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
2770  DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2771
2772  DEBUG(DT->verifyAnalysis());
2773}
2774
2775bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
2776  if (!EnableIfConversion)
2777    return false;
2778
2779  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
2780
2781  // A list of pointers that we can safely read and write to.
2782  SmallPtrSet<Value *, 8> SafePointes;
2783
2784  // Collect safe addresses.
2785  for (Loop::block_iterator BI = TheLoop->block_begin(),
2786         BE = TheLoop->block_end(); BI != BE; ++BI) {
2787    BasicBlock *BB = *BI;
2788
2789    if (blockNeedsPredication(BB))
2790      continue;
2791
2792    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2793      if (LoadInst *LI = dyn_cast<LoadInst>(I))
2794        SafePointes.insert(LI->getPointerOperand());
2795      else if (StoreInst *SI = dyn_cast<StoreInst>(I))
2796        SafePointes.insert(SI->getPointerOperand());
2797    }
2798  }
2799
2800  // Collect the blocks that need predication.
2801  for (Loop::block_iterator BI = TheLoop->block_begin(),
2802         BE = TheLoop->block_end(); BI != BE; ++BI) {
2803    BasicBlock *BB = *BI;
2804
2805    // We don't support switch statements inside loops.
2806    if (!isa<BranchInst>(BB->getTerminator()))
2807      return false;
2808
2809    // We must be able to predicate all blocks that need to be predicated.
2810    if (blockNeedsPredication(BB) && !blockCanBePredicated(BB, SafePointes))
2811      return false;
2812  }
2813
2814  // We can if-convert this loop.
2815  return true;
2816}
2817
2818bool LoopVectorizationLegality::canVectorize() {
2819  // We must have a loop in canonical form. Loops with indirectbr in them cannot
2820  // be canonicalized.
2821  if (!TheLoop->getLoopPreheader())
2822    return false;
2823
2824  // We can only vectorize innermost loops.
2825  if (TheLoop->getSubLoopsVector().size())
2826    return false;
2827
2828  // We must have a single backedge.
2829  if (TheLoop->getNumBackEdges() != 1)
2830    return false;
2831
2832  // We must have a single exiting block.
2833  if (!TheLoop->getExitingBlock())
2834    return false;
2835
2836  // We need to have a loop header.
2837  DEBUG(dbgs() << "LV: Found a loop: " <<
2838        TheLoop->getHeader()->getName() << '\n');
2839
2840  // Check if we can if-convert non single-bb loops.
2841  unsigned NumBlocks = TheLoop->getNumBlocks();
2842  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
2843    DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
2844    return false;
2845  }
2846
2847  // ScalarEvolution needs to be able to find the exit count.
2848  const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
2849  if (ExitCount == SE->getCouldNotCompute()) {
2850    DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
2851    return false;
2852  }
2853
2854  // Do not loop-vectorize loops with a tiny trip count.
2855  BasicBlock *Latch = TheLoop->getLoopLatch();
2856  unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
2857  if (TC > 0u && TC < TinyTripCountVectorThreshold) {
2858    DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
2859          "This loop is not worth vectorizing.\n");
2860    return false;
2861  }
2862
2863  // Check if we can vectorize the instructions and CFG in this loop.
2864  if (!canVectorizeInstrs()) {
2865    DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
2866    return false;
2867  }
2868
2869  // Go over each instruction and look at memory deps.
2870  if (!canVectorizeMemory()) {
2871    DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
2872    return false;
2873  }
2874
2875  // Collect all of the variables that remain uniform after vectorization.
2876  collectLoopUniforms();
2877
2878  DEBUG(dbgs() << "LV: We can vectorize this loop" <<
2879        (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
2880        <<"!\n");
2881
2882  // Okay! We can vectorize. At this point we don't have any other mem analysis
2883  // which may limit our maximum vectorization factor, so just return true with
2884  // no restrictions.
2885  return true;
2886}
2887
2888static Type *convertPointerToIntegerType(DataLayout &DL, Type *Ty) {
2889  if (Ty->isPointerTy())
2890    return DL.getIntPtrType(Ty);
2891
2892  // It is possible that char's or short's overflow when we ask for the loop's
2893  // trip count, work around this by changing the type size.
2894  if (Ty->getScalarSizeInBits() < 32)
2895    return Type::getInt32Ty(Ty->getContext());
2896
2897  return Ty;
2898}
2899
2900static Type* getWiderType(DataLayout &DL, Type *Ty0, Type *Ty1) {
2901  Ty0 = convertPointerToIntegerType(DL, Ty0);
2902  Ty1 = convertPointerToIntegerType(DL, Ty1);
2903  if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
2904    return Ty0;
2905  return Ty1;
2906}
2907
2908/// \brief Check that the instruction has outside loop users and is not an
2909/// identified reduction variable.
2910static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
2911                               SmallPtrSet<Value *, 4> &Reductions) {
2912  // Reduction instructions are allowed to have exit users. All other
2913  // instructions must not have external users.
2914  if (!Reductions.count(Inst))
2915    //Check that all of the users of the loop are inside the BB.
2916    for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
2917         I != E; ++I) {
2918      Instruction *U = cast<Instruction>(*I);
2919      // This user may be a reduction exit value.
2920      if (!TheLoop->contains(U)) {
2921        DEBUG(dbgs() << "LV: Found an outside user for : " << *U << '\n');
2922        return true;
2923      }
2924    }
2925  return false;
2926}
2927
2928bool LoopVectorizationLegality::canVectorizeInstrs() {
2929  BasicBlock *PreHeader = TheLoop->getLoopPreheader();
2930  BasicBlock *Header = TheLoop->getHeader();
2931
2932  // Look for the attribute signaling the absence of NaNs.
2933  Function &F = *Header->getParent();
2934  if (F.hasFnAttribute("no-nans-fp-math"))
2935    HasFunNoNaNAttr = F.getAttributes().getAttribute(
2936      AttributeSet::FunctionIndex,
2937      "no-nans-fp-math").getValueAsString() == "true";
2938
2939  // For each block in the loop.
2940  for (Loop::block_iterator bb = TheLoop->block_begin(),
2941       be = TheLoop->block_end(); bb != be; ++bb) {
2942
2943    // Scan the instructions in the block and look for hazards.
2944    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2945         ++it) {
2946
2947      if (PHINode *Phi = dyn_cast<PHINode>(it)) {
2948        Type *PhiTy = Phi->getType();
2949        // Check that this PHI type is allowed.
2950        if (!PhiTy->isIntegerTy() &&
2951            !PhiTy->isFloatingPointTy() &&
2952            !PhiTy->isPointerTy()) {
2953          DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
2954          return false;
2955        }
2956
2957        // If this PHINode is not in the header block, then we know that we
2958        // can convert it to select during if-conversion. No need to check if
2959        // the PHIs in this block are induction or reduction variables.
2960        if (*bb != Header) {
2961          // Check that this instruction has no outside users or is an
2962          // identified reduction value with an outside user.
2963          if(!hasOutsideLoopUser(TheLoop, it, AllowedExit))
2964            continue;
2965          return false;
2966        }
2967
2968        // We only allow if-converted PHIs with more than two incoming values.
2969        if (Phi->getNumIncomingValues() != 2) {
2970          DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
2971          return false;
2972        }
2973
2974        // This is the value coming from the preheader.
2975        Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
2976        // Check if this is an induction variable.
2977        InductionKind IK = isInductionVariable(Phi);
2978
2979        if (IK_NoInduction != IK) {
2980          // Get the widest type.
2981          if (!WidestIndTy)
2982            WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
2983          else
2984            WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
2985
2986          // Int inductions are special because we only allow one IV.
2987          if (IK == IK_IntInduction) {
2988            // Use the phi node with the widest type as induction. Use the last
2989            // one if there are multiple (no good reason for doing this other
2990            // than it is expedient).
2991            if (!Induction || PhiTy == WidestIndTy)
2992              Induction = Phi;
2993          }
2994
2995          DEBUG(dbgs() << "LV: Found an induction variable.\n");
2996          Inductions[Phi] = InductionInfo(StartValue, IK);
2997
2998          // Until we explicitly handle the case of an induction variable with
2999          // an outside loop user we have to give up vectorizing this loop.
3000          if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
3001            return false;
3002
3003          continue;
3004        }
3005
3006        if (AddReductionVar(Phi, RK_IntegerAdd)) {
3007          DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
3008          continue;
3009        }
3010        if (AddReductionVar(Phi, RK_IntegerMult)) {
3011          DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
3012          continue;
3013        }
3014        if (AddReductionVar(Phi, RK_IntegerOr)) {
3015          DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
3016          continue;
3017        }
3018        if (AddReductionVar(Phi, RK_IntegerAnd)) {
3019          DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
3020          continue;
3021        }
3022        if (AddReductionVar(Phi, RK_IntegerXor)) {
3023          DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
3024          continue;
3025        }
3026        if (AddReductionVar(Phi, RK_IntegerMinMax)) {
3027          DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
3028          continue;
3029        }
3030        if (AddReductionVar(Phi, RK_FloatMult)) {
3031          DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
3032          continue;
3033        }
3034        if (AddReductionVar(Phi, RK_FloatAdd)) {
3035          DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
3036          continue;
3037        }
3038        if (AddReductionVar(Phi, RK_FloatMinMax)) {
3039          DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
3040                "\n");
3041          continue;
3042        }
3043
3044        DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
3045        return false;
3046      }// end of PHI handling
3047
3048      // We still don't handle functions. However, we can ignore dbg intrinsic
3049      // calls and we do handle certain intrinsic and libm functions.
3050      CallInst *CI = dyn_cast<CallInst>(it);
3051      if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
3052        DEBUG(dbgs() << "LV: Found a call site.\n");
3053        return false;
3054      }
3055
3056      // Check that the instruction return type is vectorizable.
3057      // Also, we can't vectorize extractelement instructions.
3058      if ((!VectorType::isValidElementType(it->getType()) &&
3059           !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
3060        DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
3061        return false;
3062      }
3063
3064      // Check that the stored type is vectorizable.
3065      if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
3066        Type *T = ST->getValueOperand()->getType();
3067        if (!VectorType::isValidElementType(T))
3068          return false;
3069      }
3070
3071      // Reduction instructions are allowed to have exit users.
3072      // All other instructions must not have external users.
3073      if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
3074        return false;
3075
3076    } // next instr.
3077
3078  }
3079
3080  if (!Induction) {
3081    DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
3082    if (Inductions.empty())
3083      return false;
3084  }
3085
3086  return true;
3087}
3088
3089void LoopVectorizationLegality::collectLoopUniforms() {
3090  // We now know that the loop is vectorizable!
3091  // Collect variables that will remain uniform after vectorization.
3092  std::vector<Value*> Worklist;
3093  BasicBlock *Latch = TheLoop->getLoopLatch();
3094
3095  // Start with the conditional branch and walk up the block.
3096  Worklist.push_back(Latch->getTerminator()->getOperand(0));
3097
3098  while (Worklist.size()) {
3099    Instruction *I = dyn_cast<Instruction>(Worklist.back());
3100    Worklist.pop_back();
3101
3102    // Look at instructions inside this loop.
3103    // Stop when reaching PHI nodes.
3104    // TODO: we need to follow values all over the loop, not only in this block.
3105    if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
3106      continue;
3107
3108    // This is a known uniform.
3109    Uniforms.insert(I);
3110
3111    // Insert all operands.
3112    Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
3113  }
3114}
3115
3116namespace {
3117/// \brief Analyses memory accesses in a loop.
3118///
3119/// Checks whether run time pointer checks are needed and builds sets for data
3120/// dependence checking.
3121class AccessAnalysis {
3122public:
3123  /// \brief Read or write access location.
3124  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
3125  typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
3126
3127  /// \brief Set of potential dependent memory accesses.
3128  typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
3129
3130  AccessAnalysis(DataLayout *Dl, DepCandidates &DA) :
3131    DL(Dl), DepCands(DA), AreAllWritesIdentified(true),
3132    AreAllReadsIdentified(true), IsRTCheckNeeded(false) {}
3133
3134  /// \brief Register a load  and whether it is only read from.
3135  void addLoad(Value *Ptr, bool IsReadOnly) {
3136    Accesses.insert(MemAccessInfo(Ptr, false));
3137    if (IsReadOnly)
3138      ReadOnlyPtr.insert(Ptr);
3139  }
3140
3141  /// \brief Register a store.
3142  void addStore(Value *Ptr) {
3143    Accesses.insert(MemAccessInfo(Ptr, true));
3144  }
3145
3146  /// \brief Check whether we can check the pointers at runtime for
3147  /// non-intersection.
3148  bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
3149                       unsigned &NumComparisons, ScalarEvolution *SE,
3150                       Loop *TheLoop, bool ShouldCheckStride = false);
3151
3152  /// \brief Goes over all memory accesses, checks whether a RT check is needed
3153  /// and builds sets of dependent accesses.
3154  void buildDependenceSets() {
3155    // Process read-write pointers first.
3156    processMemAccesses(false);
3157    // Next, process read pointers.
3158    processMemAccesses(true);
3159  }
3160
3161  bool isRTCheckNeeded() { return IsRTCheckNeeded; }
3162
3163  bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
3164  void resetDepChecks() { CheckDeps.clear(); }
3165
3166  MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
3167
3168private:
3169  typedef SetVector<MemAccessInfo> PtrAccessSet;
3170  typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
3171
3172  /// \brief Go over all memory access or only the deferred ones if
3173  /// \p UseDeferred is true and check whether runtime pointer checks are needed
3174  /// and build sets of dependency check candidates.
3175  void processMemAccesses(bool UseDeferred);
3176
3177  /// Set of all accesses.
3178  PtrAccessSet Accesses;
3179
3180  /// Set of access to check after all writes have been processed.
3181  PtrAccessSet DeferredAccesses;
3182
3183  /// Map of pointers to last access encountered.
3184  UnderlyingObjToAccessMap ObjToLastAccess;
3185
3186  /// Set of accesses that need a further dependence check.
3187  MemAccessInfoSet CheckDeps;
3188
3189  /// Set of pointers that are read only.
3190  SmallPtrSet<Value*, 16> ReadOnlyPtr;
3191
3192  /// Set of underlying objects already written to.
3193  SmallPtrSet<Value*, 16> WriteObjects;
3194
3195  DataLayout *DL;
3196
3197  /// Sets of potentially dependent accesses - members of one set share an
3198  /// underlying pointer. The set "CheckDeps" identfies which sets really need a
3199  /// dependence check.
3200  DepCandidates &DepCands;
3201
3202  bool AreAllWritesIdentified;
3203  bool AreAllReadsIdentified;
3204  bool IsRTCheckNeeded;
3205};
3206
3207} // end anonymous namespace
3208
3209/// \brief Check whether a pointer can participate in a runtime bounds check.
3210static bool hasComputableBounds(ScalarEvolution *SE, Value *Ptr) {
3211  const SCEV *PtrScev = SE->getSCEV(Ptr);
3212  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
3213  if (!AR)
3214    return false;
3215
3216  return AR->isAffine();
3217}
3218
3219/// \brief Check the stride of the pointer and ensure that it does not wrap in
3220/// the address space.
3221static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
3222                        const Loop *Lp);
3223
3224bool AccessAnalysis::canCheckPtrAtRT(
3225                       LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
3226                        unsigned &NumComparisons, ScalarEvolution *SE,
3227                        Loop *TheLoop, bool ShouldCheckStride) {
3228  // Find pointers with computable bounds. We are going to use this information
3229  // to place a runtime bound check.
3230  unsigned NumReadPtrChecks = 0;
3231  unsigned NumWritePtrChecks = 0;
3232  bool CanDoRT = true;
3233
3234  bool IsDepCheckNeeded = isDependencyCheckNeeded();
3235  // We assign consecutive id to access from different dependence sets.
3236  // Accesses within the same set don't need a runtime check.
3237  unsigned RunningDepId = 1;
3238  DenseMap<Value *, unsigned> DepSetId;
3239
3240  for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end();
3241       AI != AE; ++AI) {
3242    const MemAccessInfo &Access = *AI;
3243    Value *Ptr = Access.getPointer();
3244    bool IsWrite = Access.getInt();
3245
3246    // Just add write checks if we have both.
3247    if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true)))
3248      continue;
3249
3250    if (IsWrite)
3251      ++NumWritePtrChecks;
3252    else
3253      ++NumReadPtrChecks;
3254
3255    if (hasComputableBounds(SE, Ptr) &&
3256        // When we run after a failing dependency check we have to make sure we
3257        // don't have wrapping pointers.
3258        (!ShouldCheckStride || isStridedPtr(SE, DL, Ptr, TheLoop) == 1)) {
3259      // The id of the dependence set.
3260      unsigned DepId;
3261
3262      if (IsDepCheckNeeded) {
3263        Value *Leader = DepCands.getLeaderValue(Access).getPointer();
3264        unsigned &LeaderId = DepSetId[Leader];
3265        if (!LeaderId)
3266          LeaderId = RunningDepId++;
3267        DepId = LeaderId;
3268      } else
3269        // Each access has its own dependence set.
3270        DepId = RunningDepId++;
3271
3272      RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId);
3273
3274      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
3275    } else {
3276      CanDoRT = false;
3277    }
3278  }
3279
3280  if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
3281    NumComparisons = 0; // Only one dependence set.
3282  else {
3283    NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks +
3284                                           NumWritePtrChecks - 1));
3285  }
3286
3287  // If the pointers that we would use for the bounds comparison have different
3288  // address spaces, assume the values aren't directly comparable, so we can't
3289  // use them for the runtime check. We also have to assume they could
3290  // overlap. In the future there should be metadata for whether address spaces
3291  // are disjoint.
3292  unsigned NumPointers = RtCheck.Pointers.size();
3293  for (unsigned i = 0; i < NumPointers; ++i) {
3294    for (unsigned j = i + 1; j < NumPointers; ++j) {
3295      // Only need to check pointers between two different dependency sets.
3296      if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
3297       continue;
3298
3299      Value *PtrI = RtCheck.Pointers[i];
3300      Value *PtrJ = RtCheck.Pointers[j];
3301
3302      unsigned ASi = PtrI->getType()->getPointerAddressSpace();
3303      unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
3304      if (ASi != ASj) {
3305        DEBUG(dbgs() << "LV: Runtime check would require comparison between"
3306                       " different address spaces\n");
3307        return false;
3308      }
3309    }
3310  }
3311
3312  return CanDoRT;
3313}
3314
3315static bool isFunctionScopeIdentifiedObject(Value *Ptr) {
3316  return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr);
3317}
3318
3319void AccessAnalysis::processMemAccesses(bool UseDeferred) {
3320  // We process the set twice: first we process read-write pointers, last we
3321  // process read-only pointers. This allows us to skip dependence tests for
3322  // read-only pointers.
3323
3324  PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
3325  for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) {
3326    const MemAccessInfo &Access = *AI;
3327    Value *Ptr = Access.getPointer();
3328    bool IsWrite = Access.getInt();
3329
3330    DepCands.insert(Access);
3331
3332    // Memorize read-only pointers for later processing and skip them in the
3333    // first round (they need to be checked after we have seen all write
3334    // pointers). Note: we also mark pointer that are not consecutive as
3335    // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the
3336    // second check for "!IsWrite".
3337    bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
3338    if (!UseDeferred && IsReadOnlyPtr) {
3339      DeferredAccesses.insert(Access);
3340      continue;
3341    }
3342
3343    bool NeedDepCheck = false;
3344    // Check whether there is the possiblity of dependency because of underlying
3345    // objects being the same.
3346    typedef SmallVector<Value*, 16> ValueVector;
3347    ValueVector TempObjects;
3348    GetUnderlyingObjects(Ptr, TempObjects, DL);
3349    for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end();
3350         UI != UE; ++UI) {
3351      Value *UnderlyingObj = *UI;
3352
3353      // If this is a write then it needs to be an identified object.  If this a
3354      // read and all writes (so far) are identified function scope objects we
3355      // don't need an identified underlying object but only an Argument (the
3356      // next write is going to invalidate this assumption if it is
3357      // unidentified).
3358      // This is a micro-optimization for the case where all writes are
3359      // identified and we have one argument pointer.
3360      // Otherwise, we do need a runtime check.
3361      if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) ||
3362          (!IsWrite && (!AreAllWritesIdentified ||
3363                        !isa<Argument>(UnderlyingObj)) &&
3364           !isIdentifiedObject(UnderlyingObj))) {
3365        DEBUG(dbgs() << "LV: Found an unidentified " <<
3366              (IsWrite ?  "write" : "read" ) << " ptr: " << *UnderlyingObj <<
3367              "\n");
3368        IsRTCheckNeeded = (IsRTCheckNeeded ||
3369                           !isIdentifiedObject(UnderlyingObj) ||
3370                           !AreAllReadsIdentified);
3371
3372        if (IsWrite)
3373          AreAllWritesIdentified = false;
3374        if (!IsWrite)
3375          AreAllReadsIdentified = false;
3376      }
3377
3378      // If this is a write - check other reads and writes for conflicts.  If
3379      // this is a read only check other writes for conflicts (but only if there
3380      // is no other write to the ptr - this is an optimization to catch "a[i] =
3381      // a[i] + " without having to do a dependence check).
3382      if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj))
3383        NeedDepCheck = true;
3384
3385      if (IsWrite)
3386        WriteObjects.insert(UnderlyingObj);
3387
3388      // Create sets of pointers connected by shared underlying objects.
3389      UnderlyingObjToAccessMap::iterator Prev =
3390        ObjToLastAccess.find(UnderlyingObj);
3391      if (Prev != ObjToLastAccess.end())
3392        DepCands.unionSets(Access, Prev->second);
3393
3394      ObjToLastAccess[UnderlyingObj] = Access;
3395    }
3396
3397    if (NeedDepCheck)
3398      CheckDeps.insert(Access);
3399  }
3400}
3401
3402namespace {
3403/// \brief Checks memory dependences among accesses to the same underlying
3404/// object to determine whether there vectorization is legal or not (and at
3405/// which vectorization factor).
3406///
3407/// This class works under the assumption that we already checked that memory
3408/// locations with different underlying pointers are "must-not alias".
3409/// We use the ScalarEvolution framework to symbolically evalutate access
3410/// functions pairs. Since we currently don't restructure the loop we can rely
3411/// on the program order of memory accesses to determine their safety.
3412/// At the moment we will only deem accesses as safe for:
3413///  * A negative constant distance assuming program order.
3414///
3415///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
3416///            a[i] = tmp;                y = a[i];
3417///
3418///   The latter case is safe because later checks guarantuee that there can't
3419///   be a cycle through a phi node (that is, we check that "x" and "y" is not
3420///   the same variable: a header phi can only be an induction or a reduction, a
3421///   reduction can't have a memory sink, an induction can't have a memory
3422///   source). This is important and must not be violated (or we have to
3423///   resort to checking for cycles through memory).
3424///
3425///  * A positive constant distance assuming program order that is bigger
3426///    than the biggest memory access.
3427///
3428///     tmp = a[i]        OR              b[i] = x
3429///     a[i+2] = tmp                      y = b[i+2];
3430///
3431///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
3432///
3433///  * Zero distances and all accesses have the same size.
3434///
3435class MemoryDepChecker {
3436public:
3437  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
3438  typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
3439
3440  MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L)
3441      : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
3442        ShouldRetryWithRuntimeCheck(false) {}
3443
3444  /// \brief Register the location (instructions are given increasing numbers)
3445  /// of a write access.
3446  void addAccess(StoreInst *SI) {
3447    Value *Ptr = SI->getPointerOperand();
3448    Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
3449    InstMap.push_back(SI);
3450    ++AccessIdx;
3451  }
3452
3453  /// \brief Register the location (instructions are given increasing numbers)
3454  /// of a write access.
3455  void addAccess(LoadInst *LI) {
3456    Value *Ptr = LI->getPointerOperand();
3457    Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
3458    InstMap.push_back(LI);
3459    ++AccessIdx;
3460  }
3461
3462  /// \brief Check whether the dependencies between the accesses are safe.
3463  ///
3464  /// Only checks sets with elements in \p CheckDeps.
3465  bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3466                   MemAccessInfoSet &CheckDeps);
3467
3468  /// \brief The maximum number of bytes of a vector register we can vectorize
3469  /// the accesses safely with.
3470  unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
3471
3472  /// \brief In same cases when the dependency check fails we can still
3473  /// vectorize the loop with a dynamic array access check.
3474  bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
3475
3476private:
3477  ScalarEvolution *SE;
3478  DataLayout *DL;
3479  const Loop *InnermostLoop;
3480
3481  /// \brief Maps access locations (ptr, read/write) to program order.
3482  DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
3483
3484  /// \brief Memory access instructions in program order.
3485  SmallVector<Instruction *, 16> InstMap;
3486
3487  /// \brief The program order index to be used for the next instruction.
3488  unsigned AccessIdx;
3489
3490  // We can access this many bytes in parallel safely.
3491  unsigned MaxSafeDepDistBytes;
3492
3493  /// \brief If we see a non constant dependence distance we can still try to
3494  /// vectorize this loop with runtime checks.
3495  bool ShouldRetryWithRuntimeCheck;
3496
3497  /// \brief Check whether there is a plausible dependence between the two
3498  /// accesses.
3499  ///
3500  /// Access \p A must happen before \p B in program order. The two indices
3501  /// identify the index into the program order map.
3502  ///
3503  /// This function checks  whether there is a plausible dependence (or the
3504  /// absence of such can't be proved) between the two accesses. If there is a
3505  /// plausible dependence but the dependence distance is bigger than one
3506  /// element access it records this distance in \p MaxSafeDepDistBytes (if this
3507  /// distance is smaller than any other distance encountered so far).
3508  /// Otherwise, this function returns true signaling a possible dependence.
3509  bool isDependent(const MemAccessInfo &A, unsigned AIdx,
3510                   const MemAccessInfo &B, unsigned BIdx);
3511
3512  /// \brief Check whether the data dependence could prevent store-load
3513  /// forwarding.
3514  bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
3515};
3516
3517} // end anonymous namespace
3518
3519static bool isInBoundsGep(Value *Ptr) {
3520  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
3521    return GEP->isInBounds();
3522  return false;
3523}
3524
3525/// \brief Check whether the access through \p Ptr has a constant stride.
3526static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
3527                        const Loop *Lp) {
3528  const Type *Ty = Ptr->getType();
3529  assert(Ty->isPointerTy() && "Unexpected non ptr");
3530
3531  // Make sure that the pointer does not point to aggregate types.
3532  const PointerType *PtrTy = cast<PointerType>(Ty);
3533  if (PtrTy->getElementType()->isAggregateType()) {
3534    DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
3535          "\n");
3536    return 0;
3537  }
3538
3539  const SCEV *PtrScev = SE->getSCEV(Ptr);
3540  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
3541  if (!AR) {
3542    DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
3543          << *Ptr << " SCEV: " << *PtrScev << "\n");
3544    return 0;
3545  }
3546
3547  // The accesss function must stride over the innermost loop.
3548  if (Lp != AR->getLoop()) {
3549    DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
3550          *Ptr << " SCEV: " << *PtrScev << "\n");
3551  }
3552
3553  // The address calculation must not wrap. Otherwise, a dependence could be
3554  // inverted.
3555  // An inbounds getelementptr that is a AddRec with a unit stride
3556  // cannot wrap per definition. The unit stride requirement is checked later.
3557  // An getelementptr without an inbounds attribute and unit stride would have
3558  // to access the pointer value "0" which is undefined behavior in address
3559  // space 0, therefore we can also vectorize this case.
3560  bool IsInBoundsGEP = isInBoundsGep(Ptr);
3561  bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
3562  bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
3563  if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
3564    DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
3565          << *Ptr << " SCEV: " << *PtrScev << "\n");
3566    return 0;
3567  }
3568
3569  // Check the step is constant.
3570  const SCEV *Step = AR->getStepRecurrence(*SE);
3571
3572  // Calculate the pointer stride and check if it is consecutive.
3573  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
3574  if (!C) {
3575    DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
3576          " SCEV: " << *PtrScev << "\n");
3577    return 0;
3578  }
3579
3580  int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
3581  const APInt &APStepVal = C->getValue()->getValue();
3582
3583  // Huge step value - give up.
3584  if (APStepVal.getBitWidth() > 64)
3585    return 0;
3586
3587  int64_t StepVal = APStepVal.getSExtValue();
3588
3589  // Strided access.
3590  int64_t Stride = StepVal / Size;
3591  int64_t Rem = StepVal % Size;
3592  if (Rem)
3593    return 0;
3594
3595  // If the SCEV could wrap but we have an inbounds gep with a unit stride we
3596  // know we can't "wrap around the address space". In case of address space
3597  // zero we know that this won't happen without triggering undefined behavior.
3598  if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
3599      Stride != 1 && Stride != -1)
3600    return 0;
3601
3602  return Stride;
3603}
3604
3605bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
3606                                                    unsigned TypeByteSize) {
3607  // If loads occur at a distance that is not a multiple of a feasible vector
3608  // factor store-load forwarding does not take place.
3609  // Positive dependences might cause troubles because vectorizing them might
3610  // prevent store-load forwarding making vectorized code run a lot slower.
3611  //   a[i] = a[i-3] ^ a[i-8];
3612  //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
3613  //   hence on your typical architecture store-load forwarding does not take
3614  //   place. Vectorizing in such cases does not make sense.
3615  // Store-load forwarding distance.
3616  const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
3617  // Maximum vector factor.
3618  unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
3619  if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
3620    MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
3621
3622  for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
3623       vf *= 2) {
3624    if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
3625      MaxVFWithoutSLForwardIssues = (vf >>=1);
3626      break;
3627    }
3628  }
3629
3630  if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
3631    DEBUG(dbgs() << "LV: Distance " << Distance <<
3632          " that could cause a store-load forwarding conflict\n");
3633    return true;
3634  }
3635
3636  if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
3637      MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
3638    MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
3639  return false;
3640}
3641
3642bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
3643                                   const MemAccessInfo &B, unsigned BIdx) {
3644  assert (AIdx < BIdx && "Must pass arguments in program order");
3645
3646  Value *APtr = A.getPointer();
3647  Value *BPtr = B.getPointer();
3648  bool AIsWrite = A.getInt();
3649  bool BIsWrite = B.getInt();
3650
3651  // Two reads are independent.
3652  if (!AIsWrite && !BIsWrite)
3653    return false;
3654
3655  const SCEV *AScev = SE->getSCEV(APtr);
3656  const SCEV *BScev = SE->getSCEV(BPtr);
3657
3658  int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop);
3659  int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop);
3660
3661  const SCEV *Src = AScev;
3662  const SCEV *Sink = BScev;
3663
3664  // If the induction step is negative we have to invert source and sink of the
3665  // dependence.
3666  if (StrideAPtr < 0) {
3667    //Src = BScev;
3668    //Sink = AScev;
3669    std::swap(APtr, BPtr);
3670    std::swap(Src, Sink);
3671    std::swap(AIsWrite, BIsWrite);
3672    std::swap(AIdx, BIdx);
3673    std::swap(StrideAPtr, StrideBPtr);
3674  }
3675
3676  const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
3677
3678  DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
3679        << "(Induction step: " << StrideAPtr <<  ")\n");
3680  DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
3681        << *InstMap[BIdx] << ": " << *Dist << "\n");
3682
3683  // Need consecutive accesses. We don't want to vectorize
3684  // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
3685  // the address space.
3686  if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
3687    DEBUG(dbgs() << "Non-consecutive pointer access\n");
3688    return true;
3689  }
3690
3691  const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
3692  if (!C) {
3693    DEBUG(dbgs() << "LV: Dependence because of non constant distance\n");
3694    ShouldRetryWithRuntimeCheck = true;
3695    return true;
3696  }
3697
3698  Type *ATy = APtr->getType()->getPointerElementType();
3699  Type *BTy = BPtr->getType()->getPointerElementType();
3700  unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
3701
3702  // Negative distances are not plausible dependencies.
3703  const APInt &Val = C->getValue()->getValue();
3704  if (Val.isNegative()) {
3705    bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
3706    if (IsTrueDataDependence &&
3707        (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
3708         ATy != BTy))
3709      return true;
3710
3711    DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
3712    return false;
3713  }
3714
3715  // Write to the same location with the same size.
3716  // Could be improved to assert type sizes are the same (i32 == float, etc).
3717  if (Val == 0) {
3718    if (ATy == BTy)
3719      return false;
3720    DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
3721    return true;
3722  }
3723
3724  assert(Val.isStrictlyPositive() && "Expect a positive value");
3725
3726  // Positive distance bigger than max vectorization factor.
3727  if (ATy != BTy) {
3728    DEBUG(dbgs() <<
3729          "LV: ReadWrite-Write positive dependency with different types\n");
3730    return false;
3731  }
3732
3733  unsigned Distance = (unsigned) Val.getZExtValue();
3734
3735  // Bail out early if passed-in parameters make vectorization not feasible.
3736  unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
3737  unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1;
3738
3739  // The distance must be bigger than the size needed for a vectorized version
3740  // of the operation and the size of the vectorized operation must not be
3741  // bigger than the currrent maximum size.
3742  if (Distance < 2*TypeByteSize ||
3743      2*TypeByteSize > MaxSafeDepDistBytes ||
3744      Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
3745    DEBUG(dbgs() << "LV: Failure because of Positive distance "
3746        << Val.getSExtValue() << '\n');
3747    return true;
3748  }
3749
3750  MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
3751    Distance : MaxSafeDepDistBytes;
3752
3753  bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
3754  if (IsTrueDataDependence &&
3755      couldPreventStoreLoadForward(Distance, TypeByteSize))
3756     return true;
3757
3758  DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
3759        " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
3760
3761  return false;
3762}
3763
3764bool
3765MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3766                              MemAccessInfoSet &CheckDeps) {
3767
3768  MaxSafeDepDistBytes = -1U;
3769  while (!CheckDeps.empty()) {
3770    MemAccessInfo CurAccess = *CheckDeps.begin();
3771
3772    // Get the relevant memory access set.
3773    EquivalenceClasses<MemAccessInfo>::iterator I =
3774      AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
3775
3776    // Check accesses within this set.
3777    EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
3778    AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
3779
3780    // Check every access pair.
3781    while (AI != AE) {
3782      CheckDeps.erase(*AI);
3783      EquivalenceClasses<MemAccessInfo>::member_iterator OI = llvm::next(AI);
3784      while (OI != AE) {
3785        // Check every accessing instruction pair in program order.
3786        for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
3787             I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
3788          for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
3789               I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
3790            if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2))
3791              return false;
3792            if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1))
3793              return false;
3794          }
3795        ++OI;
3796      }
3797      AI++;
3798    }
3799  }
3800  return true;
3801}
3802
3803bool LoopVectorizationLegality::canVectorizeMemory() {
3804
3805  typedef SmallVector<Value*, 16> ValueVector;
3806  typedef SmallPtrSet<Value*, 16> ValueSet;
3807
3808  // Holds the Load and Store *instructions*.
3809  ValueVector Loads;
3810  ValueVector Stores;
3811
3812  // Holds all the different accesses in the loop.
3813  unsigned NumReads = 0;
3814  unsigned NumReadWrites = 0;
3815
3816  PtrRtCheck.Pointers.clear();
3817  PtrRtCheck.Need = false;
3818
3819  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
3820  MemoryDepChecker DepChecker(SE, DL, TheLoop);
3821
3822  // For each block.
3823  for (Loop::block_iterator bb = TheLoop->block_begin(),
3824       be = TheLoop->block_end(); bb != be; ++bb) {
3825
3826    // Scan the BB and collect legal loads and stores.
3827    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3828         ++it) {
3829
3830      // If this is a load, save it. If this instruction can read from memory
3831      // but is not a load, then we quit. Notice that we don't handle function
3832      // calls that read or write.
3833      if (it->mayReadFromMemory()) {
3834        // Many math library functions read the rounding mode. We will only
3835        // vectorize a loop if it contains known function calls that don't set
3836        // the flag. Therefore, it is safe to ignore this read from memory.
3837        CallInst *Call = dyn_cast<CallInst>(it);
3838        if (Call && getIntrinsicIDForCall(Call, TLI))
3839          continue;
3840
3841        LoadInst *Ld = dyn_cast<LoadInst>(it);
3842        if (!Ld) return false;
3843        if (!Ld->isSimple() && !IsAnnotatedParallel) {
3844          DEBUG(dbgs() << "LV: Found a non-simple load.\n");
3845          return false;
3846        }
3847        Loads.push_back(Ld);
3848        DepChecker.addAccess(Ld);
3849        continue;
3850      }
3851
3852      // Save 'store' instructions. Abort if other instructions write to memory.
3853      if (it->mayWriteToMemory()) {
3854        StoreInst *St = dyn_cast<StoreInst>(it);
3855        if (!St) return false;
3856        if (!St->isSimple() && !IsAnnotatedParallel) {
3857          DEBUG(dbgs() << "LV: Found a non-simple store.\n");
3858          return false;
3859        }
3860        Stores.push_back(St);
3861        DepChecker.addAccess(St);
3862      }
3863    } // Next instr.
3864  } // Next block.
3865
3866  // Now we have two lists that hold the loads and the stores.
3867  // Next, we find the pointers that they use.
3868
3869  // Check if we see any stores. If there are no stores, then we don't
3870  // care if the pointers are *restrict*.
3871  if (!Stores.size()) {
3872    DEBUG(dbgs() << "LV: Found a read-only loop!\n");
3873    return true;
3874  }
3875
3876  AccessAnalysis::DepCandidates DependentAccesses;
3877  AccessAnalysis Accesses(DL, DependentAccesses);
3878
3879  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
3880  // multiple times on the same object. If the ptr is accessed twice, once
3881  // for read and once for write, it will only appear once (on the write
3882  // list). This is okay, since we are going to check for conflicts between
3883  // writes and between reads and writes, but not between reads and reads.
3884  ValueSet Seen;
3885
3886  ValueVector::iterator I, IE;
3887  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
3888    StoreInst *ST = cast<StoreInst>(*I);
3889    Value* Ptr = ST->getPointerOperand();
3890
3891    if (isUniform(Ptr)) {
3892      DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
3893      return false;
3894    }
3895
3896    // If we did *not* see this pointer before, insert it to  the read-write
3897    // list. At this phase it is only a 'write' list.
3898    if (Seen.insert(Ptr)) {
3899      ++NumReadWrites;
3900      Accesses.addStore(Ptr);
3901    }
3902  }
3903
3904  if (IsAnnotatedParallel) {
3905    DEBUG(dbgs()
3906          << "LV: A loop annotated parallel, ignore memory dependency "
3907          << "checks.\n");
3908    return true;
3909  }
3910
3911  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
3912    LoadInst *LD = cast<LoadInst>(*I);
3913    Value* Ptr = LD->getPointerOperand();
3914    // If we did *not* see this pointer before, insert it to the
3915    // read list. If we *did* see it before, then it is already in
3916    // the read-write list. This allows us to vectorize expressions
3917    // such as A[i] += x;  Because the address of A[i] is a read-write
3918    // pointer. This only works if the index of A[i] is consecutive.
3919    // If the address of i is unknown (for example A[B[i]]) then we may
3920    // read a few words, modify, and write a few words, and some of the
3921    // words may be written to the same address.
3922    bool IsReadOnlyPtr = false;
3923    if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop)) {
3924      ++NumReads;
3925      IsReadOnlyPtr = true;
3926    }
3927    Accesses.addLoad(Ptr, IsReadOnlyPtr);
3928  }
3929
3930  // If we write (or read-write) to a single destination and there are no
3931  // other reads in this loop then is it safe to vectorize.
3932  if (NumReadWrites == 1 && NumReads == 0) {
3933    DEBUG(dbgs() << "LV: Found a write-only loop!\n");
3934    return true;
3935  }
3936
3937  // Build dependence sets and check whether we need a runtime pointer bounds
3938  // check.
3939  Accesses.buildDependenceSets();
3940  bool NeedRTCheck = Accesses.isRTCheckNeeded();
3941
3942  // Find pointers with computable bounds. We are going to use this information
3943  // to place a runtime bound check.
3944  unsigned NumComparisons = 0;
3945  bool CanDoRT = false;
3946  if (NeedRTCheck)
3947    CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop);
3948
3949
3950  DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
3951        " pointer comparisons.\n");
3952
3953  // If we only have one set of dependences to check pointers among we don't
3954  // need a runtime check.
3955  if (NumComparisons == 0 && NeedRTCheck)
3956    NeedRTCheck = false;
3957
3958  // Check that we did not collect too many pointers or found an unsizeable
3959  // pointer.
3960  if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
3961    PtrRtCheck.reset();
3962    CanDoRT = false;
3963  }
3964
3965  if (CanDoRT) {
3966    DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
3967  }
3968
3969  if (NeedRTCheck && !CanDoRT) {
3970    DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
3971          "the array bounds.\n");
3972    PtrRtCheck.reset();
3973    return false;
3974  }
3975
3976  PtrRtCheck.Need = NeedRTCheck;
3977
3978  bool CanVecMem = true;
3979  if (Accesses.isDependencyCheckNeeded()) {
3980    DEBUG(dbgs() << "LV: Checking memory dependencies\n");
3981    CanVecMem = DepChecker.areDepsSafe(DependentAccesses,
3982                                       Accesses.getDependenciesToCheck());
3983    MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
3984
3985    if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
3986      DEBUG(dbgs() << "LV: Retrying with memory checks\n");
3987      NeedRTCheck = true;
3988
3989      // Clear the dependency checks. We assume they are not needed.
3990      Accesses.resetDepChecks();
3991
3992      PtrRtCheck.reset();
3993      PtrRtCheck.Need = true;
3994
3995      CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
3996                                         TheLoop, true);
3997      // Check that we did not collect too many pointers or found an unsizeable
3998      // pointer.
3999      if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
4000        DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
4001        PtrRtCheck.reset();
4002        return false;
4003      }
4004
4005      CanVecMem = true;
4006    }
4007  }
4008
4009  DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
4010        " need a runtime memory check.\n");
4011
4012  return CanVecMem;
4013}
4014
4015static bool hasMultipleUsesOf(Instruction *I,
4016                              SmallPtrSet<Instruction *, 8> &Insts) {
4017  unsigned NumUses = 0;
4018  for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
4019    if (Insts.count(dyn_cast<Instruction>(*Use)))
4020      ++NumUses;
4021    if (NumUses > 1)
4022      return true;
4023  }
4024
4025  return false;
4026}
4027
4028static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) {
4029  for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
4030    if (!Set.count(dyn_cast<Instruction>(*Use)))
4031      return false;
4032  return true;
4033}
4034
4035bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
4036                                                ReductionKind Kind) {
4037  if (Phi->getNumIncomingValues() != 2)
4038    return false;
4039
4040  // Reduction variables are only found in the loop header block.
4041  if (Phi->getParent() != TheLoop->getHeader())
4042    return false;
4043
4044  // Obtain the reduction start value from the value that comes from the loop
4045  // preheader.
4046  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
4047
4048  // ExitInstruction is the single value which is used outside the loop.
4049  // We only allow for a single reduction value to be used outside the loop.
4050  // This includes users of the reduction, variables (which form a cycle
4051  // which ends in the phi node).
4052  Instruction *ExitInstruction = 0;
4053  // Indicates that we found a reduction operation in our scan.
4054  bool FoundReduxOp = false;
4055
4056  // We start with the PHI node and scan for all of the users of this
4057  // instruction. All users must be instructions that can be used as reduction
4058  // variables (such as ADD). We must have a single out-of-block user. The cycle
4059  // must include the original PHI.
4060  bool FoundStartPHI = false;
4061
4062  // To recognize min/max patterns formed by a icmp select sequence, we store
4063  // the number of instruction we saw from the recognized min/max pattern,
4064  //  to make sure we only see exactly the two instructions.
4065  unsigned NumCmpSelectPatternInst = 0;
4066  ReductionInstDesc ReduxDesc(false, 0);
4067
4068  SmallPtrSet<Instruction *, 8> VisitedInsts;
4069  SmallVector<Instruction *, 8> Worklist;
4070  Worklist.push_back(Phi);
4071  VisitedInsts.insert(Phi);
4072
4073  // A value in the reduction can be used:
4074  //  - By the reduction:
4075  //      - Reduction operation:
4076  //        - One use of reduction value (safe).
4077  //        - Multiple use of reduction value (not safe).
4078  //      - PHI:
4079  //        - All uses of the PHI must be the reduction (safe).
4080  //        - Otherwise, not safe.
4081  //  - By one instruction outside of the loop (safe).
4082  //  - By further instructions outside of the loop (not safe).
4083  //  - By an instruction that is not part of the reduction (not safe).
4084  //    This is either:
4085  //      * An instruction type other than PHI or the reduction operation.
4086  //      * A PHI in the header other than the initial PHI.
4087  while (!Worklist.empty()) {
4088    Instruction *Cur = Worklist.back();
4089    Worklist.pop_back();
4090
4091    // No Users.
4092    // If the instruction has no users then this is a broken chain and can't be
4093    // a reduction variable.
4094    if (Cur->use_empty())
4095      return false;
4096
4097    bool IsAPhi = isa<PHINode>(Cur);
4098
4099    // A header PHI use other than the original PHI.
4100    if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
4101      return false;
4102
4103    // Reductions of instructions such as Div, and Sub is only possible if the
4104    // LHS is the reduction variable.
4105    if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
4106        !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
4107        !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
4108      return false;
4109
4110    // Any reduction instruction must be of one of the allowed kinds.
4111    ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
4112    if (!ReduxDesc.IsReduction)
4113      return false;
4114
4115    // A reduction operation must only have one use of the reduction value.
4116    if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
4117        hasMultipleUsesOf(Cur, VisitedInsts))
4118      return false;
4119
4120    // All inputs to a PHI node must be a reduction value.
4121    if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
4122      return false;
4123
4124    if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
4125                                     isa<SelectInst>(Cur)))
4126      ++NumCmpSelectPatternInst;
4127    if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
4128                                   isa<SelectInst>(Cur)))
4129      ++NumCmpSelectPatternInst;
4130
4131    // Check  whether we found a reduction operator.
4132    FoundReduxOp |= !IsAPhi;
4133
4134    // Process users of current instruction. Push non PHI nodes after PHI nodes
4135    // onto the stack. This way we are going to have seen all inputs to PHI
4136    // nodes once we get to them.
4137    SmallVector<Instruction *, 8> NonPHIs;
4138    SmallVector<Instruction *, 8> PHIs;
4139    for (Value::use_iterator UI = Cur->use_begin(), E = Cur->use_end(); UI != E;
4140         ++UI) {
4141      Instruction *Usr = cast<Instruction>(*UI);
4142
4143      // Check if we found the exit user.
4144      BasicBlock *Parent = Usr->getParent();
4145      if (!TheLoop->contains(Parent)) {
4146        // Exit if you find multiple outside users or if the header phi node is
4147        // being used. In this case the user uses the value of the previous
4148        // iteration, in which case we would loose "VF-1" iterations of the
4149        // reduction operation if we vectorize.
4150        if (ExitInstruction != 0 || Cur == Phi)
4151          return false;
4152
4153        // The instruction used by an outside user must be the last instruction
4154        // before we feed back to the reduction phi. Otherwise, we loose VF-1
4155        // operations on the value.
4156        if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
4157         return false;
4158
4159        ExitInstruction = Cur;
4160        continue;
4161      }
4162
4163      // Process instructions only once (termination).
4164      if (VisitedInsts.insert(Usr)) {
4165        if (isa<PHINode>(Usr))
4166          PHIs.push_back(Usr);
4167        else
4168          NonPHIs.push_back(Usr);
4169      }
4170      // Remember that we completed the cycle.
4171      if (Usr == Phi)
4172        FoundStartPHI = true;
4173    }
4174    Worklist.append(PHIs.begin(), PHIs.end());
4175    Worklist.append(NonPHIs.begin(), NonPHIs.end());
4176  }
4177
4178  // This means we have seen one but not the other instruction of the
4179  // pattern or more than just a select and cmp.
4180  if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
4181      NumCmpSelectPatternInst != 2)
4182    return false;
4183
4184  if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
4185    return false;
4186
4187  // We found a reduction var if we have reached the original phi node and we
4188  // only have a single instruction with out-of-loop users.
4189
4190  // This instruction is allowed to have out-of-loop users.
4191  AllowedExit.insert(ExitInstruction);
4192
4193  // Save the description of this reduction variable.
4194  ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
4195                         ReduxDesc.MinMaxKind);
4196  Reductions[Phi] = RD;
4197  // We've ended the cycle. This is a reduction variable if we have an
4198  // outside user and it has a binary op.
4199
4200  return true;
4201}
4202
4203/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
4204/// pattern corresponding to a min(X, Y) or max(X, Y).
4205LoopVectorizationLegality::ReductionInstDesc
4206LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
4207                                                    ReductionInstDesc &Prev) {
4208
4209  assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
4210         "Expect a select instruction");
4211  Instruction *Cmp = 0;
4212  SelectInst *Select = 0;
4213
4214  // We must handle the select(cmp()) as a single instruction. Advance to the
4215  // select.
4216  if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
4217    if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin())))
4218      return ReductionInstDesc(false, I);
4219    return ReductionInstDesc(Select, Prev.MinMaxKind);
4220  }
4221
4222  // Only handle single use cases for now.
4223  if (!(Select = dyn_cast<SelectInst>(I)))
4224    return ReductionInstDesc(false, I);
4225  if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
4226      !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
4227    return ReductionInstDesc(false, I);
4228  if (!Cmp->hasOneUse())
4229    return ReductionInstDesc(false, I);
4230
4231  Value *CmpLeft;
4232  Value *CmpRight;
4233
4234  // Look for a min/max pattern.
4235  if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4236    return ReductionInstDesc(Select, MRK_UIntMin);
4237  else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4238    return ReductionInstDesc(Select, MRK_UIntMax);
4239  else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4240    return ReductionInstDesc(Select, MRK_SIntMax);
4241  else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4242    return ReductionInstDesc(Select, MRK_SIntMin);
4243  else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4244    return ReductionInstDesc(Select, MRK_FloatMin);
4245  else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4246    return ReductionInstDesc(Select, MRK_FloatMax);
4247  else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4248    return ReductionInstDesc(Select, MRK_FloatMin);
4249  else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4250    return ReductionInstDesc(Select, MRK_FloatMax);
4251
4252  return ReductionInstDesc(false, I);
4253}
4254
4255LoopVectorizationLegality::ReductionInstDesc
4256LoopVectorizationLegality::isReductionInstr(Instruction *I,
4257                                            ReductionKind Kind,
4258                                            ReductionInstDesc &Prev) {
4259  bool FP = I->getType()->isFloatingPointTy();
4260  bool FastMath = (FP && I->isCommutative() && I->isAssociative());
4261  switch (I->getOpcode()) {
4262  default:
4263    return ReductionInstDesc(false, I);
4264  case Instruction::PHI:
4265      if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
4266                 Kind != RK_FloatMinMax))
4267        return ReductionInstDesc(false, I);
4268    return ReductionInstDesc(I, Prev.MinMaxKind);
4269  case Instruction::Sub:
4270  case Instruction::Add:
4271    return ReductionInstDesc(Kind == RK_IntegerAdd, I);
4272  case Instruction::Mul:
4273    return ReductionInstDesc(Kind == RK_IntegerMult, I);
4274  case Instruction::And:
4275    return ReductionInstDesc(Kind == RK_IntegerAnd, I);
4276  case Instruction::Or:
4277    return ReductionInstDesc(Kind == RK_IntegerOr, I);
4278  case Instruction::Xor:
4279    return ReductionInstDesc(Kind == RK_IntegerXor, I);
4280  case Instruction::FMul:
4281    return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
4282  case Instruction::FAdd:
4283    return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
4284  case Instruction::FCmp:
4285  case Instruction::ICmp:
4286  case Instruction::Select:
4287    if (Kind != RK_IntegerMinMax &&
4288        (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
4289      return ReductionInstDesc(false, I);
4290    return isMinMaxSelectCmpPattern(I, Prev);
4291  }
4292}
4293
4294LoopVectorizationLegality::InductionKind
4295LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
4296  Type *PhiTy = Phi->getType();
4297  // We only handle integer and pointer inductions variables.
4298  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
4299    return IK_NoInduction;
4300
4301  // Check that the PHI is consecutive.
4302  const SCEV *PhiScev = SE->getSCEV(Phi);
4303  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
4304  if (!AR) {
4305    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
4306    return IK_NoInduction;
4307  }
4308  const SCEV *Step = AR->getStepRecurrence(*SE);
4309
4310  // Integer inductions need to have a stride of one.
4311  if (PhiTy->isIntegerTy()) {
4312    if (Step->isOne())
4313      return IK_IntInduction;
4314    if (Step->isAllOnesValue())
4315      return IK_ReverseIntInduction;
4316    return IK_NoInduction;
4317  }
4318
4319  // Calculate the pointer stride and check if it is consecutive.
4320  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4321  if (!C)
4322    return IK_NoInduction;
4323
4324  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
4325  uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
4326  if (C->getValue()->equalsInt(Size))
4327    return IK_PtrInduction;
4328  else if (C->getValue()->equalsInt(0 - Size))
4329    return IK_ReversePtrInduction;
4330
4331  return IK_NoInduction;
4332}
4333
4334bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
4335  Value *In0 = const_cast<Value*>(V);
4336  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
4337  if (!PN)
4338    return false;
4339
4340  return Inductions.count(PN);
4341}
4342
4343bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
4344  assert(TheLoop->contains(BB) && "Unknown block used");
4345
4346  // Blocks that do not dominate the latch need predication.
4347  BasicBlock* Latch = TheLoop->getLoopLatch();
4348  return !DT->dominates(BB, Latch);
4349}
4350
4351bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
4352                                            SmallPtrSet<Value *, 8>& SafePtrs) {
4353  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4354    // We might be able to hoist the load.
4355    if (it->mayReadFromMemory()) {
4356      LoadInst *LI = dyn_cast<LoadInst>(it);
4357      if (!LI || !SafePtrs.count(LI->getPointerOperand()))
4358        return false;
4359    }
4360
4361    // We don't predicate stores at the moment.
4362    if (it->mayWriteToMemory() || it->mayThrow())
4363      return false;
4364
4365    // The instructions below can trap.
4366    switch (it->getOpcode()) {
4367    default: continue;
4368    case Instruction::UDiv:
4369    case Instruction::SDiv:
4370    case Instruction::URem:
4371    case Instruction::SRem:
4372             return false;
4373    }
4374  }
4375
4376  return true;
4377}
4378
4379LoopVectorizationCostModel::VectorizationFactor
4380LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
4381                                                      unsigned UserVF) {
4382  // Width 1 means no vectorize
4383  VectorizationFactor Factor = { 1U, 0U };
4384  if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
4385    DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
4386    return Factor;
4387  }
4388
4389  // Find the trip count.
4390  unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
4391  DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4392
4393  unsigned WidestType = getWidestType();
4394  unsigned WidestRegister = TTI.getRegisterBitWidth(true);
4395  unsigned MaxSafeDepDist = -1U;
4396  if (Legal->getMaxSafeDepDistBytes() != -1U)
4397    MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
4398  WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
4399                    WidestRegister : MaxSafeDepDist);
4400  unsigned MaxVectorSize = WidestRegister / WidestType;
4401  DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
4402  DEBUG(dbgs() << "LV: The Widest register is: "
4403          << WidestRegister << " bits.\n");
4404
4405  if (MaxVectorSize == 0) {
4406    DEBUG(dbgs() << "LV: The target has no vector registers.\n");
4407    MaxVectorSize = 1;
4408  }
4409
4410  assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
4411         " into one vector!");
4412
4413  unsigned VF = MaxVectorSize;
4414
4415  // If we optimize the program for size, avoid creating the tail loop.
4416  if (OptForSize) {
4417    // If we are unable to calculate the trip count then don't try to vectorize.
4418    if (TC < 2) {
4419      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4420      return Factor;
4421    }
4422
4423    // Find the maximum SIMD width that can fit within the trip count.
4424    VF = TC % MaxVectorSize;
4425
4426    if (VF == 0)
4427      VF = MaxVectorSize;
4428
4429    // If the trip count that we found modulo the vectorization factor is not
4430    // zero then we require a tail.
4431    if (VF < 2) {
4432      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4433      return Factor;
4434    }
4435  }
4436
4437  if (UserVF != 0) {
4438    assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
4439    DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
4440
4441    Factor.Width = UserVF;
4442    return Factor;
4443  }
4444
4445  float Cost = expectedCost(1);
4446  unsigned Width = 1;
4447  DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)Cost << ".\n");
4448  for (unsigned i=2; i <= VF; i*=2) {
4449    // Notice that the vector loop needs to be executed less times, so
4450    // we need to divide the cost of the vector loops by the width of
4451    // the vector elements.
4452    float VectorCost = expectedCost(i) / (float)i;
4453    DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
4454          (int)VectorCost << ".\n");
4455    if (VectorCost < Cost) {
4456      Cost = VectorCost;
4457      Width = i;
4458    }
4459  }
4460
4461  DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
4462  Factor.Width = Width;
4463  Factor.Cost = Width * Cost;
4464  return Factor;
4465}
4466
4467unsigned LoopVectorizationCostModel::getWidestType() {
4468  unsigned MaxWidth = 8;
4469
4470  // For each block.
4471  for (Loop::block_iterator bb = TheLoop->block_begin(),
4472       be = TheLoop->block_end(); bb != be; ++bb) {
4473    BasicBlock *BB = *bb;
4474
4475    // For each instruction in the loop.
4476    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4477      Type *T = it->getType();
4478
4479      // Only examine Loads, Stores and PHINodes.
4480      if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
4481        continue;
4482
4483      // Examine PHI nodes that are reduction variables.
4484      if (PHINode *PN = dyn_cast<PHINode>(it))
4485        if (!Legal->getReductionVars()->count(PN))
4486          continue;
4487
4488      // Examine the stored values.
4489      if (StoreInst *ST = dyn_cast<StoreInst>(it))
4490        T = ST->getValueOperand()->getType();
4491
4492      // Ignore loaded pointer types and stored pointer types that are not
4493      // consecutive. However, we do want to take consecutive stores/loads of
4494      // pointer vectors into account.
4495      if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
4496        continue;
4497
4498      MaxWidth = std::max(MaxWidth,
4499                          (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
4500    }
4501  }
4502
4503  return MaxWidth;
4504}
4505
4506unsigned
4507LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
4508                                               unsigned UserUF,
4509                                               unsigned VF,
4510                                               unsigned LoopCost) {
4511
4512  // -- The unroll heuristics --
4513  // We unroll the loop in order to expose ILP and reduce the loop overhead.
4514  // There are many micro-architectural considerations that we can't predict
4515  // at this level. For example frontend pressure (on decode or fetch) due to
4516  // code size, or the number and capabilities of the execution ports.
4517  //
4518  // We use the following heuristics to select the unroll factor:
4519  // 1. If the code has reductions the we unroll in order to break the cross
4520  // iteration dependency.
4521  // 2. If the loop is really small then we unroll in order to reduce the loop
4522  // overhead.
4523  // 3. We don't unroll if we think that we will spill registers to memory due
4524  // to the increased register pressure.
4525
4526  // Use the user preference, unless 'auto' is selected.
4527  if (UserUF != 0)
4528    return UserUF;
4529
4530  // When we optimize for size we don't unroll.
4531  if (OptForSize)
4532    return 1;
4533
4534  // We used the distance for the unroll factor.
4535  if (Legal->getMaxSafeDepDistBytes() != -1U)
4536    return 1;
4537
4538  // Do not unroll loops with a relatively small trip count.
4539  unsigned TC = SE->getSmallConstantTripCount(TheLoop,
4540                                              TheLoop->getLoopLatch());
4541  if (TC > 1 && TC < TinyTripCountUnrollThreshold)
4542    return 1;
4543
4544  unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
4545  DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
4546        " vector registers\n");
4547
4548  LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
4549  // We divide by these constants so assume that we have at least one
4550  // instruction that uses at least one register.
4551  R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
4552  R.NumInstructions = std::max(R.NumInstructions, 1U);
4553
4554  // We calculate the unroll factor using the following formula.
4555  // Subtract the number of loop invariants from the number of available
4556  // registers. These registers are used by all of the unrolled instances.
4557  // Next, divide the remaining registers by the number of registers that is
4558  // required by the loop, in order to estimate how many parallel instances
4559  // fit without causing spills.
4560  unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
4561
4562  // Clamp the unroll factor ranges to reasonable factors.
4563  unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
4564
4565  // If we did not calculate the cost for VF (because the user selected the VF)
4566  // then we calculate the cost of VF here.
4567  if (LoopCost == 0)
4568    LoopCost = expectedCost(VF);
4569
4570  // Clamp the calculated UF to be between the 1 and the max unroll factor
4571  // that the target allows.
4572  if (UF > MaxUnrollSize)
4573    UF = MaxUnrollSize;
4574  else if (UF < 1)
4575    UF = 1;
4576
4577  bool HasReductions = Legal->getReductionVars()->size();
4578
4579  // Decide if we want to unroll if we decided that it is legal to vectorize
4580  // but not profitable.
4581  if (VF == 1) {
4582    if (TheLoop->getNumBlocks() > 1 || !HasReductions ||
4583        LoopCost > SmallLoopCost)
4584      return 1;
4585
4586    return UF;
4587  }
4588
4589  if (HasReductions) {
4590    DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
4591    return UF;
4592  }
4593
4594  // We want to unroll tiny loops in order to reduce the loop overhead.
4595  // We assume that the cost overhead is 1 and we use the cost model
4596  // to estimate the cost of the loop and unroll until the cost of the
4597  // loop overhead is about 5% of the cost of the loop.
4598  DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
4599  if (LoopCost < SmallLoopCost) {
4600    DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
4601    unsigned NewUF = SmallLoopCost / (LoopCost + 1);
4602    return std::min(NewUF, UF);
4603  }
4604
4605  DEBUG(dbgs() << "LV: Not Unrolling.\n");
4606  return 1;
4607}
4608
4609LoopVectorizationCostModel::RegisterUsage
4610LoopVectorizationCostModel::calculateRegisterUsage() {
4611  // This function calculates the register usage by measuring the highest number
4612  // of values that are alive at a single location. Obviously, this is a very
4613  // rough estimation. We scan the loop in a topological order in order and
4614  // assign a number to each instruction. We use RPO to ensure that defs are
4615  // met before their users. We assume that each instruction that has in-loop
4616  // users starts an interval. We record every time that an in-loop value is
4617  // used, so we have a list of the first and last occurrences of each
4618  // instruction. Next, we transpose this data structure into a multi map that
4619  // holds the list of intervals that *end* at a specific location. This multi
4620  // map allows us to perform a linear search. We scan the instructions linearly
4621  // and record each time that a new interval starts, by placing it in a set.
4622  // If we find this value in the multi-map then we remove it from the set.
4623  // The max register usage is the maximum size of the set.
4624  // We also search for instructions that are defined outside the loop, but are
4625  // used inside the loop. We need this number separately from the max-interval
4626  // usage number because when we unroll, loop-invariant values do not take
4627  // more register.
4628  LoopBlocksDFS DFS(TheLoop);
4629  DFS.perform(LI);
4630
4631  RegisterUsage R;
4632  R.NumInstructions = 0;
4633
4634  // Each 'key' in the map opens a new interval. The values
4635  // of the map are the index of the 'last seen' usage of the
4636  // instruction that is the key.
4637  typedef DenseMap<Instruction*, unsigned> IntervalMap;
4638  // Maps instruction to its index.
4639  DenseMap<unsigned, Instruction*> IdxToInstr;
4640  // Marks the end of each interval.
4641  IntervalMap EndPoint;
4642  // Saves the list of instruction indices that are used in the loop.
4643  SmallSet<Instruction*, 8> Ends;
4644  // Saves the list of values that are used in the loop but are
4645  // defined outside the loop, such as arguments and constants.
4646  SmallPtrSet<Value*, 8> LoopInvariants;
4647
4648  unsigned Index = 0;
4649  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
4650       be = DFS.endRPO(); bb != be; ++bb) {
4651    R.NumInstructions += (*bb)->size();
4652    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
4653         ++it) {
4654      Instruction *I = it;
4655      IdxToInstr[Index++] = I;
4656
4657      // Save the end location of each USE.
4658      for (unsigned i = 0; i < I->getNumOperands(); ++i) {
4659        Value *U = I->getOperand(i);
4660        Instruction *Instr = dyn_cast<Instruction>(U);
4661
4662        // Ignore non-instruction values such as arguments, constants, etc.
4663        if (!Instr) continue;
4664
4665        // If this instruction is outside the loop then record it and continue.
4666        if (!TheLoop->contains(Instr)) {
4667          LoopInvariants.insert(Instr);
4668          continue;
4669        }
4670
4671        // Overwrite previous end points.
4672        EndPoint[Instr] = Index;
4673        Ends.insert(Instr);
4674      }
4675    }
4676  }
4677
4678  // Saves the list of intervals that end with the index in 'key'.
4679  typedef SmallVector<Instruction*, 2> InstrList;
4680  DenseMap<unsigned, InstrList> TransposeEnds;
4681
4682  // Transpose the EndPoints to a list of values that end at each index.
4683  for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
4684       it != e; ++it)
4685    TransposeEnds[it->second].push_back(it->first);
4686
4687  SmallSet<Instruction*, 8> OpenIntervals;
4688  unsigned MaxUsage = 0;
4689
4690
4691  DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
4692  for (unsigned int i = 0; i < Index; ++i) {
4693    Instruction *I = IdxToInstr[i];
4694    // Ignore instructions that are never used within the loop.
4695    if (!Ends.count(I)) continue;
4696
4697    // Remove all of the instructions that end at this location.
4698    InstrList &List = TransposeEnds[i];
4699    for (unsigned int j=0, e = List.size(); j < e; ++j)
4700      OpenIntervals.erase(List[j]);
4701
4702    // Count the number of live interals.
4703    MaxUsage = std::max(MaxUsage, OpenIntervals.size());
4704
4705    DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
4706          OpenIntervals.size() << '\n');
4707
4708    // Add the current instruction to the list of open intervals.
4709    OpenIntervals.insert(I);
4710  }
4711
4712  unsigned Invariant = LoopInvariants.size();
4713  DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
4714  DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
4715  DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
4716
4717  R.LoopInvariantRegs = Invariant;
4718  R.MaxLocalUsers = MaxUsage;
4719  return R;
4720}
4721
4722unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
4723  unsigned Cost = 0;
4724
4725  // For each block.
4726  for (Loop::block_iterator bb = TheLoop->block_begin(),
4727       be = TheLoop->block_end(); bb != be; ++bb) {
4728    unsigned BlockCost = 0;
4729    BasicBlock *BB = *bb;
4730
4731    // For each instruction in the old loop.
4732    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4733      // Skip dbg intrinsics.
4734      if (isa<DbgInfoIntrinsic>(it))
4735        continue;
4736
4737      unsigned C = getInstructionCost(it, VF);
4738      BlockCost += C;
4739      DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
4740            VF << " For instruction: " << *it << '\n');
4741    }
4742
4743    // We assume that if-converted blocks have a 50% chance of being executed.
4744    // When the code is scalar then some of the blocks are avoided due to CF.
4745    // When the code is vectorized we execute all code paths.
4746    if (VF == 1 && Legal->blockNeedsPredication(*bb))
4747      BlockCost /= 2;
4748
4749    Cost += BlockCost;
4750  }
4751
4752  return Cost;
4753}
4754
4755/// \brief Check whether the address computation for a non-consecutive memory
4756/// access looks like an unlikely candidate for being merged into the indexing
4757/// mode.
4758///
4759/// We look for a GEP which has one index that is an induction variable and all
4760/// other indices are loop invariant. If the stride of this access is also
4761/// within a small bound we decide that this address computation can likely be
4762/// merged into the addressing mode.
4763/// In all other cases, we identify the address computation as complex.
4764static bool isLikelyComplexAddressComputation(Value *Ptr,
4765                                              LoopVectorizationLegality *Legal,
4766                                              ScalarEvolution *SE,
4767                                              const Loop *TheLoop) {
4768  GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
4769  if (!Gep)
4770    return true;
4771
4772  // We are looking for a gep with all loop invariant indices except for one
4773  // which should be an induction variable.
4774  unsigned NumOperands = Gep->getNumOperands();
4775  for (unsigned i = 1; i < NumOperands; ++i) {
4776    Value *Opd = Gep->getOperand(i);
4777    if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
4778        !Legal->isInductionVariable(Opd))
4779      return true;
4780  }
4781
4782  // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
4783  // can likely be merged into the address computation.
4784  unsigned MaxMergeDistance = 64;
4785
4786  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
4787  if (!AddRec)
4788    return true;
4789
4790  // Check the step is constant.
4791  const SCEV *Step = AddRec->getStepRecurrence(*SE);
4792  // Calculate the pointer stride and check if it is consecutive.
4793  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4794  if (!C)
4795    return true;
4796
4797  const APInt &APStepVal = C->getValue()->getValue();
4798
4799  // Huge step value - give up.
4800  if (APStepVal.getBitWidth() > 64)
4801    return true;
4802
4803  int64_t StepVal = APStepVal.getSExtValue();
4804
4805  return StepVal > MaxMergeDistance;
4806}
4807
4808unsigned
4809LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
4810  // If we know that this instruction will remain uniform, check the cost of
4811  // the scalar version.
4812  if (Legal->isUniformAfterVectorization(I))
4813    VF = 1;
4814
4815  Type *RetTy = I->getType();
4816  Type *VectorTy = ToVectorTy(RetTy, VF);
4817
4818  // TODO: We need to estimate the cost of intrinsic calls.
4819  switch (I->getOpcode()) {
4820  case Instruction::GetElementPtr:
4821    // We mark this instruction as zero-cost because the cost of GEPs in
4822    // vectorized code depends on whether the corresponding memory instruction
4823    // is scalarized or not. Therefore, we handle GEPs with the memory
4824    // instruction cost.
4825    return 0;
4826  case Instruction::Br: {
4827    return TTI.getCFInstrCost(I->getOpcode());
4828  }
4829  case Instruction::PHI:
4830    //TODO: IF-converted IFs become selects.
4831    return 0;
4832  case Instruction::Add:
4833  case Instruction::FAdd:
4834  case Instruction::Sub:
4835  case Instruction::FSub:
4836  case Instruction::Mul:
4837  case Instruction::FMul:
4838  case Instruction::UDiv:
4839  case Instruction::SDiv:
4840  case Instruction::FDiv:
4841  case Instruction::URem:
4842  case Instruction::SRem:
4843  case Instruction::FRem:
4844  case Instruction::Shl:
4845  case Instruction::LShr:
4846  case Instruction::AShr:
4847  case Instruction::And:
4848  case Instruction::Or:
4849  case Instruction::Xor: {
4850    // Certain instructions can be cheaper to vectorize if they have a constant
4851    // second vector operand. One example of this are shifts on x86.
4852    TargetTransformInfo::OperandValueKind Op1VK =
4853      TargetTransformInfo::OK_AnyValue;
4854    TargetTransformInfo::OperandValueKind Op2VK =
4855      TargetTransformInfo::OK_AnyValue;
4856
4857    if (isa<ConstantInt>(I->getOperand(1)))
4858      Op2VK = TargetTransformInfo::OK_UniformConstantValue;
4859
4860    return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
4861  }
4862  case Instruction::Select: {
4863    SelectInst *SI = cast<SelectInst>(I);
4864    const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
4865    bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
4866    Type *CondTy = SI->getCondition()->getType();
4867    if (!ScalarCond)
4868      CondTy = VectorType::get(CondTy, VF);
4869
4870    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
4871  }
4872  case Instruction::ICmp:
4873  case Instruction::FCmp: {
4874    Type *ValTy = I->getOperand(0)->getType();
4875    VectorTy = ToVectorTy(ValTy, VF);
4876    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
4877  }
4878  case Instruction::Store:
4879  case Instruction::Load: {
4880    StoreInst *SI = dyn_cast<StoreInst>(I);
4881    LoadInst *LI = dyn_cast<LoadInst>(I);
4882    Type *ValTy = (SI ? SI->getValueOperand()->getType() :
4883                   LI->getType());
4884    VectorTy = ToVectorTy(ValTy, VF);
4885
4886    unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
4887    unsigned AS = SI ? SI->getPointerAddressSpace() :
4888      LI->getPointerAddressSpace();
4889    Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
4890    // We add the cost of address computation here instead of with the gep
4891    // instruction because only here we know whether the operation is
4892    // scalarized.
4893    if (VF == 1)
4894      return TTI.getAddressComputationCost(VectorTy) +
4895        TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4896
4897    // Scalarized loads/stores.
4898    int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
4899    bool Reverse = ConsecutiveStride < 0;
4900    unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
4901    unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
4902    if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
4903      bool IsComplexComputation =
4904        isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
4905      unsigned Cost = 0;
4906      // The cost of extracting from the value vector and pointer vector.
4907      Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
4908      for (unsigned i = 0; i < VF; ++i) {
4909        //  The cost of extracting the pointer operand.
4910        Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
4911        // In case of STORE, the cost of ExtractElement from the vector.
4912        // In case of LOAD, the cost of InsertElement into the returned
4913        // vector.
4914        Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
4915                                            Instruction::InsertElement,
4916                                            VectorTy, i);
4917      }
4918
4919      // The cost of the scalar loads/stores.
4920      Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
4921      Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
4922                                       Alignment, AS);
4923      return Cost;
4924    }
4925
4926    // Wide load/stores.
4927    unsigned Cost = TTI.getAddressComputationCost(VectorTy);
4928    Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4929
4930    if (Reverse)
4931      Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
4932                                  VectorTy, 0);
4933    return Cost;
4934  }
4935  case Instruction::ZExt:
4936  case Instruction::SExt:
4937  case Instruction::FPToUI:
4938  case Instruction::FPToSI:
4939  case Instruction::FPExt:
4940  case Instruction::PtrToInt:
4941  case Instruction::IntToPtr:
4942  case Instruction::SIToFP:
4943  case Instruction::UIToFP:
4944  case Instruction::Trunc:
4945  case Instruction::FPTrunc:
4946  case Instruction::BitCast: {
4947    // We optimize the truncation of induction variable.
4948    // The cost of these is the same as the scalar operation.
4949    if (I->getOpcode() == Instruction::Trunc &&
4950        Legal->isInductionVariable(I->getOperand(0)))
4951      return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
4952                                  I->getOperand(0)->getType());
4953
4954    Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
4955    return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
4956  }
4957  case Instruction::Call: {
4958    CallInst *CI = cast<CallInst>(I);
4959    Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
4960    assert(ID && "Not an intrinsic call!");
4961    Type *RetTy = ToVectorTy(CI->getType(), VF);
4962    SmallVector<Type*, 4> Tys;
4963    for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
4964      Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
4965    return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
4966  }
4967  default: {
4968    // We are scalarizing the instruction. Return the cost of the scalar
4969    // instruction, plus the cost of insert and extract into vector
4970    // elements, times the vector width.
4971    unsigned Cost = 0;
4972
4973    if (!RetTy->isVoidTy() && VF != 1) {
4974      unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
4975                                                VectorTy);
4976      unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
4977                                                VectorTy);
4978
4979      // The cost of inserting the results plus extracting each one of the
4980      // operands.
4981      Cost += VF * (InsCost + ExtCost * I->getNumOperands());
4982    }
4983
4984    // The cost of executing VF copies of the scalar instruction. This opcode
4985    // is unknown. Assume that it is the same as 'mul'.
4986    Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
4987    return Cost;
4988  }
4989  }// end of switch.
4990}
4991
4992Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
4993  if (Scalar->isVoidTy() || VF == 1)
4994    return Scalar;
4995  return VectorType::get(Scalar, VF);
4996}
4997
4998char LoopVectorize::ID = 0;
4999static const char lv_name[] = "Loop Vectorization";
5000INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
5001INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
5002INITIALIZE_PASS_DEPENDENCY(DominatorTree)
5003INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
5004INITIALIZE_PASS_DEPENDENCY(LCSSA)
5005INITIALIZE_PASS_DEPENDENCY(LoopInfo)
5006INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5007INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
5008
5009namespace llvm {
5010  Pass *createLoopVectorizePass(bool NoUnrolling) {
5011    return new LoopVectorize(NoUnrolling);
5012  }
5013}
5014
5015bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
5016  // Check for a store.
5017  if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
5018    return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
5019
5020  // Check for a load.
5021  if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
5022    return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
5023
5024  return false;
5025}
5026
5027
5028void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr) {
5029  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
5030  // Holds vector parameters or scalars, in case of uniform vals.
5031  SmallVector<VectorParts, 4> Params;
5032
5033  setDebugLocFromInst(Builder, Instr);
5034
5035  // Find all of the vectorized parameters.
5036  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5037    Value *SrcOp = Instr->getOperand(op);
5038
5039    // If we are accessing the old induction variable, use the new one.
5040    if (SrcOp == OldInduction) {
5041      Params.push_back(getVectorValue(SrcOp));
5042      continue;
5043    }
5044
5045    // Try using previously calculated values.
5046    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
5047
5048    // If the src is an instruction that appeared earlier in the basic block
5049    // then it should already be vectorized.
5050    if (SrcInst && OrigLoop->contains(SrcInst)) {
5051      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
5052      // The parameter is a vector value from earlier.
5053      Params.push_back(WidenMap.get(SrcInst));
5054    } else {
5055      // The parameter is a scalar from outside the loop. Maybe even a constant.
5056      VectorParts Scalars;
5057      Scalars.append(UF, SrcOp);
5058      Params.push_back(Scalars);
5059    }
5060  }
5061
5062  assert(Params.size() == Instr->getNumOperands() &&
5063         "Invalid number of operands");
5064
5065  // Does this instruction return a value ?
5066  bool IsVoidRetTy = Instr->getType()->isVoidTy();
5067
5068  Value *UndefVec = IsVoidRetTy ? 0 :
5069  UndefValue::get(Instr->getType());
5070  // Create a new entry in the WidenMap and initialize it to Undef or Null.
5071  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
5072
5073  // For each vector unroll 'part':
5074  for (unsigned Part = 0; Part < UF; ++Part) {
5075    // For each scalar that we create:
5076
5077    Instruction *Cloned = Instr->clone();
5078      if (!IsVoidRetTy)
5079        Cloned->setName(Instr->getName() + ".cloned");
5080      // Replace the operands of the cloned instructions with extracted scalars.
5081      for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5082        Value *Op = Params[op][Part];
5083        Cloned->setOperand(op, Op);
5084      }
5085
5086      // Place the cloned scalar in the new loop.
5087      Builder.Insert(Cloned);
5088
5089      // If the original scalar returns a value we need to place it in a vector
5090      // so that future users will be able to use it.
5091      if (!IsVoidRetTy)
5092        VecResults[Part] = Cloned;
5093  }
5094}
5095
5096void
5097InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr,
5098                                              LoopVectorizationLegality*) {
5099  return scalarizeInstruction(Instr);
5100}
5101
5102Value *InnerLoopUnroller::reverseVector(Value *Vec) {
5103  return Vec;
5104}
5105
5106Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
5107  return V;
5108}
5109
5110Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx,
5111                                               bool Negate) {
5112  // When unrolling and the VF is 1, we only need to add a simple scalar.
5113  Type *ITy = Val->getType();
5114  assert(!ITy->isVectorTy() && "Val must be a scalar");
5115  Constant *C = ConstantInt::get(ITy, StartIdx, Negate);
5116  return Builder.CreateAdd(Val, C, "induction");
5117}
5118
5119