LoopVectorize.cpp revision 111e5fe7e089e0ffe73873848315ea5358120dfa
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11// and generates target-independent LLVM-IR. Legalization of the IR is done
12// in the codegen. However, the vectorizes uses (will use) the codegen
13// interfaces to generate IR that is likely to result in an optimal binary.
14//
15// The loop vectorizer combines consecutive loop iteration into a single
16// 'wide' iteration. After this transformation the index is incremented
17// by the SIMD vector width, and not by one.
18//
19// This pass has three parts:
20// 1. The main loop pass that drives the different parts.
21// 2. LoopVectorizationLegality - A unit that checks for the legality
22//    of the vectorization.
23// 3. InnerLoopVectorizer - A unit that performs the actual
24//    widening of instructions.
25// 4. LoopVectorizationCostModel - A unit that checks for the profitability
26//    of vectorization. It decides on the optimal vector width, which
27//    can be one, if vectorization is not profitable.
28//
29//===----------------------------------------------------------------------===//
30//
31// The reduction-variable vectorization is based on the paper:
32//  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33//
34// Variable uniformity checks are inspired by:
35// Karrenberg, R. and Hack, S. Whole Function Vectorization.
36//
37// Other ideas/concepts are from:
38//  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39//
40//  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
41//  Vectorizing Compilers.
42//
43//===----------------------------------------------------------------------===//
44
45#define LV_NAME "loop-vectorize"
46#define DEBUG_TYPE LV_NAME
47
48#include "llvm/Transforms/Vectorize.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/MapVector.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallSet.h"
53#include "llvm/ADT/SmallVector.h"
54#include "llvm/ADT/StringExtras.h"
55#include "llvm/Analysis/AliasAnalysis.h"
56#include "llvm/Analysis/AliasSetTracker.h"
57#include "llvm/Analysis/Dominators.h"
58#include "llvm/Analysis/LoopInfo.h"
59#include "llvm/Analysis/LoopIterator.h"
60#include "llvm/Analysis/LoopPass.h"
61#include "llvm/Analysis/ScalarEvolution.h"
62#include "llvm/Analysis/ScalarEvolutionExpander.h"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Analysis/TargetTransformInfo.h"
65#include "llvm/Analysis/ValueTracking.h"
66#include "llvm/Analysis/Verifier.h"
67#include "llvm/IR/Constants.h"
68#include "llvm/IR/DataLayout.h"
69#include "llvm/IR/DerivedTypes.h"
70#include "llvm/IR/Function.h"
71#include "llvm/IR/IRBuilder.h"
72#include "llvm/IR/Instructions.h"
73#include "llvm/IR/IntrinsicInst.h"
74#include "llvm/IR/LLVMContext.h"
75#include "llvm/IR/Module.h"
76#include "llvm/IR/Type.h"
77#include "llvm/IR/Value.h"
78#include "llvm/Pass.h"
79#include "llvm/Support/CommandLine.h"
80#include "llvm/Support/Debug.h"
81#include "llvm/Support/raw_ostream.h"
82#include "llvm/Transforms/Scalar.h"
83#include "llvm/Transforms/Utils/BasicBlockUtils.h"
84#include "llvm/Transforms/Utils/Local.h"
85#include <algorithm>
86#include <map>
87
88using namespace llvm;
89
90static cl::opt<unsigned>
91VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
92                    cl::desc("Sets the SIMD width. Zero is autoselect."));
93
94static cl::opt<unsigned>
95VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
96                    cl::desc("Sets the vectorization unroll count. "
97                             "Zero is autoselect."));
98
99static cl::opt<bool>
100EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
101                   cl::desc("Enable if-conversion during vectorization."));
102
103/// We don't vectorize loops with a known constant trip count below this number.
104static const unsigned TinyTripCountVectorThreshold = 16;
105
106/// We don't unroll loops with a known constant trip count below this number.
107static const unsigned TinyTripCountUnrollThreshold = 128;
108
109/// We don't unroll loops that are larget than this threshold.
110static const unsigned MaxLoopSizeThreshold = 32;
111
112/// When performing a runtime memory check, do not check more than this
113/// number of pointers. Notice that the check is quadratic!
114static const unsigned RuntimeMemoryCheckThreshold = 4;
115
116/// This is the highest vector width that we try to generate.
117static const unsigned MaxVectorSize = 8;
118
119/// This is the highest Unroll Factor.
120static const unsigned MaxUnrollSize = 4;
121
122namespace {
123
124// Forward declarations.
125class LoopVectorizationLegality;
126class LoopVectorizationCostModel;
127
128/// InnerLoopVectorizer vectorizes loops which contain only one basic
129/// block to a specified vectorization factor (VF).
130/// This class performs the widening of scalars into vectors, or multiple
131/// scalars. This class also implements the following features:
132/// * It inserts an epilogue loop for handling loops that don't have iteration
133///   counts that are known to be a multiple of the vectorization factor.
134/// * It handles the code generation for reduction variables.
135/// * Scalarization (implementation using scalars) of un-vectorizable
136///   instructions.
137/// InnerLoopVectorizer does not perform any vectorization-legality
138/// checks, and relies on the caller to check for the different legality
139/// aspects. The InnerLoopVectorizer relies on the
140/// LoopVectorizationLegality class to provide information about the induction
141/// and reduction variables that were found to a given vectorization factor.
142class InnerLoopVectorizer {
143public:
144  InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
145                      DominatorTree *DT, DataLayout *DL, unsigned VecWidth,
146                      unsigned UnrollFactor)
147      : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), VF(VecWidth),
148        UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
149        OldInduction(0), WidenMap(UnrollFactor) {}
150
151  // Perform the actual loop widening (vectorization).
152  void vectorize(LoopVectorizationLegality *Legal) {
153    // Create a new empty loop. Unlink the old loop and connect the new one.
154    createEmptyLoop(Legal);
155    // Widen each instruction in the old loop to a new one in the new loop.
156    // Use the Legality module to find the induction and reduction variables.
157    vectorizeLoop(Legal);
158    // Register the new loop and update the analysis passes.
159    updateAnalysis();
160  }
161
162private:
163  /// A small list of PHINodes.
164  typedef SmallVector<PHINode*, 4> PhiVector;
165  /// When we unroll loops we have multiple vector values for each scalar.
166  /// This data structure holds the unrolled and vectorized values that
167  /// originated from one scalar instruction.
168  typedef SmallVector<Value*, 2> VectorParts;
169
170  /// Add code that checks at runtime if the accessed arrays overlap.
171  /// Returns the comparator value or NULL if no check is needed.
172  Value *addRuntimeCheck(LoopVectorizationLegality *Legal,
173                         Instruction *Loc);
174  /// Create an empty loop, based on the loop ranges of the old loop.
175  void createEmptyLoop(LoopVectorizationLegality *Legal);
176  /// Copy and widen the instructions from the old loop.
177  void vectorizeLoop(LoopVectorizationLegality *Legal);
178
179  /// A helper function that computes the predicate of the block BB, assuming
180  /// that the header block of the loop is set to True. It returns the *entry*
181  /// mask for the block BB.
182  VectorParts createBlockInMask(BasicBlock *BB);
183  /// A helper function that computes the predicate of the edge between SRC
184  /// and DST.
185  VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
186
187  /// A helper function to vectorize a single BB within the innermost loop.
188  void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
189                            PhiVector *PV);
190
191  /// Insert the new loop to the loop hierarchy and pass manager
192  /// and update the analysis passes.
193  void updateAnalysis();
194
195  /// This instruction is un-vectorizable. Implement it as a sequence
196  /// of scalars.
197  void scalarizeInstruction(Instruction *Instr);
198
199  /// Create a broadcast instruction. This method generates a broadcast
200  /// instruction (shuffle) for loop invariant values and for the induction
201  /// value. If this is the induction variable then we extend it to N, N+1, ...
202  /// this is needed because each iteration in the loop corresponds to a SIMD
203  /// element.
204  Value *getBroadcastInstrs(Value *V);
205
206  /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
207  /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
208  /// The sequence starts at StartIndex.
209  Value *getConsecutiveVector(Value* Val, unsigned StartIdx, bool Negate);
210
211  /// When we go over instructions in the basic block we rely on previous
212  /// values within the current basic block or on loop invariant values.
213  /// When we widen (vectorize) values we place them in the map. If the values
214  /// are not within the map, they have to be loop invariant, so we simply
215  /// broadcast them into a vector.
216  VectorParts &getVectorValue(Value *V);
217
218  /// Generate a shuffle sequence that will reverse the vector Vec.
219  Value *reverseVector(Value *Vec);
220
221  /// This is a helper class that holds the vectorizer state. It maps scalar
222  /// instructions to vector instructions. When the code is 'unrolled' then
223  /// then a single scalar value is mapped to multiple vector parts. The parts
224  /// are stored in the VectorPart type.
225  struct ValueMap {
226    /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
227    /// are mapped.
228    ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
229
230    /// \return True if 'Key' is saved in the Value Map.
231    bool has(Value *Key) { return MapStoreage.count(Key); }
232
233    /// Initializes a new entry in the map. Sets all of the vector parts to the
234    /// save value in 'Val'.
235    /// \return A reference to a vector with splat values.
236    VectorParts &splat(Value *Key, Value *Val) {
237      MapStoreage[Key].clear();
238      MapStoreage[Key].append(UF, Val);
239      return MapStoreage[Key];
240    }
241
242    ///\return A reference to the value that is stored at 'Key'.
243    VectorParts &get(Value *Key) {
244      if (!has(Key))
245        MapStoreage[Key].resize(UF);
246      return MapStoreage[Key];
247    }
248
249    /// The unroll factor. Each entry in the map stores this number of vector
250    /// elements.
251    unsigned UF;
252
253    /// Map storage. We use std::map and not DenseMap because insertions to a
254    /// dense map invalidates its iterators.
255    std::map<Value*, VectorParts> MapStoreage;
256  };
257
258  /// The original loop.
259  Loop *OrigLoop;
260  /// Scev analysis to use.
261  ScalarEvolution *SE;
262  /// Loop Info.
263  LoopInfo *LI;
264  /// Dominator Tree.
265  DominatorTree *DT;
266  /// Data Layout.
267  DataLayout *DL;
268  /// The vectorization SIMD factor to use. Each vector will have this many
269  /// vector elements.
270  unsigned VF;
271  /// The vectorization unroll factor to use. Each scalar is vectorized to this
272  /// many different vector instructions.
273  unsigned UF;
274
275  /// The builder that we use
276  IRBuilder<> Builder;
277
278  // --- Vectorization state ---
279
280  /// The vector-loop preheader.
281  BasicBlock *LoopVectorPreHeader;
282  /// The scalar-loop preheader.
283  BasicBlock *LoopScalarPreHeader;
284  /// Middle Block between the vector and the scalar.
285  BasicBlock *LoopMiddleBlock;
286  ///The ExitBlock of the scalar loop.
287  BasicBlock *LoopExitBlock;
288  ///The vector loop body.
289  BasicBlock *LoopVectorBody;
290  ///The scalar loop body.
291  BasicBlock *LoopScalarBody;
292  ///The first bypass block.
293  BasicBlock *LoopBypassBlock;
294
295  /// The new Induction variable which was added to the new block.
296  PHINode *Induction;
297  /// The induction variable of the old basic block.
298  PHINode *OldInduction;
299  /// Maps scalars to widened vectors.
300  ValueMap WidenMap;
301};
302
303/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
304/// to what vectorization factor.
305/// This class does not look at the profitability of vectorization, only the
306/// legality. This class has two main kinds of checks:
307/// * Memory checks - The code in canVectorizeMemory checks if vectorization
308///   will change the order of memory accesses in a way that will change the
309///   correctness of the program.
310/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
311/// checks for a number of different conditions, such as the availability of a
312/// single induction variable, that all types are supported and vectorize-able,
313/// etc. This code reflects the capabilities of InnerLoopVectorizer.
314/// This class is also used by InnerLoopVectorizer for identifying
315/// induction variable and the different reduction variables.
316class LoopVectorizationLegality {
317public:
318  LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
319                            DominatorTree *DT)
320      : TheLoop(L), SE(SE), DL(DL), DT(DT), Induction(0) {}
321
322  /// This enum represents the kinds of reductions that we support.
323  enum ReductionKind {
324    RK_NoReduction, ///< Not a reduction.
325    RK_IntegerAdd,  ///< Sum of integers.
326    RK_IntegerMult, ///< Product of integers.
327    RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
328    RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
329    RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
330    RK_FloatAdd,    ///< Sum of floats.
331    RK_FloatMult    ///< Product of floats.
332  };
333
334  /// This enum represents the kinds of inductions that we support.
335  enum InductionKind {
336    NoInduction,         ///< Not an induction variable.
337    IntInduction,        ///< Integer induction variable. Step = 1.
338    ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
339    PtrInduction         ///< Pointer induction variable. Step = sizeof(elem).
340  };
341
342  /// This POD struct holds information about reduction variables.
343  struct ReductionDescriptor {
344    ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
345      Kind(RK_NoReduction) {}
346
347    ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K)
348        : StartValue(Start), LoopExitInstr(Exit), Kind(K) {}
349
350    // The starting value of the reduction.
351    // It does not have to be zero!
352    Value *StartValue;
353    // The instruction who's value is used outside the loop.
354    Instruction *LoopExitInstr;
355    // The kind of the reduction.
356    ReductionKind Kind;
357  };
358
359  // This POD struct holds information about the memory runtime legality
360  // check that a group of pointers do not overlap.
361  struct RuntimePointerCheck {
362    RuntimePointerCheck() : Need(false) {}
363
364    /// Reset the state of the pointer runtime information.
365    void reset() {
366      Need = false;
367      Pointers.clear();
368      Starts.clear();
369      Ends.clear();
370    }
371
372    /// Insert a pointer and calculate the start and end SCEVs.
373    void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr);
374
375    /// This flag indicates if we need to add the runtime check.
376    bool Need;
377    /// Holds the pointers that we need to check.
378    SmallVector<Value*, 2> Pointers;
379    /// Holds the pointer value at the beginning of the loop.
380    SmallVector<const SCEV*, 2> Starts;
381    /// Holds the pointer value at the end of the loop.
382    SmallVector<const SCEV*, 2> Ends;
383  };
384
385  /// A POD for saving information about induction variables.
386  struct InductionInfo {
387    InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
388    InductionInfo() : StartValue(0), IK(NoInduction) {}
389    /// Start value.
390    Value *StartValue;
391    /// Induction kind.
392    InductionKind IK;
393  };
394
395  /// ReductionList contains the reduction descriptors for all
396  /// of the reductions that were found in the loop.
397  typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
398
399  /// InductionList saves induction variables and maps them to the
400  /// induction descriptor.
401  typedef MapVector<PHINode*, InductionInfo> InductionList;
402
403  /// Returns true if it is legal to vectorize this loop.
404  /// This does not mean that it is profitable to vectorize this
405  /// loop, only that it is legal to do so.
406  bool canVectorize();
407
408  /// Returns the Induction variable.
409  PHINode *getInduction() { return Induction; }
410
411  /// Returns the reduction variables found in the loop.
412  ReductionList *getReductionVars() { return &Reductions; }
413
414  /// Returns the induction variables found in the loop.
415  InductionList *getInductionVars() { return &Inductions; }
416
417  /// Returns True if V is an induction variable in this loop.
418  bool isInductionVariable(const Value *V);
419
420  /// Return true if the block BB needs to be predicated in order for the loop
421  /// to be vectorized.
422  bool blockNeedsPredication(BasicBlock *BB);
423
424  /// Check if this  pointer is consecutive when vectorizing. This happens
425  /// when the last index of the GEP is the induction variable, or that the
426  /// pointer itself is an induction variable.
427  /// This check allows us to vectorize A[idx] into a wide load/store.
428  /// Returns:
429  /// 0 - Stride is unknown or non consecutive.
430  /// 1 - Address is consecutive.
431  /// -1 - Address is consecutive, and decreasing.
432  int isConsecutivePtr(Value *Ptr);
433
434  /// Returns true if the value V is uniform within the loop.
435  bool isUniform(Value *V);
436
437  /// Returns true if this instruction will remain scalar after vectorization.
438  bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
439
440  /// Returns the information that we collected about runtime memory check.
441  RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
442private:
443  /// Check if a single basic block loop is vectorizable.
444  /// At this point we know that this is a loop with a constant trip count
445  /// and we only need to check individual instructions.
446  bool canVectorizeInstrs();
447
448  /// When we vectorize loops we may change the order in which
449  /// we read and write from memory. This method checks if it is
450  /// legal to vectorize the code, considering only memory constrains.
451  /// Returns true if the loop is vectorizable
452  bool canVectorizeMemory();
453
454  /// Return true if we can vectorize this loop using the IF-conversion
455  /// transformation.
456  bool canVectorizeWithIfConvert();
457
458  /// Collect the variables that need to stay uniform after vectorization.
459  void collectLoopUniforms();
460
461  /// Return true if all of the instructions in the block can be speculatively
462  /// executed.
463  bool blockCanBePredicated(BasicBlock *BB);
464
465  /// Returns True, if 'Phi' is the kind of reduction variable for type
466  /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
467  bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
468  /// Returns true if the instruction I can be a reduction variable of type
469  /// 'Kind'.
470  bool isReductionInstr(Instruction *I, ReductionKind Kind);
471  /// Returns the induction kind of Phi. This function may return NoInduction
472  /// if the PHI is not an induction variable.
473  InductionKind isInductionVariable(PHINode *Phi);
474  /// Return true if can compute the address bounds of Ptr within the loop.
475  bool hasComputableBounds(Value *Ptr);
476
477  /// The loop that we evaluate.
478  Loop *TheLoop;
479  /// Scev analysis.
480  ScalarEvolution *SE;
481  /// DataLayout analysis.
482  DataLayout *DL;
483  // Dominators.
484  DominatorTree *DT;
485
486  //  ---  vectorization state --- //
487
488  /// Holds the integer induction variable. This is the counter of the
489  /// loop.
490  PHINode *Induction;
491  /// Holds the reduction variables.
492  ReductionList Reductions;
493  /// Holds all of the induction variables that we found in the loop.
494  /// Notice that inductions don't need to start at zero and that induction
495  /// variables can be pointers.
496  InductionList Inductions;
497
498  /// Allowed outside users. This holds the reduction
499  /// vars which can be accessed from outside the loop.
500  SmallPtrSet<Value*, 4> AllowedExit;
501  /// This set holds the variables which are known to be uniform after
502  /// vectorization.
503  SmallPtrSet<Instruction*, 4> Uniforms;
504  /// We need to check that all of the pointers in this list are disjoint
505  /// at runtime.
506  RuntimePointerCheck PtrRtCheck;
507};
508
509/// LoopVectorizationCostModel - estimates the expected speedups due to
510/// vectorization.
511/// In many cases vectorization is not profitable. This can happen because of
512/// a number of reasons. In this class we mainly attempt to predict the
513/// expected speedup/slowdowns due to the supported instruction set. We use the
514/// TargetTransformInfo to query the different backends for the cost of
515/// different operations.
516class LoopVectorizationCostModel {
517public:
518  LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
519                             LoopVectorizationLegality *Legal,
520                             const TargetTransformInfo &TTI)
521      : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI) {}
522
523  /// \return The most profitable vectorization factor.
524  /// This method checks every power of two up to VF. If UserVF is not ZERO
525  /// then this vectorization factor will be selected if vectorization is
526  /// possible.
527  unsigned selectVectorizationFactor(bool OptForSize, unsigned UserVF);
528
529
530  /// \return The most profitable unroll factor.
531  /// If UserUF is non-zero then this method finds the best unroll-factor
532  /// based on register pressure and other parameters.
533  unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF);
534
535  /// \brief A struct that represents some properties of the register usage
536  /// of a loop.
537  struct RegisterUsage {
538    /// Holds the number of loop invariant values that are used in the loop.
539    unsigned LoopInvariantRegs;
540    /// Holds the maximum number of concurrent live intervals in the loop.
541    unsigned MaxLocalUsers;
542    /// Holds the number of instructions in the loop.
543    unsigned NumInstructions;
544  };
545
546  /// \return  information about the register usage of the loop.
547  RegisterUsage calculateRegisterUsage();
548
549private:
550  /// Returns the expected execution cost. The unit of the cost does
551  /// not matter because we use the 'cost' units to compare different
552  /// vector widths. The cost that is returned is *not* normalized by
553  /// the factor width.
554  unsigned expectedCost(unsigned VF);
555
556  /// Returns the execution time cost of an instruction for a given vector
557  /// width. Vector width of one means scalar.
558  unsigned getInstructionCost(Instruction *I, unsigned VF);
559
560  /// A helper function for converting Scalar types to vector types.
561  /// If the incoming type is void, we return void. If the VF is 1, we return
562  /// the scalar type.
563  static Type* ToVectorTy(Type *Scalar, unsigned VF);
564
565  /// The loop that we evaluate.
566  Loop *TheLoop;
567  /// Scev analysis.
568  ScalarEvolution *SE;
569  /// Loop Info analysis.
570  LoopInfo *LI;
571  /// Vectorization legality.
572  LoopVectorizationLegality *Legal;
573  /// Vector target information.
574  const TargetTransformInfo &TTI;
575};
576
577/// The LoopVectorize Pass.
578struct LoopVectorize : public LoopPass {
579  /// Pass identification, replacement for typeid
580  static char ID;
581
582  explicit LoopVectorize() : LoopPass(ID) {
583    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
584  }
585
586  ScalarEvolution *SE;
587  DataLayout *DL;
588  LoopInfo *LI;
589  TargetTransformInfo *TTI;
590  DominatorTree *DT;
591
592  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
593    // We only vectorize innermost loops.
594    if (!L->empty())
595      return false;
596
597    SE = &getAnalysis<ScalarEvolution>();
598    DL = getAnalysisIfAvailable<DataLayout>();
599    LI = &getAnalysis<LoopInfo>();
600    TTI = &getAnalysis<TargetTransformInfo>();
601    DT = &getAnalysis<DominatorTree>();
602
603    DEBUG(dbgs() << "LV: Checking a loop in \"" <<
604          L->getHeader()->getParent()->getName() << "\"\n");
605
606    // Check if it is legal to vectorize the loop.
607    LoopVectorizationLegality LVL(L, SE, DL, DT);
608    if (!LVL.canVectorize()) {
609      DEBUG(dbgs() << "LV: Not vectorizing.\n");
610      return false;
611    }
612
613    // Use the cost model.
614    LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI);
615
616    // Check the function attribues to find out if this function should be
617    // optimized for size.
618    Function *F = L->getHeader()->getParent();
619    Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
620    Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
621    unsigned FnIndex = AttributeSet::FunctionIndex;
622    bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
623    bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
624
625    if (NoFloat) {
626      DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
627            "attribute is used.\n");
628      return false;
629    }
630
631    unsigned VF = CM.selectVectorizationFactor(OptForSize, VectorizationFactor);
632    unsigned UF = CM.selectUnrollFactor(OptForSize, VectorizationUnroll);
633
634    if (VF == 1) {
635      DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
636      return false;
637    }
638
639    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF << ") in "<<
640          F->getParent()->getModuleIdentifier()<<"\n");
641    DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
642
643    // If we decided that it is *legal* to vectorizer the loop then do it.
644    InnerLoopVectorizer LB(L, SE, LI, DT, DL, VF, UF);
645    LB.vectorize(&LVL);
646
647    DEBUG(verifyFunction(*L->getHeader()->getParent()));
648    return true;
649  }
650
651  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
652    LoopPass::getAnalysisUsage(AU);
653    AU.addRequiredID(LoopSimplifyID);
654    AU.addRequiredID(LCSSAID);
655    AU.addRequired<DominatorTree>();
656    AU.addRequired<LoopInfo>();
657    AU.addRequired<ScalarEvolution>();
658    AU.addRequired<TargetTransformInfo>();
659    AU.addPreserved<LoopInfo>();
660    AU.addPreserved<DominatorTree>();
661  }
662
663};
664
665} // end anonymous namespace
666
667//===----------------------------------------------------------------------===//
668// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
669// LoopVectorizationCostModel.
670//===----------------------------------------------------------------------===//
671
672void
673LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
674                                                       Loop *Lp, Value *Ptr) {
675  const SCEV *Sc = SE->getSCEV(Ptr);
676  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
677  assert(AR && "Invalid addrec expression");
678  const SCEV *Ex = SE->getExitCount(Lp, Lp->getLoopLatch());
679  const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
680  Pointers.push_back(Ptr);
681  Starts.push_back(AR->getStart());
682  Ends.push_back(ScEnd);
683}
684
685Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
686  // Save the current insertion location.
687  Instruction *Loc = Builder.GetInsertPoint();
688
689  // We need to place the broadcast of invariant variables outside the loop.
690  Instruction *Instr = dyn_cast<Instruction>(V);
691  bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
692  bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
693
694  // Place the code for broadcasting invariant variables in the new preheader.
695  if (Invariant)
696    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
697
698  // Broadcast the scalar into all locations in the vector.
699  Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
700
701  // Restore the builder insertion point.
702  if (Invariant)
703    Builder.SetInsertPoint(Loc);
704
705  return Shuf;
706}
707
708Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, unsigned StartIdx,
709                                                 bool Negate) {
710  assert(Val->getType()->isVectorTy() && "Must be a vector");
711  assert(Val->getType()->getScalarType()->isIntegerTy() &&
712         "Elem must be an integer");
713  // Create the types.
714  Type *ITy = Val->getType()->getScalarType();
715  VectorType *Ty = cast<VectorType>(Val->getType());
716  int VLen = Ty->getNumElements();
717  SmallVector<Constant*, 8> Indices;
718
719  // Create a vector of consecutive numbers from zero to VF.
720  for (int i = 0; i < VLen; ++i) {
721    int Idx = Negate ? (-i): i;
722    Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx));
723  }
724
725  // Add the consecutive indices to the vector value.
726  Constant *Cv = ConstantVector::get(Indices);
727  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
728  return Builder.CreateAdd(Val, Cv, "induction");
729}
730
731int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
732  assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
733
734  // If this value is a pointer induction variable we know it is consecutive.
735  PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
736  if (Phi && Inductions.count(Phi)) {
737    InductionInfo II = Inductions[Phi];
738    if (PtrInduction == II.IK)
739      return 1;
740  }
741
742  GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
743  if (!Gep)
744    return 0;
745
746  unsigned NumOperands = Gep->getNumOperands();
747  Value *LastIndex = Gep->getOperand(NumOperands - 1);
748
749  // Check that all of the gep indices are uniform except for the last.
750  for (unsigned i = 0; i < NumOperands - 1; ++i)
751    if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
752      return 0;
753
754  // We can emit wide load/stores only if the last index is the induction
755  // variable.
756  const SCEV *Last = SE->getSCEV(LastIndex);
757  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
758    const SCEV *Step = AR->getStepRecurrence(*SE);
759
760    // The memory is consecutive because the last index is consecutive
761    // and all other indices are loop invariant.
762    if (Step->isOne())
763      return 1;
764    if (Step->isAllOnesValue())
765      return -1;
766  }
767
768  return 0;
769}
770
771bool LoopVectorizationLegality::isUniform(Value *V) {
772  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
773}
774
775InnerLoopVectorizer::VectorParts&
776InnerLoopVectorizer::getVectorValue(Value *V) {
777  assert(V != Induction && "The new induction variable should not be used.");
778  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
779
780  // If we have this scalar in the map, return it.
781  if (WidenMap.has(V))
782    return WidenMap.get(V);
783
784  // If this scalar is unknown, assume that it is a constant or that it is
785  // loop invariant. Broadcast V and save the value for future uses.
786  Value *B = getBroadcastInstrs(V);
787  WidenMap.splat(V, B);
788  return WidenMap.get(V);
789}
790
791Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
792  assert(Vec->getType()->isVectorTy() && "Invalid type");
793  SmallVector<Constant*, 8> ShuffleMask;
794  for (unsigned i = 0; i < VF; ++i)
795    ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
796
797  return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
798                                     ConstantVector::get(ShuffleMask),
799                                     "reverse");
800}
801
802void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
803  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
804  // Holds vector parameters or scalars, in case of uniform vals.
805  SmallVector<VectorParts, 4> Params;
806
807  // Find all of the vectorized parameters.
808  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
809    Value *SrcOp = Instr->getOperand(op);
810
811    // If we are accessing the old induction variable, use the new one.
812    if (SrcOp == OldInduction) {
813      Params.push_back(getVectorValue(SrcOp));
814      continue;
815    }
816
817    // Try using previously calculated values.
818    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
819
820    // If the src is an instruction that appeared earlier in the basic block
821    // then it should already be vectorized.
822    if (SrcInst && OrigLoop->contains(SrcInst)) {
823      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
824      // The parameter is a vector value from earlier.
825      Params.push_back(WidenMap.get(SrcInst));
826    } else {
827      // The parameter is a scalar from outside the loop. Maybe even a constant.
828      VectorParts Scalars;
829      Scalars.append(UF, SrcOp);
830      Params.push_back(Scalars);
831    }
832  }
833
834  assert(Params.size() == Instr->getNumOperands() &&
835         "Invalid number of operands");
836
837  // Does this instruction return a value ?
838  bool IsVoidRetTy = Instr->getType()->isVoidTy();
839
840  Value *UndefVec = IsVoidRetTy ? 0 :
841    UndefValue::get(VectorType::get(Instr->getType(), VF));
842  // Create a new entry in the WidenMap and initialize it to Undef or Null.
843  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
844
845  // For each scalar that we create:
846  for (unsigned Width = 0; Width < VF; ++Width) {
847    // For each vector unroll 'part':
848    for (unsigned Part = 0; Part < UF; ++Part) {
849      Instruction *Cloned = Instr->clone();
850      if (!IsVoidRetTy)
851        Cloned->setName(Instr->getName() + ".cloned");
852      // Replace the operands of the cloned instrucions with extracted scalars.
853      for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
854        Value *Op = Params[op][Part];
855        // Param is a vector. Need to extract the right lane.
856        if (Op->getType()->isVectorTy())
857          Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
858        Cloned->setOperand(op, Op);
859      }
860
861      // Place the cloned scalar in the new loop.
862      Builder.Insert(Cloned);
863
864      // If the original scalar returns a value we need to place it in a vector
865      // so that future users will be able to use it.
866      if (!IsVoidRetTy)
867        VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
868                                                       Builder.getInt32(Width));
869    }
870  }
871}
872
873Value*
874InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
875                                     Instruction *Loc) {
876  LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
877  Legal->getRuntimePointerCheck();
878
879  if (!PtrRtCheck->Need)
880    return NULL;
881
882  Value *MemoryRuntimeCheck = 0;
883  unsigned NumPointers = PtrRtCheck->Pointers.size();
884  SmallVector<Value* , 2> Starts;
885  SmallVector<Value* , 2> Ends;
886
887  SCEVExpander Exp(*SE, "induction");
888
889  // Use this type for pointer arithmetic.
890  Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0);
891
892  for (unsigned i = 0; i < NumPointers; ++i) {
893    Value *Ptr = PtrRtCheck->Pointers[i];
894    const SCEV *Sc = SE->getSCEV(Ptr);
895
896    if (SE->isLoopInvariant(Sc, OrigLoop)) {
897      DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
898            *Ptr <<"\n");
899      Starts.push_back(Ptr);
900      Ends.push_back(Ptr);
901    } else {
902      DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
903
904      Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
905      Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
906      Starts.push_back(Start);
907      Ends.push_back(End);
908    }
909  }
910
911  for (unsigned i = 0; i < NumPointers; ++i) {
912    for (unsigned j = i+1; j < NumPointers; ++j) {
913      Instruction::CastOps Op = Instruction::BitCast;
914      Value *Start0 = CastInst::Create(Op, Starts[i], PtrArithTy, "bc", Loc);
915      Value *Start1 = CastInst::Create(Op, Starts[j], PtrArithTy, "bc", Loc);
916      Value *End0 =   CastInst::Create(Op, Ends[i],   PtrArithTy, "bc", Loc);
917      Value *End1 =   CastInst::Create(Op, Ends[j],   PtrArithTy, "bc", Loc);
918
919      Value *Cmp0 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
920                                    Start0, End1, "bound0", Loc);
921      Value *Cmp1 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
922                                    Start1, End0, "bound1", Loc);
923      Value *IsConflict = BinaryOperator::Create(Instruction::And, Cmp0, Cmp1,
924                                                 "found.conflict", Loc);
925      if (MemoryRuntimeCheck)
926        MemoryRuntimeCheck = BinaryOperator::Create(Instruction::Or,
927                                                    MemoryRuntimeCheck,
928                                                    IsConflict,
929                                                    "conflict.rdx", Loc);
930      else
931        MemoryRuntimeCheck = IsConflict;
932
933    }
934  }
935
936  return MemoryRuntimeCheck;
937}
938
939void
940InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
941  /*
942   In this function we generate a new loop. The new loop will contain
943   the vectorized instructions while the old loop will continue to run the
944   scalar remainder.
945
946       [ ] <-- vector loop bypass.
947     /  |
948    /   v
949   |   [ ]     <-- vector pre header.
950   |    |
951   |    v
952   |   [  ] \
953   |   [  ]_|   <-- vector loop.
954   |    |
955    \   v
956      >[ ]   <--- middle-block.
957     /  |
958    /   v
959   |   [ ]     <--- new preheader.
960   |    |
961   |    v
962   |   [ ] \
963   |   [ ]_|   <-- old scalar loop to handle remainder.
964    \   |
965     \  v
966      >[ ]     <-- exit block.
967   ...
968   */
969
970  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
971  BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
972  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
973  assert(ExitBlock && "Must have an exit block");
974
975  // Some loops have a single integer induction variable, while other loops
976  // don't. One example is c++ iterators that often have multiple pointer
977  // induction variables. In the code below we also support a case where we
978  // don't have a single induction variable.
979  OldInduction = Legal->getInduction();
980  Type *IdxTy = OldInduction ? OldInduction->getType() :
981  DL->getIntPtrType(SE->getContext());
982
983  // Find the loop boundaries.
984  const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getLoopLatch());
985  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
986
987  // Get the total trip count from the count by adding 1.
988  ExitCount = SE->getAddExpr(ExitCount,
989                             SE->getConstant(ExitCount->getType(), 1));
990
991  // Expand the trip count and place the new instructions in the preheader.
992  // Notice that the pre-header does not change, only the loop body.
993  SCEVExpander Exp(*SE, "induction");
994
995  // Count holds the overall loop count (N).
996  Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
997                                   BypassBlock->getTerminator());
998
999  // The loop index does not have to start at Zero. Find the original start
1000  // value from the induction PHI node. If we don't have an induction variable
1001  // then we know that it starts at zero.
1002  Value *StartIdx = OldInduction ?
1003  OldInduction->getIncomingValueForBlock(BypassBlock):
1004  ConstantInt::get(IdxTy, 0);
1005
1006  assert(BypassBlock && "Invalid loop structure");
1007
1008  // Generate the code that checks in runtime if arrays overlap.
1009  Value *MemoryRuntimeCheck = addRuntimeCheck(Legal,
1010                                              BypassBlock->getTerminator());
1011
1012  // Split the single block loop into the two loop structure described above.
1013  BasicBlock *VectorPH =
1014  BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
1015  BasicBlock *VecBody =
1016  VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
1017  BasicBlock *MiddleBlock =
1018  VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
1019  BasicBlock *ScalarPH =
1020  MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
1021
1022  // This is the location in which we add all of the logic for bypassing
1023  // the new vector loop.
1024  Instruction *Loc = BypassBlock->getTerminator();
1025
1026  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
1027  // inside the loop.
1028  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1029
1030  // Generate the induction variable.
1031  Induction = Builder.CreatePHI(IdxTy, 2, "index");
1032  // The loop step is equal to the vectorization factor (num of SIMD elements)
1033  // times the unroll factor (num of SIMD instructions).
1034  Constant *Step = ConstantInt::get(IdxTy, VF * UF);
1035
1036  // We may need to extend the index in case there is a type mismatch.
1037  // We know that the count starts at zero and does not overflow.
1038  if (Count->getType() != IdxTy) {
1039    // The exit count can be of pointer type. Convert it to the correct
1040    // integer type.
1041    if (ExitCount->getType()->isPointerTy())
1042      Count = CastInst::CreatePointerCast(Count, IdxTy, "ptrcnt.to.int", Loc);
1043    else
1044      Count = CastInst::CreateZExtOrBitCast(Count, IdxTy, "zext.cnt", Loc);
1045  }
1046
1047  // Add the start index to the loop count to get the new end index.
1048  Value *IdxEnd = BinaryOperator::CreateAdd(Count, StartIdx, "end.idx", Loc);
1049
1050  // Now we need to generate the expression for N - (N % VF), which is
1051  // the part that the vectorized body will execute.
1052  Value *R = BinaryOperator::CreateURem(Count, Step, "n.mod.vf", Loc);
1053  Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc);
1054  Value *IdxEndRoundDown = BinaryOperator::CreateAdd(CountRoundDown, StartIdx,
1055                                                     "end.idx.rnd.down", Loc);
1056
1057  // Now, compare the new count to zero. If it is zero skip the vector loop and
1058  // jump to the scalar loop.
1059  Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
1060                               IdxEndRoundDown,
1061                               StartIdx,
1062                               "cmp.zero", Loc);
1063
1064  // If we are using memory runtime checks, include them in.
1065  if (MemoryRuntimeCheck)
1066    Cmp = BinaryOperator::Create(Instruction::Or, Cmp, MemoryRuntimeCheck,
1067                                 "CntOrMem", Loc);
1068
1069  BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc);
1070  // Remove the old terminator.
1071  Loc->eraseFromParent();
1072
1073  // We are going to resume the execution of the scalar loop.
1074  // Go over all of the induction variables that we found and fix the
1075  // PHIs that are left in the scalar version of the loop.
1076  // The starting values of PHI nodes depend on the counter of the last
1077  // iteration in the vectorized loop.
1078  // If we come from a bypass edge then we need to start from the original
1079  // start value.
1080
1081  // This variable saves the new starting index for the scalar loop.
1082  PHINode *ResumeIndex = 0;
1083  LoopVectorizationLegality::InductionList::iterator I, E;
1084  LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
1085  for (I = List->begin(), E = List->end(); I != E; ++I) {
1086    PHINode *OrigPhi = I->first;
1087    LoopVectorizationLegality::InductionInfo II = I->second;
1088    PHINode *ResumeVal = PHINode::Create(OrigPhi->getType(), 2, "resume.val",
1089                                         MiddleBlock->getTerminator());
1090    Value *EndValue = 0;
1091    switch (II.IK) {
1092    case LoopVectorizationLegality::NoInduction:
1093      llvm_unreachable("Unknown induction");
1094    case LoopVectorizationLegality::IntInduction: {
1095      // Handle the integer induction counter:
1096      assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
1097      assert(OrigPhi == OldInduction && "Unknown integer PHI");
1098      // We know what the end value is.
1099      EndValue = IdxEndRoundDown;
1100      // We also know which PHI node holds it.
1101      ResumeIndex = ResumeVal;
1102      break;
1103    }
1104    case LoopVectorizationLegality::ReverseIntInduction: {
1105      // Convert the CountRoundDown variable to the PHI size.
1106      unsigned CRDSize = CountRoundDown->getType()->getScalarSizeInBits();
1107      unsigned IISize = II.StartValue->getType()->getScalarSizeInBits();
1108      Value *CRD = CountRoundDown;
1109      if (CRDSize > IISize)
1110        CRD = CastInst::Create(Instruction::Trunc, CountRoundDown,
1111                               II.StartValue->getType(),
1112                               "tr.crd", BypassBlock->getTerminator());
1113      else if (CRDSize < IISize)
1114        CRD = CastInst::Create(Instruction::SExt, CountRoundDown,
1115                               II.StartValue->getType(),
1116                               "sext.crd", BypassBlock->getTerminator());
1117      // Handle reverse integer induction counter:
1118      EndValue = BinaryOperator::CreateSub(II.StartValue, CRD, "rev.ind.end",
1119                                           BypassBlock->getTerminator());
1120      break;
1121    }
1122    case LoopVectorizationLegality::PtrInduction: {
1123      // For pointer induction variables, calculate the offset using
1124      // the end index.
1125      EndValue = GetElementPtrInst::Create(II.StartValue, CountRoundDown,
1126                                           "ptr.ind.end",
1127                                           BypassBlock->getTerminator());
1128      break;
1129    }
1130    }// end of case
1131
1132    // The new PHI merges the original incoming value, in case of a bypass,
1133    // or the value at the end of the vectorized loop.
1134    ResumeVal->addIncoming(II.StartValue, BypassBlock);
1135    ResumeVal->addIncoming(EndValue, VecBody);
1136
1137    // Fix the scalar body counter (PHI node).
1138    unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
1139    OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
1140  }
1141
1142  // If we are generating a new induction variable then we also need to
1143  // generate the code that calculates the exit value. This value is not
1144  // simply the end of the counter because we may skip the vectorized body
1145  // in case of a runtime check.
1146  if (!OldInduction){
1147    assert(!ResumeIndex && "Unexpected resume value found");
1148    ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
1149                                  MiddleBlock->getTerminator());
1150    ResumeIndex->addIncoming(StartIdx, BypassBlock);
1151    ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
1152  }
1153
1154  // Make sure that we found the index where scalar loop needs to continue.
1155  assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
1156         "Invalid resume Index");
1157
1158  // Add a check in the middle block to see if we have completed
1159  // all of the iterations in the first vector loop.
1160  // If (N - N%VF) == N, then we *don't* need to run the remainder.
1161  Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
1162                                ResumeIndex, "cmp.n",
1163                                MiddleBlock->getTerminator());
1164
1165  BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
1166  // Remove the old terminator.
1167  MiddleBlock->getTerminator()->eraseFromParent();
1168
1169  // Create i+1 and fill the PHINode.
1170  Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
1171  Induction->addIncoming(StartIdx, VectorPH);
1172  Induction->addIncoming(NextIdx, VecBody);
1173  // Create the compare.
1174  Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
1175  Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
1176
1177  // Now we have two terminators. Remove the old one from the block.
1178  VecBody->getTerminator()->eraseFromParent();
1179
1180  // Get ready to start creating new instructions into the vectorized body.
1181  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1182
1183  // Create and register the new vector loop.
1184  Loop* Lp = new Loop();
1185  Loop *ParentLoop = OrigLoop->getParentLoop();
1186
1187  // Insert the new loop into the loop nest and register the new basic blocks.
1188  if (ParentLoop) {
1189    ParentLoop->addChildLoop(Lp);
1190    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
1191    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
1192    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
1193  } else {
1194    LI->addTopLevelLoop(Lp);
1195  }
1196
1197  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
1198
1199  // Save the state.
1200  LoopVectorPreHeader = VectorPH;
1201  LoopScalarPreHeader = ScalarPH;
1202  LoopMiddleBlock = MiddleBlock;
1203  LoopExitBlock = ExitBlock;
1204  LoopVectorBody = VecBody;
1205  LoopScalarBody = OldBasicBlock;
1206  LoopBypassBlock = BypassBlock;
1207}
1208
1209/// This function returns the identity element (or neutral element) for
1210/// the operation K.
1211static Constant*
1212getReductionIdentity(LoopVectorizationLegality::ReductionKind K, Type *Tp) {
1213  switch (K) {
1214  case LoopVectorizationLegality:: RK_IntegerXor:
1215  case LoopVectorizationLegality:: RK_IntegerAdd:
1216  case LoopVectorizationLegality:: RK_IntegerOr:
1217    // Adding, Xoring, Oring zero to a number does not change it.
1218    return ConstantInt::get(Tp, 0);
1219  case LoopVectorizationLegality:: RK_IntegerMult:
1220    // Multiplying a number by 1 does not change it.
1221    return ConstantInt::get(Tp, 1);
1222  case LoopVectorizationLegality:: RK_IntegerAnd:
1223    // AND-ing a number with an all-1 value does not change it.
1224    return ConstantInt::get(Tp, -1, true);
1225  case LoopVectorizationLegality:: RK_FloatMult:
1226    // Multiplying a number by 1 does not change it.
1227    return ConstantFP::get(Tp, 1.0L);
1228  case LoopVectorizationLegality:: RK_FloatAdd:
1229    // Adding zero to a number does not change it.
1230    return ConstantFP::get(Tp, 0.0L);
1231  default:
1232    llvm_unreachable("Unknown reduction kind");
1233  }
1234}
1235
1236static bool
1237isTriviallyVectorizableIntrinsic(Instruction *Inst) {
1238  IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
1239  if (!II)
1240    return false;
1241  switch (II->getIntrinsicID()) {
1242  case Intrinsic::sqrt:
1243  case Intrinsic::sin:
1244  case Intrinsic::cos:
1245  case Intrinsic::exp:
1246  case Intrinsic::exp2:
1247  case Intrinsic::log:
1248  case Intrinsic::log10:
1249  case Intrinsic::log2:
1250  case Intrinsic::fabs:
1251  case Intrinsic::floor:
1252  case Intrinsic::ceil:
1253  case Intrinsic::trunc:
1254  case Intrinsic::rint:
1255  case Intrinsic::nearbyint:
1256  case Intrinsic::pow:
1257  case Intrinsic::fma:
1258  case Intrinsic::fmuladd:
1259    return true;
1260  default:
1261    return false;
1262  }
1263  return false;
1264}
1265
1266void
1267InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
1268  //===------------------------------------------------===//
1269  //
1270  // Notice: any optimization or new instruction that go
1271  // into the code below should be also be implemented in
1272  // the cost-model.
1273  //
1274  //===------------------------------------------------===//
1275  BasicBlock &BB = *OrigLoop->getHeader();
1276  Constant *Zero =
1277  ConstantInt::get(IntegerType::getInt32Ty(BB.getContext()), 0);
1278
1279  // In order to support reduction variables we need to be able to vectorize
1280  // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
1281  // stages. First, we create a new vector PHI node with no incoming edges.
1282  // We use this value when we vectorize all of the instructions that use the
1283  // PHI. Next, after all of the instructions in the block are complete we
1284  // add the new incoming edges to the PHI. At this point all of the
1285  // instructions in the basic block are vectorized, so we can use them to
1286  // construct the PHI.
1287  PhiVector RdxPHIsToFix;
1288
1289  // Scan the loop in a topological order to ensure that defs are vectorized
1290  // before users.
1291  LoopBlocksDFS DFS(OrigLoop);
1292  DFS.perform(LI);
1293
1294  // Vectorize all of the blocks in the original loop.
1295  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
1296       be = DFS.endRPO(); bb != be; ++bb)
1297    vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
1298
1299  // At this point every instruction in the original loop is widened to
1300  // a vector form. We are almost done. Now, we need to fix the PHI nodes
1301  // that we vectorized. The PHI nodes are currently empty because we did
1302  // not want to introduce cycles. Notice that the remaining PHI nodes
1303  // that we need to fix are reduction variables.
1304
1305  // Create the 'reduced' values for each of the induction vars.
1306  // The reduced values are the vector values that we scalarize and combine
1307  // after the loop is finished.
1308  for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
1309       it != e; ++it) {
1310    PHINode *RdxPhi = *it;
1311    assert(RdxPhi && "Unable to recover vectorized PHI");
1312
1313    // Find the reduction variable descriptor.
1314    assert(Legal->getReductionVars()->count(RdxPhi) &&
1315           "Unable to find the reduction variable");
1316    LoopVectorizationLegality::ReductionDescriptor RdxDesc =
1317    (*Legal->getReductionVars())[RdxPhi];
1318
1319    // We need to generate a reduction vector from the incoming scalar.
1320    // To do so, we need to generate the 'identity' vector and overide
1321    // one of the elements with the incoming scalar reduction. We need
1322    // to do it in the vector-loop preheader.
1323    Builder.SetInsertPoint(LoopBypassBlock->getTerminator());
1324
1325    // This is the vector-clone of the value that leaves the loop.
1326    VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
1327    Type *VecTy = VectorExit[0]->getType();
1328
1329    // Find the reduction identity variable. Zero for addition, or, xor,
1330    // one for multiplication, -1 for And.
1331    Constant *Iden = getReductionIdentity(RdxDesc.Kind, VecTy->getScalarType());
1332    Constant *Identity = ConstantVector::getSplat(VF, Iden);
1333
1334    // This vector is the Identity vector where the first element is the
1335    // incoming scalar reduction.
1336    Value *VectorStart = Builder.CreateInsertElement(Identity,
1337                                                     RdxDesc.StartValue, Zero);
1338
1339    // Fix the vector-loop phi.
1340    // We created the induction variable so we know that the
1341    // preheader is the first entry.
1342    BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
1343
1344    // Reductions do not have to start at zero. They can start with
1345    // any loop invariant values.
1346    VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
1347    BasicBlock *Latch = OrigLoop->getLoopLatch();
1348    Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
1349    VectorParts &Val = getVectorValue(LoopVal);
1350    for (unsigned part = 0; part < UF; ++part) {
1351      // Make sure to add the reduction stat value only to the
1352      // first unroll part.
1353      Value *StartVal = (part == 0) ? VectorStart : Identity;
1354      cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
1355      cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
1356    }
1357
1358    // Before each round, move the insertion point right between
1359    // the PHIs and the values we are going to write.
1360    // This allows us to write both PHINodes and the extractelement
1361    // instructions.
1362    Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
1363
1364    VectorParts RdxParts;
1365    for (unsigned part = 0; part < UF; ++part) {
1366      // This PHINode contains the vectorized reduction variable, or
1367      // the initial value vector, if we bypass the vector loop.
1368      VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
1369      PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
1370      Value *StartVal = (part == 0) ? VectorStart : Identity;
1371      NewPhi->addIncoming(StartVal, LoopBypassBlock);
1372      NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
1373      RdxParts.push_back(NewPhi);
1374    }
1375
1376    // Reduce all of the unrolled parts into a single vector.
1377    Value *ReducedPartRdx = RdxParts[0];
1378    for (unsigned part = 1; part < UF; ++part) {
1379      switch (RdxDesc.Kind) {
1380      case LoopVectorizationLegality::RK_IntegerAdd:
1381        ReducedPartRdx =
1382          Builder.CreateAdd(RdxParts[part], ReducedPartRdx, "add.rdx");
1383        break;
1384      case LoopVectorizationLegality::RK_IntegerMult:
1385        ReducedPartRdx =
1386          Builder.CreateMul(RdxParts[part], ReducedPartRdx, "mul.rdx");
1387        break;
1388      case LoopVectorizationLegality::RK_IntegerOr:
1389        ReducedPartRdx =
1390          Builder.CreateOr(RdxParts[part], ReducedPartRdx, "or.rdx");
1391        break;
1392      case LoopVectorizationLegality::RK_IntegerAnd:
1393        ReducedPartRdx =
1394          Builder.CreateAnd(RdxParts[part], ReducedPartRdx, "and.rdx");
1395        break;
1396      case LoopVectorizationLegality::RK_IntegerXor:
1397        ReducedPartRdx =
1398          Builder.CreateXor(RdxParts[part], ReducedPartRdx, "xor.rdx");
1399        break;
1400      case LoopVectorizationLegality::RK_FloatMult:
1401        ReducedPartRdx =
1402          Builder.CreateFMul(RdxParts[part], ReducedPartRdx, "fmul.rdx");
1403        break;
1404      case LoopVectorizationLegality::RK_FloatAdd:
1405        ReducedPartRdx =
1406          Builder.CreateFAdd(RdxParts[part], ReducedPartRdx, "fadd.rdx");
1407        break;
1408      default:
1409        llvm_unreachable("Unknown reduction operation");
1410      }
1411    }
1412
1413
1414    // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1415    // and vector ops, reducing the set of values being computed by half each
1416    // round.
1417    assert(isPowerOf2_32(VF) &&
1418           "Reduction emission only supported for pow2 vectors!");
1419    Value *TmpVec = ReducedPartRdx;
1420    SmallVector<Constant*, 32> ShuffleMask(VF, 0);
1421    for (unsigned i = VF; i != 1; i >>= 1) {
1422      // Move the upper half of the vector to the lower half.
1423      for (unsigned j = 0; j != i/2; ++j)
1424        ShuffleMask[j] = Builder.getInt32(i/2 + j);
1425
1426      // Fill the rest of the mask with undef.
1427      std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
1428                UndefValue::get(Builder.getInt32Ty()));
1429
1430      Value *Shuf =
1431        Builder.CreateShuffleVector(TmpVec,
1432                                    UndefValue::get(TmpVec->getType()),
1433                                    ConstantVector::get(ShuffleMask),
1434                                    "rdx.shuf");
1435
1436      // Emit the operation on the shuffled value.
1437      switch (RdxDesc.Kind) {
1438      case LoopVectorizationLegality::RK_IntegerAdd:
1439        TmpVec = Builder.CreateAdd(TmpVec, Shuf, "add.rdx");
1440        break;
1441      case LoopVectorizationLegality::RK_IntegerMult:
1442        TmpVec = Builder.CreateMul(TmpVec, Shuf, "mul.rdx");
1443        break;
1444      case LoopVectorizationLegality::RK_IntegerOr:
1445        TmpVec = Builder.CreateOr(TmpVec, Shuf, "or.rdx");
1446        break;
1447      case LoopVectorizationLegality::RK_IntegerAnd:
1448        TmpVec = Builder.CreateAnd(TmpVec, Shuf, "and.rdx");
1449        break;
1450      case LoopVectorizationLegality::RK_IntegerXor:
1451        TmpVec = Builder.CreateXor(TmpVec, Shuf, "xor.rdx");
1452        break;
1453      case LoopVectorizationLegality::RK_FloatMult:
1454        TmpVec = Builder.CreateFMul(TmpVec, Shuf, "fmul.rdx");
1455        break;
1456      case LoopVectorizationLegality::RK_FloatAdd:
1457        TmpVec = Builder.CreateFAdd(TmpVec, Shuf, "fadd.rdx");
1458        break;
1459      default:
1460        llvm_unreachable("Unknown reduction operation");
1461      }
1462    }
1463
1464    // The result is in the first element of the vector.
1465    Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1466
1467    // Now, we need to fix the users of the reduction variable
1468    // inside and outside of the scalar remainder loop.
1469    // We know that the loop is in LCSSA form. We need to update the
1470    // PHI nodes in the exit blocks.
1471    for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
1472         LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
1473      PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
1474      if (!LCSSAPhi) continue;
1475
1476      // All PHINodes need to have a single entry edge, or two if
1477      // we already fixed them.
1478      assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
1479
1480      // We found our reduction value exit-PHI. Update it with the
1481      // incoming bypass edge.
1482      if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
1483        // Add an edge coming from the bypass.
1484        LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
1485        break;
1486      }
1487    }// end of the LCSSA phi scan.
1488
1489    // Fix the scalar loop reduction variable with the incoming reduction sum
1490    // from the vector body and from the backedge value.
1491    int IncomingEdgeBlockIdx =
1492    (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
1493    assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
1494    // Pick the other block.
1495    int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
1496    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
1497    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
1498  }// end of for each redux variable.
1499
1500  // The Loop exit block may have single value PHI nodes where the incoming
1501  // value is 'undef'. While vectorizing we only handled real values that
1502  // were defined inside the loop. Here we handle the 'undef case'.
1503  // See PR14725.
1504  for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
1505       LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
1506    PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
1507    if (!LCSSAPhi) continue;
1508    if (LCSSAPhi->getNumIncomingValues() == 1)
1509      LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
1510                            LoopMiddleBlock);
1511  }
1512}
1513
1514InnerLoopVectorizer::VectorParts
1515InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
1516  assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
1517         "Invalid edge");
1518
1519  VectorParts SrcMask = createBlockInMask(Src);
1520
1521  // The terminator has to be a branch inst!
1522  BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
1523  assert(BI && "Unexpected terminator found");
1524
1525  if (BI->isConditional()) {
1526    VectorParts EdgeMask = getVectorValue(BI->getCondition());
1527
1528    if (BI->getSuccessor(0) != Dst)
1529      for (unsigned part = 0; part < UF; ++part)
1530        EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
1531
1532    for (unsigned part = 0; part < UF; ++part)
1533      EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
1534    return EdgeMask;
1535  }
1536
1537  return SrcMask;
1538}
1539
1540InnerLoopVectorizer::VectorParts
1541InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
1542  assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
1543
1544  // Loop incoming mask is all-one.
1545  if (OrigLoop->getHeader() == BB) {
1546    Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
1547    return getVectorValue(C);
1548  }
1549
1550  // This is the block mask. We OR all incoming edges, and with zero.
1551  Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
1552  VectorParts BlockMask = getVectorValue(Zero);
1553
1554  // For each pred:
1555  for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
1556    VectorParts EM = createEdgeMask(*it, BB);
1557    for (unsigned part = 0; part < UF; ++part)
1558      BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
1559  }
1560
1561  return BlockMask;
1562}
1563
1564void
1565InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
1566                                          BasicBlock *BB, PhiVector *PV) {
1567  Constant *Zero = Builder.getInt32(0);
1568
1569  // For each instruction in the old loop.
1570  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
1571    VectorParts &Entry = WidenMap.get(it);
1572    switch (it->getOpcode()) {
1573    case Instruction::Br:
1574      // Nothing to do for PHIs and BR, since we already took care of the
1575      // loop control flow instructions.
1576      continue;
1577    case Instruction::PHI:{
1578      PHINode* P = cast<PHINode>(it);
1579      // Handle reduction variables:
1580      if (Legal->getReductionVars()->count(P)) {
1581        for (unsigned part = 0; part < UF; ++part) {
1582          // This is phase one of vectorizing PHIs.
1583          Type *VecTy = VectorType::get(it->getType(), VF);
1584          Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
1585                                        LoopVectorBody-> getFirstInsertionPt());
1586        }
1587        PV->push_back(P);
1588        continue;
1589      }
1590
1591      // Check for PHI nodes that are lowered to vector selects.
1592      if (P->getParent() != OrigLoop->getHeader()) {
1593        // We know that all PHIs in non header blocks are converted into
1594        // selects, so we don't have to worry about the insertion order and we
1595        // can just use the builder.
1596
1597        // At this point we generate the predication tree. There may be
1598        // duplications since this is a simple recursive scan, but future
1599        // optimizations will clean it up.
1600        VectorParts Cond = createEdgeMask(P->getIncomingBlock(0),
1601                                               P->getParent());
1602
1603        for (unsigned part = 0; part < UF; ++part) {
1604        VectorParts &In0 = getVectorValue(P->getIncomingValue(0));
1605        VectorParts &In1 = getVectorValue(P->getIncomingValue(1));
1606          Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In1[part],
1607                                             "predphi");
1608        }
1609        continue;
1610      }
1611
1612      // This PHINode must be an induction variable.
1613      // Make sure that we know about it.
1614      assert(Legal->getInductionVars()->count(P) &&
1615             "Not an induction variable");
1616
1617      LoopVectorizationLegality::InductionInfo II =
1618        Legal->getInductionVars()->lookup(P);
1619
1620      switch (II.IK) {
1621      case LoopVectorizationLegality::NoInduction:
1622        llvm_unreachable("Unknown induction");
1623      case LoopVectorizationLegality::IntInduction: {
1624        assert(P == OldInduction && "Unexpected PHI");
1625        Value *Broadcasted = getBroadcastInstrs(Induction);
1626        // After broadcasting the induction variable we need to make the
1627        // vector consecutive by adding 0, 1, 2 ...
1628        for (unsigned part = 0; part < UF; ++part)
1629          Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
1630        continue;
1631      }
1632      case LoopVectorizationLegality::ReverseIntInduction:
1633      case LoopVectorizationLegality::PtrInduction:
1634        // Handle reverse integer and pointer inductions.
1635        Value *StartIdx = 0;
1636        // If we have a single integer induction variable then use it.
1637        // Otherwise, start counting at zero.
1638        if (OldInduction) {
1639          LoopVectorizationLegality::InductionInfo OldII =
1640            Legal->getInductionVars()->lookup(OldInduction);
1641          StartIdx = OldII.StartValue;
1642        } else {
1643          StartIdx = ConstantInt::get(Induction->getType(), 0);
1644        }
1645        // This is the normalized GEP that starts counting at zero.
1646        Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
1647                                                 "normalized.idx");
1648
1649        // Handle the reverse integer induction variable case.
1650        if (LoopVectorizationLegality::ReverseIntInduction == II.IK) {
1651          IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
1652          Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
1653                                                 "resize.norm.idx");
1654          Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
1655                                                 "reverse.idx");
1656
1657          // This is a new value so do not hoist it out.
1658          Value *Broadcasted = getBroadcastInstrs(ReverseInd);
1659          // After broadcasting the induction variable we need to make the
1660          // vector consecutive by adding  ... -3, -2, -1, 0.
1661          for (unsigned part = 0; part < UF; ++part)
1662            Entry[part] = getConsecutiveVector(Broadcasted, -VF * part, true);
1663          continue;
1664        }
1665
1666        // Handle the pointer induction variable case.
1667        assert(P->getType()->isPointerTy() && "Unexpected type.");
1668
1669        // This is the vector of results. Notice that we don't generate
1670        // vector geps because scalar geps result in better code.
1671        for (unsigned part = 0; part < UF; ++part) {
1672          Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
1673          for (unsigned int i = 0; i < VF; ++i) {
1674            Constant *Idx = ConstantInt::get(Induction->getType(),
1675                                             i + part * VF);
1676            Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx,
1677                                                 "gep.idx");
1678            Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
1679                                               "next.gep");
1680            VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
1681                                                 Builder.getInt32(i),
1682                                                 "insert.gep");
1683          }
1684          Entry[part] = VecVal;
1685        }
1686        continue;
1687      }
1688
1689    }// End of PHI.
1690
1691    case Instruction::Add:
1692    case Instruction::FAdd:
1693    case Instruction::Sub:
1694    case Instruction::FSub:
1695    case Instruction::Mul:
1696    case Instruction::FMul:
1697    case Instruction::UDiv:
1698    case Instruction::SDiv:
1699    case Instruction::FDiv:
1700    case Instruction::URem:
1701    case Instruction::SRem:
1702    case Instruction::FRem:
1703    case Instruction::Shl:
1704    case Instruction::LShr:
1705    case Instruction::AShr:
1706    case Instruction::And:
1707    case Instruction::Or:
1708    case Instruction::Xor: {
1709      // Just widen binops.
1710      BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
1711      VectorParts &A = getVectorValue(it->getOperand(0));
1712      VectorParts &B = getVectorValue(it->getOperand(1));
1713
1714      // Use this vector value for all users of the original instruction.
1715      for (unsigned Part = 0; Part < UF; ++Part) {
1716        Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
1717
1718        // Update the NSW, NUW and Exact flags.
1719        BinaryOperator *VecOp = cast<BinaryOperator>(V);
1720        if (isa<OverflowingBinaryOperator>(BinOp)) {
1721          VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
1722          VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
1723        }
1724        if (isa<PossiblyExactOperator>(VecOp))
1725          VecOp->setIsExact(BinOp->isExact());
1726
1727        Entry[Part] = V;
1728      }
1729      break;
1730    }
1731    case Instruction::Select: {
1732      // Widen selects.
1733      // If the selector is loop invariant we can create a select
1734      // instruction with a scalar condition. Otherwise, use vector-select.
1735      bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
1736                                               OrigLoop);
1737
1738      // The condition can be loop invariant  but still defined inside the
1739      // loop. This means that we can't just use the original 'cond' value.
1740      // We have to take the 'vectorized' value and pick the first lane.
1741      // Instcombine will make this a no-op.
1742      VectorParts &Cond = getVectorValue(it->getOperand(0));
1743      VectorParts &Op0  = getVectorValue(it->getOperand(1));
1744      VectorParts &Op1  = getVectorValue(it->getOperand(2));
1745      Value *ScalarCond = Builder.CreateExtractElement(Cond[0],
1746                                                       Builder.getInt32(0));
1747      for (unsigned Part = 0; Part < UF; ++Part) {
1748        Entry[Part] = Builder.CreateSelect(
1749          InvariantCond ? ScalarCond : Cond[Part],
1750          Op0[Part],
1751          Op1[Part]);
1752      }
1753      break;
1754    }
1755
1756    case Instruction::ICmp:
1757    case Instruction::FCmp: {
1758      // Widen compares. Generate vector compares.
1759      bool FCmp = (it->getOpcode() == Instruction::FCmp);
1760      CmpInst *Cmp = dyn_cast<CmpInst>(it);
1761      VectorParts &A = getVectorValue(it->getOperand(0));
1762      VectorParts &B = getVectorValue(it->getOperand(1));
1763      for (unsigned Part = 0; Part < UF; ++Part) {
1764        Value *C = 0;
1765        if (FCmp)
1766          C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
1767        else
1768          C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
1769        Entry[Part] = C;
1770      }
1771      break;
1772    }
1773
1774    case Instruction::Store: {
1775      // Attempt to issue a wide store.
1776      StoreInst *SI = dyn_cast<StoreInst>(it);
1777      Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF);
1778      Value *Ptr = SI->getPointerOperand();
1779      unsigned Alignment = SI->getAlignment();
1780
1781      assert(!Legal->isUniform(Ptr) &&
1782             "We do not allow storing to uniform addresses");
1783
1784
1785      int Stride = Legal->isConsecutivePtr(Ptr);
1786      bool Reverse = Stride < 0;
1787      if (Stride == 0) {
1788        scalarizeInstruction(it);
1789        break;
1790      }
1791
1792      // Handle consecutive stores.
1793
1794      GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1795      if (Gep) {
1796        // The last index does not have to be the induction. It can be
1797        // consecutive and be a function of the index. For example A[I+1];
1798        unsigned NumOperands = Gep->getNumOperands();
1799
1800        Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
1801        VectorParts &GEPParts = getVectorValue(LastGepOperand);
1802        Value *LastIndex = GEPParts[0];
1803        LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
1804
1805        // Create the new GEP with the new induction variable.
1806        GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1807        Gep2->setOperand(NumOperands - 1, LastIndex);
1808        Ptr = Builder.Insert(Gep2);
1809      } else {
1810        // Use the induction element ptr.
1811        assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1812        VectorParts &PtrVal = getVectorValue(Ptr);
1813        Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1814      }
1815
1816      VectorParts &StoredVal = getVectorValue(SI->getValueOperand());
1817      for (unsigned Part = 0; Part < UF; ++Part) {
1818        // Calculate the pointer for the specific unroll-part.
1819        Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1820
1821        if (Reverse) {
1822          // If we store to reverse consecutive memory locations then we need
1823          // to reverse the order of elements in the stored value.
1824          StoredVal[Part] = reverseVector(StoredVal[Part]);
1825          // If the address is consecutive but reversed, then the
1826          // wide store needs to start at the last vector element.
1827          PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1828          PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1829        }
1830
1831        Value *VecPtr = Builder.CreateBitCast(PartPtr, StTy->getPointerTo());
1832        Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
1833      }
1834      break;
1835    }
1836    case Instruction::Load: {
1837      // Attempt to issue a wide load.
1838      LoadInst *LI = dyn_cast<LoadInst>(it);
1839      Type *RetTy = VectorType::get(LI->getType(), VF);
1840      Value *Ptr = LI->getPointerOperand();
1841      unsigned Alignment = LI->getAlignment();
1842
1843      // If the pointer is loop invariant or if it is non consecutive,
1844      // scalarize the load.
1845      int Stride = Legal->isConsecutivePtr(Ptr);
1846      bool Reverse = Stride < 0;
1847      if (Legal->isUniform(Ptr) || Stride == 0) {
1848        scalarizeInstruction(it);
1849        break;
1850      }
1851
1852      GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1853      if (Gep) {
1854        // The last index does not have to be the induction. It can be
1855        // consecutive and be a function of the index. For example A[I+1];
1856        unsigned NumOperands = Gep->getNumOperands();
1857
1858        Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
1859        VectorParts &GEPParts = getVectorValue(LastGepOperand);
1860        Value *LastIndex = GEPParts[0];
1861        LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
1862
1863        // Create the new GEP with the new induction variable.
1864        GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1865        Gep2->setOperand(NumOperands - 1, LastIndex);
1866        Ptr = Builder.Insert(Gep2);
1867      } else {
1868        // Use the induction element ptr.
1869        assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1870        VectorParts &PtrVal = getVectorValue(Ptr);
1871        Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1872      }
1873
1874      for (unsigned Part = 0; Part < UF; ++Part) {
1875        // Calculate the pointer for the specific unroll-part.
1876        Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1877
1878        if (Reverse) {
1879          // If the address is consecutive but reversed, then the
1880          // wide store needs to start at the last vector element.
1881          PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1882          PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1883        }
1884
1885        Value *VecPtr = Builder.CreateBitCast(PartPtr, RetTy->getPointerTo());
1886        Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
1887        cast<LoadInst>(LI)->setAlignment(Alignment);
1888        Entry[Part] = Reverse ? reverseVector(LI) :  LI;
1889      }
1890      break;
1891    }
1892    case Instruction::ZExt:
1893    case Instruction::SExt:
1894    case Instruction::FPToUI:
1895    case Instruction::FPToSI:
1896    case Instruction::FPExt:
1897    case Instruction::PtrToInt:
1898    case Instruction::IntToPtr:
1899    case Instruction::SIToFP:
1900    case Instruction::UIToFP:
1901    case Instruction::Trunc:
1902    case Instruction::FPTrunc:
1903    case Instruction::BitCast: {
1904      CastInst *CI = dyn_cast<CastInst>(it);
1905      /// Optimize the special case where the source is the induction
1906      /// variable. Notice that we can only optimize the 'trunc' case
1907      /// because: a. FP conversions lose precision, b. sext/zext may wrap,
1908      /// c. other casts depend on pointer size.
1909      if (CI->getOperand(0) == OldInduction &&
1910          it->getOpcode() == Instruction::Trunc) {
1911        Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
1912                                               CI->getType());
1913        Value *Broadcasted = getBroadcastInstrs(ScalarCast);
1914        for (unsigned Part = 0; Part < UF; ++Part)
1915          Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
1916        break;
1917      }
1918      /// Vectorize casts.
1919      Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
1920
1921      VectorParts &A = getVectorValue(it->getOperand(0));
1922      for (unsigned Part = 0; Part < UF; ++Part)
1923        Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
1924      break;
1925    }
1926
1927    case Instruction::Call: {
1928      assert(isTriviallyVectorizableIntrinsic(it));
1929      Module *M = BB->getParent()->getParent();
1930      IntrinsicInst *II = cast<IntrinsicInst>(it);
1931      Intrinsic::ID ID = II->getIntrinsicID();
1932      for (unsigned Part = 0; Part < UF; ++Part) {
1933        SmallVector<Value*, 4> Args;
1934        for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i) {
1935          VectorParts &Arg = getVectorValue(II->getArgOperand(i));
1936          Args.push_back(Arg[Part]);
1937        }
1938        Type *Tys[] = { VectorType::get(II->getType()->getScalarType(), VF) };
1939        Function *F = Intrinsic::getDeclaration(M, ID, Tys);
1940        Entry[Part] = Builder.CreateCall(F, Args);
1941      }
1942      break;
1943    }
1944
1945    default:
1946      // All other instructions are unsupported. Scalarize them.
1947      scalarizeInstruction(it);
1948      break;
1949    }// end of switch.
1950  }// end of for_each instr.
1951}
1952
1953void InnerLoopVectorizer::updateAnalysis() {
1954  // Forget the original basic block.
1955  SE->forgetLoop(OrigLoop);
1956
1957  // Update the dominator tree information.
1958  assert(DT->properlyDominates(LoopBypassBlock, LoopExitBlock) &&
1959         "Entry does not dominate exit.");
1960
1961  DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlock);
1962  DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
1963  DT->addNewBlock(LoopMiddleBlock, LoopBypassBlock);
1964  DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
1965  DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
1966  DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
1967
1968  DEBUG(DT->verifyAnalysis());
1969}
1970
1971bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1972  if (!EnableIfConversion)
1973    return false;
1974
1975  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1976  std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
1977
1978  // Collect the blocks that need predication.
1979  for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
1980    BasicBlock *BB = LoopBlocks[i];
1981
1982    // We don't support switch statements inside loops.
1983    if (!isa<BranchInst>(BB->getTerminator()))
1984      return false;
1985
1986    // We must have at most two predecessors because we need to convert
1987    // all PHIs to selects.
1988    unsigned Preds = std::distance(pred_begin(BB), pred_end(BB));
1989    if (Preds > 2)
1990      return false;
1991
1992    // We must be able to predicate all blocks that need to be predicated.
1993    if (blockNeedsPredication(BB) && !blockCanBePredicated(BB))
1994      return false;
1995  }
1996
1997  // We can if-convert this loop.
1998  return true;
1999}
2000
2001bool LoopVectorizationLegality::canVectorize() {
2002  assert(TheLoop->getLoopPreheader() && "No preheader!!");
2003
2004  // We can only vectorize innermost loops.
2005  if (TheLoop->getSubLoopsVector().size())
2006    return false;
2007
2008  // We must have a single backedge.
2009  if (TheLoop->getNumBackEdges() != 1)
2010    return false;
2011
2012  // We must have a single exiting block.
2013  if (!TheLoop->getExitingBlock())
2014    return false;
2015
2016  unsigned NumBlocks = TheLoop->getNumBlocks();
2017
2018  // Check if we can if-convert non single-bb loops.
2019  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
2020    DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
2021    return false;
2022  }
2023
2024  // We need to have a loop header.
2025  BasicBlock *Latch = TheLoop->getLoopLatch();
2026  DEBUG(dbgs() << "LV: Found a loop: " <<
2027        TheLoop->getHeader()->getName() << "\n");
2028
2029  // ScalarEvolution needs to be able to find the exit count.
2030  const SCEV *ExitCount = SE->getExitCount(TheLoop, Latch);
2031  if (ExitCount == SE->getCouldNotCompute()) {
2032    DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
2033    return false;
2034  }
2035
2036  // Do not loop-vectorize loops with a tiny trip count.
2037  unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
2038  if (TC > 0u && TC < TinyTripCountVectorThreshold) {
2039    DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
2040          "This loop is not worth vectorizing.\n");
2041    return false;
2042  }
2043
2044  // Check if we can vectorize the instructions and CFG in this loop.
2045  if (!canVectorizeInstrs()) {
2046    DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
2047    return false;
2048  }
2049
2050  // Go over each instruction and look at memory deps.
2051  if (!canVectorizeMemory()) {
2052    DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
2053    return false;
2054  }
2055
2056  // Collect all of the variables that remain uniform after vectorization.
2057  collectLoopUniforms();
2058
2059  DEBUG(dbgs() << "LV: We can vectorize this loop" <<
2060        (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
2061        <<"!\n");
2062
2063  // Okay! We can vectorize. At this point we don't have any other mem analysis
2064  // which may limit our maximum vectorization factor, so just return true with
2065  // no restrictions.
2066  return true;
2067}
2068
2069bool LoopVectorizationLegality::canVectorizeInstrs() {
2070  BasicBlock *PreHeader = TheLoop->getLoopPreheader();
2071  BasicBlock *Header = TheLoop->getHeader();
2072
2073  // For each block in the loop.
2074  for (Loop::block_iterator bb = TheLoop->block_begin(),
2075       be = TheLoop->block_end(); bb != be; ++bb) {
2076
2077    // Scan the instructions in the block and look for hazards.
2078    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2079         ++it) {
2080
2081      if (PHINode *Phi = dyn_cast<PHINode>(it)) {
2082        // This should not happen because the loop should be normalized.
2083        if (Phi->getNumIncomingValues() != 2) {
2084          DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
2085          return false;
2086        }
2087
2088        // Check that this PHI type is allowed.
2089        if (!Phi->getType()->isIntegerTy() &&
2090            !Phi->getType()->isFloatingPointTy() &&
2091            !Phi->getType()->isPointerTy()) {
2092          DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
2093          return false;
2094        }
2095
2096        // If this PHINode is not in the header block, then we know that we
2097        // can convert it to select during if-conversion. No need to check if
2098        // the PHIs in this block are induction or reduction variables.
2099        if (*bb != Header)
2100          continue;
2101
2102        // This is the value coming from the preheader.
2103        Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
2104        // Check if this is an induction variable.
2105        InductionKind IK = isInductionVariable(Phi);
2106
2107        if (NoInduction != IK) {
2108          // Int inductions are special because we only allow one IV.
2109          if (IK == IntInduction) {
2110            if (Induction) {
2111              DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
2112              return false;
2113            }
2114            Induction = Phi;
2115          }
2116
2117          DEBUG(dbgs() << "LV: Found an induction variable.\n");
2118          Inductions[Phi] = InductionInfo(StartValue, IK);
2119          continue;
2120        }
2121
2122        if (AddReductionVar(Phi, RK_IntegerAdd)) {
2123          DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
2124          continue;
2125        }
2126        if (AddReductionVar(Phi, RK_IntegerMult)) {
2127          DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
2128          continue;
2129        }
2130        if (AddReductionVar(Phi, RK_IntegerOr)) {
2131          DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
2132          continue;
2133        }
2134        if (AddReductionVar(Phi, RK_IntegerAnd)) {
2135          DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
2136          continue;
2137        }
2138        if (AddReductionVar(Phi, RK_IntegerXor)) {
2139          DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
2140          continue;
2141        }
2142        if (AddReductionVar(Phi, RK_FloatMult)) {
2143          DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
2144          continue;
2145        }
2146        if (AddReductionVar(Phi, RK_FloatAdd)) {
2147          DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
2148          continue;
2149        }
2150
2151        DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
2152        return false;
2153      }// end of PHI handling
2154
2155      // We still don't handle functions.
2156      CallInst *CI = dyn_cast<CallInst>(it);
2157      if (CI && !isTriviallyVectorizableIntrinsic(it)) {
2158        DEBUG(dbgs() << "LV: Found a call site.\n");
2159        return false;
2160      }
2161
2162      // Check that the instruction return type is vectorizable.
2163      if (!VectorType::isValidElementType(it->getType()) &&
2164          !it->getType()->isVoidTy()) {
2165        DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
2166        return false;
2167      }
2168
2169      // Check that the stored type is vectorizable.
2170      if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
2171        Type *T = ST->getValueOperand()->getType();
2172        if (!VectorType::isValidElementType(T))
2173          return false;
2174      }
2175
2176      // Reduction instructions are allowed to have exit users.
2177      // All other instructions must not have external users.
2178      if (!AllowedExit.count(it))
2179        //Check that all of the users of the loop are inside the BB.
2180        for (Value::use_iterator I = it->use_begin(), E = it->use_end();
2181             I != E; ++I) {
2182          Instruction *U = cast<Instruction>(*I);
2183          // This user may be a reduction exit value.
2184          if (!TheLoop->contains(U)) {
2185            DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
2186            return false;
2187          }
2188        }
2189    } // next instr.
2190
2191  }
2192
2193  if (!Induction) {
2194    DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
2195    assert(getInductionVars()->size() && "No induction variables");
2196  }
2197
2198  return true;
2199}
2200
2201void LoopVectorizationLegality::collectLoopUniforms() {
2202  // We now know that the loop is vectorizable!
2203  // Collect variables that will remain uniform after vectorization.
2204  std::vector<Value*> Worklist;
2205  BasicBlock *Latch = TheLoop->getLoopLatch();
2206
2207  // Start with the conditional branch and walk up the block.
2208  Worklist.push_back(Latch->getTerminator()->getOperand(0));
2209
2210  while (Worklist.size()) {
2211    Instruction *I = dyn_cast<Instruction>(Worklist.back());
2212    Worklist.pop_back();
2213
2214    // Look at instructions inside this loop.
2215    // Stop when reaching PHI nodes.
2216    // TODO: we need to follow values all over the loop, not only in this block.
2217    if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
2218      continue;
2219
2220    // This is a known uniform.
2221    Uniforms.insert(I);
2222
2223    // Insert all operands.
2224    for (int i = 0, Op = I->getNumOperands(); i < Op; ++i) {
2225      Worklist.push_back(I->getOperand(i));
2226    }
2227  }
2228}
2229
2230bool LoopVectorizationLegality::canVectorizeMemory() {
2231  typedef SmallVector<Value*, 16> ValueVector;
2232  typedef SmallPtrSet<Value*, 16> ValueSet;
2233  // Holds the Load and Store *instructions*.
2234  ValueVector Loads;
2235  ValueVector Stores;
2236  PtrRtCheck.Pointers.clear();
2237  PtrRtCheck.Need = false;
2238
2239  // For each block.
2240  for (Loop::block_iterator bb = TheLoop->block_begin(),
2241       be = TheLoop->block_end(); bb != be; ++bb) {
2242
2243    // Scan the BB and collect legal loads and stores.
2244    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2245         ++it) {
2246
2247      // If this is a load, save it. If this instruction can read from memory
2248      // but is not a load, then we quit. Notice that we don't handle function
2249      // calls that read or write.
2250      if (it->mayReadFromMemory()) {
2251        LoadInst *Ld = dyn_cast<LoadInst>(it);
2252        if (!Ld) return false;
2253        if (!Ld->isSimple()) {
2254          DEBUG(dbgs() << "LV: Found a non-simple load.\n");
2255          return false;
2256        }
2257        Loads.push_back(Ld);
2258        continue;
2259      }
2260
2261      // Save 'store' instructions. Abort if other instructions write to memory.
2262      if (it->mayWriteToMemory()) {
2263        StoreInst *St = dyn_cast<StoreInst>(it);
2264        if (!St) return false;
2265        if (!St->isSimple()) {
2266          DEBUG(dbgs() << "LV: Found a non-simple store.\n");
2267          return false;
2268        }
2269        Stores.push_back(St);
2270      }
2271    } // next instr.
2272  } // next block.
2273
2274  // Now we have two lists that hold the loads and the stores.
2275  // Next, we find the pointers that they use.
2276
2277  // Check if we see any stores. If there are no stores, then we don't
2278  // care if the pointers are *restrict*.
2279  if (!Stores.size()) {
2280    DEBUG(dbgs() << "LV: Found a read-only loop!\n");
2281    return true;
2282  }
2283
2284  // Holds the read and read-write *pointers* that we find.
2285  ValueVector Reads;
2286  ValueVector ReadWrites;
2287
2288  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
2289  // multiple times on the same object. If the ptr is accessed twice, once
2290  // for read and once for write, it will only appear once (on the write
2291  // list). This is okay, since we are going to check for conflicts between
2292  // writes and between reads and writes, but not between reads and reads.
2293  ValueSet Seen;
2294
2295  ValueVector::iterator I, IE;
2296  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
2297    StoreInst *ST = cast<StoreInst>(*I);
2298    Value* Ptr = ST->getPointerOperand();
2299
2300    if (isUniform(Ptr)) {
2301      DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
2302      return false;
2303    }
2304
2305    // If we did *not* see this pointer before, insert it to
2306    // the read-write list. At this phase it is only a 'write' list.
2307    if (Seen.insert(Ptr))
2308      ReadWrites.push_back(Ptr);
2309  }
2310
2311  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
2312    LoadInst *LD = cast<LoadInst>(*I);
2313    Value* Ptr = LD->getPointerOperand();
2314    // If we did *not* see this pointer before, insert it to the
2315    // read list. If we *did* see it before, then it is already in
2316    // the read-write list. This allows us to vectorize expressions
2317    // such as A[i] += x;  Because the address of A[i] is a read-write
2318    // pointer. This only works if the index of A[i] is consecutive.
2319    // If the address of i is unknown (for example A[B[i]]) then we may
2320    // read a few words, modify, and write a few words, and some of the
2321    // words may be written to the same address.
2322    if (Seen.insert(Ptr) || 0 == isConsecutivePtr(Ptr))
2323      Reads.push_back(Ptr);
2324  }
2325
2326  // If we write (or read-write) to a single destination and there are no
2327  // other reads in this loop then is it safe to vectorize.
2328  if (ReadWrites.size() == 1 && Reads.size() == 0) {
2329    DEBUG(dbgs() << "LV: Found a write-only loop!\n");
2330    return true;
2331  }
2332
2333  // Find pointers with computable bounds. We are going to use this information
2334  // to place a runtime bound check.
2335  bool CanDoRT = true;
2336  for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I)
2337    if (hasComputableBounds(*I)) {
2338      PtrRtCheck.insert(SE, TheLoop, *I);
2339      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
2340    } else {
2341      CanDoRT = false;
2342      break;
2343    }
2344  for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I)
2345    if (hasComputableBounds(*I)) {
2346      PtrRtCheck.insert(SE, TheLoop, *I);
2347      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
2348    } else {
2349      CanDoRT = false;
2350      break;
2351    }
2352
2353  // Check that we did not collect too many pointers or found a
2354  // unsizeable pointer.
2355  if (!CanDoRT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
2356    PtrRtCheck.reset();
2357    CanDoRT = false;
2358  }
2359
2360  if (CanDoRT) {
2361    DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
2362  }
2363
2364  bool NeedRTCheck = false;
2365
2366  // Now that the pointers are in two lists (Reads and ReadWrites), we
2367  // can check that there are no conflicts between each of the writes and
2368  // between the writes to the reads.
2369  ValueSet WriteObjects;
2370  ValueVector TempObjects;
2371
2372  // Check that the read-writes do not conflict with other read-write
2373  // pointers.
2374  bool AllWritesIdentified = true;
2375  for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) {
2376    GetUnderlyingObjects(*I, TempObjects, DL);
2377    for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
2378         it != e; ++it) {
2379      if (!isIdentifiedObject(*it)) {
2380        DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n");
2381        NeedRTCheck = true;
2382        AllWritesIdentified = false;
2383      }
2384      if (!WriteObjects.insert(*it)) {
2385        DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
2386              << **it <<"\n");
2387        return false;
2388      }
2389    }
2390    TempObjects.clear();
2391  }
2392
2393  /// Check that the reads don't conflict with the read-writes.
2394  for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) {
2395    GetUnderlyingObjects(*I, TempObjects, DL);
2396    for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
2397         it != e; ++it) {
2398      // If all of the writes are identified then we don't care if the read
2399      // pointer is identified or not.
2400      if (!AllWritesIdentified && !isIdentifiedObject(*it)) {
2401        DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n");
2402        NeedRTCheck = true;
2403      }
2404      if (WriteObjects.count(*it)) {
2405        DEBUG(dbgs() << "LV: Found a possible read/write reorder:"
2406              << **it <<"\n");
2407        return false;
2408      }
2409    }
2410    TempObjects.clear();
2411  }
2412
2413  PtrRtCheck.Need = NeedRTCheck;
2414  if (NeedRTCheck && !CanDoRT) {
2415    DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
2416          "the array bounds.\n");
2417    PtrRtCheck.reset();
2418    return false;
2419  }
2420
2421  DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") <<
2422        " need a runtime memory check.\n");
2423  return true;
2424}
2425
2426bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
2427                                                ReductionKind Kind) {
2428  if (Phi->getNumIncomingValues() != 2)
2429    return false;
2430
2431  // Reduction variables are only found in the loop header block.
2432  if (Phi->getParent() != TheLoop->getHeader())
2433    return false;
2434
2435  // Obtain the reduction start value from the value that comes from the loop
2436  // preheader.
2437  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
2438
2439  // ExitInstruction is the single value which is used outside the loop.
2440  // We only allow for a single reduction value to be used outside the loop.
2441  // This includes users of the reduction, variables (which form a cycle
2442  // which ends in the phi node).
2443  Instruction *ExitInstruction = 0;
2444  // Indicates that we found a binary operation in our scan.
2445  bool FoundBinOp = false;
2446
2447  // Iter is our iterator. We start with the PHI node and scan for all of the
2448  // users of this instruction. All users must be instructions that can be
2449  // used as reduction variables (such as ADD). We may have a single
2450  // out-of-block user. The cycle must end with the original PHI.
2451  Instruction *Iter = Phi;
2452  while (true) {
2453    // If the instruction has no users then this is a broken
2454    // chain and can't be a reduction variable.
2455    if (Iter->use_empty())
2456      return false;
2457
2458    // Did we find a user inside this loop already ?
2459    bool FoundInBlockUser = false;
2460    // Did we reach the initial PHI node already ?
2461    bool FoundStartPHI = false;
2462
2463    // Is this a bin op ?
2464    FoundBinOp |= !isa<PHINode>(Iter);
2465
2466    // For each of the *users* of iter.
2467    for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
2468         it != e; ++it) {
2469      Instruction *U = cast<Instruction>(*it);
2470      // We already know that the PHI is a user.
2471      if (U == Phi) {
2472        FoundStartPHI = true;
2473        continue;
2474      }
2475
2476      // Check if we found the exit user.
2477      BasicBlock *Parent = U->getParent();
2478      if (!TheLoop->contains(Parent)) {
2479        // Exit if you find multiple outside users.
2480        if (ExitInstruction != 0)
2481          return false;
2482        ExitInstruction = Iter;
2483      }
2484
2485      // We allow in-loop PHINodes which are not the original reduction PHI
2486      // node. If this PHI is the only user of Iter (happens in IF w/ no ELSE
2487      // structure) then don't skip this PHI.
2488      if (isa<PHINode>(Iter) && isa<PHINode>(U) &&
2489          U->getParent() != TheLoop->getHeader() &&
2490          TheLoop->contains(U) &&
2491          Iter->getNumUses() > 1)
2492        continue;
2493
2494      // We can't have multiple inside users.
2495      if (FoundInBlockUser)
2496        return false;
2497      FoundInBlockUser = true;
2498
2499      // Any reduction instr must be of one of the allowed kinds.
2500      if (!isReductionInstr(U, Kind))
2501        return false;
2502
2503      // Reductions of instructions such as Div, and Sub is only
2504      // possible if the LHS is the reduction variable.
2505      if (!U->isCommutative() && !isa<PHINode>(U) && U->getOperand(0) != Iter)
2506        return false;
2507
2508      Iter = U;
2509    }
2510
2511    // We found a reduction var if we have reached the original
2512    // phi node and we only have a single instruction with out-of-loop
2513    // users.
2514    if (FoundStartPHI) {
2515      // This instruction is allowed to have out-of-loop users.
2516      AllowedExit.insert(ExitInstruction);
2517
2518      // Save the description of this reduction variable.
2519      ReductionDescriptor RD(RdxStart, ExitInstruction, Kind);
2520      Reductions[Phi] = RD;
2521      // We've ended the cycle. This is a reduction variable if we have an
2522      // outside user and it has a binary op.
2523      return FoundBinOp && ExitInstruction;
2524    }
2525  }
2526}
2527
2528bool
2529LoopVectorizationLegality::isReductionInstr(Instruction *I,
2530                                            ReductionKind Kind) {
2531  bool FP = I->getType()->isFloatingPointTy();
2532  bool FastMath = (FP && I->isCommutative() && I->isAssociative());
2533
2534  switch (I->getOpcode()) {
2535  default:
2536    return false;
2537  case Instruction::PHI:
2538      if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd))
2539        return false;
2540    // possibly.
2541    return true;
2542  case Instruction::Sub:
2543  case Instruction::Add:
2544    return Kind == RK_IntegerAdd;
2545  case Instruction::SDiv:
2546  case Instruction::UDiv:
2547  case Instruction::Mul:
2548    return Kind == RK_IntegerMult;
2549  case Instruction::And:
2550    return Kind == RK_IntegerAnd;
2551  case Instruction::Or:
2552    return Kind == RK_IntegerOr;
2553  case Instruction::Xor:
2554    return Kind == RK_IntegerXor;
2555  case Instruction::FMul:
2556    return Kind == RK_FloatMult && FastMath;
2557  case Instruction::FAdd:
2558    return Kind == RK_FloatAdd && FastMath;
2559   }
2560}
2561
2562LoopVectorizationLegality::InductionKind
2563LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
2564  Type *PhiTy = Phi->getType();
2565  // We only handle integer and pointer inductions variables.
2566  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
2567    return NoInduction;
2568
2569  // Check that the PHI is consecutive and starts at zero.
2570  const SCEV *PhiScev = SE->getSCEV(Phi);
2571  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
2572  if (!AR) {
2573    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
2574    return NoInduction;
2575  }
2576  const SCEV *Step = AR->getStepRecurrence(*SE);
2577
2578  // Integer inductions need to have a stride of one.
2579  if (PhiTy->isIntegerTy()) {
2580    if (Step->isOne())
2581      return IntInduction;
2582    if (Step->isAllOnesValue())
2583      return ReverseIntInduction;
2584    return NoInduction;
2585  }
2586
2587  // Calculate the pointer stride and check if it is consecutive.
2588  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
2589  if (!C)
2590    return NoInduction;
2591
2592  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
2593  uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
2594  if (C->getValue()->equalsInt(Size))
2595    return PtrInduction;
2596
2597  return NoInduction;
2598}
2599
2600bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
2601  Value *In0 = const_cast<Value*>(V);
2602  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
2603  if (!PN)
2604    return false;
2605
2606  return Inductions.count(PN);
2607}
2608
2609bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
2610  assert(TheLoop->contains(BB) && "Unknown block used");
2611
2612  // Blocks that do not dominate the latch need predication.
2613  BasicBlock* Latch = TheLoop->getLoopLatch();
2614  return !DT->dominates(BB, Latch);
2615}
2616
2617bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) {
2618  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2619    // We don't predicate loads/stores at the moment.
2620    if (it->mayReadFromMemory() || it->mayWriteToMemory() || it->mayThrow())
2621      return false;
2622
2623    // The instructions below can trap.
2624    switch (it->getOpcode()) {
2625    default: continue;
2626    case Instruction::UDiv:
2627    case Instruction::SDiv:
2628    case Instruction::URem:
2629    case Instruction::SRem:
2630             return false;
2631    }
2632  }
2633
2634  return true;
2635}
2636
2637bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
2638  const SCEV *PhiScev = SE->getSCEV(Ptr);
2639  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
2640  if (!AR)
2641    return false;
2642
2643  return AR->isAffine();
2644}
2645
2646unsigned
2647LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
2648                                                      unsigned UserVF) {
2649  if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
2650    DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
2651    return 1;
2652  }
2653
2654  // Find the trip count.
2655  unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
2656  DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
2657
2658  unsigned VF = MaxVectorSize;
2659
2660  // If we optimize the program for size, avoid creating the tail loop.
2661  if (OptForSize) {
2662    // If we are unable to calculate the trip count then don't try to vectorize.
2663    if (TC < 2) {
2664      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
2665      return 1;
2666    }
2667
2668    // Find the maximum SIMD width that can fit within the trip count.
2669    VF = TC % MaxVectorSize;
2670
2671    if (VF == 0)
2672      VF = MaxVectorSize;
2673
2674    // If the trip count that we found modulo the vectorization factor is not
2675    // zero then we require a tail.
2676    if (VF < 2) {
2677      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
2678      return 1;
2679    }
2680  }
2681
2682  if (UserVF != 0) {
2683    assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
2684    DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
2685
2686    return UserVF;
2687  }
2688
2689  float Cost = expectedCost(1);
2690  unsigned Width = 1;
2691  DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
2692  for (unsigned i=2; i <= VF; i*=2) {
2693    // Notice that the vector loop needs to be executed less times, so
2694    // we need to divide the cost of the vector loops by the width of
2695    // the vector elements.
2696    float VectorCost = expectedCost(i) / (float)i;
2697    DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
2698          (int)VectorCost << ".\n");
2699    if (VectorCost < Cost) {
2700      Cost = VectorCost;
2701      Width = i;
2702    }
2703  }
2704
2705  DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
2706  return Width;
2707}
2708
2709unsigned
2710LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
2711                                               unsigned UserUF) {
2712  // Use the user preference, unless 'auto' is selected.
2713  if (UserUF != 0)
2714    return UserUF;
2715
2716  // When we optimize for size we don't unroll.
2717  if (OptForSize)
2718    return 1;
2719
2720  // Do not unroll loops with a relatively small trip count.
2721  unsigned TC = SE->getSmallConstantTripCount(TheLoop,
2722                                              TheLoop->getLoopLatch());
2723  if (TC > 1 && TC < TinyTripCountUnrollThreshold)
2724    return 1;
2725
2726  unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
2727  DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
2728        " vector registers\n");
2729
2730  LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
2731  // We divide by these constants so assume that we have at least one
2732  // instruction that uses at least one register.
2733  R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
2734  R.NumInstructions = std::max(R.NumInstructions, 1U);
2735
2736  // We calculate the unroll factor using the following formula.
2737  // Subtract the number of loop invariants from the number of available
2738  // registers. These registers are used by all of the unrolled instances.
2739  // Next, divide the remaining registers by the number of registers that is
2740  // required by the loop, in order to estimate how many parallel instances
2741  // fit without causing spills.
2742  unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
2743
2744  // We don't want to unroll the loops to the point where they do not fit into
2745  // the decoded cache. Assume that we only allow 32 IR instructions.
2746  UF = std::min(UF, (MaxLoopSizeThreshold / R.NumInstructions));
2747
2748  // Clamp the unroll factor ranges to reasonable factors.
2749  if (UF > MaxUnrollSize)
2750    UF = MaxUnrollSize;
2751  else if (UF < 1)
2752    UF = 1;
2753
2754  return UF;
2755}
2756
2757LoopVectorizationCostModel::RegisterUsage
2758LoopVectorizationCostModel::calculateRegisterUsage() {
2759  // This function calculates the register usage by measuring the highest number
2760  // of values that are alive at a single location. Obviously, this is a very
2761  // rough estimation. We scan the loop in a topological order in order and
2762  // assign a number to each instruction. We use RPO to ensure that defs are
2763  // met before their users. We assume that each instruction that has in-loop
2764  // users starts an interval. We record every time that an in-loop value is
2765  // used, so we have a list of the first and last occurrences of each
2766  // instruction. Next, we transpose this data structure into a multi map that
2767  // holds the list of intervals that *end* at a specific location. This multi
2768  // map allows us to perform a linear search. We scan the instructions linearly
2769  // and record each time that a new interval starts, by placing it in a set.
2770  // If we find this value in the multi-map then we remove it from the set.
2771  // The max register usage is the maximum size of the set.
2772  // We also search for instructions that are defined outside the loop, but are
2773  // used inside the loop. We need this number separately from the max-interval
2774  // usage number because when we unroll, loop-invariant values do not take
2775  // more register.
2776  LoopBlocksDFS DFS(TheLoop);
2777  DFS.perform(LI);
2778
2779  RegisterUsage R;
2780  R.NumInstructions = 0;
2781
2782  // Each 'key' in the map opens a new interval. The values
2783  // of the map are the index of the 'last seen' usage of the
2784  // instruction that is the key.
2785  typedef DenseMap<Instruction*, unsigned> IntervalMap;
2786  // Maps instruction to its index.
2787  DenseMap<unsigned, Instruction*> IdxToInstr;
2788  // Marks the end of each interval.
2789  IntervalMap EndPoint;
2790  // Saves the list of instruction indices that are used in the loop.
2791  SmallSet<Instruction*, 8> Ends;
2792  // Saves the list of values that are used in the loop but are
2793  // defined outside the loop, such as arguments and constants.
2794  SmallPtrSet<Value*, 8> LoopInvariants;
2795
2796  unsigned Index = 0;
2797  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
2798       be = DFS.endRPO(); bb != be; ++bb) {
2799    R.NumInstructions += (*bb)->size();
2800    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2801         ++it) {
2802      Instruction *I = it;
2803      IdxToInstr[Index++] = I;
2804
2805      // Save the end location of each USE.
2806      for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2807        Value *U = I->getOperand(i);
2808        Instruction *Instr = dyn_cast<Instruction>(U);
2809
2810        // Ignore non-instruction values such as arguments, constants, etc.
2811        if (!Instr) continue;
2812
2813        // If this instruction is outside the loop then record it and continue.
2814        if (!TheLoop->contains(Instr)) {
2815          LoopInvariants.insert(Instr);
2816          continue;
2817        }
2818
2819        // Overwrite previous end points.
2820        EndPoint[Instr] = Index;
2821        Ends.insert(Instr);
2822      }
2823    }
2824  }
2825
2826  // Saves the list of intervals that end with the index in 'key'.
2827  typedef SmallVector<Instruction*, 2> InstrList;
2828  DenseMap<unsigned, InstrList> TransposeEnds;
2829
2830  // Transpose the EndPoints to a list of values that end at each index.
2831  for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
2832       it != e; ++it)
2833    TransposeEnds[it->second].push_back(it->first);
2834
2835  SmallSet<Instruction*, 8> OpenIntervals;
2836  unsigned MaxUsage = 0;
2837
2838
2839  DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
2840  for (unsigned int i = 0; i < Index; ++i) {
2841    Instruction *I = IdxToInstr[i];
2842    // Ignore instructions that are never used within the loop.
2843    if (!Ends.count(I)) continue;
2844
2845    // Remove all of the instructions that end at this location.
2846    InstrList &List = TransposeEnds[i];
2847    for (unsigned int j=0, e = List.size(); j < e; ++j)
2848      OpenIntervals.erase(List[j]);
2849
2850    // Count the number of live interals.
2851    MaxUsage = std::max(MaxUsage, OpenIntervals.size());
2852
2853    DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
2854          OpenIntervals.size() <<"\n");
2855
2856    // Add the current instruction to the list of open intervals.
2857    OpenIntervals.insert(I);
2858  }
2859
2860  unsigned Invariant = LoopInvariants.size();
2861  DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
2862  DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
2863  DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
2864
2865  R.LoopInvariantRegs = Invariant;
2866  R.MaxLocalUsers = MaxUsage;
2867  return R;
2868}
2869
2870unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
2871  unsigned Cost = 0;
2872
2873  // For each block.
2874  for (Loop::block_iterator bb = TheLoop->block_begin(),
2875       be = TheLoop->block_end(); bb != be; ++bb) {
2876    unsigned BlockCost = 0;
2877    BasicBlock *BB = *bb;
2878
2879    // For each instruction in the old loop.
2880    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2881      unsigned C = getInstructionCost(it, VF);
2882      Cost += C;
2883      DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " <<
2884            VF << " For instruction: "<< *it << "\n");
2885    }
2886
2887    // We assume that if-converted blocks have a 50% chance of being executed.
2888    // When the code is scalar then some of the blocks are avoided due to CF.
2889    // When the code is vectorized we execute all code paths.
2890    if (Legal->blockNeedsPredication(*bb) && VF == 1)
2891      BlockCost /= 2;
2892
2893    Cost += BlockCost;
2894  }
2895
2896  return Cost;
2897}
2898
2899unsigned
2900LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
2901  // If we know that this instruction will remain uniform, check the cost of
2902  // the scalar version.
2903  if (Legal->isUniformAfterVectorization(I))
2904    VF = 1;
2905
2906  Type *RetTy = I->getType();
2907  Type *VectorTy = ToVectorTy(RetTy, VF);
2908
2909  // TODO: We need to estimate the cost of intrinsic calls.
2910  switch (I->getOpcode()) {
2911  case Instruction::GetElementPtr:
2912    // We mark this instruction as zero-cost because scalar GEPs are usually
2913    // lowered to the intruction addressing mode. At the moment we don't
2914    // generate vector geps.
2915    return 0;
2916  case Instruction::Br: {
2917    return TTI.getCFInstrCost(I->getOpcode());
2918  }
2919  case Instruction::PHI:
2920    //TODO: IF-converted IFs become selects.
2921    return 0;
2922  case Instruction::Add:
2923  case Instruction::FAdd:
2924  case Instruction::Sub:
2925  case Instruction::FSub:
2926  case Instruction::Mul:
2927  case Instruction::FMul:
2928  case Instruction::UDiv:
2929  case Instruction::SDiv:
2930  case Instruction::FDiv:
2931  case Instruction::URem:
2932  case Instruction::SRem:
2933  case Instruction::FRem:
2934  case Instruction::Shl:
2935  case Instruction::LShr:
2936  case Instruction::AShr:
2937  case Instruction::And:
2938  case Instruction::Or:
2939  case Instruction::Xor:
2940    return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy);
2941  case Instruction::Select: {
2942    SelectInst *SI = cast<SelectInst>(I);
2943    const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
2944    bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
2945    Type *CondTy = SI->getCondition()->getType();
2946    if (ScalarCond)
2947      CondTy = VectorType::get(CondTy, VF);
2948
2949    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
2950  }
2951  case Instruction::ICmp:
2952  case Instruction::FCmp: {
2953    Type *ValTy = I->getOperand(0)->getType();
2954    VectorTy = ToVectorTy(ValTy, VF);
2955    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
2956  }
2957  case Instruction::Store: {
2958    StoreInst *SI = cast<StoreInst>(I);
2959    Type *ValTy = SI->getValueOperand()->getType();
2960    VectorTy = ToVectorTy(ValTy, VF);
2961
2962    if (VF == 1)
2963      return TTI.getMemoryOpCost(I->getOpcode(), VectorTy,
2964                                   SI->getAlignment(),
2965                                   SI->getPointerAddressSpace());
2966
2967    // Scalarized stores.
2968    int Stride = Legal->isConsecutivePtr(SI->getPointerOperand());
2969    bool Reverse = Stride < 0;
2970    if (0 == Stride) {
2971      unsigned Cost = 0;
2972
2973      // The cost of extracting from the value vector and pointer vector.
2974      Type *PtrTy = ToVectorTy(I->getOperand(0)->getType(), VF);
2975      for (unsigned i = 0; i < VF; ++i) {
2976        Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy,
2977                                       i);
2978        Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
2979      }
2980
2981      // The cost of the scalar stores.
2982      Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
2983                                       SI->getAlignment(),
2984                                       SI->getPointerAddressSpace());
2985      return Cost;
2986    }
2987
2988    // Wide stores.
2989    unsigned Cost = TTI.getMemoryOpCost(I->getOpcode(), VectorTy,
2990                                        SI->getAlignment(),
2991                                        SI->getPointerAddressSpace());
2992    if (Reverse)
2993      Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
2994                                  VectorTy, 0);
2995    return Cost;
2996  }
2997  case Instruction::Load: {
2998    LoadInst *LI = cast<LoadInst>(I);
2999
3000    if (VF == 1)
3001      return TTI.getMemoryOpCost(I->getOpcode(), VectorTy, LI->getAlignment(),
3002                                 LI->getPointerAddressSpace());
3003
3004    // Scalarized loads.
3005    int Stride = Legal->isConsecutivePtr(LI->getPointerOperand());
3006    bool Reverse = Stride < 0;
3007    if (0 == Stride) {
3008      unsigned Cost = 0;
3009      Type *PtrTy = ToVectorTy(I->getOperand(0)->getType(), VF);
3010
3011      // The cost of extracting from the pointer vector.
3012      for (unsigned i = 0; i < VF; ++i)
3013        Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
3014
3015      // The cost of inserting data to the result vector.
3016      for (unsigned i = 0; i < VF; ++i)
3017        Cost += TTI.getVectorInstrCost(Instruction::InsertElement, VectorTy, i);
3018
3019      // The cost of the scalar stores.
3020      Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), RetTy->getScalarType(),
3021                                       LI->getAlignment(),
3022                                       LI->getPointerAddressSpace());
3023      return Cost;
3024    }
3025
3026    // Wide loads.
3027    unsigned Cost = TTI.getMemoryOpCost(I->getOpcode(), VectorTy,
3028                                        LI->getAlignment(),
3029                                        LI->getPointerAddressSpace());
3030    if (Reverse)
3031      Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
3032    return Cost;
3033  }
3034  case Instruction::ZExt:
3035  case Instruction::SExt:
3036  case Instruction::FPToUI:
3037  case Instruction::FPToSI:
3038  case Instruction::FPExt:
3039  case Instruction::PtrToInt:
3040  case Instruction::IntToPtr:
3041  case Instruction::SIToFP:
3042  case Instruction::UIToFP:
3043  case Instruction::Trunc:
3044  case Instruction::FPTrunc:
3045  case Instruction::BitCast: {
3046    // We optimize the truncation of induction variable.
3047    // The cost of these is the same as the scalar operation.
3048    if (I->getOpcode() == Instruction::Trunc &&
3049        Legal->isInductionVariable(I->getOperand(0)))
3050      return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
3051                                  I->getOperand(0)->getType());
3052
3053    Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
3054    return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
3055  }
3056  case Instruction::Call: {
3057    assert(isTriviallyVectorizableIntrinsic(I));
3058    IntrinsicInst *II = cast<IntrinsicInst>(I);
3059    Type *RetTy = ToVectorTy(II->getType(), VF);
3060    SmallVector<Type*, 4> Tys;
3061    for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i)
3062      Tys.push_back(ToVectorTy(II->getArgOperand(i)->getType(), VF));
3063    return TTI.getIntrinsicInstrCost(II->getIntrinsicID(), RetTy, Tys);
3064  }
3065  default: {
3066    // We are scalarizing the instruction. Return the cost of the scalar
3067    // instruction, plus the cost of insert and extract into vector
3068    // elements, times the vector width.
3069    unsigned Cost = 0;
3070
3071    if (!RetTy->isVoidTy() && VF != 1) {
3072      unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
3073                                                VectorTy);
3074      unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
3075                                                VectorTy);
3076
3077      // The cost of inserting the results plus extracting each one of the
3078      // operands.
3079      Cost += VF * (InsCost + ExtCost * I->getNumOperands());
3080    }
3081
3082    // The cost of executing VF copies of the scalar instruction. This opcode
3083    // is unknown. Assume that it is the same as 'mul'.
3084    Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
3085    return Cost;
3086  }
3087  }// end of switch.
3088}
3089
3090Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
3091  if (Scalar->isVoidTy() || VF == 1)
3092    return Scalar;
3093  return VectorType::get(Scalar, VF);
3094}
3095
3096char LoopVectorize::ID = 0;
3097static const char lv_name[] = "Loop Vectorization";
3098INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
3099INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
3100INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
3101INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
3102INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
3103INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
3104
3105namespace llvm {
3106  Pass *createLoopVectorizePass() {
3107    return new LoopVectorize();
3108  }
3109}
3110
3111
3112