LoopVectorize.cpp revision 4634338655449a6e76b6a948c91fbe5bc736d24b
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11// and generates target-independent LLVM-IR.
12// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13// of instructions in order to estimate the profitability of vectorization.
14//
15// The loop vectorizer combines consecutive loop iterations into a single
16// 'wide' iteration. After this transformation the index is incremented
17// by the SIMD vector width, and not by one.
18//
19// This pass has three parts:
20// 1. The main loop pass that drives the different parts.
21// 2. LoopVectorizationLegality - A unit that checks for the legality
22//    of the vectorization.
23// 3. InnerLoopVectorizer - A unit that performs the actual
24//    widening of instructions.
25// 4. LoopVectorizationCostModel - A unit that checks for the profitability
26//    of vectorization. It decides on the optimal vector width, which
27//    can be one, if vectorization is not profitable.
28//
29//===----------------------------------------------------------------------===//
30//
31// The reduction-variable vectorization is based on the paper:
32//  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33//
34// Variable uniformity checks are inspired by:
35//  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36//
37// Other ideas/concepts are from:
38//  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39//
40//  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
41//  Vectorizing Compilers.
42//
43//===----------------------------------------------------------------------===//
44
45#define LV_NAME "loop-vectorize"
46#define DEBUG_TYPE LV_NAME
47
48#include "llvm/Transforms/Vectorize.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/EquivalenceClasses.h"
51#include "llvm/ADT/Hashing.h"
52#include "llvm/ADT/MapVector.h"
53#include "llvm/ADT/SetVector.h"
54#include "llvm/ADT/SmallPtrSet.h"
55#include "llvm/ADT/SmallSet.h"
56#include "llvm/ADT/SmallVector.h"
57#include "llvm/ADT/StringExtras.h"
58#include "llvm/Analysis/AliasAnalysis.h"
59#include "llvm/Analysis/Dominators.h"
60#include "llvm/Analysis/LoopInfo.h"
61#include "llvm/Analysis/LoopIterator.h"
62#include "llvm/Analysis/LoopPass.h"
63#include "llvm/Analysis/ScalarEvolution.h"
64#include "llvm/Analysis/ScalarEvolutionExpander.h"
65#include "llvm/Analysis/ScalarEvolutionExpressions.h"
66#include "llvm/Analysis/TargetTransformInfo.h"
67#include "llvm/Analysis/ValueTracking.h"
68#include "llvm/Analysis/Verifier.h"
69#include "llvm/IR/Constants.h"
70#include "llvm/IR/DataLayout.h"
71#include "llvm/IR/DerivedTypes.h"
72#include "llvm/IR/Function.h"
73#include "llvm/IR/IRBuilder.h"
74#include "llvm/IR/Instructions.h"
75#include "llvm/IR/IntrinsicInst.h"
76#include "llvm/IR/LLVMContext.h"
77#include "llvm/IR/Module.h"
78#include "llvm/IR/Type.h"
79#include "llvm/IR/Value.h"
80#include "llvm/Pass.h"
81#include "llvm/Support/CommandLine.h"
82#include "llvm/Support/Debug.h"
83#include "llvm/Support/PatternMatch.h"
84#include "llvm/Support/raw_ostream.h"
85#include "llvm/Support/ValueHandle.h"
86#include "llvm/Target/TargetLibraryInfo.h"
87#include "llvm/Transforms/Scalar.h"
88#include "llvm/Transforms/Utils/BasicBlockUtils.h"
89#include "llvm/Transforms/Utils/Local.h"
90#include <algorithm>
91#include <map>
92
93using namespace llvm;
94using namespace llvm::PatternMatch;
95
96static cl::opt<unsigned>
97VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
98                    cl::desc("Sets the SIMD width. Zero is autoselect."));
99
100static cl::opt<unsigned>
101VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
102                    cl::desc("Sets the vectorization unroll count. "
103                             "Zero is autoselect."));
104
105static cl::opt<bool>
106EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
107                   cl::desc("Enable if-conversion during vectorization."));
108
109/// We don't vectorize loops with a known constant trip count below this number.
110static cl::opt<unsigned>
111TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
112                             cl::Hidden,
113                             cl::desc("Don't vectorize loops with a constant "
114                                      "trip count that is smaller than this "
115                                      "value."));
116
117/// We don't unroll loops with a known constant trip count below this number.
118static const unsigned TinyTripCountUnrollThreshold = 128;
119
120/// When performing memory disambiguation checks at runtime do not make more
121/// than this number of comparisons.
122static const unsigned RuntimeMemoryCheckThreshold = 8;
123
124/// Maximum simd width.
125static const unsigned MaxVectorWidth = 64;
126
127/// Maximum vectorization unroll count.
128static const unsigned MaxUnrollFactor = 16;
129
130/// The cost of a loop that is considered 'small' by the unroller.
131static const unsigned SmallLoopCost = 20;
132
133namespace {
134
135// Forward declarations.
136class LoopVectorizationLegality;
137class LoopVectorizationCostModel;
138
139/// InnerLoopVectorizer vectorizes loops which contain only one basic
140/// block to a specified vectorization factor (VF).
141/// This class performs the widening of scalars into vectors, or multiple
142/// scalars. This class also implements the following features:
143/// * It inserts an epilogue loop for handling loops that don't have iteration
144///   counts that are known to be a multiple of the vectorization factor.
145/// * It handles the code generation for reduction variables.
146/// * Scalarization (implementation using scalars) of un-vectorizable
147///   instructions.
148/// InnerLoopVectorizer does not perform any vectorization-legality
149/// checks, and relies on the caller to check for the different legality
150/// aspects. The InnerLoopVectorizer relies on the
151/// LoopVectorizationLegality class to provide information about the induction
152/// and reduction variables that were found to a given vectorization factor.
153class InnerLoopVectorizer {
154public:
155  InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
156                      DominatorTree *DT, DataLayout *DL,
157                      const TargetLibraryInfo *TLI, unsigned VecWidth,
158                      unsigned UnrollFactor)
159      : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
160        VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
161        OldInduction(0), WidenMap(UnrollFactor) {}
162
163  // Perform the actual loop widening (vectorization).
164  void vectorize(LoopVectorizationLegality *Legal) {
165    // Create a new empty loop. Unlink the old loop and connect the new one.
166    createEmptyLoop(Legal);
167    // Widen each instruction in the old loop to a new one in the new loop.
168    // Use the Legality module to find the induction and reduction variables.
169    vectorizeLoop(Legal);
170    // Register the new loop and update the analysis passes.
171    updateAnalysis();
172  }
173
174  virtual ~InnerLoopVectorizer() {}
175
176protected:
177  /// A small list of PHINodes.
178  typedef SmallVector<PHINode*, 4> PhiVector;
179  /// When we unroll loops we have multiple vector values for each scalar.
180  /// This data structure holds the unrolled and vectorized values that
181  /// originated from one scalar instruction.
182  typedef SmallVector<Value*, 2> VectorParts;
183
184  // When we if-convert we need create edge masks. We have to cache values so
185  // that we don't end up with exponential recursion/IR.
186  typedef DenseMap<std::pair<BasicBlock*, BasicBlock*>,
187                   VectorParts> EdgeMaskCache;
188
189  /// Add code that checks at runtime if the accessed arrays overlap.
190  /// Returns the comparator value or NULL if no check is needed.
191  Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
192                               Instruction *Loc);
193  /// Create an empty loop, based on the loop ranges of the old loop.
194  void createEmptyLoop(LoopVectorizationLegality *Legal);
195  /// Copy and widen the instructions from the old loop.
196  virtual void vectorizeLoop(LoopVectorizationLegality *Legal);
197
198  /// \brief The Loop exit block may have single value PHI nodes where the
199  /// incoming value is 'Undef'. While vectorizing we only handled real values
200  /// that were defined inside the loop. Here we fix the 'undef case'.
201  /// See PR14725.
202  void fixLCSSAPHIs();
203
204  /// A helper function that computes the predicate of the block BB, assuming
205  /// that the header block of the loop is set to True. It returns the *entry*
206  /// mask for the block BB.
207  VectorParts createBlockInMask(BasicBlock *BB);
208  /// A helper function that computes the predicate of the edge between SRC
209  /// and DST.
210  VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
211
212  /// A helper function to vectorize a single BB within the innermost loop.
213  void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
214                            PhiVector *PV);
215
216  /// Vectorize a single PHINode in a block. This method handles the induction
217  /// variable canonicalization. It supports both VF = 1 for unrolled loops and
218  /// arbitrary length vectors.
219  void widenPHIInstruction(Instruction *PN, VectorParts &Entry,
220                           LoopVectorizationLegality *Legal,
221                           unsigned UF, unsigned VF, PhiVector *PV);
222
223  /// Insert the new loop to the loop hierarchy and pass manager
224  /// and update the analysis passes.
225  void updateAnalysis();
226
227  /// This instruction is un-vectorizable. Implement it as a sequence
228  /// of scalars.
229  virtual void scalarizeInstruction(Instruction *Instr);
230
231  /// Vectorize Load and Store instructions,
232  virtual void vectorizeMemoryInstruction(Instruction *Instr,
233                                  LoopVectorizationLegality *Legal);
234
235  /// Create a broadcast instruction. This method generates a broadcast
236  /// instruction (shuffle) for loop invariant values and for the induction
237  /// value. If this is the induction variable then we extend it to N, N+1, ...
238  /// this is needed because each iteration in the loop corresponds to a SIMD
239  /// element.
240  virtual Value *getBroadcastInstrs(Value *V);
241
242  /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
243  /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
244  /// The sequence starts at StartIndex.
245  virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
246
247  /// When we go over instructions in the basic block we rely on previous
248  /// values within the current basic block or on loop invariant values.
249  /// When we widen (vectorize) values we place them in the map. If the values
250  /// are not within the map, they have to be loop invariant, so we simply
251  /// broadcast them into a vector.
252  VectorParts &getVectorValue(Value *V);
253
254  /// Generate a shuffle sequence that will reverse the vector Vec.
255  virtual Value *reverseVector(Value *Vec);
256
257  /// This is a helper class that holds the vectorizer state. It maps scalar
258  /// instructions to vector instructions. When the code is 'unrolled' then
259  /// then a single scalar value is mapped to multiple vector parts. The parts
260  /// are stored in the VectorPart type.
261  struct ValueMap {
262    /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
263    /// are mapped.
264    ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
265
266    /// \return True if 'Key' is saved in the Value Map.
267    bool has(Value *Key) const { return MapStorage.count(Key); }
268
269    /// Initializes a new entry in the map. Sets all of the vector parts to the
270    /// save value in 'Val'.
271    /// \return A reference to a vector with splat values.
272    VectorParts &splat(Value *Key, Value *Val) {
273      VectorParts &Entry = MapStorage[Key];
274      Entry.assign(UF, Val);
275      return Entry;
276    }
277
278    ///\return A reference to the value that is stored at 'Key'.
279    VectorParts &get(Value *Key) {
280      VectorParts &Entry = MapStorage[Key];
281      if (Entry.empty())
282        Entry.resize(UF);
283      assert(Entry.size() == UF);
284      return Entry;
285    }
286
287  private:
288    /// The unroll factor. Each entry in the map stores this number of vector
289    /// elements.
290    unsigned UF;
291
292    /// Map storage. We use std::map and not DenseMap because insertions to a
293    /// dense map invalidates its iterators.
294    std::map<Value *, VectorParts> MapStorage;
295  };
296
297  /// The original loop.
298  Loop *OrigLoop;
299  /// Scev analysis to use.
300  ScalarEvolution *SE;
301  /// Loop Info.
302  LoopInfo *LI;
303  /// Dominator Tree.
304  DominatorTree *DT;
305  /// Data Layout.
306  DataLayout *DL;
307  /// Target Library Info.
308  const TargetLibraryInfo *TLI;
309
310  /// The vectorization SIMD factor to use. Each vector will have this many
311  /// vector elements.
312  unsigned VF;
313
314protected:
315  /// The vectorization unroll factor to use. Each scalar is vectorized to this
316  /// many different vector instructions.
317  unsigned UF;
318
319  /// The builder that we use
320  IRBuilder<> Builder;
321
322  // --- Vectorization state ---
323
324  /// The vector-loop preheader.
325  BasicBlock *LoopVectorPreHeader;
326  /// The scalar-loop preheader.
327  BasicBlock *LoopScalarPreHeader;
328  /// Middle Block between the vector and the scalar.
329  BasicBlock *LoopMiddleBlock;
330  ///The ExitBlock of the scalar loop.
331  BasicBlock *LoopExitBlock;
332  ///The vector loop body.
333  BasicBlock *LoopVectorBody;
334  ///The scalar loop body.
335  BasicBlock *LoopScalarBody;
336  /// A list of all bypass blocks. The first block is the entry of the loop.
337  SmallVector<BasicBlock *, 4> LoopBypassBlocks;
338
339  /// The new Induction variable which was added to the new block.
340  PHINode *Induction;
341  /// The induction variable of the old basic block.
342  PHINode *OldInduction;
343  /// Holds the extended (to the widest induction type) start index.
344  Value *ExtendedIdx;
345  /// Maps scalars to widened vectors.
346  ValueMap WidenMap;
347  EdgeMaskCache MaskCache;
348};
349
350class InnerLoopUnroller : public InnerLoopVectorizer {
351public:
352  InnerLoopUnroller(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
353                    DominatorTree *DT, DataLayout *DL,
354                    const TargetLibraryInfo *TLI, unsigned UnrollFactor) :
355    InnerLoopVectorizer(OrigLoop, SE, LI, DT, DL, TLI, 1, UnrollFactor) { }
356
357private:
358  virtual void scalarizeInstruction(Instruction *Instr);
359  virtual void vectorizeMemoryInstruction(Instruction *Instr,
360                                          LoopVectorizationLegality *Legal);
361  virtual Value *getBroadcastInstrs(Value *V);
362  virtual Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
363  virtual Value *reverseVector(Value *Vec);
364};
365
366/// \brief Look for a meaningful debug location on the instruction or it's
367/// operands.
368static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
369  if (!I)
370    return I;
371
372  DebugLoc Empty;
373  if (I->getDebugLoc() != Empty)
374    return I;
375
376  for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
377    if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
378      if (OpInst->getDebugLoc() != Empty)
379        return OpInst;
380  }
381
382  return I;
383}
384
385/// \brief Set the debug location in the builder using the debug location in the
386/// instruction.
387static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
388  if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr))
389    B.SetCurrentDebugLocation(Inst->getDebugLoc());
390  else
391    B.SetCurrentDebugLocation(DebugLoc());
392}
393
394/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
395/// to what vectorization factor.
396/// This class does not look at the profitability of vectorization, only the
397/// legality. This class has two main kinds of checks:
398/// * Memory checks - The code in canVectorizeMemory checks if vectorization
399///   will change the order of memory accesses in a way that will change the
400///   correctness of the program.
401/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
402/// checks for a number of different conditions, such as the availability of a
403/// single induction variable, that all types are supported and vectorize-able,
404/// etc. This code reflects the capabilities of InnerLoopVectorizer.
405/// This class is also used by InnerLoopVectorizer for identifying
406/// induction variable and the different reduction variables.
407class LoopVectorizationLegality {
408public:
409  LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
410                            DominatorTree *DT, TargetLibraryInfo *TLI)
411      : TheLoop(L), SE(SE), DL(DL), DT(DT), TLI(TLI),
412        Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false),
413        MaxSafeDepDistBytes(-1U) {}
414
415  /// This enum represents the kinds of reductions that we support.
416  enum ReductionKind {
417    RK_NoReduction, ///< Not a reduction.
418    RK_IntegerAdd,  ///< Sum of integers.
419    RK_IntegerMult, ///< Product of integers.
420    RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
421    RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
422    RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
423    RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
424    RK_FloatAdd,    ///< Sum of floats.
425    RK_FloatMult,   ///< Product of floats.
426    RK_FloatMinMax  ///< Min/max implemented in terms of select(cmp()).
427  };
428
429  /// This enum represents the kinds of inductions that we support.
430  enum InductionKind {
431    IK_NoInduction,         ///< Not an induction variable.
432    IK_IntInduction,        ///< Integer induction variable. Step = 1.
433    IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
434    IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
435    IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
436  };
437
438  // This enum represents the kind of minmax reduction.
439  enum MinMaxReductionKind {
440    MRK_Invalid,
441    MRK_UIntMin,
442    MRK_UIntMax,
443    MRK_SIntMin,
444    MRK_SIntMax,
445    MRK_FloatMin,
446    MRK_FloatMax
447  };
448
449  /// This struct holds information about reduction variables.
450  struct ReductionDescriptor {
451    ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
452      Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
453
454    ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
455                        MinMaxReductionKind MK)
456        : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
457
458    // The starting value of the reduction.
459    // It does not have to be zero!
460    TrackingVH<Value> StartValue;
461    // The instruction who's value is used outside the loop.
462    Instruction *LoopExitInstr;
463    // The kind of the reduction.
464    ReductionKind Kind;
465    // If this a min/max reduction the kind of reduction.
466    MinMaxReductionKind MinMaxKind;
467  };
468
469  /// This POD struct holds information about a potential reduction operation.
470  struct ReductionInstDesc {
471    ReductionInstDesc(bool IsRedux, Instruction *I) :
472      IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
473
474    ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
475      IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
476
477    // Is this instruction a reduction candidate.
478    bool IsReduction;
479    // The last instruction in a min/max pattern (select of the select(icmp())
480    // pattern), or the current reduction instruction otherwise.
481    Instruction *PatternLastInst;
482    // If this is a min/max pattern the comparison predicate.
483    MinMaxReductionKind MinMaxKind;
484  };
485
486  /// This struct holds information about the memory runtime legality
487  /// check that a group of pointers do not overlap.
488  struct RuntimePointerCheck {
489    RuntimePointerCheck() : Need(false) {}
490
491    /// Reset the state of the pointer runtime information.
492    void reset() {
493      Need = false;
494      Pointers.clear();
495      Starts.clear();
496      Ends.clear();
497      IsWritePtr.clear();
498      DependencySetId.clear();
499    }
500
501    /// Insert a pointer and calculate the start and end SCEVs.
502    void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr,
503                unsigned DepSetId);
504
505    /// This flag indicates if we need to add the runtime check.
506    bool Need;
507    /// Holds the pointers that we need to check.
508    SmallVector<TrackingVH<Value>, 2> Pointers;
509    /// Holds the pointer value at the beginning of the loop.
510    SmallVector<const SCEV*, 2> Starts;
511    /// Holds the pointer value at the end of the loop.
512    SmallVector<const SCEV*, 2> Ends;
513    /// Holds the information if this pointer is used for writing to memory.
514    SmallVector<bool, 2> IsWritePtr;
515    /// Holds the id of the set of pointers that could be dependent because of a
516    /// shared underlying object.
517    SmallVector<unsigned, 2> DependencySetId;
518  };
519
520  /// A struct for saving information about induction variables.
521  struct InductionInfo {
522    InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
523    InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
524    /// Start value.
525    TrackingVH<Value> StartValue;
526    /// Induction kind.
527    InductionKind IK;
528  };
529
530  /// ReductionList contains the reduction descriptors for all
531  /// of the reductions that were found in the loop.
532  typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
533
534  /// InductionList saves induction variables and maps them to the
535  /// induction descriptor.
536  typedef MapVector<PHINode*, InductionInfo> InductionList;
537
538  /// Returns true if it is legal to vectorize this loop.
539  /// This does not mean that it is profitable to vectorize this
540  /// loop, only that it is legal to do so.
541  bool canVectorize();
542
543  /// Returns the Induction variable.
544  PHINode *getInduction() { return Induction; }
545
546  /// Returns the reduction variables found in the loop.
547  ReductionList *getReductionVars() { return &Reductions; }
548
549  /// Returns the induction variables found in the loop.
550  InductionList *getInductionVars() { return &Inductions; }
551
552  /// Returns the widest induction type.
553  Type *getWidestInductionType() { return WidestIndTy; }
554
555  /// Returns True if V is an induction variable in this loop.
556  bool isInductionVariable(const Value *V);
557
558  /// Return true if the block BB needs to be predicated in order for the loop
559  /// to be vectorized.
560  bool blockNeedsPredication(BasicBlock *BB);
561
562  /// Check if this  pointer is consecutive when vectorizing. This happens
563  /// when the last index of the GEP is the induction variable, or that the
564  /// pointer itself is an induction variable.
565  /// This check allows us to vectorize A[idx] into a wide load/store.
566  /// Returns:
567  /// 0 - Stride is unknown or non consecutive.
568  /// 1 - Address is consecutive.
569  /// -1 - Address is consecutive, and decreasing.
570  int isConsecutivePtr(Value *Ptr);
571
572  /// Returns true if the value V is uniform within the loop.
573  bool isUniform(Value *V);
574
575  /// Returns true if this instruction will remain scalar after vectorization.
576  bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
577
578  /// Returns the information that we collected about runtime memory check.
579  RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
580
581  /// This function returns the identity element (or neutral element) for
582  /// the operation K.
583  static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
584
585  unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
586
587private:
588  /// Check if a single basic block loop is vectorizable.
589  /// At this point we know that this is a loop with a constant trip count
590  /// and we only need to check individual instructions.
591  bool canVectorizeInstrs();
592
593  /// When we vectorize loops we may change the order in which
594  /// we read and write from memory. This method checks if it is
595  /// legal to vectorize the code, considering only memory constrains.
596  /// Returns true if the loop is vectorizable
597  bool canVectorizeMemory();
598
599  /// Return true if we can vectorize this loop using the IF-conversion
600  /// transformation.
601  bool canVectorizeWithIfConvert();
602
603  /// Collect the variables that need to stay uniform after vectorization.
604  void collectLoopUniforms();
605
606  /// Return true if all of the instructions in the block can be speculatively
607  /// executed. \p SafePtrs is a list of addresses that are known to be legal
608  /// and we know that we can read from them without segfault.
609  bool blockCanBePredicated(BasicBlock *BB, SmallPtrSet<Value *, 8>& SafePtrs);
610
611  /// Returns True, if 'Phi' is the kind of reduction variable for type
612  /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
613  bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
614  /// Returns a struct describing if the instruction 'I' can be a reduction
615  /// variable of type 'Kind'. If the reduction is a min/max pattern of
616  /// select(icmp()) this function advances the instruction pointer 'I' from the
617  /// compare instruction to the select instruction and stores this pointer in
618  /// 'PatternLastInst' member of the returned struct.
619  ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
620                                     ReductionInstDesc &Desc);
621  /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
622  /// pattern corresponding to a min(X, Y) or max(X, Y).
623  static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
624                                                    ReductionInstDesc &Prev);
625  /// Returns the induction kind of Phi. This function may return NoInduction
626  /// if the PHI is not an induction variable.
627  InductionKind isInductionVariable(PHINode *Phi);
628
629  /// The loop that we evaluate.
630  Loop *TheLoop;
631  /// Scev analysis.
632  ScalarEvolution *SE;
633  /// DataLayout analysis.
634  DataLayout *DL;
635  /// Dominators.
636  DominatorTree *DT;
637  /// Target Library Info.
638  TargetLibraryInfo *TLI;
639
640  //  ---  vectorization state --- //
641
642  /// Holds the integer induction variable. This is the counter of the
643  /// loop.
644  PHINode *Induction;
645  /// Holds the reduction variables.
646  ReductionList Reductions;
647  /// Holds all of the induction variables that we found in the loop.
648  /// Notice that inductions don't need to start at zero and that induction
649  /// variables can be pointers.
650  InductionList Inductions;
651  /// Holds the widest induction type encountered.
652  Type *WidestIndTy;
653
654  /// Allowed outside users. This holds the reduction
655  /// vars which can be accessed from outside the loop.
656  SmallPtrSet<Value*, 4> AllowedExit;
657  /// This set holds the variables which are known to be uniform after
658  /// vectorization.
659  SmallPtrSet<Instruction*, 4> Uniforms;
660  /// We need to check that all of the pointers in this list are disjoint
661  /// at runtime.
662  RuntimePointerCheck PtrRtCheck;
663  /// Can we assume the absence of NaNs.
664  bool HasFunNoNaNAttr;
665
666  unsigned MaxSafeDepDistBytes;
667};
668
669/// LoopVectorizationCostModel - estimates the expected speedups due to
670/// vectorization.
671/// In many cases vectorization is not profitable. This can happen because of
672/// a number of reasons. In this class we mainly attempt to predict the
673/// expected speedup/slowdowns due to the supported instruction set. We use the
674/// TargetTransformInfo to query the different backends for the cost of
675/// different operations.
676class LoopVectorizationCostModel {
677public:
678  LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
679                             LoopVectorizationLegality *Legal,
680                             const TargetTransformInfo &TTI,
681                             DataLayout *DL, const TargetLibraryInfo *TLI)
682      : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
683
684  /// Information about vectorization costs
685  struct VectorizationFactor {
686    unsigned Width; // Vector width with best cost
687    unsigned Cost; // Cost of the loop with that width
688  };
689  /// \return The most profitable vectorization factor and the cost of that VF.
690  /// This method checks every power of two up to VF. If UserVF is not ZERO
691  /// then this vectorization factor will be selected if vectorization is
692  /// possible.
693  VectorizationFactor selectVectorizationFactor(bool OptForSize,
694                                                unsigned UserVF);
695
696  /// \return The size (in bits) of the widest type in the code that
697  /// needs to be vectorized. We ignore values that remain scalar such as
698  /// 64 bit loop indices.
699  unsigned getWidestType();
700
701  /// \return The most profitable unroll factor.
702  /// If UserUF is non-zero then this method finds the best unroll-factor
703  /// based on register pressure and other parameters.
704  /// VF and LoopCost are the selected vectorization factor and the cost of the
705  /// selected VF.
706  unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
707                              unsigned LoopCost);
708
709  /// \brief A struct that represents some properties of the register usage
710  /// of a loop.
711  struct RegisterUsage {
712    /// Holds the number of loop invariant values that are used in the loop.
713    unsigned LoopInvariantRegs;
714    /// Holds the maximum number of concurrent live intervals in the loop.
715    unsigned MaxLocalUsers;
716    /// Holds the number of instructions in the loop.
717    unsigned NumInstructions;
718  };
719
720  /// \return  information about the register usage of the loop.
721  RegisterUsage calculateRegisterUsage();
722
723private:
724  /// Returns the expected execution cost. The unit of the cost does
725  /// not matter because we use the 'cost' units to compare different
726  /// vector widths. The cost that is returned is *not* normalized by
727  /// the factor width.
728  unsigned expectedCost(unsigned VF);
729
730  /// Returns the execution time cost of an instruction for a given vector
731  /// width. Vector width of one means scalar.
732  unsigned getInstructionCost(Instruction *I, unsigned VF);
733
734  /// A helper function for converting Scalar types to vector types.
735  /// If the incoming type is void, we return void. If the VF is 1, we return
736  /// the scalar type.
737  static Type* ToVectorTy(Type *Scalar, unsigned VF);
738
739  /// Returns whether the instruction is a load or store and will be a emitted
740  /// as a vector operation.
741  bool isConsecutiveLoadOrStore(Instruction *I);
742
743  /// The loop that we evaluate.
744  Loop *TheLoop;
745  /// Scev analysis.
746  ScalarEvolution *SE;
747  /// Loop Info analysis.
748  LoopInfo *LI;
749  /// Vectorization legality.
750  LoopVectorizationLegality *Legal;
751  /// Vector target information.
752  const TargetTransformInfo &TTI;
753  /// Target data layout information.
754  DataLayout *DL;
755  /// Target Library Info.
756  const TargetLibraryInfo *TLI;
757};
758
759/// Utility class for getting and setting loop vectorizer hints in the form
760/// of loop metadata.
761struct LoopVectorizeHints {
762  /// Vectorization width.
763  unsigned Width;
764  /// Vectorization unroll factor.
765  unsigned Unroll;
766
767  LoopVectorizeHints(const Loop *L, bool DisableUnrolling)
768  : Width(VectorizationFactor)
769  , Unroll(DisableUnrolling ? 1 : VectorizationUnroll)
770  , LoopID(L->getLoopID()) {
771    getHints(L);
772    // The command line options override any loop metadata except for when
773    // width == 1 which is used to indicate the loop is already vectorized.
774    if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1)
775      Width = VectorizationFactor;
776    if (VectorizationUnroll.getNumOccurrences() > 0)
777      Unroll = VectorizationUnroll;
778
779    DEBUG(if (DisableUnrolling && Unroll == 1)
780            dbgs() << "LV: Unrolling disabled by the pass manager\n");
781  }
782
783  /// Return the loop vectorizer metadata prefix.
784  static StringRef Prefix() { return "llvm.vectorizer."; }
785
786  MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) {
787    SmallVector<Value*, 2> Vals;
788    Vals.push_back(MDString::get(Context, Name));
789    Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
790    return MDNode::get(Context, Vals);
791  }
792
793  /// Mark the loop L as already vectorized by setting the width to 1.
794  void setAlreadyVectorized(Loop *L) {
795    LLVMContext &Context = L->getHeader()->getContext();
796
797    Width = 1;
798
799    // Create a new loop id with one more operand for the already_vectorized
800    // hint. If the loop already has a loop id then copy the existing operands.
801    SmallVector<Value*, 4> Vals(1);
802    if (LoopID)
803      for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
804        Vals.push_back(LoopID->getOperand(i));
805
806    Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width));
807    Vals.push_back(createHint(Context, Twine(Prefix(), "unroll").str(), 1));
808
809    MDNode *NewLoopID = MDNode::get(Context, Vals);
810    // Set operand 0 to refer to the loop id itself.
811    NewLoopID->replaceOperandWith(0, NewLoopID);
812
813    L->setLoopID(NewLoopID);
814    if (LoopID)
815      LoopID->replaceAllUsesWith(NewLoopID);
816
817    LoopID = NewLoopID;
818  }
819
820private:
821  MDNode *LoopID;
822
823  /// Find hints specified in the loop metadata.
824  void getHints(const Loop *L) {
825    if (!LoopID)
826      return;
827
828    // First operand should refer to the loop id itself.
829    assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
830    assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
831
832    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
833      const MDString *S = 0;
834      SmallVector<Value*, 4> Args;
835
836      // The expected hint is either a MDString or a MDNode with the first
837      // operand a MDString.
838      if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
839        if (!MD || MD->getNumOperands() == 0)
840          continue;
841        S = dyn_cast<MDString>(MD->getOperand(0));
842        for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
843          Args.push_back(MD->getOperand(i));
844      } else {
845        S = dyn_cast<MDString>(LoopID->getOperand(i));
846        assert(Args.size() == 0 && "too many arguments for MDString");
847      }
848
849      if (!S)
850        continue;
851
852      // Check if the hint starts with the vectorizer prefix.
853      StringRef Hint = S->getString();
854      if (!Hint.startswith(Prefix()))
855        continue;
856      // Remove the prefix.
857      Hint = Hint.substr(Prefix().size(), StringRef::npos);
858
859      if (Args.size() == 1)
860        getHint(Hint, Args[0]);
861    }
862  }
863
864  // Check string hint with one operand.
865  void getHint(StringRef Hint, Value *Arg) {
866    const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
867    if (!C) return;
868    unsigned Val = C->getZExtValue();
869
870    if (Hint == "width") {
871      if (isPowerOf2_32(Val) && Val <= MaxVectorWidth)
872        Width = Val;
873      else
874        DEBUG(dbgs() << "LV: ignoring invalid width hint metadata\n");
875    } else if (Hint == "unroll") {
876      if (isPowerOf2_32(Val) && Val <= MaxUnrollFactor)
877        Unroll = Val;
878      else
879        DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n");
880    } else {
881      DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n');
882    }
883  }
884};
885
886/// The LoopVectorize Pass.
887struct LoopVectorize : public LoopPass {
888  /// Pass identification, replacement for typeid
889  static char ID;
890
891  explicit LoopVectorize(bool NoUnrolling = false)
892    : LoopPass(ID), DisableUnrolling(NoUnrolling) {
893    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
894  }
895
896  ScalarEvolution *SE;
897  DataLayout *DL;
898  LoopInfo *LI;
899  TargetTransformInfo *TTI;
900  DominatorTree *DT;
901  TargetLibraryInfo *TLI;
902  bool DisableUnrolling;
903
904  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
905    // We only vectorize innermost loops.
906    if (!L->empty())
907      return false;
908
909    SE = &getAnalysis<ScalarEvolution>();
910    DL = getAnalysisIfAvailable<DataLayout>();
911    LI = &getAnalysis<LoopInfo>();
912    TTI = &getAnalysis<TargetTransformInfo>();
913    DT = &getAnalysis<DominatorTree>();
914    TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
915
916    // If the target claims to have no vector registers don't attempt
917    // vectorization.
918    if (!TTI->getNumberOfRegisters(true))
919      return false;
920
921    if (DL == NULL) {
922      DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout\n");
923      return false;
924    }
925
926    DEBUG(dbgs() << "LV: Checking a loop in \"" <<
927          L->getHeader()->getParent()->getName() << "\"\n");
928
929    LoopVectorizeHints Hints(L, DisableUnrolling);
930
931    if (Hints.Width == 1 && Hints.Unroll == 1) {
932      DEBUG(dbgs() << "LV: Not vectorizing.\n");
933      return false;
934    }
935
936    // Check if it is legal to vectorize the loop.
937    LoopVectorizationLegality LVL(L, SE, DL, DT, TLI);
938    if (!LVL.canVectorize()) {
939      DEBUG(dbgs() << "LV: Not vectorizing.\n");
940      return false;
941    }
942
943    // Use the cost model.
944    LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
945
946    // Check the function attributes to find out if this function should be
947    // optimized for size.
948    Function *F = L->getHeader()->getParent();
949    Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
950    Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
951    unsigned FnIndex = AttributeSet::FunctionIndex;
952    bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
953    bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
954
955    if (NoFloat) {
956      DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
957            "attribute is used.\n");
958      return false;
959    }
960
961    // Select the optimal vectorization factor.
962    LoopVectorizationCostModel::VectorizationFactor VF;
963    VF = CM.selectVectorizationFactor(OptForSize, Hints.Width);
964    // Select the unroll factor.
965    unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width,
966                                        VF.Cost);
967
968    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
969          F->getParent()->getModuleIdentifier() << '\n');
970    DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
971
972    if (VF.Width == 1) {
973      DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
974      if (UF == 1)
975        return false;
976      // We decided not to vectorize, but we may want to unroll.
977      InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
978      Unroller.vectorize(&LVL);
979    } else {
980      // If we decided that it is *legal* to vectorize the loop then do it.
981      InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
982      LB.vectorize(&LVL);
983    }
984
985    // Mark the loop as already vectorized to avoid vectorizing again.
986    Hints.setAlreadyVectorized(L);
987
988    DEBUG(verifyFunction(*L->getHeader()->getParent()));
989    return true;
990  }
991
992  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
993    LoopPass::getAnalysisUsage(AU);
994    AU.addRequiredID(LoopSimplifyID);
995    AU.addRequiredID(LCSSAID);
996    AU.addRequired<DominatorTree>();
997    AU.addRequired<LoopInfo>();
998    AU.addRequired<ScalarEvolution>();
999    AU.addRequired<TargetTransformInfo>();
1000    AU.addPreserved<LoopInfo>();
1001    AU.addPreserved<DominatorTree>();
1002  }
1003
1004};
1005
1006} // end anonymous namespace
1007
1008//===----------------------------------------------------------------------===//
1009// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1010// LoopVectorizationCostModel.
1011//===----------------------------------------------------------------------===//
1012
1013void
1014LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
1015                                                       Loop *Lp, Value *Ptr,
1016                                                       bool WritePtr,
1017                                                       unsigned DepSetId) {
1018  const SCEV *Sc = SE->getSCEV(Ptr);
1019  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
1020  assert(AR && "Invalid addrec expression");
1021  const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
1022  const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
1023  Pointers.push_back(Ptr);
1024  Starts.push_back(AR->getStart());
1025  Ends.push_back(ScEnd);
1026  IsWritePtr.push_back(WritePtr);
1027  DependencySetId.push_back(DepSetId);
1028}
1029
1030Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1031  // We need to place the broadcast of invariant variables outside the loop.
1032  Instruction *Instr = dyn_cast<Instruction>(V);
1033  bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
1034  bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1035
1036  // Place the code for broadcasting invariant variables in the new preheader.
1037  IRBuilder<>::InsertPointGuard Guard(Builder);
1038  if (Invariant)
1039    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1040
1041  // Broadcast the scalar into all locations in the vector.
1042  Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1043
1044  return Shuf;
1045}
1046
1047Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
1048                                                 bool Negate) {
1049  assert(Val->getType()->isVectorTy() && "Must be a vector");
1050  assert(Val->getType()->getScalarType()->isIntegerTy() &&
1051         "Elem must be an integer");
1052  // Create the types.
1053  Type *ITy = Val->getType()->getScalarType();
1054  VectorType *Ty = cast<VectorType>(Val->getType());
1055  int VLen = Ty->getNumElements();
1056  SmallVector<Constant*, 8> Indices;
1057
1058  // Create a vector of consecutive numbers from zero to VF.
1059  for (int i = 0; i < VLen; ++i) {
1060    int64_t Idx = Negate ? (-i) : i;
1061    Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
1062  }
1063
1064  // Add the consecutive indices to the vector value.
1065  Constant *Cv = ConstantVector::get(Indices);
1066  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1067  return Builder.CreateAdd(Val, Cv, "induction");
1068}
1069
1070/// \brief Find the operand of the GEP that should be checked for consecutive
1071/// stores. This ignores trailing indices that have no effect on the final
1072/// pointer.
1073static unsigned getGEPInductionOperand(DataLayout *DL,
1074                                       const GetElementPtrInst *Gep) {
1075  unsigned LastOperand = Gep->getNumOperands() - 1;
1076  unsigned GEPAllocSize = DL->getTypeAllocSize(
1077      cast<PointerType>(Gep->getType()->getScalarType())->getElementType());
1078
1079  // Walk backwards and try to peel off zeros.
1080  while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
1081    // Find the type we're currently indexing into.
1082    gep_type_iterator GEPTI = gep_type_begin(Gep);
1083    std::advance(GEPTI, LastOperand - 1);
1084
1085    // If it's a type with the same allocation size as the result of the GEP we
1086    // can peel off the zero index.
1087    if (DL->getTypeAllocSize(*GEPTI) != GEPAllocSize)
1088      break;
1089    --LastOperand;
1090  }
1091
1092  return LastOperand;
1093}
1094
1095int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1096  assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
1097  // Make sure that the pointer does not point to structs.
1098  if (Ptr->getType()->getPointerElementType()->isAggregateType())
1099    return 0;
1100
1101  // If this value is a pointer induction variable we know it is consecutive.
1102  PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1103  if (Phi && Inductions.count(Phi)) {
1104    InductionInfo II = Inductions[Phi];
1105    if (IK_PtrInduction == II.IK)
1106      return 1;
1107    else if (IK_ReversePtrInduction == II.IK)
1108      return -1;
1109  }
1110
1111  GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
1112  if (!Gep)
1113    return 0;
1114
1115  unsigned NumOperands = Gep->getNumOperands();
1116  Value *GpPtr = Gep->getPointerOperand();
1117  // If this GEP value is a consecutive pointer induction variable and all of
1118  // the indices are constant then we know it is consecutive. We can
1119  Phi = dyn_cast<PHINode>(GpPtr);
1120  if (Phi && Inductions.count(Phi)) {
1121
1122    // Make sure that the pointer does not point to structs.
1123    PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
1124    if (GepPtrType->getElementType()->isAggregateType())
1125      return 0;
1126
1127    // Make sure that all of the index operands are loop invariant.
1128    for (unsigned i = 1; i < NumOperands; ++i)
1129      if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1130        return 0;
1131
1132    InductionInfo II = Inductions[Phi];
1133    if (IK_PtrInduction == II.IK)
1134      return 1;
1135    else if (IK_ReversePtrInduction == II.IK)
1136      return -1;
1137  }
1138
1139  unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1140
1141  // Check that all of the gep indices are uniform except for our induction
1142  // operand.
1143  for (unsigned i = 0; i != NumOperands; ++i)
1144    if (i != InductionOperand &&
1145        !SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1146      return 0;
1147
1148  // We can emit wide load/stores only if the last non-zero index is the
1149  // induction variable.
1150  const SCEV *Last = SE->getSCEV(Gep->getOperand(InductionOperand));
1151  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
1152    const SCEV *Step = AR->getStepRecurrence(*SE);
1153
1154    // The memory is consecutive because the last index is consecutive
1155    // and all other indices are loop invariant.
1156    if (Step->isOne())
1157      return 1;
1158    if (Step->isAllOnesValue())
1159      return -1;
1160  }
1161
1162  return 0;
1163}
1164
1165bool LoopVectorizationLegality::isUniform(Value *V) {
1166  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1167}
1168
1169InnerLoopVectorizer::VectorParts&
1170InnerLoopVectorizer::getVectorValue(Value *V) {
1171  assert(V != Induction && "The new induction variable should not be used.");
1172  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
1173
1174  // If we have this scalar in the map, return it.
1175  if (WidenMap.has(V))
1176    return WidenMap.get(V);
1177
1178  // If this scalar is unknown, assume that it is a constant or that it is
1179  // loop invariant. Broadcast V and save the value for future uses.
1180  Value *B = getBroadcastInstrs(V);
1181  return WidenMap.splat(V, B);
1182}
1183
1184Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
1185  assert(Vec->getType()->isVectorTy() && "Invalid type");
1186  SmallVector<Constant*, 8> ShuffleMask;
1187  for (unsigned i = 0; i < VF; ++i)
1188    ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
1189
1190  return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
1191                                     ConstantVector::get(ShuffleMask),
1192                                     "reverse");
1193}
1194
1195
1196void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
1197                                             LoopVectorizationLegality *Legal) {
1198  // Attempt to issue a wide load.
1199  LoadInst *LI = dyn_cast<LoadInst>(Instr);
1200  StoreInst *SI = dyn_cast<StoreInst>(Instr);
1201
1202  assert((LI || SI) && "Invalid Load/Store instruction");
1203
1204  Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
1205  Type *DataTy = VectorType::get(ScalarDataTy, VF);
1206  Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
1207  unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
1208  // An alignment of 0 means target abi alignment. We need to use the scalar's
1209  // target abi alignment in such a case.
1210  if (!Alignment)
1211    Alignment = DL->getABITypeAlignment(ScalarDataTy);
1212  unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
1213  unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
1214  unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
1215
1216  if (ScalarAllocatedSize != VectorElementSize)
1217    return scalarizeInstruction(Instr);
1218
1219  // If the pointer is loop invariant or if it is non consecutive,
1220  // scalarize the load.
1221  int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
1222  bool Reverse = ConsecutiveStride < 0;
1223  bool UniformLoad = LI && Legal->isUniform(Ptr);
1224  if (!ConsecutiveStride || UniformLoad)
1225    return scalarizeInstruction(Instr);
1226
1227  Constant *Zero = Builder.getInt32(0);
1228  VectorParts &Entry = WidenMap.get(Instr);
1229
1230  // Handle consecutive loads/stores.
1231  GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1232  if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
1233    setDebugLocFromInst(Builder, Gep);
1234    Value *PtrOperand = Gep->getPointerOperand();
1235    Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
1236    FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
1237
1238    // Create the new GEP with the new induction variable.
1239    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1240    Gep2->setOperand(0, FirstBasePtr);
1241    Gep2->setName("gep.indvar.base");
1242    Ptr = Builder.Insert(Gep2);
1243  } else if (Gep) {
1244    setDebugLocFromInst(Builder, Gep);
1245    assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
1246                               OrigLoop) && "Base ptr must be invariant");
1247
1248    // The last index does not have to be the induction. It can be
1249    // consecutive and be a function of the index. For example A[I+1];
1250    unsigned NumOperands = Gep->getNumOperands();
1251    unsigned InductionOperand = getGEPInductionOperand(DL, Gep);
1252    // Create the new GEP with the new induction variable.
1253    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1254
1255    for (unsigned i = 0; i < NumOperands; ++i) {
1256      Value *GepOperand = Gep->getOperand(i);
1257      Instruction *GepOperandInst = dyn_cast<Instruction>(GepOperand);
1258
1259      // Update last index or loop invariant instruction anchored in loop.
1260      if (i == InductionOperand ||
1261          (GepOperandInst && OrigLoop->contains(GepOperandInst))) {
1262        assert((i == InductionOperand ||
1263               SE->isLoopInvariant(SE->getSCEV(GepOperandInst), OrigLoop)) &&
1264               "Must be last index or loop invariant");
1265
1266        VectorParts &GEPParts = getVectorValue(GepOperand);
1267        Value *Index = GEPParts[0];
1268        Index = Builder.CreateExtractElement(Index, Zero);
1269        Gep2->setOperand(i, Index);
1270        Gep2->setName("gep.indvar.idx");
1271      }
1272    }
1273    Ptr = Builder.Insert(Gep2);
1274  } else {
1275    // Use the induction element ptr.
1276    assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1277    setDebugLocFromInst(Builder, Ptr);
1278    VectorParts &PtrVal = getVectorValue(Ptr);
1279    Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1280  }
1281
1282  // Handle Stores:
1283  if (SI) {
1284    assert(!Legal->isUniform(SI->getPointerOperand()) &&
1285           "We do not allow storing to uniform addresses");
1286    setDebugLocFromInst(Builder, SI);
1287    // We don't want to update the value in the map as it might be used in
1288    // another expression. So don't use a reference type for "StoredVal".
1289    VectorParts StoredVal = getVectorValue(SI->getValueOperand());
1290
1291    for (unsigned Part = 0; Part < UF; ++Part) {
1292      // Calculate the pointer for the specific unroll-part.
1293      Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1294
1295      if (Reverse) {
1296        // If we store to reverse consecutive memory locations then we need
1297        // to reverse the order of elements in the stored value.
1298        StoredVal[Part] = reverseVector(StoredVal[Part]);
1299        // If the address is consecutive but reversed, then the
1300        // wide store needs to start at the last vector element.
1301        PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1302        PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1303      }
1304
1305      Value *VecPtr = Builder.CreateBitCast(PartPtr,
1306                                            DataTy->getPointerTo(AddressSpace));
1307      Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
1308    }
1309    return;
1310  }
1311
1312  // Handle loads.
1313  assert(LI && "Must have a load instruction");
1314  setDebugLocFromInst(Builder, LI);
1315  for (unsigned Part = 0; Part < UF; ++Part) {
1316    // Calculate the pointer for the specific unroll-part.
1317    Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1318
1319    if (Reverse) {
1320      // If the address is consecutive but reversed, then the
1321      // wide store needs to start at the last vector element.
1322      PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1323      PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1324    }
1325
1326    Value *VecPtr = Builder.CreateBitCast(PartPtr,
1327                                          DataTy->getPointerTo(AddressSpace));
1328    Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
1329    cast<LoadInst>(LI)->setAlignment(Alignment);
1330    Entry[Part] = Reverse ? reverseVector(LI) :  LI;
1331  }
1332}
1333
1334void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
1335  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1336  // Holds vector parameters or scalars, in case of uniform vals.
1337  SmallVector<VectorParts, 4> Params;
1338
1339  setDebugLocFromInst(Builder, Instr);
1340
1341  // Find all of the vectorized parameters.
1342  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1343    Value *SrcOp = Instr->getOperand(op);
1344
1345    // If we are accessing the old induction variable, use the new one.
1346    if (SrcOp == OldInduction) {
1347      Params.push_back(getVectorValue(SrcOp));
1348      continue;
1349    }
1350
1351    // Try using previously calculated values.
1352    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1353
1354    // If the src is an instruction that appeared earlier in the basic block
1355    // then it should already be vectorized.
1356    if (SrcInst && OrigLoop->contains(SrcInst)) {
1357      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
1358      // The parameter is a vector value from earlier.
1359      Params.push_back(WidenMap.get(SrcInst));
1360    } else {
1361      // The parameter is a scalar from outside the loop. Maybe even a constant.
1362      VectorParts Scalars;
1363      Scalars.append(UF, SrcOp);
1364      Params.push_back(Scalars);
1365    }
1366  }
1367
1368  assert(Params.size() == Instr->getNumOperands() &&
1369         "Invalid number of operands");
1370
1371  // Does this instruction return a value ?
1372  bool IsVoidRetTy = Instr->getType()->isVoidTy();
1373
1374  Value *UndefVec = IsVoidRetTy ? 0 :
1375    UndefValue::get(VectorType::get(Instr->getType(), VF));
1376  // Create a new entry in the WidenMap and initialize it to Undef or Null.
1377  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1378
1379  // For each vector unroll 'part':
1380  for (unsigned Part = 0; Part < UF; ++Part) {
1381    // For each scalar that we create:
1382    for (unsigned Width = 0; Width < VF; ++Width) {
1383      Instruction *Cloned = Instr->clone();
1384      if (!IsVoidRetTy)
1385        Cloned->setName(Instr->getName() + ".cloned");
1386      // Replace the operands of the cloned instructions with extracted scalars.
1387      for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1388        Value *Op = Params[op][Part];
1389        // Param is a vector. Need to extract the right lane.
1390        if (Op->getType()->isVectorTy())
1391          Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
1392        Cloned->setOperand(op, Op);
1393      }
1394
1395      // Place the cloned scalar in the new loop.
1396      Builder.Insert(Cloned);
1397
1398      // If the original scalar returns a value we need to place it in a vector
1399      // so that future users will be able to use it.
1400      if (!IsVoidRetTy)
1401        VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
1402                                                       Builder.getInt32(Width));
1403    }
1404  }
1405}
1406
1407Instruction *
1408InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
1409                                     Instruction *Loc) {
1410  LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
1411  Legal->getRuntimePointerCheck();
1412
1413  if (!PtrRtCheck->Need)
1414    return NULL;
1415
1416  unsigned NumPointers = PtrRtCheck->Pointers.size();
1417  SmallVector<TrackingVH<Value> , 2> Starts;
1418  SmallVector<TrackingVH<Value> , 2> Ends;
1419
1420  LLVMContext &Ctx = Loc->getContext();
1421  SCEVExpander Exp(*SE, "induction");
1422
1423  for (unsigned i = 0; i < NumPointers; ++i) {
1424    Value *Ptr = PtrRtCheck->Pointers[i];
1425    const SCEV *Sc = SE->getSCEV(Ptr);
1426
1427    if (SE->isLoopInvariant(Sc, OrigLoop)) {
1428      DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
1429            *Ptr <<"\n");
1430      Starts.push_back(Ptr);
1431      Ends.push_back(Ptr);
1432    } else {
1433      DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr << '\n');
1434      unsigned AS = Ptr->getType()->getPointerAddressSpace();
1435
1436      // Use this type for pointer arithmetic.
1437      Type *PtrArithTy = Type::getInt8PtrTy(Ctx, AS);
1438
1439      Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
1440      Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
1441      Starts.push_back(Start);
1442      Ends.push_back(End);
1443    }
1444  }
1445
1446  IRBuilder<> ChkBuilder(Loc);
1447  // Our instructions might fold to a constant.
1448  Value *MemoryRuntimeCheck = 0;
1449  for (unsigned i = 0; i < NumPointers; ++i) {
1450    for (unsigned j = i+1; j < NumPointers; ++j) {
1451      // No need to check if two readonly pointers intersect.
1452      if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
1453        continue;
1454
1455      // Only need to check pointers between two different dependency sets.
1456      if (PtrRtCheck->DependencySetId[i] == PtrRtCheck->DependencySetId[j])
1457       continue;
1458
1459      unsigned AS0 = Starts[i]->getType()->getPointerAddressSpace();
1460      unsigned AS1 = Starts[j]->getType()->getPointerAddressSpace();
1461
1462      assert((AS0 == Ends[j]->getType()->getPointerAddressSpace()) &&
1463             (AS1 == Ends[i]->getType()->getPointerAddressSpace()) &&
1464             "Trying to bounds check pointers with different address spaces");
1465
1466      Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
1467      Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
1468
1469      Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy0, "bc");
1470      Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy1, "bc");
1471      Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy1, "bc");
1472      Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy0, "bc");
1473
1474      Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1475      Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1476      Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1477      if (MemoryRuntimeCheck)
1478        IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1479                                         "conflict.rdx");
1480      MemoryRuntimeCheck = IsConflict;
1481    }
1482  }
1483
1484  // We have to do this trickery because the IRBuilder might fold the check to a
1485  // constant expression in which case there is no Instruction anchored in a
1486  // the block.
1487  Instruction *Check = BinaryOperator::CreateAnd(MemoryRuntimeCheck,
1488                                                 ConstantInt::getTrue(Ctx));
1489  ChkBuilder.Insert(Check, "memcheck.conflict");
1490  return Check;
1491}
1492
1493void
1494InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
1495  /*
1496   In this function we generate a new loop. The new loop will contain
1497   the vectorized instructions while the old loop will continue to run the
1498   scalar remainder.
1499
1500       [ ] <-- vector loop bypass (may consist of multiple blocks).
1501     /  |
1502    /   v
1503   |   [ ]     <-- vector pre header.
1504   |    |
1505   |    v
1506   |   [  ] \
1507   |   [  ]_|   <-- vector loop.
1508   |    |
1509    \   v
1510      >[ ]   <--- middle-block.
1511     /  |
1512    /   v
1513   |   [ ]     <--- new preheader.
1514   |    |
1515   |    v
1516   |   [ ] \
1517   |   [ ]_|   <-- old scalar loop to handle remainder.
1518    \   |
1519     \  v
1520      >[ ]     <-- exit block.
1521   ...
1522   */
1523
1524  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
1525  BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
1526  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
1527  assert(ExitBlock && "Must have an exit block");
1528
1529  // Some loops have a single integer induction variable, while other loops
1530  // don't. One example is c++ iterators that often have multiple pointer
1531  // induction variables. In the code below we also support a case where we
1532  // don't have a single induction variable.
1533  OldInduction = Legal->getInduction();
1534  Type *IdxTy = Legal->getWidestInductionType();
1535
1536  // Find the loop boundaries.
1537  const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
1538  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
1539
1540  // Get the total trip count from the count by adding 1.
1541  ExitCount = SE->getAddExpr(ExitCount,
1542                             SE->getConstant(ExitCount->getType(), 1));
1543
1544  // Expand the trip count and place the new instructions in the preheader.
1545  // Notice that the pre-header does not change, only the loop body.
1546  SCEVExpander Exp(*SE, "induction");
1547
1548  // Count holds the overall loop count (N).
1549  Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
1550                                   BypassBlock->getTerminator());
1551
1552  // The loop index does not have to start at Zero. Find the original start
1553  // value from the induction PHI node. If we don't have an induction variable
1554  // then we know that it starts at zero.
1555  Builder.SetInsertPoint(BypassBlock->getTerminator());
1556  Value *StartIdx = ExtendedIdx = OldInduction ?
1557    Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
1558                       IdxTy):
1559    ConstantInt::get(IdxTy, 0);
1560
1561  assert(BypassBlock && "Invalid loop structure");
1562  LoopBypassBlocks.push_back(BypassBlock);
1563
1564  // Split the single block loop into the two loop structure described above.
1565  BasicBlock *VectorPH =
1566  BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
1567  BasicBlock *VecBody =
1568  VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
1569  BasicBlock *MiddleBlock =
1570  VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
1571  BasicBlock *ScalarPH =
1572  MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
1573
1574  // Create and register the new vector loop.
1575  Loop* Lp = new Loop();
1576  Loop *ParentLoop = OrigLoop->getParentLoop();
1577
1578  // Insert the new loop into the loop nest and register the new basic blocks
1579  // before calling any utilities such as SCEV that require valid LoopInfo.
1580  if (ParentLoop) {
1581    ParentLoop->addChildLoop(Lp);
1582    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
1583    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
1584    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
1585  } else {
1586    LI->addTopLevelLoop(Lp);
1587  }
1588  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
1589
1590  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
1591  // inside the loop.
1592  Builder.SetInsertPoint(VecBody->getFirstNonPHI());
1593
1594  // Generate the induction variable.
1595  setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
1596  Induction = Builder.CreatePHI(IdxTy, 2, "index");
1597  // The loop step is equal to the vectorization factor (num of SIMD elements)
1598  // times the unroll factor (num of SIMD instructions).
1599  Constant *Step = ConstantInt::get(IdxTy, VF * UF);
1600
1601  // This is the IR builder that we use to add all of the logic for bypassing
1602  // the new vector loop.
1603  IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
1604  setDebugLocFromInst(BypassBuilder,
1605                      getDebugLocFromInstOrOperands(OldInduction));
1606
1607  // We may need to extend the index in case there is a type mismatch.
1608  // We know that the count starts at zero and does not overflow.
1609  if (Count->getType() != IdxTy) {
1610    // The exit count can be of pointer type. Convert it to the correct
1611    // integer type.
1612    if (ExitCount->getType()->isPointerTy())
1613      Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
1614    else
1615      Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
1616  }
1617
1618  // Add the start index to the loop count to get the new end index.
1619  Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
1620
1621  // Now we need to generate the expression for N - (N % VF), which is
1622  // the part that the vectorized body will execute.
1623  Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
1624  Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
1625  Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
1626                                                     "end.idx.rnd.down");
1627
1628  // Now, compare the new count to zero. If it is zero skip the vector loop and
1629  // jump to the scalar loop.
1630  Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
1631                                          "cmp.zero");
1632
1633  BasicBlock *LastBypassBlock = BypassBlock;
1634
1635  // Generate the code that checks in runtime if arrays overlap. We put the
1636  // checks into a separate block to make the more common case of few elements
1637  // faster.
1638  Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
1639                                                 BypassBlock->getTerminator());
1640  if (MemRuntimeCheck) {
1641    // Create a new block containing the memory check.
1642    BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
1643                                                          "vector.memcheck");
1644    if (ParentLoop)
1645      ParentLoop->addBasicBlockToLoop(CheckBlock, LI->getBase());
1646    LoopBypassBlocks.push_back(CheckBlock);
1647
1648    // Replace the branch into the memory check block with a conditional branch
1649    // for the "few elements case".
1650    Instruction *OldTerm = BypassBlock->getTerminator();
1651    BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
1652    OldTerm->eraseFromParent();
1653
1654    Cmp = MemRuntimeCheck;
1655    LastBypassBlock = CheckBlock;
1656  }
1657
1658  LastBypassBlock->getTerminator()->eraseFromParent();
1659  BranchInst::Create(MiddleBlock, VectorPH, Cmp,
1660                     LastBypassBlock);
1661
1662  // We are going to resume the execution of the scalar loop.
1663  // Go over all of the induction variables that we found and fix the
1664  // PHIs that are left in the scalar version of the loop.
1665  // The starting values of PHI nodes depend on the counter of the last
1666  // iteration in the vectorized loop.
1667  // If we come from a bypass edge then we need to start from the original
1668  // start value.
1669
1670  // This variable saves the new starting index for the scalar loop.
1671  PHINode *ResumeIndex = 0;
1672  LoopVectorizationLegality::InductionList::iterator I, E;
1673  LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
1674  // Set builder to point to last bypass block.
1675  BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
1676  for (I = List->begin(), E = List->end(); I != E; ++I) {
1677    PHINode *OrigPhi = I->first;
1678    LoopVectorizationLegality::InductionInfo II = I->second;
1679
1680    Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
1681    PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
1682                                         MiddleBlock->getTerminator());
1683    // We might have extended the type of the induction variable but we need a
1684    // truncated version for the scalar loop.
1685    PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
1686      PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
1687                      MiddleBlock->getTerminator()) : 0;
1688
1689    Value *EndValue = 0;
1690    switch (II.IK) {
1691    case LoopVectorizationLegality::IK_NoInduction:
1692      llvm_unreachable("Unknown induction");
1693    case LoopVectorizationLegality::IK_IntInduction: {
1694      // Handle the integer induction counter.
1695      assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
1696
1697      // We have the canonical induction variable.
1698      if (OrigPhi == OldInduction) {
1699        // Create a truncated version of the resume value for the scalar loop,
1700        // we might have promoted the type to a larger width.
1701        EndValue =
1702          BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
1703        // The new PHI merges the original incoming value, in case of a bypass,
1704        // or the value at the end of the vectorized loop.
1705        for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1706          TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1707        TruncResumeVal->addIncoming(EndValue, VecBody);
1708
1709        // We know what the end value is.
1710        EndValue = IdxEndRoundDown;
1711        // We also know which PHI node holds it.
1712        ResumeIndex = ResumeVal;
1713        break;
1714      }
1715
1716      // Not the canonical induction variable - add the vector loop count to the
1717      // start value.
1718      Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1719                                                   II.StartValue->getType(),
1720                                                   "cast.crd");
1721      EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
1722      break;
1723    }
1724    case LoopVectorizationLegality::IK_ReverseIntInduction: {
1725      // Convert the CountRoundDown variable to the PHI size.
1726      Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1727                                                   II.StartValue->getType(),
1728                                                   "cast.crd");
1729      // Handle reverse integer induction counter.
1730      EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
1731      break;
1732    }
1733    case LoopVectorizationLegality::IK_PtrInduction: {
1734      // For pointer induction variables, calculate the offset using
1735      // the end index.
1736      EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
1737                                         "ptr.ind.end");
1738      break;
1739    }
1740    case LoopVectorizationLegality::IK_ReversePtrInduction: {
1741      // The value at the end of the loop for the reverse pointer is calculated
1742      // by creating a GEP with a negative index starting from the start value.
1743      Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
1744      Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
1745                                              "rev.ind.end");
1746      EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
1747                                         "rev.ptr.ind.end");
1748      break;
1749    }
1750    }// end of case
1751
1752    // The new PHI merges the original incoming value, in case of a bypass,
1753    // or the value at the end of the vectorized loop.
1754    for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) {
1755      if (OrigPhi == OldInduction)
1756        ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
1757      else
1758        ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1759    }
1760    ResumeVal->addIncoming(EndValue, VecBody);
1761
1762    // Fix the scalar body counter (PHI node).
1763    unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
1764    // The old inductions phi node in the scalar body needs the truncated value.
1765    if (OrigPhi == OldInduction)
1766      OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal);
1767    else
1768      OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
1769  }
1770
1771  // If we are generating a new induction variable then we also need to
1772  // generate the code that calculates the exit value. This value is not
1773  // simply the end of the counter because we may skip the vectorized body
1774  // in case of a runtime check.
1775  if (!OldInduction){
1776    assert(!ResumeIndex && "Unexpected resume value found");
1777    ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
1778                                  MiddleBlock->getTerminator());
1779    for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1780      ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
1781    ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
1782  }
1783
1784  // Make sure that we found the index where scalar loop needs to continue.
1785  assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
1786         "Invalid resume Index");
1787
1788  // Add a check in the middle block to see if we have completed
1789  // all of the iterations in the first vector loop.
1790  // If (N - N%VF) == N, then we *don't* need to run the remainder.
1791  Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
1792                                ResumeIndex, "cmp.n",
1793                                MiddleBlock->getTerminator());
1794
1795  BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
1796  // Remove the old terminator.
1797  MiddleBlock->getTerminator()->eraseFromParent();
1798
1799  // Create i+1 and fill the PHINode.
1800  Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
1801  Induction->addIncoming(StartIdx, VectorPH);
1802  Induction->addIncoming(NextIdx, VecBody);
1803  // Create the compare.
1804  Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
1805  Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
1806
1807  // Now we have two terminators. Remove the old one from the block.
1808  VecBody->getTerminator()->eraseFromParent();
1809
1810  // Get ready to start creating new instructions into the vectorized body.
1811  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1812
1813  // Save the state.
1814  LoopVectorPreHeader = VectorPH;
1815  LoopScalarPreHeader = ScalarPH;
1816  LoopMiddleBlock = MiddleBlock;
1817  LoopExitBlock = ExitBlock;
1818  LoopVectorBody = VecBody;
1819  LoopScalarBody = OldBasicBlock;
1820
1821  LoopVectorizeHints Hints(Lp, true);
1822  Hints.setAlreadyVectorized(Lp);
1823}
1824
1825/// This function returns the identity element (or neutral element) for
1826/// the operation K.
1827Constant*
1828LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
1829  switch (K) {
1830  case RK_IntegerXor:
1831  case RK_IntegerAdd:
1832  case RK_IntegerOr:
1833    // Adding, Xoring, Oring zero to a number does not change it.
1834    return ConstantInt::get(Tp, 0);
1835  case RK_IntegerMult:
1836    // Multiplying a number by 1 does not change it.
1837    return ConstantInt::get(Tp, 1);
1838  case RK_IntegerAnd:
1839    // AND-ing a number with an all-1 value does not change it.
1840    return ConstantInt::get(Tp, -1, true);
1841  case  RK_FloatMult:
1842    // Multiplying a number by 1 does not change it.
1843    return ConstantFP::get(Tp, 1.0L);
1844  case  RK_FloatAdd:
1845    // Adding zero to a number does not change it.
1846    return ConstantFP::get(Tp, 0.0L);
1847  default:
1848    llvm_unreachable("Unknown reduction kind");
1849  }
1850}
1851
1852static Intrinsic::ID checkUnaryFloatSignature(const CallInst &I,
1853                                              Intrinsic::ID ValidIntrinsicID) {
1854  if (I.getNumArgOperands() != 1 ||
1855      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
1856      I.getType() != I.getArgOperand(0)->getType() ||
1857      !I.onlyReadsMemory())
1858    return Intrinsic::not_intrinsic;
1859
1860  return ValidIntrinsicID;
1861}
1862
1863static Intrinsic::ID checkBinaryFloatSignature(const CallInst &I,
1864                                               Intrinsic::ID ValidIntrinsicID) {
1865  if (I.getNumArgOperands() != 2 ||
1866      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
1867      !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
1868      I.getType() != I.getArgOperand(0)->getType() ||
1869      I.getType() != I.getArgOperand(1)->getType() ||
1870      !I.onlyReadsMemory())
1871    return Intrinsic::not_intrinsic;
1872
1873  return ValidIntrinsicID;
1874}
1875
1876
1877static Intrinsic::ID
1878getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
1879  // If we have an intrinsic call, check if it is trivially vectorizable.
1880  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1881    switch (II->getIntrinsicID()) {
1882    case Intrinsic::sqrt:
1883    case Intrinsic::sin:
1884    case Intrinsic::cos:
1885    case Intrinsic::exp:
1886    case Intrinsic::exp2:
1887    case Intrinsic::log:
1888    case Intrinsic::log10:
1889    case Intrinsic::log2:
1890    case Intrinsic::fabs:
1891    case Intrinsic::copysign:
1892    case Intrinsic::floor:
1893    case Intrinsic::ceil:
1894    case Intrinsic::trunc:
1895    case Intrinsic::rint:
1896    case Intrinsic::nearbyint:
1897    case Intrinsic::round:
1898    case Intrinsic::pow:
1899    case Intrinsic::fma:
1900    case Intrinsic::fmuladd:
1901    case Intrinsic::lifetime_start:
1902    case Intrinsic::lifetime_end:
1903      return II->getIntrinsicID();
1904    default:
1905      return Intrinsic::not_intrinsic;
1906    }
1907  }
1908
1909  if (!TLI)
1910    return Intrinsic::not_intrinsic;
1911
1912  LibFunc::Func Func;
1913  Function *F = CI->getCalledFunction();
1914  // We're going to make assumptions on the semantics of the functions, check
1915  // that the target knows that it's available in this environment and it does
1916  // not have local linkage.
1917  if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
1918    return Intrinsic::not_intrinsic;
1919
1920  // Otherwise check if we have a call to a function that can be turned into a
1921  // vector intrinsic.
1922  switch (Func) {
1923  default:
1924    break;
1925  case LibFunc::sin:
1926  case LibFunc::sinf:
1927  case LibFunc::sinl:
1928    return checkUnaryFloatSignature(*CI, Intrinsic::sin);
1929  case LibFunc::cos:
1930  case LibFunc::cosf:
1931  case LibFunc::cosl:
1932    return checkUnaryFloatSignature(*CI, Intrinsic::cos);
1933  case LibFunc::exp:
1934  case LibFunc::expf:
1935  case LibFunc::expl:
1936    return checkUnaryFloatSignature(*CI, Intrinsic::exp);
1937  case LibFunc::exp2:
1938  case LibFunc::exp2f:
1939  case LibFunc::exp2l:
1940    return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
1941  case LibFunc::log:
1942  case LibFunc::logf:
1943  case LibFunc::logl:
1944    return checkUnaryFloatSignature(*CI, Intrinsic::log);
1945  case LibFunc::log10:
1946  case LibFunc::log10f:
1947  case LibFunc::log10l:
1948    return checkUnaryFloatSignature(*CI, Intrinsic::log10);
1949  case LibFunc::log2:
1950  case LibFunc::log2f:
1951  case LibFunc::log2l:
1952    return checkUnaryFloatSignature(*CI, Intrinsic::log2);
1953  case LibFunc::fabs:
1954  case LibFunc::fabsf:
1955  case LibFunc::fabsl:
1956    return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
1957  case LibFunc::copysign:
1958  case LibFunc::copysignf:
1959  case LibFunc::copysignl:
1960    return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
1961  case LibFunc::floor:
1962  case LibFunc::floorf:
1963  case LibFunc::floorl:
1964    return checkUnaryFloatSignature(*CI, Intrinsic::floor);
1965  case LibFunc::ceil:
1966  case LibFunc::ceilf:
1967  case LibFunc::ceill:
1968    return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
1969  case LibFunc::trunc:
1970  case LibFunc::truncf:
1971  case LibFunc::truncl:
1972    return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
1973  case LibFunc::rint:
1974  case LibFunc::rintf:
1975  case LibFunc::rintl:
1976    return checkUnaryFloatSignature(*CI, Intrinsic::rint);
1977  case LibFunc::nearbyint:
1978  case LibFunc::nearbyintf:
1979  case LibFunc::nearbyintl:
1980    return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
1981  case LibFunc::round:
1982  case LibFunc::roundf:
1983  case LibFunc::roundl:
1984    return checkUnaryFloatSignature(*CI, Intrinsic::round);
1985  case LibFunc::pow:
1986  case LibFunc::powf:
1987  case LibFunc::powl:
1988    return checkBinaryFloatSignature(*CI, Intrinsic::pow);
1989  }
1990
1991  return Intrinsic::not_intrinsic;
1992}
1993
1994/// This function translates the reduction kind to an LLVM binary operator.
1995static unsigned
1996getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
1997  switch (Kind) {
1998    case LoopVectorizationLegality::RK_IntegerAdd:
1999      return Instruction::Add;
2000    case LoopVectorizationLegality::RK_IntegerMult:
2001      return Instruction::Mul;
2002    case LoopVectorizationLegality::RK_IntegerOr:
2003      return Instruction::Or;
2004    case LoopVectorizationLegality::RK_IntegerAnd:
2005      return Instruction::And;
2006    case LoopVectorizationLegality::RK_IntegerXor:
2007      return Instruction::Xor;
2008    case LoopVectorizationLegality::RK_FloatMult:
2009      return Instruction::FMul;
2010    case LoopVectorizationLegality::RK_FloatAdd:
2011      return Instruction::FAdd;
2012    case LoopVectorizationLegality::RK_IntegerMinMax:
2013      return Instruction::ICmp;
2014    case LoopVectorizationLegality::RK_FloatMinMax:
2015      return Instruction::FCmp;
2016    default:
2017      llvm_unreachable("Unknown reduction operation");
2018  }
2019}
2020
2021Value *createMinMaxOp(IRBuilder<> &Builder,
2022                      LoopVectorizationLegality::MinMaxReductionKind RK,
2023                      Value *Left,
2024                      Value *Right) {
2025  CmpInst::Predicate P = CmpInst::ICMP_NE;
2026  switch (RK) {
2027  default:
2028    llvm_unreachable("Unknown min/max reduction kind");
2029  case LoopVectorizationLegality::MRK_UIntMin:
2030    P = CmpInst::ICMP_ULT;
2031    break;
2032  case LoopVectorizationLegality::MRK_UIntMax:
2033    P = CmpInst::ICMP_UGT;
2034    break;
2035  case LoopVectorizationLegality::MRK_SIntMin:
2036    P = CmpInst::ICMP_SLT;
2037    break;
2038  case LoopVectorizationLegality::MRK_SIntMax:
2039    P = CmpInst::ICMP_SGT;
2040    break;
2041  case LoopVectorizationLegality::MRK_FloatMin:
2042    P = CmpInst::FCMP_OLT;
2043    break;
2044  case LoopVectorizationLegality::MRK_FloatMax:
2045    P = CmpInst::FCMP_OGT;
2046    break;
2047  }
2048
2049  Value *Cmp;
2050  if (RK == LoopVectorizationLegality::MRK_FloatMin ||
2051      RK == LoopVectorizationLegality::MRK_FloatMax)
2052    Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
2053  else
2054    Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
2055
2056  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
2057  return Select;
2058}
2059
2060namespace {
2061struct CSEDenseMapInfo {
2062  static bool canHandle(Instruction *I) {
2063    return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
2064           isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
2065  }
2066  static inline Instruction *getEmptyKey() {
2067    return DenseMapInfo<Instruction *>::getEmptyKey();
2068  }
2069  static inline Instruction *getTombstoneKey() {
2070    return DenseMapInfo<Instruction *>::getTombstoneKey();
2071  }
2072  static unsigned getHashValue(Instruction *I) {
2073    assert(canHandle(I) && "Unknown instruction!");
2074    return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
2075                                                           I->value_op_end()));
2076  }
2077  static bool isEqual(Instruction *LHS, Instruction *RHS) {
2078    if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
2079        LHS == getTombstoneKey() || RHS == getTombstoneKey())
2080      return LHS == RHS;
2081    return LHS->isIdenticalTo(RHS);
2082  }
2083};
2084}
2085
2086///\brief Perform cse of induction variable instructions.
2087static void cse(BasicBlock *BB) {
2088  // Perform simple cse.
2089  SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
2090  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2091    Instruction *In = I++;
2092
2093    if (!CSEDenseMapInfo::canHandle(In))
2094      continue;
2095
2096    // Check if we can replace this instruction with any of the
2097    // visited instructions.
2098    if (Instruction *V = CSEMap.lookup(In)) {
2099      In->replaceAllUsesWith(V);
2100      In->eraseFromParent();
2101      continue;
2102    }
2103
2104    CSEMap[In] = In;
2105  }
2106}
2107
2108void
2109InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
2110  //===------------------------------------------------===//
2111  //
2112  // Notice: any optimization or new instruction that go
2113  // into the code below should be also be implemented in
2114  // the cost-model.
2115  //
2116  //===------------------------------------------------===//
2117  Constant *Zero = Builder.getInt32(0);
2118
2119  // In order to support reduction variables we need to be able to vectorize
2120  // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
2121  // stages. First, we create a new vector PHI node with no incoming edges.
2122  // We use this value when we vectorize all of the instructions that use the
2123  // PHI. Next, after all of the instructions in the block are complete we
2124  // add the new incoming edges to the PHI. At this point all of the
2125  // instructions in the basic block are vectorized, so we can use them to
2126  // construct the PHI.
2127  PhiVector RdxPHIsToFix;
2128
2129  // Scan the loop in a topological order to ensure that defs are vectorized
2130  // before users.
2131  LoopBlocksDFS DFS(OrigLoop);
2132  DFS.perform(LI);
2133
2134  // Vectorize all of the blocks in the original loop.
2135  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
2136       be = DFS.endRPO(); bb != be; ++bb)
2137    vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
2138
2139  // At this point every instruction in the original loop is widened to
2140  // a vector form. We are almost done. Now, we need to fix the PHI nodes
2141  // that we vectorized. The PHI nodes are currently empty because we did
2142  // not want to introduce cycles. Notice that the remaining PHI nodes
2143  // that we need to fix are reduction variables.
2144
2145  // Create the 'reduced' values for each of the induction vars.
2146  // The reduced values are the vector values that we scalarize and combine
2147  // after the loop is finished.
2148  for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
2149       it != e; ++it) {
2150    PHINode *RdxPhi = *it;
2151    assert(RdxPhi && "Unable to recover vectorized PHI");
2152
2153    // Find the reduction variable descriptor.
2154    assert(Legal->getReductionVars()->count(RdxPhi) &&
2155           "Unable to find the reduction variable");
2156    LoopVectorizationLegality::ReductionDescriptor RdxDesc =
2157    (*Legal->getReductionVars())[RdxPhi];
2158
2159    setDebugLocFromInst(Builder, RdxDesc.StartValue);
2160
2161    // We need to generate a reduction vector from the incoming scalar.
2162    // To do so, we need to generate the 'identity' vector and overide
2163    // one of the elements with the incoming scalar reduction. We need
2164    // to do it in the vector-loop preheader.
2165    Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
2166
2167    // This is the vector-clone of the value that leaves the loop.
2168    VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
2169    Type *VecTy = VectorExit[0]->getType();
2170
2171    // Find the reduction identity variable. Zero for addition, or, xor,
2172    // one for multiplication, -1 for And.
2173    Value *Identity;
2174    Value *VectorStart;
2175    if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
2176        RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
2177      // MinMax reduction have the start value as their identify.
2178      if (VF == 1) {
2179        VectorStart = Identity = RdxDesc.StartValue;
2180      } else {
2181        VectorStart = Identity = Builder.CreateVectorSplat(VF,
2182                                                           RdxDesc.StartValue,
2183                                                           "minmax.ident");
2184      }
2185    } else {
2186      // Handle other reduction kinds:
2187      Constant *Iden =
2188      LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
2189                                                      VecTy->getScalarType());
2190      if (VF == 1) {
2191        Identity = Iden;
2192        // This vector is the Identity vector where the first element is the
2193        // incoming scalar reduction.
2194        VectorStart = RdxDesc.StartValue;
2195      } else {
2196        Identity = ConstantVector::getSplat(VF, Iden);
2197
2198        // This vector is the Identity vector where the first element is the
2199        // incoming scalar reduction.
2200        VectorStart = Builder.CreateInsertElement(Identity,
2201                                                  RdxDesc.StartValue, Zero);
2202      }
2203    }
2204
2205    // Fix the vector-loop phi.
2206    // We created the induction variable so we know that the
2207    // preheader is the first entry.
2208    BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
2209
2210    // Reductions do not have to start at zero. They can start with
2211    // any loop invariant values.
2212    VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
2213    BasicBlock *Latch = OrigLoop->getLoopLatch();
2214    Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
2215    VectorParts &Val = getVectorValue(LoopVal);
2216    for (unsigned part = 0; part < UF; ++part) {
2217      // Make sure to add the reduction stat value only to the
2218      // first unroll part.
2219      Value *StartVal = (part == 0) ? VectorStart : Identity;
2220      cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
2221      cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
2222    }
2223
2224    // Before each round, move the insertion point right between
2225    // the PHIs and the values we are going to write.
2226    // This allows us to write both PHINodes and the extractelement
2227    // instructions.
2228    Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
2229
2230    VectorParts RdxParts;
2231    setDebugLocFromInst(Builder, RdxDesc.LoopExitInstr);
2232    for (unsigned part = 0; part < UF; ++part) {
2233      // This PHINode contains the vectorized reduction variable, or
2234      // the initial value vector, if we bypass the vector loop.
2235      VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
2236      PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
2237      Value *StartVal = (part == 0) ? VectorStart : Identity;
2238      for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
2239        NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
2240      NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
2241      RdxParts.push_back(NewPhi);
2242    }
2243
2244    // Reduce all of the unrolled parts into a single vector.
2245    Value *ReducedPartRdx = RdxParts[0];
2246    unsigned Op = getReductionBinOp(RdxDesc.Kind);
2247    setDebugLocFromInst(Builder, ReducedPartRdx);
2248    for (unsigned part = 1; part < UF; ++part) {
2249      if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2250        ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op,
2251                                             RdxParts[part], ReducedPartRdx,
2252                                             "bin.rdx");
2253      else
2254        ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
2255                                        ReducedPartRdx, RdxParts[part]);
2256    }
2257
2258    if (VF > 1) {
2259      // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
2260      // and vector ops, reducing the set of values being computed by half each
2261      // round.
2262      assert(isPowerOf2_32(VF) &&
2263             "Reduction emission only supported for pow2 vectors!");
2264      Value *TmpVec = ReducedPartRdx;
2265      SmallVector<Constant*, 32> ShuffleMask(VF, 0);
2266      for (unsigned i = VF; i != 1; i >>= 1) {
2267        // Move the upper half of the vector to the lower half.
2268        for (unsigned j = 0; j != i/2; ++j)
2269          ShuffleMask[j] = Builder.getInt32(i/2 + j);
2270
2271        // Fill the rest of the mask with undef.
2272        std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
2273                  UndefValue::get(Builder.getInt32Ty()));
2274
2275        Value *Shuf =
2276        Builder.CreateShuffleVector(TmpVec,
2277                                    UndefValue::get(TmpVec->getType()),
2278                                    ConstantVector::get(ShuffleMask),
2279                                    "rdx.shuf");
2280
2281        if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2282          TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
2283                                       "bin.rdx");
2284        else
2285          TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
2286      }
2287
2288      // The result is in the first element of the vector.
2289      ReducedPartRdx = Builder.CreateExtractElement(TmpVec,
2290                                                    Builder.getInt32(0));
2291    }
2292
2293    // Now, we need to fix the users of the reduction variable
2294    // inside and outside of the scalar remainder loop.
2295    // We know that the loop is in LCSSA form. We need to update the
2296    // PHI nodes in the exit blocks.
2297    for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2298         LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2299      PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2300      if (!LCSSAPhi) break;
2301
2302      // All PHINodes need to have a single entry edge, or two if
2303      // we already fixed them.
2304      assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
2305
2306      // We found our reduction value exit-PHI. Update it with the
2307      // incoming bypass edge.
2308      if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
2309        // Add an edge coming from the bypass.
2310        LCSSAPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
2311        break;
2312      }
2313    }// end of the LCSSA phi scan.
2314
2315    // Fix the scalar loop reduction variable with the incoming reduction sum
2316    // from the vector body and from the backedge value.
2317    int IncomingEdgeBlockIdx =
2318    (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
2319    assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
2320    // Pick the other block.
2321    int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
2322    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, ReducedPartRdx);
2323    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
2324  }// end of for each redux variable.
2325
2326  fixLCSSAPHIs();
2327
2328  // Remove redundant induction instructions.
2329  cse(LoopVectorBody);
2330}
2331
2332void InnerLoopVectorizer::fixLCSSAPHIs() {
2333  for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2334       LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2335    PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2336    if (!LCSSAPhi) break;
2337    if (LCSSAPhi->getNumIncomingValues() == 1)
2338      LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
2339                            LoopMiddleBlock);
2340  }
2341}
2342
2343InnerLoopVectorizer::VectorParts
2344InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
2345  assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
2346         "Invalid edge");
2347
2348  // Look for cached value.
2349  std::pair<BasicBlock*, BasicBlock*> Edge(Src, Dst);
2350  EdgeMaskCache::iterator ECEntryIt = MaskCache.find(Edge);
2351  if (ECEntryIt != MaskCache.end())
2352    return ECEntryIt->second;
2353
2354  VectorParts SrcMask = createBlockInMask(Src);
2355
2356  // The terminator has to be a branch inst!
2357  BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
2358  assert(BI && "Unexpected terminator found");
2359
2360  if (BI->isConditional()) {
2361    VectorParts EdgeMask = getVectorValue(BI->getCondition());
2362
2363    if (BI->getSuccessor(0) != Dst)
2364      for (unsigned part = 0; part < UF; ++part)
2365        EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
2366
2367    for (unsigned part = 0; part < UF; ++part)
2368      EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
2369
2370    MaskCache[Edge] = EdgeMask;
2371    return EdgeMask;
2372  }
2373
2374  MaskCache[Edge] = SrcMask;
2375  return SrcMask;
2376}
2377
2378InnerLoopVectorizer::VectorParts
2379InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
2380  assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
2381
2382  // Loop incoming mask is all-one.
2383  if (OrigLoop->getHeader() == BB) {
2384    Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
2385    return getVectorValue(C);
2386  }
2387
2388  // This is the block mask. We OR all incoming edges, and with zero.
2389  Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
2390  VectorParts BlockMask = getVectorValue(Zero);
2391
2392  // For each pred:
2393  for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
2394    VectorParts EM = createEdgeMask(*it, BB);
2395    for (unsigned part = 0; part < UF; ++part)
2396      BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
2397  }
2398
2399  return BlockMask;
2400}
2401
2402void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN,
2403                                              InnerLoopVectorizer::VectorParts &Entry,
2404                                              LoopVectorizationLegality *Legal,
2405                                              unsigned UF, unsigned VF, PhiVector *PV) {
2406  PHINode* P = cast<PHINode>(PN);
2407  // Handle reduction variables:
2408  if (Legal->getReductionVars()->count(P)) {
2409    for (unsigned part = 0; part < UF; ++part) {
2410      // This is phase one of vectorizing PHIs.
2411      Type *VecTy = (VF == 1) ? PN->getType() :
2412      VectorType::get(PN->getType(), VF);
2413      Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
2414                                    LoopVectorBody-> getFirstInsertionPt());
2415    }
2416    PV->push_back(P);
2417    return;
2418  }
2419
2420  setDebugLocFromInst(Builder, P);
2421  // Check for PHI nodes that are lowered to vector selects.
2422  if (P->getParent() != OrigLoop->getHeader()) {
2423    // We know that all PHIs in non header blocks are converted into
2424    // selects, so we don't have to worry about the insertion order and we
2425    // can just use the builder.
2426    // At this point we generate the predication tree. There may be
2427    // duplications since this is a simple recursive scan, but future
2428    // optimizations will clean it up.
2429
2430    unsigned NumIncoming = P->getNumIncomingValues();
2431
2432    // Generate a sequence of selects of the form:
2433    // SELECT(Mask3, In3,
2434    //      SELECT(Mask2, In2,
2435    //                   ( ...)))
2436    for (unsigned In = 0; In < NumIncoming; In++) {
2437      VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
2438                                        P->getParent());
2439      VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
2440
2441      for (unsigned part = 0; part < UF; ++part) {
2442        // We might have single edge PHIs (blocks) - use an identity
2443        // 'select' for the first PHI operand.
2444        if (In == 0)
2445          Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2446                                             In0[part]);
2447        else
2448          // Select between the current value and the previous incoming edge
2449          // based on the incoming mask.
2450          Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2451                                             Entry[part], "predphi");
2452      }
2453    }
2454    return;
2455  }
2456
2457  // This PHINode must be an induction variable.
2458  // Make sure that we know about it.
2459  assert(Legal->getInductionVars()->count(P) &&
2460         "Not an induction variable");
2461
2462  LoopVectorizationLegality::InductionInfo II =
2463  Legal->getInductionVars()->lookup(P);
2464
2465  switch (II.IK) {
2466    case LoopVectorizationLegality::IK_NoInduction:
2467      llvm_unreachable("Unknown induction");
2468    case LoopVectorizationLegality::IK_IntInduction: {
2469      assert(P->getType() == II.StartValue->getType() && "Types must match");
2470      Type *PhiTy = P->getType();
2471      Value *Broadcasted;
2472      if (P == OldInduction) {
2473        // Handle the canonical induction variable. We might have had to
2474        // extend the type.
2475        Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
2476      } else {
2477        // Handle other induction variables that are now based on the
2478        // canonical one.
2479        Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
2480                                                 "normalized.idx");
2481        NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
2482        Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
2483                                        "offset.idx");
2484      }
2485      Broadcasted = getBroadcastInstrs(Broadcasted);
2486      // After broadcasting the induction variable we need to make the vector
2487      // consecutive by adding 0, 1, 2, etc.
2488      for (unsigned part = 0; part < UF; ++part)
2489        Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
2490      return;
2491    }
2492    case LoopVectorizationLegality::IK_ReverseIntInduction:
2493    case LoopVectorizationLegality::IK_PtrInduction:
2494    case LoopVectorizationLegality::IK_ReversePtrInduction:
2495      // Handle reverse integer and pointer inductions.
2496      Value *StartIdx = ExtendedIdx;
2497      // This is the normalized GEP that starts counting at zero.
2498      Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
2499                                               "normalized.idx");
2500
2501      // Handle the reverse integer induction variable case.
2502      if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
2503        IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
2504        Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
2505                                               "resize.norm.idx");
2506        Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
2507                                               "reverse.idx");
2508
2509        // This is a new value so do not hoist it out.
2510        Value *Broadcasted = getBroadcastInstrs(ReverseInd);
2511        // After broadcasting the induction variable we need to make the
2512        // vector consecutive by adding  ... -3, -2, -1, 0.
2513        for (unsigned part = 0; part < UF; ++part)
2514          Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
2515                                             true);
2516        return;
2517      }
2518
2519      // Handle the pointer induction variable case.
2520      assert(P->getType()->isPointerTy() && "Unexpected type.");
2521
2522      // Is this a reverse induction ptr or a consecutive induction ptr.
2523      bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
2524                      II.IK);
2525
2526      // This is the vector of results. Notice that we don't generate
2527      // vector geps because scalar geps result in better code.
2528      for (unsigned part = 0; part < UF; ++part) {
2529        if (VF == 1) {
2530          int EltIndex = (part) * (Reverse ? -1 : 1);
2531          Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
2532          Value *GlobalIdx;
2533          if (Reverse)
2534            GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
2535          else
2536            GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
2537
2538          Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
2539                                             "next.gep");
2540          Entry[part] = SclrGep;
2541          continue;
2542        }
2543
2544        Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
2545        for (unsigned int i = 0; i < VF; ++i) {
2546          int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
2547          Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
2548          Value *GlobalIdx;
2549          if (!Reverse)
2550            GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
2551          else
2552            GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
2553
2554          Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
2555                                             "next.gep");
2556          VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
2557                                               Builder.getInt32(i),
2558                                               "insert.gep");
2559        }
2560        Entry[part] = VecVal;
2561      }
2562      return;
2563  }
2564}
2565
2566void
2567InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
2568                                          BasicBlock *BB, PhiVector *PV) {
2569  // For each instruction in the old loop.
2570  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2571    VectorParts &Entry = WidenMap.get(it);
2572    switch (it->getOpcode()) {
2573    case Instruction::Br:
2574      // Nothing to do for PHIs and BR, since we already took care of the
2575      // loop control flow instructions.
2576      continue;
2577    case Instruction::PHI:{
2578      // Vectorize PHINodes.
2579      widenPHIInstruction(it, Entry, Legal, UF, VF, PV);
2580      continue;
2581    }// End of PHI.
2582
2583    case Instruction::Add:
2584    case Instruction::FAdd:
2585    case Instruction::Sub:
2586    case Instruction::FSub:
2587    case Instruction::Mul:
2588    case Instruction::FMul:
2589    case Instruction::UDiv:
2590    case Instruction::SDiv:
2591    case Instruction::FDiv:
2592    case Instruction::URem:
2593    case Instruction::SRem:
2594    case Instruction::FRem:
2595    case Instruction::Shl:
2596    case Instruction::LShr:
2597    case Instruction::AShr:
2598    case Instruction::And:
2599    case Instruction::Or:
2600    case Instruction::Xor: {
2601      // Just widen binops.
2602      BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
2603      setDebugLocFromInst(Builder, BinOp);
2604      VectorParts &A = getVectorValue(it->getOperand(0));
2605      VectorParts &B = getVectorValue(it->getOperand(1));
2606
2607      // Use this vector value for all users of the original instruction.
2608      for (unsigned Part = 0; Part < UF; ++Part) {
2609        Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
2610
2611        // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
2612        BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
2613        if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
2614          VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
2615          VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
2616        }
2617        if (VecOp && isa<PossiblyExactOperator>(VecOp))
2618          VecOp->setIsExact(BinOp->isExact());
2619
2620        Entry[Part] = V;
2621      }
2622      break;
2623    }
2624    case Instruction::Select: {
2625      // Widen selects.
2626      // If the selector is loop invariant we can create a select
2627      // instruction with a scalar condition. Otherwise, use vector-select.
2628      bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
2629                                               OrigLoop);
2630      setDebugLocFromInst(Builder, it);
2631
2632      // The condition can be loop invariant  but still defined inside the
2633      // loop. This means that we can't just use the original 'cond' value.
2634      // We have to take the 'vectorized' value and pick the first lane.
2635      // Instcombine will make this a no-op.
2636      VectorParts &Cond = getVectorValue(it->getOperand(0));
2637      VectorParts &Op0  = getVectorValue(it->getOperand(1));
2638      VectorParts &Op1  = getVectorValue(it->getOperand(2));
2639
2640      Value *ScalarCond = (VF == 1) ? Cond[0] :
2641        Builder.CreateExtractElement(Cond[0], Builder.getInt32(0));
2642
2643      for (unsigned Part = 0; Part < UF; ++Part) {
2644        Entry[Part] = Builder.CreateSelect(
2645          InvariantCond ? ScalarCond : Cond[Part],
2646          Op0[Part],
2647          Op1[Part]);
2648      }
2649      break;
2650    }
2651
2652    case Instruction::ICmp:
2653    case Instruction::FCmp: {
2654      // Widen compares. Generate vector compares.
2655      bool FCmp = (it->getOpcode() == Instruction::FCmp);
2656      CmpInst *Cmp = dyn_cast<CmpInst>(it);
2657      setDebugLocFromInst(Builder, it);
2658      VectorParts &A = getVectorValue(it->getOperand(0));
2659      VectorParts &B = getVectorValue(it->getOperand(1));
2660      for (unsigned Part = 0; Part < UF; ++Part) {
2661        Value *C = 0;
2662        if (FCmp)
2663          C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
2664        else
2665          C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
2666        Entry[Part] = C;
2667      }
2668      break;
2669    }
2670
2671    case Instruction::Store:
2672    case Instruction::Load:
2673        vectorizeMemoryInstruction(it, Legal);
2674        break;
2675    case Instruction::ZExt:
2676    case Instruction::SExt:
2677    case Instruction::FPToUI:
2678    case Instruction::FPToSI:
2679    case Instruction::FPExt:
2680    case Instruction::PtrToInt:
2681    case Instruction::IntToPtr:
2682    case Instruction::SIToFP:
2683    case Instruction::UIToFP:
2684    case Instruction::Trunc:
2685    case Instruction::FPTrunc:
2686    case Instruction::BitCast: {
2687      CastInst *CI = dyn_cast<CastInst>(it);
2688      setDebugLocFromInst(Builder, it);
2689      /// Optimize the special case where the source is the induction
2690      /// variable. Notice that we can only optimize the 'trunc' case
2691      /// because: a. FP conversions lose precision, b. sext/zext may wrap,
2692      /// c. other casts depend on pointer size.
2693      if (CI->getOperand(0) == OldInduction &&
2694          it->getOpcode() == Instruction::Trunc) {
2695        Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
2696                                               CI->getType());
2697        Value *Broadcasted = getBroadcastInstrs(ScalarCast);
2698        for (unsigned Part = 0; Part < UF; ++Part)
2699          Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
2700        break;
2701      }
2702      /// Vectorize casts.
2703      Type *DestTy = (VF == 1) ? CI->getType() :
2704                                 VectorType::get(CI->getType(), VF);
2705
2706      VectorParts &A = getVectorValue(it->getOperand(0));
2707      for (unsigned Part = 0; Part < UF; ++Part)
2708        Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
2709      break;
2710    }
2711
2712    case Instruction::Call: {
2713      // Ignore dbg intrinsics.
2714      if (isa<DbgInfoIntrinsic>(it))
2715        break;
2716      setDebugLocFromInst(Builder, it);
2717
2718      Module *M = BB->getParent()->getParent();
2719      CallInst *CI = cast<CallInst>(it);
2720      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
2721      assert(ID && "Not an intrinsic call!");
2722      switch (ID) {
2723      case Intrinsic::lifetime_end:
2724      case Intrinsic::lifetime_start:
2725        scalarizeInstruction(it);
2726        break;
2727      default:
2728        for (unsigned Part = 0; Part < UF; ++Part) {
2729          SmallVector<Value *, 4> Args;
2730          for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
2731            VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
2732            Args.push_back(Arg[Part]);
2733          }
2734          Type *Tys[] = {CI->getType()};
2735          if (VF > 1)
2736            Tys[0] = VectorType::get(CI->getType()->getScalarType(), VF);
2737
2738          Function *F = Intrinsic::getDeclaration(M, ID, Tys);
2739          Entry[Part] = Builder.CreateCall(F, Args);
2740        }
2741        break;
2742      }
2743      break;
2744    }
2745
2746    default:
2747      // All other instructions are unsupported. Scalarize them.
2748      scalarizeInstruction(it);
2749      break;
2750    }// end of switch.
2751  }// end of for_each instr.
2752}
2753
2754void InnerLoopVectorizer::updateAnalysis() {
2755  // Forget the original basic block.
2756  SE->forgetLoop(OrigLoop);
2757
2758  // Update the dominator tree information.
2759  assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
2760         "Entry does not dominate exit.");
2761
2762  for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2763    DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
2764  DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
2765  DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
2766  DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
2767  DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
2768  DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
2769  DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2770
2771  DEBUG(DT->verifyAnalysis());
2772}
2773
2774bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
2775  if (!EnableIfConversion)
2776    return false;
2777
2778  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
2779
2780  // A list of pointers that we can safely read and write to.
2781  SmallPtrSet<Value *, 8> SafePointes;
2782
2783  // Collect safe addresses.
2784  for (Loop::block_iterator BI = TheLoop->block_begin(),
2785         BE = TheLoop->block_end(); BI != BE; ++BI) {
2786    BasicBlock *BB = *BI;
2787
2788    if (blockNeedsPredication(BB))
2789      continue;
2790
2791    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2792      if (LoadInst *LI = dyn_cast<LoadInst>(I))
2793        SafePointes.insert(LI->getPointerOperand());
2794      else if (StoreInst *SI = dyn_cast<StoreInst>(I))
2795        SafePointes.insert(SI->getPointerOperand());
2796    }
2797  }
2798
2799  // Collect the blocks that need predication.
2800  for (Loop::block_iterator BI = TheLoop->block_begin(),
2801         BE = TheLoop->block_end(); BI != BE; ++BI) {
2802    BasicBlock *BB = *BI;
2803
2804    // We don't support switch statements inside loops.
2805    if (!isa<BranchInst>(BB->getTerminator()))
2806      return false;
2807
2808    // We must be able to predicate all blocks that need to be predicated.
2809    if (blockNeedsPredication(BB) && !blockCanBePredicated(BB, SafePointes))
2810      return false;
2811  }
2812
2813  // We can if-convert this loop.
2814  return true;
2815}
2816
2817bool LoopVectorizationLegality::canVectorize() {
2818  // We must have a loop in canonical form. Loops with indirectbr in them cannot
2819  // be canonicalized.
2820  if (!TheLoop->getLoopPreheader())
2821    return false;
2822
2823  // We can only vectorize innermost loops.
2824  if (TheLoop->getSubLoopsVector().size())
2825    return false;
2826
2827  // We must have a single backedge.
2828  if (TheLoop->getNumBackEdges() != 1)
2829    return false;
2830
2831  // We must have a single exiting block.
2832  if (!TheLoop->getExitingBlock())
2833    return false;
2834
2835  // We need to have a loop header.
2836  DEBUG(dbgs() << "LV: Found a loop: " <<
2837        TheLoop->getHeader()->getName() << '\n');
2838
2839  // Check if we can if-convert non single-bb loops.
2840  unsigned NumBlocks = TheLoop->getNumBlocks();
2841  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
2842    DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
2843    return false;
2844  }
2845
2846  // ScalarEvolution needs to be able to find the exit count.
2847  const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
2848  if (ExitCount == SE->getCouldNotCompute()) {
2849    DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
2850    return false;
2851  }
2852
2853  // Do not loop-vectorize loops with a tiny trip count.
2854  BasicBlock *Latch = TheLoop->getLoopLatch();
2855  unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
2856  if (TC > 0u && TC < TinyTripCountVectorThreshold) {
2857    DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
2858          "This loop is not worth vectorizing.\n");
2859    return false;
2860  }
2861
2862  // Check if we can vectorize the instructions and CFG in this loop.
2863  if (!canVectorizeInstrs()) {
2864    DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
2865    return false;
2866  }
2867
2868  // Go over each instruction and look at memory deps.
2869  if (!canVectorizeMemory()) {
2870    DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
2871    return false;
2872  }
2873
2874  // Collect all of the variables that remain uniform after vectorization.
2875  collectLoopUniforms();
2876
2877  DEBUG(dbgs() << "LV: We can vectorize this loop" <<
2878        (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
2879        <<"!\n");
2880
2881  // Okay! We can vectorize. At this point we don't have any other mem analysis
2882  // which may limit our maximum vectorization factor, so just return true with
2883  // no restrictions.
2884  return true;
2885}
2886
2887static Type *convertPointerToIntegerType(DataLayout &DL, Type *Ty) {
2888  if (Ty->isPointerTy())
2889    return DL.getIntPtrType(Ty);
2890
2891  return Ty;
2892}
2893
2894static Type* getWiderType(DataLayout &DL, Type *Ty0, Type *Ty1) {
2895  Ty0 = convertPointerToIntegerType(DL, Ty0);
2896  Ty1 = convertPointerToIntegerType(DL, Ty1);
2897  if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
2898    return Ty0;
2899  return Ty1;
2900}
2901
2902/// \brief Check that the instruction has outside loop users and is not an
2903/// identified reduction variable.
2904static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
2905                               SmallPtrSet<Value *, 4> &Reductions) {
2906  // Reduction instructions are allowed to have exit users. All other
2907  // instructions must not have external users.
2908  if (!Reductions.count(Inst))
2909    //Check that all of the users of the loop are inside the BB.
2910    for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
2911         I != E; ++I) {
2912      Instruction *U = cast<Instruction>(*I);
2913      // This user may be a reduction exit value.
2914      if (!TheLoop->contains(U)) {
2915        DEBUG(dbgs() << "LV: Found an outside user for : " << *U << '\n');
2916        return true;
2917      }
2918    }
2919  return false;
2920}
2921
2922bool LoopVectorizationLegality::canVectorizeInstrs() {
2923  BasicBlock *PreHeader = TheLoop->getLoopPreheader();
2924  BasicBlock *Header = TheLoop->getHeader();
2925
2926  // Look for the attribute signaling the absence of NaNs.
2927  Function &F = *Header->getParent();
2928  if (F.hasFnAttribute("no-nans-fp-math"))
2929    HasFunNoNaNAttr = F.getAttributes().getAttribute(
2930      AttributeSet::FunctionIndex,
2931      "no-nans-fp-math").getValueAsString() == "true";
2932
2933  // For each block in the loop.
2934  for (Loop::block_iterator bb = TheLoop->block_begin(),
2935       be = TheLoop->block_end(); bb != be; ++bb) {
2936
2937    // Scan the instructions in the block and look for hazards.
2938    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2939         ++it) {
2940
2941      if (PHINode *Phi = dyn_cast<PHINode>(it)) {
2942        Type *PhiTy = Phi->getType();
2943        // Check that this PHI type is allowed.
2944        if (!PhiTy->isIntegerTy() &&
2945            !PhiTy->isFloatingPointTy() &&
2946            !PhiTy->isPointerTy()) {
2947          DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
2948          return false;
2949        }
2950
2951        // If this PHINode is not in the header block, then we know that we
2952        // can convert it to select during if-conversion. No need to check if
2953        // the PHIs in this block are induction or reduction variables.
2954        if (*bb != Header) {
2955          // Check that this instruction has no outside users or is an
2956          // identified reduction value with an outside user.
2957          if(!hasOutsideLoopUser(TheLoop, it, AllowedExit))
2958            continue;
2959          return false;
2960        }
2961
2962        // We only allow if-converted PHIs with more than two incoming values.
2963        if (Phi->getNumIncomingValues() != 2) {
2964          DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
2965          return false;
2966        }
2967
2968        // This is the value coming from the preheader.
2969        Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
2970        // Check if this is an induction variable.
2971        InductionKind IK = isInductionVariable(Phi);
2972
2973        if (IK_NoInduction != IK) {
2974          // Get the widest type.
2975          if (!WidestIndTy)
2976            WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
2977          else
2978            WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
2979
2980          // Int inductions are special because we only allow one IV.
2981          if (IK == IK_IntInduction) {
2982            // Use the phi node with the widest type as induction. Use the last
2983            // one if there are multiple (no good reason for doing this other
2984            // than it is expedient).
2985            if (!Induction || PhiTy == WidestIndTy)
2986              Induction = Phi;
2987          }
2988
2989          DEBUG(dbgs() << "LV: Found an induction variable.\n");
2990          Inductions[Phi] = InductionInfo(StartValue, IK);
2991
2992          // Until we explicitly handle the case of an induction variable with
2993          // an outside loop user we have to give up vectorizing this loop.
2994          if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
2995            return false;
2996
2997          continue;
2998        }
2999
3000        if (AddReductionVar(Phi, RK_IntegerAdd)) {
3001          DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
3002          continue;
3003        }
3004        if (AddReductionVar(Phi, RK_IntegerMult)) {
3005          DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
3006          continue;
3007        }
3008        if (AddReductionVar(Phi, RK_IntegerOr)) {
3009          DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
3010          continue;
3011        }
3012        if (AddReductionVar(Phi, RK_IntegerAnd)) {
3013          DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
3014          continue;
3015        }
3016        if (AddReductionVar(Phi, RK_IntegerXor)) {
3017          DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
3018          continue;
3019        }
3020        if (AddReductionVar(Phi, RK_IntegerMinMax)) {
3021          DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
3022          continue;
3023        }
3024        if (AddReductionVar(Phi, RK_FloatMult)) {
3025          DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
3026          continue;
3027        }
3028        if (AddReductionVar(Phi, RK_FloatAdd)) {
3029          DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
3030          continue;
3031        }
3032        if (AddReductionVar(Phi, RK_FloatMinMax)) {
3033          DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<
3034                "\n");
3035          continue;
3036        }
3037
3038        DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
3039        return false;
3040      }// end of PHI handling
3041
3042      // We still don't handle functions. However, we can ignore dbg intrinsic
3043      // calls and we do handle certain intrinsic and libm functions.
3044      CallInst *CI = dyn_cast<CallInst>(it);
3045      if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
3046        DEBUG(dbgs() << "LV: Found a call site.\n");
3047        return false;
3048      }
3049
3050      // Check that the instruction return type is vectorizable.
3051      // Also, we can't vectorize extractelement instructions.
3052      if ((!VectorType::isValidElementType(it->getType()) &&
3053           !it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
3054        DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
3055        return false;
3056      }
3057
3058      // Check that the stored type is vectorizable.
3059      if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
3060        Type *T = ST->getValueOperand()->getType();
3061        if (!VectorType::isValidElementType(T))
3062          return false;
3063      }
3064
3065      // Reduction instructions are allowed to have exit users.
3066      // All other instructions must not have external users.
3067      if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
3068        return false;
3069
3070    } // next instr.
3071
3072  }
3073
3074  if (!Induction) {
3075    DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
3076    if (Inductions.empty())
3077      return false;
3078  }
3079
3080  return true;
3081}
3082
3083void LoopVectorizationLegality::collectLoopUniforms() {
3084  // We now know that the loop is vectorizable!
3085  // Collect variables that will remain uniform after vectorization.
3086  std::vector<Value*> Worklist;
3087  BasicBlock *Latch = TheLoop->getLoopLatch();
3088
3089  // Start with the conditional branch and walk up the block.
3090  Worklist.push_back(Latch->getTerminator()->getOperand(0));
3091
3092  while (Worklist.size()) {
3093    Instruction *I = dyn_cast<Instruction>(Worklist.back());
3094    Worklist.pop_back();
3095
3096    // Look at instructions inside this loop.
3097    // Stop when reaching PHI nodes.
3098    // TODO: we need to follow values all over the loop, not only in this block.
3099    if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
3100      continue;
3101
3102    // This is a known uniform.
3103    Uniforms.insert(I);
3104
3105    // Insert all operands.
3106    Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
3107  }
3108}
3109
3110namespace {
3111/// \brief Analyses memory accesses in a loop.
3112///
3113/// Checks whether run time pointer checks are needed and builds sets for data
3114/// dependence checking.
3115class AccessAnalysis {
3116public:
3117  /// \brief Read or write access location.
3118  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
3119  typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
3120
3121  /// \brief Set of potential dependent memory accesses.
3122  typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
3123
3124  AccessAnalysis(DataLayout *Dl, DepCandidates &DA) :
3125    DL(Dl), DepCands(DA), AreAllWritesIdentified(true),
3126    AreAllReadsIdentified(true), IsRTCheckNeeded(false) {}
3127
3128  /// \brief Register a load  and whether it is only read from.
3129  void addLoad(Value *Ptr, bool IsReadOnly) {
3130    Accesses.insert(MemAccessInfo(Ptr, false));
3131    if (IsReadOnly)
3132      ReadOnlyPtr.insert(Ptr);
3133  }
3134
3135  /// \brief Register a store.
3136  void addStore(Value *Ptr) {
3137    Accesses.insert(MemAccessInfo(Ptr, true));
3138  }
3139
3140  /// \brief Check whether we can check the pointers at runtime for
3141  /// non-intersection.
3142  bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
3143                       unsigned &NumComparisons, ScalarEvolution *SE,
3144                       Loop *TheLoop, bool ShouldCheckStride = false);
3145
3146  /// \brief Goes over all memory accesses, checks whether a RT check is needed
3147  /// and builds sets of dependent accesses.
3148  void buildDependenceSets() {
3149    // Process read-write pointers first.
3150    processMemAccesses(false);
3151    // Next, process read pointers.
3152    processMemAccesses(true);
3153  }
3154
3155  bool isRTCheckNeeded() { return IsRTCheckNeeded; }
3156
3157  bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
3158  void resetDepChecks() { CheckDeps.clear(); }
3159
3160  MemAccessInfoSet &getDependenciesToCheck() { return CheckDeps; }
3161
3162private:
3163  typedef SetVector<MemAccessInfo> PtrAccessSet;
3164  typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
3165
3166  /// \brief Go over all memory access or only the deferred ones if
3167  /// \p UseDeferred is true and check whether runtime pointer checks are needed
3168  /// and build sets of dependency check candidates.
3169  void processMemAccesses(bool UseDeferred);
3170
3171  /// Set of all accesses.
3172  PtrAccessSet Accesses;
3173
3174  /// Set of access to check after all writes have been processed.
3175  PtrAccessSet DeferredAccesses;
3176
3177  /// Map of pointers to last access encountered.
3178  UnderlyingObjToAccessMap ObjToLastAccess;
3179
3180  /// Set of accesses that need a further dependence check.
3181  MemAccessInfoSet CheckDeps;
3182
3183  /// Set of pointers that are read only.
3184  SmallPtrSet<Value*, 16> ReadOnlyPtr;
3185
3186  /// Set of underlying objects already written to.
3187  SmallPtrSet<Value*, 16> WriteObjects;
3188
3189  DataLayout *DL;
3190
3191  /// Sets of potentially dependent accesses - members of one set share an
3192  /// underlying pointer. The set "CheckDeps" identfies which sets really need a
3193  /// dependence check.
3194  DepCandidates &DepCands;
3195
3196  bool AreAllWritesIdentified;
3197  bool AreAllReadsIdentified;
3198  bool IsRTCheckNeeded;
3199};
3200
3201} // end anonymous namespace
3202
3203/// \brief Check whether a pointer can participate in a runtime bounds check.
3204static bool hasComputableBounds(ScalarEvolution *SE, Value *Ptr) {
3205  const SCEV *PtrScev = SE->getSCEV(Ptr);
3206  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
3207  if (!AR)
3208    return false;
3209
3210  return AR->isAffine();
3211}
3212
3213/// \brief Check the stride of the pointer and ensure that it does not wrap in
3214/// the address space.
3215static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
3216                        const Loop *Lp);
3217
3218bool AccessAnalysis::canCheckPtrAtRT(
3219                       LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
3220                        unsigned &NumComparisons, ScalarEvolution *SE,
3221                        Loop *TheLoop, bool ShouldCheckStride) {
3222  // Find pointers with computable bounds. We are going to use this information
3223  // to place a runtime bound check.
3224  unsigned NumReadPtrChecks = 0;
3225  unsigned NumWritePtrChecks = 0;
3226  bool CanDoRT = true;
3227
3228  bool IsDepCheckNeeded = isDependencyCheckNeeded();
3229  // We assign consecutive id to access from different dependence sets.
3230  // Accesses within the same set don't need a runtime check.
3231  unsigned RunningDepId = 1;
3232  DenseMap<Value *, unsigned> DepSetId;
3233
3234  for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end();
3235       AI != AE; ++AI) {
3236    const MemAccessInfo &Access = *AI;
3237    Value *Ptr = Access.getPointer();
3238    bool IsWrite = Access.getInt();
3239
3240    // Just add write checks if we have both.
3241    if (!IsWrite && Accesses.count(MemAccessInfo(Ptr, true)))
3242      continue;
3243
3244    if (IsWrite)
3245      ++NumWritePtrChecks;
3246    else
3247      ++NumReadPtrChecks;
3248
3249    if (hasComputableBounds(SE, Ptr) &&
3250        // When we run after a failing dependency check we have to make sure we
3251        // don't have wrapping pointers.
3252        (!ShouldCheckStride || isStridedPtr(SE, DL, Ptr, TheLoop) == 1)) {
3253      // The id of the dependence set.
3254      unsigned DepId;
3255
3256      if (IsDepCheckNeeded) {
3257        Value *Leader = DepCands.getLeaderValue(Access).getPointer();
3258        unsigned &LeaderId = DepSetId[Leader];
3259        if (!LeaderId)
3260          LeaderId = RunningDepId++;
3261        DepId = LeaderId;
3262      } else
3263        // Each access has its own dependence set.
3264        DepId = RunningDepId++;
3265
3266      RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId);
3267
3268      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr << '\n');
3269    } else {
3270      CanDoRT = false;
3271    }
3272  }
3273
3274  if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
3275    NumComparisons = 0; // Only one dependence set.
3276  else {
3277    NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks +
3278                                           NumWritePtrChecks - 1));
3279  }
3280
3281  // If the pointers that we would use for the bounds comparison have different
3282  // address spaces, assume the values aren't directly comparable, so we can't
3283  // use them for the runtime check. We also have to assume they could
3284  // overlap. In the future there should be metadata for whether address spaces
3285  // are disjoint.
3286  unsigned NumPointers = RtCheck.Pointers.size();
3287  for (unsigned i = 0; i < NumPointers; ++i) {
3288    for (unsigned j = i + 1; j < NumPointers; ++j) {
3289      // Only need to check pointers between two different dependency sets.
3290      if (RtCheck.DependencySetId[i] == RtCheck.DependencySetId[j])
3291       continue;
3292
3293      Value *PtrI = RtCheck.Pointers[i];
3294      Value *PtrJ = RtCheck.Pointers[j];
3295
3296      unsigned ASi = PtrI->getType()->getPointerAddressSpace();
3297      unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
3298      if (ASi != ASj) {
3299        DEBUG(dbgs() << "LV: Runtime check would require comparison between"
3300                       " different address spaces\n");
3301        return false;
3302      }
3303    }
3304  }
3305
3306  return CanDoRT;
3307}
3308
3309static bool isFunctionScopeIdentifiedObject(Value *Ptr) {
3310  return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr);
3311}
3312
3313void AccessAnalysis::processMemAccesses(bool UseDeferred) {
3314  // We process the set twice: first we process read-write pointers, last we
3315  // process read-only pointers. This allows us to skip dependence tests for
3316  // read-only pointers.
3317
3318  PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
3319  for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) {
3320    const MemAccessInfo &Access = *AI;
3321    Value *Ptr = Access.getPointer();
3322    bool IsWrite = Access.getInt();
3323
3324    DepCands.insert(Access);
3325
3326    // Memorize read-only pointers for later processing and skip them in the
3327    // first round (they need to be checked after we have seen all write
3328    // pointers). Note: we also mark pointer that are not consecutive as
3329    // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the
3330    // second check for "!IsWrite".
3331    bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
3332    if (!UseDeferred && IsReadOnlyPtr) {
3333      DeferredAccesses.insert(Access);
3334      continue;
3335    }
3336
3337    bool NeedDepCheck = false;
3338    // Check whether there is the possiblity of dependency because of underlying
3339    // objects being the same.
3340    typedef SmallVector<Value*, 16> ValueVector;
3341    ValueVector TempObjects;
3342    GetUnderlyingObjects(Ptr, TempObjects, DL);
3343    for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end();
3344         UI != UE; ++UI) {
3345      Value *UnderlyingObj = *UI;
3346
3347      // If this is a write then it needs to be an identified object.  If this a
3348      // read and all writes (so far) are identified function scope objects we
3349      // don't need an identified underlying object but only an Argument (the
3350      // next write is going to invalidate this assumption if it is
3351      // unidentified).
3352      // This is a micro-optimization for the case where all writes are
3353      // identified and we have one argument pointer.
3354      // Otherwise, we do need a runtime check.
3355      if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) ||
3356          (!IsWrite && (!AreAllWritesIdentified ||
3357                        !isa<Argument>(UnderlyingObj)) &&
3358           !isIdentifiedObject(UnderlyingObj))) {
3359        DEBUG(dbgs() << "LV: Found an unidentified " <<
3360              (IsWrite ?  "write" : "read" ) << " ptr: " << *UnderlyingObj <<
3361              "\n");
3362        IsRTCheckNeeded = (IsRTCheckNeeded ||
3363                           !isIdentifiedObject(UnderlyingObj) ||
3364                           !AreAllReadsIdentified);
3365
3366        if (IsWrite)
3367          AreAllWritesIdentified = false;
3368        if (!IsWrite)
3369          AreAllReadsIdentified = false;
3370      }
3371
3372      // If this is a write - check other reads and writes for conflicts.  If
3373      // this is a read only check other writes for conflicts (but only if there
3374      // is no other write to the ptr - this is an optimization to catch "a[i] =
3375      // a[i] + " without having to do a dependence check).
3376      if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj))
3377        NeedDepCheck = true;
3378
3379      if (IsWrite)
3380        WriteObjects.insert(UnderlyingObj);
3381
3382      // Create sets of pointers connected by shared underlying objects.
3383      UnderlyingObjToAccessMap::iterator Prev =
3384        ObjToLastAccess.find(UnderlyingObj);
3385      if (Prev != ObjToLastAccess.end())
3386        DepCands.unionSets(Access, Prev->second);
3387
3388      ObjToLastAccess[UnderlyingObj] = Access;
3389    }
3390
3391    if (NeedDepCheck)
3392      CheckDeps.insert(Access);
3393  }
3394}
3395
3396namespace {
3397/// \brief Checks memory dependences among accesses to the same underlying
3398/// object to determine whether there vectorization is legal or not (and at
3399/// which vectorization factor).
3400///
3401/// This class works under the assumption that we already checked that memory
3402/// locations with different underlying pointers are "must-not alias".
3403/// We use the ScalarEvolution framework to symbolically evalutate access
3404/// functions pairs. Since we currently don't restructure the loop we can rely
3405/// on the program order of memory accesses to determine their safety.
3406/// At the moment we will only deem accesses as safe for:
3407///  * A negative constant distance assuming program order.
3408///
3409///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
3410///            a[i] = tmp;                y = a[i];
3411///
3412///   The latter case is safe because later checks guarantuee that there can't
3413///   be a cycle through a phi node (that is, we check that "x" and "y" is not
3414///   the same variable: a header phi can only be an induction or a reduction, a
3415///   reduction can't have a memory sink, an induction can't have a memory
3416///   source). This is important and must not be violated (or we have to
3417///   resort to checking for cycles through memory).
3418///
3419///  * A positive constant distance assuming program order that is bigger
3420///    than the biggest memory access.
3421///
3422///     tmp = a[i]        OR              b[i] = x
3423///     a[i+2] = tmp                      y = b[i+2];
3424///
3425///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
3426///
3427///  * Zero distances and all accesses have the same size.
3428///
3429class MemoryDepChecker {
3430public:
3431  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
3432  typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
3433
3434  MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L)
3435      : SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
3436        ShouldRetryWithRuntimeCheck(false) {}
3437
3438  /// \brief Register the location (instructions are given increasing numbers)
3439  /// of a write access.
3440  void addAccess(StoreInst *SI) {
3441    Value *Ptr = SI->getPointerOperand();
3442    Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
3443    InstMap.push_back(SI);
3444    ++AccessIdx;
3445  }
3446
3447  /// \brief Register the location (instructions are given increasing numbers)
3448  /// of a write access.
3449  void addAccess(LoadInst *LI) {
3450    Value *Ptr = LI->getPointerOperand();
3451    Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
3452    InstMap.push_back(LI);
3453    ++AccessIdx;
3454  }
3455
3456  /// \brief Check whether the dependencies between the accesses are safe.
3457  ///
3458  /// Only checks sets with elements in \p CheckDeps.
3459  bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3460                   MemAccessInfoSet &CheckDeps);
3461
3462  /// \brief The maximum number of bytes of a vector register we can vectorize
3463  /// the accesses safely with.
3464  unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
3465
3466  /// \brief In same cases when the dependency check fails we can still
3467  /// vectorize the loop with a dynamic array access check.
3468  bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
3469
3470private:
3471  ScalarEvolution *SE;
3472  DataLayout *DL;
3473  const Loop *InnermostLoop;
3474
3475  /// \brief Maps access locations (ptr, read/write) to program order.
3476  DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
3477
3478  /// \brief Memory access instructions in program order.
3479  SmallVector<Instruction *, 16> InstMap;
3480
3481  /// \brief The program order index to be used for the next instruction.
3482  unsigned AccessIdx;
3483
3484  // We can access this many bytes in parallel safely.
3485  unsigned MaxSafeDepDistBytes;
3486
3487  /// \brief If we see a non constant dependence distance we can still try to
3488  /// vectorize this loop with runtime checks.
3489  bool ShouldRetryWithRuntimeCheck;
3490
3491  /// \brief Check whether there is a plausible dependence between the two
3492  /// accesses.
3493  ///
3494  /// Access \p A must happen before \p B in program order. The two indices
3495  /// identify the index into the program order map.
3496  ///
3497  /// This function checks  whether there is a plausible dependence (or the
3498  /// absence of such can't be proved) between the two accesses. If there is a
3499  /// plausible dependence but the dependence distance is bigger than one
3500  /// element access it records this distance in \p MaxSafeDepDistBytes (if this
3501  /// distance is smaller than any other distance encountered so far).
3502  /// Otherwise, this function returns true signaling a possible dependence.
3503  bool isDependent(const MemAccessInfo &A, unsigned AIdx,
3504                   const MemAccessInfo &B, unsigned BIdx);
3505
3506  /// \brief Check whether the data dependence could prevent store-load
3507  /// forwarding.
3508  bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
3509};
3510
3511} // end anonymous namespace
3512
3513static bool isInBoundsGep(Value *Ptr) {
3514  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
3515    return GEP->isInBounds();
3516  return false;
3517}
3518
3519/// \brief Check whether the access through \p Ptr has a constant stride.
3520static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
3521                        const Loop *Lp) {
3522  const Type *Ty = Ptr->getType();
3523  assert(Ty->isPointerTy() && "Unexpected non ptr");
3524
3525  // Make sure that the pointer does not point to aggregate types.
3526  const PointerType *PtrTy = cast<PointerType>(Ty);
3527  if (PtrTy->getElementType()->isAggregateType()) {
3528    DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr <<
3529          "\n");
3530    return 0;
3531  }
3532
3533  const SCEV *PtrScev = SE->getSCEV(Ptr);
3534  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
3535  if (!AR) {
3536    DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
3537          << *Ptr << " SCEV: " << *PtrScev << "\n");
3538    return 0;
3539  }
3540
3541  // The accesss function must stride over the innermost loop.
3542  if (Lp != AR->getLoop()) {
3543    DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " <<
3544          *Ptr << " SCEV: " << *PtrScev << "\n");
3545  }
3546
3547  // The address calculation must not wrap. Otherwise, a dependence could be
3548  // inverted.
3549  // An inbounds getelementptr that is a AddRec with a unit stride
3550  // cannot wrap per definition. The unit stride requirement is checked later.
3551  // An getelementptr without an inbounds attribute and unit stride would have
3552  // to access the pointer value "0" which is undefined behavior in address
3553  // space 0, therefore we can also vectorize this case.
3554  bool IsInBoundsGEP = isInBoundsGep(Ptr);
3555  bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
3556  bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
3557  if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
3558    DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
3559          << *Ptr << " SCEV: " << *PtrScev << "\n");
3560    return 0;
3561  }
3562
3563  // Check the step is constant.
3564  const SCEV *Step = AR->getStepRecurrence(*SE);
3565
3566  // Calculate the pointer stride and check if it is consecutive.
3567  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
3568  if (!C) {
3569    DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
3570          " SCEV: " << *PtrScev << "\n");
3571    return 0;
3572  }
3573
3574  int64_t Size = DL->getTypeAllocSize(PtrTy->getElementType());
3575  const APInt &APStepVal = C->getValue()->getValue();
3576
3577  // Huge step value - give up.
3578  if (APStepVal.getBitWidth() > 64)
3579    return 0;
3580
3581  int64_t StepVal = APStepVal.getSExtValue();
3582
3583  // Strided access.
3584  int64_t Stride = StepVal / Size;
3585  int64_t Rem = StepVal % Size;
3586  if (Rem)
3587    return 0;
3588
3589  // If the SCEV could wrap but we have an inbounds gep with a unit stride we
3590  // know we can't "wrap around the address space". In case of address space
3591  // zero we know that this won't happen without triggering undefined behavior.
3592  if (!IsNoWrapAddRec && (IsInBoundsGEP || IsInAddressSpaceZero) &&
3593      Stride != 1 && Stride != -1)
3594    return 0;
3595
3596  return Stride;
3597}
3598
3599bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
3600                                                    unsigned TypeByteSize) {
3601  // If loads occur at a distance that is not a multiple of a feasible vector
3602  // factor store-load forwarding does not take place.
3603  // Positive dependences might cause troubles because vectorizing them might
3604  // prevent store-load forwarding making vectorized code run a lot slower.
3605  //   a[i] = a[i-3] ^ a[i-8];
3606  //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
3607  //   hence on your typical architecture store-load forwarding does not take
3608  //   place. Vectorizing in such cases does not make sense.
3609  // Store-load forwarding distance.
3610  const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
3611  // Maximum vector factor.
3612  unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
3613  if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
3614    MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
3615
3616  for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
3617       vf *= 2) {
3618    if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
3619      MaxVFWithoutSLForwardIssues = (vf >>=1);
3620      break;
3621    }
3622  }
3623
3624  if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
3625    DEBUG(dbgs() << "LV: Distance " << Distance <<
3626          " that could cause a store-load forwarding conflict\n");
3627    return true;
3628  }
3629
3630  if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
3631      MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
3632    MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
3633  return false;
3634}
3635
3636bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
3637                                   const MemAccessInfo &B, unsigned BIdx) {
3638  assert (AIdx < BIdx && "Must pass arguments in program order");
3639
3640  Value *APtr = A.getPointer();
3641  Value *BPtr = B.getPointer();
3642  bool AIsWrite = A.getInt();
3643  bool BIsWrite = B.getInt();
3644
3645  // Two reads are independent.
3646  if (!AIsWrite && !BIsWrite)
3647    return false;
3648
3649  const SCEV *AScev = SE->getSCEV(APtr);
3650  const SCEV *BScev = SE->getSCEV(BPtr);
3651
3652  int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop);
3653  int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop);
3654
3655  const SCEV *Src = AScev;
3656  const SCEV *Sink = BScev;
3657
3658  // If the induction step is negative we have to invert source and sink of the
3659  // dependence.
3660  if (StrideAPtr < 0) {
3661    //Src = BScev;
3662    //Sink = AScev;
3663    std::swap(APtr, BPtr);
3664    std::swap(Src, Sink);
3665    std::swap(AIsWrite, BIsWrite);
3666    std::swap(AIdx, BIdx);
3667    std::swap(StrideAPtr, StrideBPtr);
3668  }
3669
3670  const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
3671
3672  DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
3673        << "(Induction step: " << StrideAPtr <<  ")\n");
3674  DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
3675        << *InstMap[BIdx] << ": " << *Dist << "\n");
3676
3677  // Need consecutive accesses. We don't want to vectorize
3678  // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
3679  // the address space.
3680  if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
3681    DEBUG(dbgs() << "Non-consecutive pointer access\n");
3682    return true;
3683  }
3684
3685  const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
3686  if (!C) {
3687    DEBUG(dbgs() << "LV: Dependence because of non constant distance\n");
3688    ShouldRetryWithRuntimeCheck = true;
3689    return true;
3690  }
3691
3692  Type *ATy = APtr->getType()->getPointerElementType();
3693  Type *BTy = BPtr->getType()->getPointerElementType();
3694  unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
3695
3696  // Negative distances are not plausible dependencies.
3697  const APInt &Val = C->getValue()->getValue();
3698  if (Val.isNegative()) {
3699    bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
3700    if (IsTrueDataDependence &&
3701        (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
3702         ATy != BTy))
3703      return true;
3704
3705    DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
3706    return false;
3707  }
3708
3709  // Write to the same location with the same size.
3710  // Could be improved to assert type sizes are the same (i32 == float, etc).
3711  if (Val == 0) {
3712    if (ATy == BTy)
3713      return false;
3714    DEBUG(dbgs() << "LV: Zero dependence difference but different types\n");
3715    return true;
3716  }
3717
3718  assert(Val.isStrictlyPositive() && "Expect a positive value");
3719
3720  // Positive distance bigger than max vectorization factor.
3721  if (ATy != BTy) {
3722    DEBUG(dbgs() <<
3723          "LV: ReadWrite-Write positive dependency with different types\n");
3724    return false;
3725  }
3726
3727  unsigned Distance = (unsigned) Val.getZExtValue();
3728
3729  // Bail out early if passed-in parameters make vectorization not feasible.
3730  unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
3731  unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1;
3732
3733  // The distance must be bigger than the size needed for a vectorized version
3734  // of the operation and the size of the vectorized operation must not be
3735  // bigger than the currrent maximum size.
3736  if (Distance < 2*TypeByteSize ||
3737      2*TypeByteSize > MaxSafeDepDistBytes ||
3738      Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
3739    DEBUG(dbgs() << "LV: Failure because of Positive distance "
3740        << Val.getSExtValue() << '\n');
3741    return true;
3742  }
3743
3744  MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
3745    Distance : MaxSafeDepDistBytes;
3746
3747  bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
3748  if (IsTrueDataDependence &&
3749      couldPreventStoreLoadForward(Distance, TypeByteSize))
3750     return true;
3751
3752  DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
3753        " with max VF = " << MaxSafeDepDistBytes / TypeByteSize << '\n');
3754
3755  return false;
3756}
3757
3758bool
3759MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3760                              MemAccessInfoSet &CheckDeps) {
3761
3762  MaxSafeDepDistBytes = -1U;
3763  while (!CheckDeps.empty()) {
3764    MemAccessInfo CurAccess = *CheckDeps.begin();
3765
3766    // Get the relevant memory access set.
3767    EquivalenceClasses<MemAccessInfo>::iterator I =
3768      AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
3769
3770    // Check accesses within this set.
3771    EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
3772    AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
3773
3774    // Check every access pair.
3775    while (AI != AE) {
3776      CheckDeps.erase(*AI);
3777      EquivalenceClasses<MemAccessInfo>::member_iterator OI = llvm::next(AI);
3778      while (OI != AE) {
3779        // Check every accessing instruction pair in program order.
3780        for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
3781             I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
3782          for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
3783               I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
3784            if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2))
3785              return false;
3786            if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1))
3787              return false;
3788          }
3789        ++OI;
3790      }
3791      AI++;
3792    }
3793  }
3794  return true;
3795}
3796
3797bool LoopVectorizationLegality::canVectorizeMemory() {
3798
3799  typedef SmallVector<Value*, 16> ValueVector;
3800  typedef SmallPtrSet<Value*, 16> ValueSet;
3801
3802  // Holds the Load and Store *instructions*.
3803  ValueVector Loads;
3804  ValueVector Stores;
3805
3806  // Holds all the different accesses in the loop.
3807  unsigned NumReads = 0;
3808  unsigned NumReadWrites = 0;
3809
3810  PtrRtCheck.Pointers.clear();
3811  PtrRtCheck.Need = false;
3812
3813  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
3814  MemoryDepChecker DepChecker(SE, DL, TheLoop);
3815
3816  // For each block.
3817  for (Loop::block_iterator bb = TheLoop->block_begin(),
3818       be = TheLoop->block_end(); bb != be; ++bb) {
3819
3820    // Scan the BB and collect legal loads and stores.
3821    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3822         ++it) {
3823
3824      // If this is a load, save it. If this instruction can read from memory
3825      // but is not a load, then we quit. Notice that we don't handle function
3826      // calls that read or write.
3827      if (it->mayReadFromMemory()) {
3828        // Many math library functions read the rounding mode. We will only
3829        // vectorize a loop if it contains known function calls that don't set
3830        // the flag. Therefore, it is safe to ignore this read from memory.
3831        CallInst *Call = dyn_cast<CallInst>(it);
3832        if (Call && getIntrinsicIDForCall(Call, TLI))
3833          continue;
3834
3835        LoadInst *Ld = dyn_cast<LoadInst>(it);
3836        if (!Ld) return false;
3837        if (!Ld->isSimple() && !IsAnnotatedParallel) {
3838          DEBUG(dbgs() << "LV: Found a non-simple load.\n");
3839          return false;
3840        }
3841        Loads.push_back(Ld);
3842        DepChecker.addAccess(Ld);
3843        continue;
3844      }
3845
3846      // Save 'store' instructions. Abort if other instructions write to memory.
3847      if (it->mayWriteToMemory()) {
3848        StoreInst *St = dyn_cast<StoreInst>(it);
3849        if (!St) return false;
3850        if (!St->isSimple() && !IsAnnotatedParallel) {
3851          DEBUG(dbgs() << "LV: Found a non-simple store.\n");
3852          return false;
3853        }
3854        Stores.push_back(St);
3855        DepChecker.addAccess(St);
3856      }
3857    } // Next instr.
3858  } // Next block.
3859
3860  // Now we have two lists that hold the loads and the stores.
3861  // Next, we find the pointers that they use.
3862
3863  // Check if we see any stores. If there are no stores, then we don't
3864  // care if the pointers are *restrict*.
3865  if (!Stores.size()) {
3866    DEBUG(dbgs() << "LV: Found a read-only loop!\n");
3867    return true;
3868  }
3869
3870  AccessAnalysis::DepCandidates DependentAccesses;
3871  AccessAnalysis Accesses(DL, DependentAccesses);
3872
3873  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
3874  // multiple times on the same object. If the ptr is accessed twice, once
3875  // for read and once for write, it will only appear once (on the write
3876  // list). This is okay, since we are going to check for conflicts between
3877  // writes and between reads and writes, but not between reads and reads.
3878  ValueSet Seen;
3879
3880  ValueVector::iterator I, IE;
3881  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
3882    StoreInst *ST = cast<StoreInst>(*I);
3883    Value* Ptr = ST->getPointerOperand();
3884
3885    if (isUniform(Ptr)) {
3886      DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
3887      return false;
3888    }
3889
3890    // If we did *not* see this pointer before, insert it to  the read-write
3891    // list. At this phase it is only a 'write' list.
3892    if (Seen.insert(Ptr)) {
3893      ++NumReadWrites;
3894      Accesses.addStore(Ptr);
3895    }
3896  }
3897
3898  if (IsAnnotatedParallel) {
3899    DEBUG(dbgs()
3900          << "LV: A loop annotated parallel, ignore memory dependency "
3901          << "checks.\n");
3902    return true;
3903  }
3904
3905  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
3906    LoadInst *LD = cast<LoadInst>(*I);
3907    Value* Ptr = LD->getPointerOperand();
3908    // If we did *not* see this pointer before, insert it to the
3909    // read list. If we *did* see it before, then it is already in
3910    // the read-write list. This allows us to vectorize expressions
3911    // such as A[i] += x;  Because the address of A[i] is a read-write
3912    // pointer. This only works if the index of A[i] is consecutive.
3913    // If the address of i is unknown (for example A[B[i]]) then we may
3914    // read a few words, modify, and write a few words, and some of the
3915    // words may be written to the same address.
3916    bool IsReadOnlyPtr = false;
3917    if (Seen.insert(Ptr) || !isStridedPtr(SE, DL, Ptr, TheLoop)) {
3918      ++NumReads;
3919      IsReadOnlyPtr = true;
3920    }
3921    Accesses.addLoad(Ptr, IsReadOnlyPtr);
3922  }
3923
3924  // If we write (or read-write) to a single destination and there are no
3925  // other reads in this loop then is it safe to vectorize.
3926  if (NumReadWrites == 1 && NumReads == 0) {
3927    DEBUG(dbgs() << "LV: Found a write-only loop!\n");
3928    return true;
3929  }
3930
3931  // Build dependence sets and check whether we need a runtime pointer bounds
3932  // check.
3933  Accesses.buildDependenceSets();
3934  bool NeedRTCheck = Accesses.isRTCheckNeeded();
3935
3936  // Find pointers with computable bounds. We are going to use this information
3937  // to place a runtime bound check.
3938  unsigned NumComparisons = 0;
3939  bool CanDoRT = false;
3940  if (NeedRTCheck)
3941    CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE, TheLoop);
3942
3943
3944  DEBUG(dbgs() << "LV: We need to do " << NumComparisons <<
3945        " pointer comparisons.\n");
3946
3947  // If we only have one set of dependences to check pointers among we don't
3948  // need a runtime check.
3949  if (NumComparisons == 0 && NeedRTCheck)
3950    NeedRTCheck = false;
3951
3952  // Check that we did not collect too many pointers or found an unsizeable
3953  // pointer.
3954  if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
3955    PtrRtCheck.reset();
3956    CanDoRT = false;
3957  }
3958
3959  if (CanDoRT) {
3960    DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
3961  }
3962
3963  if (NeedRTCheck && !CanDoRT) {
3964    DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
3965          "the array bounds.\n");
3966    PtrRtCheck.reset();
3967    return false;
3968  }
3969
3970  PtrRtCheck.Need = NeedRTCheck;
3971
3972  bool CanVecMem = true;
3973  if (Accesses.isDependencyCheckNeeded()) {
3974    DEBUG(dbgs() << "LV: Checking memory dependencies\n");
3975    CanVecMem = DepChecker.areDepsSafe(DependentAccesses,
3976                                       Accesses.getDependenciesToCheck());
3977    MaxSafeDepDistBytes = DepChecker.getMaxSafeDepDistBytes();
3978
3979    if (!CanVecMem && DepChecker.shouldRetryWithRuntimeCheck()) {
3980      DEBUG(dbgs() << "LV: Retrying with memory checks\n");
3981      NeedRTCheck = true;
3982
3983      // Clear the dependency checks. We assume they are not needed.
3984      Accesses.resetDepChecks();
3985
3986      PtrRtCheck.reset();
3987      PtrRtCheck.Need = true;
3988
3989      CanDoRT = Accesses.canCheckPtrAtRT(PtrRtCheck, NumComparisons, SE,
3990                                         TheLoop, true);
3991      // Check that we did not collect too many pointers or found an unsizeable
3992      // pointer.
3993      if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
3994        DEBUG(dbgs() << "LV: Can't vectorize with memory checks\n");
3995        PtrRtCheck.reset();
3996        return false;
3997      }
3998
3999      CanVecMem = true;
4000    }
4001  }
4002
4003  DEBUG(dbgs() << "LV: We" << (NeedRTCheck ? "" : " don't") <<
4004        " need a runtime memory check.\n");
4005
4006  return CanVecMem;
4007}
4008
4009static bool hasMultipleUsesOf(Instruction *I,
4010                              SmallPtrSet<Instruction *, 8> &Insts) {
4011  unsigned NumUses = 0;
4012  for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
4013    if (Insts.count(dyn_cast<Instruction>(*Use)))
4014      ++NumUses;
4015    if (NumUses > 1)
4016      return true;
4017  }
4018
4019  return false;
4020}
4021
4022static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) {
4023  for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
4024    if (!Set.count(dyn_cast<Instruction>(*Use)))
4025      return false;
4026  return true;
4027}
4028
4029bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
4030                                                ReductionKind Kind) {
4031  if (Phi->getNumIncomingValues() != 2)
4032    return false;
4033
4034  // Reduction variables are only found in the loop header block.
4035  if (Phi->getParent() != TheLoop->getHeader())
4036    return false;
4037
4038  // Obtain the reduction start value from the value that comes from the loop
4039  // preheader.
4040  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
4041
4042  // ExitInstruction is the single value which is used outside the loop.
4043  // We only allow for a single reduction value to be used outside the loop.
4044  // This includes users of the reduction, variables (which form a cycle
4045  // which ends in the phi node).
4046  Instruction *ExitInstruction = 0;
4047  // Indicates that we found a reduction operation in our scan.
4048  bool FoundReduxOp = false;
4049
4050  // We start with the PHI node and scan for all of the users of this
4051  // instruction. All users must be instructions that can be used as reduction
4052  // variables (such as ADD). We must have a single out-of-block user. The cycle
4053  // must include the original PHI.
4054  bool FoundStartPHI = false;
4055
4056  // To recognize min/max patterns formed by a icmp select sequence, we store
4057  // the number of instruction we saw from the recognized min/max pattern,
4058  //  to make sure we only see exactly the two instructions.
4059  unsigned NumCmpSelectPatternInst = 0;
4060  ReductionInstDesc ReduxDesc(false, 0);
4061
4062  SmallPtrSet<Instruction *, 8> VisitedInsts;
4063  SmallVector<Instruction *, 8> Worklist;
4064  Worklist.push_back(Phi);
4065  VisitedInsts.insert(Phi);
4066
4067  // A value in the reduction can be used:
4068  //  - By the reduction:
4069  //      - Reduction operation:
4070  //        - One use of reduction value (safe).
4071  //        - Multiple use of reduction value (not safe).
4072  //      - PHI:
4073  //        - All uses of the PHI must be the reduction (safe).
4074  //        - Otherwise, not safe.
4075  //  - By one instruction outside of the loop (safe).
4076  //  - By further instructions outside of the loop (not safe).
4077  //  - By an instruction that is not part of the reduction (not safe).
4078  //    This is either:
4079  //      * An instruction type other than PHI or the reduction operation.
4080  //      * A PHI in the header other than the initial PHI.
4081  while (!Worklist.empty()) {
4082    Instruction *Cur = Worklist.back();
4083    Worklist.pop_back();
4084
4085    // No Users.
4086    // If the instruction has no users then this is a broken chain and can't be
4087    // a reduction variable.
4088    if (Cur->use_empty())
4089      return false;
4090
4091    bool IsAPhi = isa<PHINode>(Cur);
4092
4093    // A header PHI use other than the original PHI.
4094    if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
4095      return false;
4096
4097    // Reductions of instructions such as Div, and Sub is only possible if the
4098    // LHS is the reduction variable.
4099    if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
4100        !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
4101        !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
4102      return false;
4103
4104    // Any reduction instruction must be of one of the allowed kinds.
4105    ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
4106    if (!ReduxDesc.IsReduction)
4107      return false;
4108
4109    // A reduction operation must only have one use of the reduction value.
4110    if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
4111        hasMultipleUsesOf(Cur, VisitedInsts))
4112      return false;
4113
4114    // All inputs to a PHI node must be a reduction value.
4115    if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
4116      return false;
4117
4118    if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
4119                                     isa<SelectInst>(Cur)))
4120      ++NumCmpSelectPatternInst;
4121    if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
4122                                   isa<SelectInst>(Cur)))
4123      ++NumCmpSelectPatternInst;
4124
4125    // Check  whether we found a reduction operator.
4126    FoundReduxOp |= !IsAPhi;
4127
4128    // Process users of current instruction. Push non PHI nodes after PHI nodes
4129    // onto the stack. This way we are going to have seen all inputs to PHI
4130    // nodes once we get to them.
4131    SmallVector<Instruction *, 8> NonPHIs;
4132    SmallVector<Instruction *, 8> PHIs;
4133    for (Value::use_iterator UI = Cur->use_begin(), E = Cur->use_end(); UI != E;
4134         ++UI) {
4135      Instruction *Usr = cast<Instruction>(*UI);
4136
4137      // Check if we found the exit user.
4138      BasicBlock *Parent = Usr->getParent();
4139      if (!TheLoop->contains(Parent)) {
4140        // Exit if you find multiple outside users or if the header phi node is
4141        // being used. In this case the user uses the value of the previous
4142        // iteration, in which case we would loose "VF-1" iterations of the
4143        // reduction operation if we vectorize.
4144        if (ExitInstruction != 0 || Cur == Phi)
4145          return false;
4146
4147        // The instruction used by an outside user must be the last instruction
4148        // before we feed back to the reduction phi. Otherwise, we loose VF-1
4149        // operations on the value.
4150        if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
4151         return false;
4152
4153        ExitInstruction = Cur;
4154        continue;
4155      }
4156
4157      // Process instructions only once (termination).
4158      if (VisitedInsts.insert(Usr)) {
4159        if (isa<PHINode>(Usr))
4160          PHIs.push_back(Usr);
4161        else
4162          NonPHIs.push_back(Usr);
4163      }
4164      // Remember that we completed the cycle.
4165      if (Usr == Phi)
4166        FoundStartPHI = true;
4167    }
4168    Worklist.append(PHIs.begin(), PHIs.end());
4169    Worklist.append(NonPHIs.begin(), NonPHIs.end());
4170  }
4171
4172  // This means we have seen one but not the other instruction of the
4173  // pattern or more than just a select and cmp.
4174  if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
4175      NumCmpSelectPatternInst != 2)
4176    return false;
4177
4178  if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
4179    return false;
4180
4181  // We found a reduction var if we have reached the original phi node and we
4182  // only have a single instruction with out-of-loop users.
4183
4184  // This instruction is allowed to have out-of-loop users.
4185  AllowedExit.insert(ExitInstruction);
4186
4187  // Save the description of this reduction variable.
4188  ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
4189                         ReduxDesc.MinMaxKind);
4190  Reductions[Phi] = RD;
4191  // We've ended the cycle. This is a reduction variable if we have an
4192  // outside user and it has a binary op.
4193
4194  return true;
4195}
4196
4197/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
4198/// pattern corresponding to a min(X, Y) or max(X, Y).
4199LoopVectorizationLegality::ReductionInstDesc
4200LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
4201                                                    ReductionInstDesc &Prev) {
4202
4203  assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
4204         "Expect a select instruction");
4205  Instruction *Cmp = 0;
4206  SelectInst *Select = 0;
4207
4208  // We must handle the select(cmp()) as a single instruction. Advance to the
4209  // select.
4210  if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
4211    if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin())))
4212      return ReductionInstDesc(false, I);
4213    return ReductionInstDesc(Select, Prev.MinMaxKind);
4214  }
4215
4216  // Only handle single use cases for now.
4217  if (!(Select = dyn_cast<SelectInst>(I)))
4218    return ReductionInstDesc(false, I);
4219  if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
4220      !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
4221    return ReductionInstDesc(false, I);
4222  if (!Cmp->hasOneUse())
4223    return ReductionInstDesc(false, I);
4224
4225  Value *CmpLeft;
4226  Value *CmpRight;
4227
4228  // Look for a min/max pattern.
4229  if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4230    return ReductionInstDesc(Select, MRK_UIntMin);
4231  else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4232    return ReductionInstDesc(Select, MRK_UIntMax);
4233  else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4234    return ReductionInstDesc(Select, MRK_SIntMax);
4235  else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4236    return ReductionInstDesc(Select, MRK_SIntMin);
4237  else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4238    return ReductionInstDesc(Select, MRK_FloatMin);
4239  else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4240    return ReductionInstDesc(Select, MRK_FloatMax);
4241  else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4242    return ReductionInstDesc(Select, MRK_FloatMin);
4243  else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4244    return ReductionInstDesc(Select, MRK_FloatMax);
4245
4246  return ReductionInstDesc(false, I);
4247}
4248
4249LoopVectorizationLegality::ReductionInstDesc
4250LoopVectorizationLegality::isReductionInstr(Instruction *I,
4251                                            ReductionKind Kind,
4252                                            ReductionInstDesc &Prev) {
4253  bool FP = I->getType()->isFloatingPointTy();
4254  bool FastMath = (FP && I->isCommutative() && I->isAssociative());
4255  switch (I->getOpcode()) {
4256  default:
4257    return ReductionInstDesc(false, I);
4258  case Instruction::PHI:
4259      if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
4260                 Kind != RK_FloatMinMax))
4261        return ReductionInstDesc(false, I);
4262    return ReductionInstDesc(I, Prev.MinMaxKind);
4263  case Instruction::Sub:
4264  case Instruction::Add:
4265    return ReductionInstDesc(Kind == RK_IntegerAdd, I);
4266  case Instruction::Mul:
4267    return ReductionInstDesc(Kind == RK_IntegerMult, I);
4268  case Instruction::And:
4269    return ReductionInstDesc(Kind == RK_IntegerAnd, I);
4270  case Instruction::Or:
4271    return ReductionInstDesc(Kind == RK_IntegerOr, I);
4272  case Instruction::Xor:
4273    return ReductionInstDesc(Kind == RK_IntegerXor, I);
4274  case Instruction::FMul:
4275    return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
4276  case Instruction::FAdd:
4277    return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
4278  case Instruction::FCmp:
4279  case Instruction::ICmp:
4280  case Instruction::Select:
4281    if (Kind != RK_IntegerMinMax &&
4282        (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
4283      return ReductionInstDesc(false, I);
4284    return isMinMaxSelectCmpPattern(I, Prev);
4285  }
4286}
4287
4288LoopVectorizationLegality::InductionKind
4289LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
4290  Type *PhiTy = Phi->getType();
4291  // We only handle integer and pointer inductions variables.
4292  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
4293    return IK_NoInduction;
4294
4295  // Check that the PHI is consecutive.
4296  const SCEV *PhiScev = SE->getSCEV(Phi);
4297  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
4298  if (!AR) {
4299    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
4300    return IK_NoInduction;
4301  }
4302  const SCEV *Step = AR->getStepRecurrence(*SE);
4303
4304  // Integer inductions need to have a stride of one.
4305  if (PhiTy->isIntegerTy()) {
4306    if (Step->isOne())
4307      return IK_IntInduction;
4308    if (Step->isAllOnesValue())
4309      return IK_ReverseIntInduction;
4310    return IK_NoInduction;
4311  }
4312
4313  // Calculate the pointer stride and check if it is consecutive.
4314  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4315  if (!C)
4316    return IK_NoInduction;
4317
4318  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
4319  uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
4320  if (C->getValue()->equalsInt(Size))
4321    return IK_PtrInduction;
4322  else if (C->getValue()->equalsInt(0 - Size))
4323    return IK_ReversePtrInduction;
4324
4325  return IK_NoInduction;
4326}
4327
4328bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
4329  Value *In0 = const_cast<Value*>(V);
4330  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
4331  if (!PN)
4332    return false;
4333
4334  return Inductions.count(PN);
4335}
4336
4337bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
4338  assert(TheLoop->contains(BB) && "Unknown block used");
4339
4340  // Blocks that do not dominate the latch need predication.
4341  BasicBlock* Latch = TheLoop->getLoopLatch();
4342  return !DT->dominates(BB, Latch);
4343}
4344
4345bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
4346                                            SmallPtrSet<Value *, 8>& SafePtrs) {
4347  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4348    // We might be able to hoist the load.
4349    if (it->mayReadFromMemory()) {
4350      LoadInst *LI = dyn_cast<LoadInst>(it);
4351      if (!LI || !SafePtrs.count(LI->getPointerOperand()))
4352        return false;
4353    }
4354
4355    // We don't predicate stores at the moment.
4356    if (it->mayWriteToMemory() || it->mayThrow())
4357      return false;
4358
4359    // The instructions below can trap.
4360    switch (it->getOpcode()) {
4361    default: continue;
4362    case Instruction::UDiv:
4363    case Instruction::SDiv:
4364    case Instruction::URem:
4365    case Instruction::SRem:
4366             return false;
4367    }
4368  }
4369
4370  return true;
4371}
4372
4373LoopVectorizationCostModel::VectorizationFactor
4374LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
4375                                                      unsigned UserVF) {
4376  // Width 1 means no vectorize
4377  VectorizationFactor Factor = { 1U, 0U };
4378  if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
4379    DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
4380    return Factor;
4381  }
4382
4383  // Find the trip count.
4384  unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
4385  DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4386
4387  unsigned WidestType = getWidestType();
4388  unsigned WidestRegister = TTI.getRegisterBitWidth(true);
4389  unsigned MaxSafeDepDist = -1U;
4390  if (Legal->getMaxSafeDepDistBytes() != -1U)
4391    MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
4392  WidestRegister = ((WidestRegister < MaxSafeDepDist) ?
4393                    WidestRegister : MaxSafeDepDist);
4394  unsigned MaxVectorSize = WidestRegister / WidestType;
4395  DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
4396  DEBUG(dbgs() << "LV: The Widest register is: "
4397          << WidestRegister << " bits.\n");
4398
4399  if (MaxVectorSize == 0) {
4400    DEBUG(dbgs() << "LV: The target has no vector registers.\n");
4401    MaxVectorSize = 1;
4402  }
4403
4404  assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
4405         " into one vector!");
4406
4407  unsigned VF = MaxVectorSize;
4408
4409  // If we optimize the program for size, avoid creating the tail loop.
4410  if (OptForSize) {
4411    // If we are unable to calculate the trip count then don't try to vectorize.
4412    if (TC < 2) {
4413      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4414      return Factor;
4415    }
4416
4417    // Find the maximum SIMD width that can fit within the trip count.
4418    VF = TC % MaxVectorSize;
4419
4420    if (VF == 0)
4421      VF = MaxVectorSize;
4422
4423    // If the trip count that we found modulo the vectorization factor is not
4424    // zero then we require a tail.
4425    if (VF < 2) {
4426      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4427      return Factor;
4428    }
4429  }
4430
4431  if (UserVF != 0) {
4432    assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
4433    DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
4434
4435    Factor.Width = UserVF;
4436    return Factor;
4437  }
4438
4439  float Cost = expectedCost(1);
4440  unsigned Width = 1;
4441  DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)Cost << ".\n");
4442  for (unsigned i=2; i <= VF; i*=2) {
4443    // Notice that the vector loop needs to be executed less times, so
4444    // we need to divide the cost of the vector loops by the width of
4445    // the vector elements.
4446    float VectorCost = expectedCost(i) / (float)i;
4447    DEBUG(dbgs() << "LV: Vector loop of width " << i << " costs: " <<
4448          (int)VectorCost << ".\n");
4449    if (VectorCost < Cost) {
4450      Cost = VectorCost;
4451      Width = i;
4452    }
4453  }
4454
4455  DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
4456  Factor.Width = Width;
4457  Factor.Cost = Width * Cost;
4458  return Factor;
4459}
4460
4461unsigned LoopVectorizationCostModel::getWidestType() {
4462  unsigned MaxWidth = 8;
4463
4464  // For each block.
4465  for (Loop::block_iterator bb = TheLoop->block_begin(),
4466       be = TheLoop->block_end(); bb != be; ++bb) {
4467    BasicBlock *BB = *bb;
4468
4469    // For each instruction in the loop.
4470    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4471      Type *T = it->getType();
4472
4473      // Only examine Loads, Stores and PHINodes.
4474      if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
4475        continue;
4476
4477      // Examine PHI nodes that are reduction variables.
4478      if (PHINode *PN = dyn_cast<PHINode>(it))
4479        if (!Legal->getReductionVars()->count(PN))
4480          continue;
4481
4482      // Examine the stored values.
4483      if (StoreInst *ST = dyn_cast<StoreInst>(it))
4484        T = ST->getValueOperand()->getType();
4485
4486      // Ignore loaded pointer types and stored pointer types that are not
4487      // consecutive. However, we do want to take consecutive stores/loads of
4488      // pointer vectors into account.
4489      if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
4490        continue;
4491
4492      MaxWidth = std::max(MaxWidth,
4493                          (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
4494    }
4495  }
4496
4497  return MaxWidth;
4498}
4499
4500unsigned
4501LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
4502                                               unsigned UserUF,
4503                                               unsigned VF,
4504                                               unsigned LoopCost) {
4505
4506  // -- The unroll heuristics --
4507  // We unroll the loop in order to expose ILP and reduce the loop overhead.
4508  // There are many micro-architectural considerations that we can't predict
4509  // at this level. For example frontend pressure (on decode or fetch) due to
4510  // code size, or the number and capabilities of the execution ports.
4511  //
4512  // We use the following heuristics to select the unroll factor:
4513  // 1. If the code has reductions the we unroll in order to break the cross
4514  // iteration dependency.
4515  // 2. If the loop is really small then we unroll in order to reduce the loop
4516  // overhead.
4517  // 3. We don't unroll if we think that we will spill registers to memory due
4518  // to the increased register pressure.
4519
4520  // Use the user preference, unless 'auto' is selected.
4521  if (UserUF != 0)
4522    return UserUF;
4523
4524  // When we optimize for size we don't unroll.
4525  if (OptForSize)
4526    return 1;
4527
4528  // We used the distance for the unroll factor.
4529  if (Legal->getMaxSafeDepDistBytes() != -1U)
4530    return 1;
4531
4532  // Do not unroll loops with a relatively small trip count.
4533  unsigned TC = SE->getSmallConstantTripCount(TheLoop,
4534                                              TheLoop->getLoopLatch());
4535  if (TC > 1 && TC < TinyTripCountUnrollThreshold)
4536    return 1;
4537
4538  unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
4539  DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
4540        " vector registers\n");
4541
4542  LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
4543  // We divide by these constants so assume that we have at least one
4544  // instruction that uses at least one register.
4545  R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
4546  R.NumInstructions = std::max(R.NumInstructions, 1U);
4547
4548  // We calculate the unroll factor using the following formula.
4549  // Subtract the number of loop invariants from the number of available
4550  // registers. These registers are used by all of the unrolled instances.
4551  // Next, divide the remaining registers by the number of registers that is
4552  // required by the loop, in order to estimate how many parallel instances
4553  // fit without causing spills.
4554  unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
4555
4556  // Clamp the unroll factor ranges to reasonable factors.
4557  unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
4558
4559  // If we did not calculate the cost for VF (because the user selected the VF)
4560  // then we calculate the cost of VF here.
4561  if (LoopCost == 0)
4562    LoopCost = expectedCost(VF);
4563
4564  // Clamp the calculated UF to be between the 1 and the max unroll factor
4565  // that the target allows.
4566  if (UF > MaxUnrollSize)
4567    UF = MaxUnrollSize;
4568  else if (UF < 1)
4569    UF = 1;
4570
4571  bool HasReductions = Legal->getReductionVars()->size();
4572
4573  // Decide if we want to unroll if we decided that it is legal to vectorize
4574  // but not profitable.
4575  if (VF == 1) {
4576    if (TheLoop->getNumBlocks() > 1 || !HasReductions ||
4577        LoopCost > SmallLoopCost)
4578      return 1;
4579
4580    return UF;
4581  }
4582
4583  if (HasReductions) {
4584    DEBUG(dbgs() << "LV: Unrolling because of reductions.\n");
4585    return UF;
4586  }
4587
4588  // We want to unroll tiny loops in order to reduce the loop overhead.
4589  // We assume that the cost overhead is 1 and we use the cost model
4590  // to estimate the cost of the loop and unroll until the cost of the
4591  // loop overhead is about 5% of the cost of the loop.
4592  DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
4593  if (LoopCost < SmallLoopCost) {
4594    DEBUG(dbgs() << "LV: Unrolling to reduce branch cost.\n");
4595    unsigned NewUF = SmallLoopCost / (LoopCost + 1);
4596    return std::min(NewUF, UF);
4597  }
4598
4599  DEBUG(dbgs() << "LV: Not Unrolling.\n");
4600  return 1;
4601}
4602
4603LoopVectorizationCostModel::RegisterUsage
4604LoopVectorizationCostModel::calculateRegisterUsage() {
4605  // This function calculates the register usage by measuring the highest number
4606  // of values that are alive at a single location. Obviously, this is a very
4607  // rough estimation. We scan the loop in a topological order in order and
4608  // assign a number to each instruction. We use RPO to ensure that defs are
4609  // met before their users. We assume that each instruction that has in-loop
4610  // users starts an interval. We record every time that an in-loop value is
4611  // used, so we have a list of the first and last occurrences of each
4612  // instruction. Next, we transpose this data structure into a multi map that
4613  // holds the list of intervals that *end* at a specific location. This multi
4614  // map allows us to perform a linear search. We scan the instructions linearly
4615  // and record each time that a new interval starts, by placing it in a set.
4616  // If we find this value in the multi-map then we remove it from the set.
4617  // The max register usage is the maximum size of the set.
4618  // We also search for instructions that are defined outside the loop, but are
4619  // used inside the loop. We need this number separately from the max-interval
4620  // usage number because when we unroll, loop-invariant values do not take
4621  // more register.
4622  LoopBlocksDFS DFS(TheLoop);
4623  DFS.perform(LI);
4624
4625  RegisterUsage R;
4626  R.NumInstructions = 0;
4627
4628  // Each 'key' in the map opens a new interval. The values
4629  // of the map are the index of the 'last seen' usage of the
4630  // instruction that is the key.
4631  typedef DenseMap<Instruction*, unsigned> IntervalMap;
4632  // Maps instruction to its index.
4633  DenseMap<unsigned, Instruction*> IdxToInstr;
4634  // Marks the end of each interval.
4635  IntervalMap EndPoint;
4636  // Saves the list of instruction indices that are used in the loop.
4637  SmallSet<Instruction*, 8> Ends;
4638  // Saves the list of values that are used in the loop but are
4639  // defined outside the loop, such as arguments and constants.
4640  SmallPtrSet<Value*, 8> LoopInvariants;
4641
4642  unsigned Index = 0;
4643  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
4644       be = DFS.endRPO(); bb != be; ++bb) {
4645    R.NumInstructions += (*bb)->size();
4646    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
4647         ++it) {
4648      Instruction *I = it;
4649      IdxToInstr[Index++] = I;
4650
4651      // Save the end location of each USE.
4652      for (unsigned i = 0; i < I->getNumOperands(); ++i) {
4653        Value *U = I->getOperand(i);
4654        Instruction *Instr = dyn_cast<Instruction>(U);
4655
4656        // Ignore non-instruction values such as arguments, constants, etc.
4657        if (!Instr) continue;
4658
4659        // If this instruction is outside the loop then record it and continue.
4660        if (!TheLoop->contains(Instr)) {
4661          LoopInvariants.insert(Instr);
4662          continue;
4663        }
4664
4665        // Overwrite previous end points.
4666        EndPoint[Instr] = Index;
4667        Ends.insert(Instr);
4668      }
4669    }
4670  }
4671
4672  // Saves the list of intervals that end with the index in 'key'.
4673  typedef SmallVector<Instruction*, 2> InstrList;
4674  DenseMap<unsigned, InstrList> TransposeEnds;
4675
4676  // Transpose the EndPoints to a list of values that end at each index.
4677  for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
4678       it != e; ++it)
4679    TransposeEnds[it->second].push_back(it->first);
4680
4681  SmallSet<Instruction*, 8> OpenIntervals;
4682  unsigned MaxUsage = 0;
4683
4684
4685  DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
4686  for (unsigned int i = 0; i < Index; ++i) {
4687    Instruction *I = IdxToInstr[i];
4688    // Ignore instructions that are never used within the loop.
4689    if (!Ends.count(I)) continue;
4690
4691    // Remove all of the instructions that end at this location.
4692    InstrList &List = TransposeEnds[i];
4693    for (unsigned int j=0, e = List.size(); j < e; ++j)
4694      OpenIntervals.erase(List[j]);
4695
4696    // Count the number of live interals.
4697    MaxUsage = std::max(MaxUsage, OpenIntervals.size());
4698
4699    DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
4700          OpenIntervals.size() << '\n');
4701
4702    // Add the current instruction to the list of open intervals.
4703    OpenIntervals.insert(I);
4704  }
4705
4706  unsigned Invariant = LoopInvariants.size();
4707  DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << '\n');
4708  DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n');
4709  DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << '\n');
4710
4711  R.LoopInvariantRegs = Invariant;
4712  R.MaxLocalUsers = MaxUsage;
4713  return R;
4714}
4715
4716unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
4717  unsigned Cost = 0;
4718
4719  // For each block.
4720  for (Loop::block_iterator bb = TheLoop->block_begin(),
4721       be = TheLoop->block_end(); bb != be; ++bb) {
4722    unsigned BlockCost = 0;
4723    BasicBlock *BB = *bb;
4724
4725    // For each instruction in the old loop.
4726    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4727      // Skip dbg intrinsics.
4728      if (isa<DbgInfoIntrinsic>(it))
4729        continue;
4730
4731      unsigned C = getInstructionCost(it, VF);
4732      BlockCost += C;
4733      DEBUG(dbgs() << "LV: Found an estimated cost of " << C << " for VF " <<
4734            VF << " For instruction: " << *it << '\n');
4735    }
4736
4737    // We assume that if-converted blocks have a 50% chance of being executed.
4738    // When the code is scalar then some of the blocks are avoided due to CF.
4739    // When the code is vectorized we execute all code paths.
4740    if (VF == 1 && Legal->blockNeedsPredication(*bb))
4741      BlockCost /= 2;
4742
4743    Cost += BlockCost;
4744  }
4745
4746  return Cost;
4747}
4748
4749/// \brief Check whether the address computation for a non-consecutive memory
4750/// access looks like an unlikely candidate for being merged into the indexing
4751/// mode.
4752///
4753/// We look for a GEP which has one index that is an induction variable and all
4754/// other indices are loop invariant. If the stride of this access is also
4755/// within a small bound we decide that this address computation can likely be
4756/// merged into the addressing mode.
4757/// In all other cases, we identify the address computation as complex.
4758static bool isLikelyComplexAddressComputation(Value *Ptr,
4759                                              LoopVectorizationLegality *Legal,
4760                                              ScalarEvolution *SE,
4761                                              const Loop *TheLoop) {
4762  GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
4763  if (!Gep)
4764    return true;
4765
4766  // We are looking for a gep with all loop invariant indices except for one
4767  // which should be an induction variable.
4768  unsigned NumOperands = Gep->getNumOperands();
4769  for (unsigned i = 1; i < NumOperands; ++i) {
4770    Value *Opd = Gep->getOperand(i);
4771    if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
4772        !Legal->isInductionVariable(Opd))
4773      return true;
4774  }
4775
4776  // Now we know we have a GEP ptr, %inv, %ind, %inv. Make sure that the step
4777  // can likely be merged into the address computation.
4778  unsigned MaxMergeDistance = 64;
4779
4780  const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
4781  if (!AddRec)
4782    return true;
4783
4784  // Check the step is constant.
4785  const SCEV *Step = AddRec->getStepRecurrence(*SE);
4786  // Calculate the pointer stride and check if it is consecutive.
4787  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4788  if (!C)
4789    return true;
4790
4791  const APInt &APStepVal = C->getValue()->getValue();
4792
4793  // Huge step value - give up.
4794  if (APStepVal.getBitWidth() > 64)
4795    return true;
4796
4797  int64_t StepVal = APStepVal.getSExtValue();
4798
4799  return StepVal > MaxMergeDistance;
4800}
4801
4802unsigned
4803LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
4804  // If we know that this instruction will remain uniform, check the cost of
4805  // the scalar version.
4806  if (Legal->isUniformAfterVectorization(I))
4807    VF = 1;
4808
4809  Type *RetTy = I->getType();
4810  Type *VectorTy = ToVectorTy(RetTy, VF);
4811
4812  // TODO: We need to estimate the cost of intrinsic calls.
4813  switch (I->getOpcode()) {
4814  case Instruction::GetElementPtr:
4815    // We mark this instruction as zero-cost because the cost of GEPs in
4816    // vectorized code depends on whether the corresponding memory instruction
4817    // is scalarized or not. Therefore, we handle GEPs with the memory
4818    // instruction cost.
4819    return 0;
4820  case Instruction::Br: {
4821    return TTI.getCFInstrCost(I->getOpcode());
4822  }
4823  case Instruction::PHI:
4824    //TODO: IF-converted IFs become selects.
4825    return 0;
4826  case Instruction::Add:
4827  case Instruction::FAdd:
4828  case Instruction::Sub:
4829  case Instruction::FSub:
4830  case Instruction::Mul:
4831  case Instruction::FMul:
4832  case Instruction::UDiv:
4833  case Instruction::SDiv:
4834  case Instruction::FDiv:
4835  case Instruction::URem:
4836  case Instruction::SRem:
4837  case Instruction::FRem:
4838  case Instruction::Shl:
4839  case Instruction::LShr:
4840  case Instruction::AShr:
4841  case Instruction::And:
4842  case Instruction::Or:
4843  case Instruction::Xor: {
4844    // Certain instructions can be cheaper to vectorize if they have a constant
4845    // second vector operand. One example of this are shifts on x86.
4846    TargetTransformInfo::OperandValueKind Op1VK =
4847      TargetTransformInfo::OK_AnyValue;
4848    TargetTransformInfo::OperandValueKind Op2VK =
4849      TargetTransformInfo::OK_AnyValue;
4850
4851    if (isa<ConstantInt>(I->getOperand(1)))
4852      Op2VK = TargetTransformInfo::OK_UniformConstantValue;
4853
4854    return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
4855  }
4856  case Instruction::Select: {
4857    SelectInst *SI = cast<SelectInst>(I);
4858    const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
4859    bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
4860    Type *CondTy = SI->getCondition()->getType();
4861    if (!ScalarCond)
4862      CondTy = VectorType::get(CondTy, VF);
4863
4864    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
4865  }
4866  case Instruction::ICmp:
4867  case Instruction::FCmp: {
4868    Type *ValTy = I->getOperand(0)->getType();
4869    VectorTy = ToVectorTy(ValTy, VF);
4870    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
4871  }
4872  case Instruction::Store:
4873  case Instruction::Load: {
4874    StoreInst *SI = dyn_cast<StoreInst>(I);
4875    LoadInst *LI = dyn_cast<LoadInst>(I);
4876    Type *ValTy = (SI ? SI->getValueOperand()->getType() :
4877                   LI->getType());
4878    VectorTy = ToVectorTy(ValTy, VF);
4879
4880    unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
4881    unsigned AS = SI ? SI->getPointerAddressSpace() :
4882      LI->getPointerAddressSpace();
4883    Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
4884    // We add the cost of address computation here instead of with the gep
4885    // instruction because only here we know whether the operation is
4886    // scalarized.
4887    if (VF == 1)
4888      return TTI.getAddressComputationCost(VectorTy) +
4889        TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4890
4891    // Scalarized loads/stores.
4892    int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
4893    bool Reverse = ConsecutiveStride < 0;
4894    unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
4895    unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
4896    if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
4897      bool IsComplexComputation =
4898        isLikelyComplexAddressComputation(Ptr, Legal, SE, TheLoop);
4899      unsigned Cost = 0;
4900      // The cost of extracting from the value vector and pointer vector.
4901      Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
4902      for (unsigned i = 0; i < VF; ++i) {
4903        //  The cost of extracting the pointer operand.
4904        Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
4905        // In case of STORE, the cost of ExtractElement from the vector.
4906        // In case of LOAD, the cost of InsertElement into the returned
4907        // vector.
4908        Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
4909                                            Instruction::InsertElement,
4910                                            VectorTy, i);
4911      }
4912
4913      // The cost of the scalar loads/stores.
4914      Cost += VF * TTI.getAddressComputationCost(PtrTy, IsComplexComputation);
4915      Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
4916                                       Alignment, AS);
4917      return Cost;
4918    }
4919
4920    // Wide load/stores.
4921    unsigned Cost = TTI.getAddressComputationCost(VectorTy);
4922    Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4923
4924    if (Reverse)
4925      Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
4926                                  VectorTy, 0);
4927    return Cost;
4928  }
4929  case Instruction::ZExt:
4930  case Instruction::SExt:
4931  case Instruction::FPToUI:
4932  case Instruction::FPToSI:
4933  case Instruction::FPExt:
4934  case Instruction::PtrToInt:
4935  case Instruction::IntToPtr:
4936  case Instruction::SIToFP:
4937  case Instruction::UIToFP:
4938  case Instruction::Trunc:
4939  case Instruction::FPTrunc:
4940  case Instruction::BitCast: {
4941    // We optimize the truncation of induction variable.
4942    // The cost of these is the same as the scalar operation.
4943    if (I->getOpcode() == Instruction::Trunc &&
4944        Legal->isInductionVariable(I->getOperand(0)))
4945      return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
4946                                  I->getOperand(0)->getType());
4947
4948    Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
4949    return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
4950  }
4951  case Instruction::Call: {
4952    CallInst *CI = cast<CallInst>(I);
4953    Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
4954    assert(ID && "Not an intrinsic call!");
4955    Type *RetTy = ToVectorTy(CI->getType(), VF);
4956    SmallVector<Type*, 4> Tys;
4957    for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
4958      Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
4959    return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
4960  }
4961  default: {
4962    // We are scalarizing the instruction. Return the cost of the scalar
4963    // instruction, plus the cost of insert and extract into vector
4964    // elements, times the vector width.
4965    unsigned Cost = 0;
4966
4967    if (!RetTy->isVoidTy() && VF != 1) {
4968      unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
4969                                                VectorTy);
4970      unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
4971                                                VectorTy);
4972
4973      // The cost of inserting the results plus extracting each one of the
4974      // operands.
4975      Cost += VF * (InsCost + ExtCost * I->getNumOperands());
4976    }
4977
4978    // The cost of executing VF copies of the scalar instruction. This opcode
4979    // is unknown. Assume that it is the same as 'mul'.
4980    Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
4981    return Cost;
4982  }
4983  }// end of switch.
4984}
4985
4986Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
4987  if (Scalar->isVoidTy() || VF == 1)
4988    return Scalar;
4989  return VectorType::get(Scalar, VF);
4990}
4991
4992char LoopVectorize::ID = 0;
4993static const char lv_name[] = "Loop Vectorization";
4994INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
4995INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
4996INITIALIZE_PASS_DEPENDENCY(DominatorTree)
4997INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
4998INITIALIZE_PASS_DEPENDENCY(LCSSA)
4999INITIALIZE_PASS_DEPENDENCY(LoopInfo)
5000INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5001INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
5002
5003namespace llvm {
5004  Pass *createLoopVectorizePass(bool NoUnrolling) {
5005    return new LoopVectorize(NoUnrolling);
5006  }
5007}
5008
5009bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
5010  // Check for a store.
5011  if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
5012    return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
5013
5014  // Check for a load.
5015  if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
5016    return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
5017
5018  return false;
5019}
5020
5021
5022void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr) {
5023  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
5024  // Holds vector parameters or scalars, in case of uniform vals.
5025  SmallVector<VectorParts, 4> Params;
5026
5027  setDebugLocFromInst(Builder, Instr);
5028
5029  // Find all of the vectorized parameters.
5030  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5031    Value *SrcOp = Instr->getOperand(op);
5032
5033    // If we are accessing the old induction variable, use the new one.
5034    if (SrcOp == OldInduction) {
5035      Params.push_back(getVectorValue(SrcOp));
5036      continue;
5037    }
5038
5039    // Try using previously calculated values.
5040    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
5041
5042    // If the src is an instruction that appeared earlier in the basic block
5043    // then it should already be vectorized.
5044    if (SrcInst && OrigLoop->contains(SrcInst)) {
5045      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
5046      // The parameter is a vector value from earlier.
5047      Params.push_back(WidenMap.get(SrcInst));
5048    } else {
5049      // The parameter is a scalar from outside the loop. Maybe even a constant.
5050      VectorParts Scalars;
5051      Scalars.append(UF, SrcOp);
5052      Params.push_back(Scalars);
5053    }
5054  }
5055
5056  assert(Params.size() == Instr->getNumOperands() &&
5057         "Invalid number of operands");
5058
5059  // Does this instruction return a value ?
5060  bool IsVoidRetTy = Instr->getType()->isVoidTy();
5061
5062  Value *UndefVec = IsVoidRetTy ? 0 :
5063  UndefValue::get(Instr->getType());
5064  // Create a new entry in the WidenMap and initialize it to Undef or Null.
5065  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
5066
5067  // For each vector unroll 'part':
5068  for (unsigned Part = 0; Part < UF; ++Part) {
5069    // For each scalar that we create:
5070
5071    Instruction *Cloned = Instr->clone();
5072      if (!IsVoidRetTy)
5073        Cloned->setName(Instr->getName() + ".cloned");
5074      // Replace the operands of the cloned instructions with extracted scalars.
5075      for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
5076        Value *Op = Params[op][Part];
5077        Cloned->setOperand(op, Op);
5078      }
5079
5080      // Place the cloned scalar in the new loop.
5081      Builder.Insert(Cloned);
5082
5083      // If the original scalar returns a value we need to place it in a vector
5084      // so that future users will be able to use it.
5085      if (!IsVoidRetTy)
5086        VecResults[Part] = Cloned;
5087  }
5088}
5089
5090void
5091InnerLoopUnroller::vectorizeMemoryInstruction(Instruction *Instr,
5092                                              LoopVectorizationLegality*) {
5093  return scalarizeInstruction(Instr);
5094}
5095
5096Value *InnerLoopUnroller::reverseVector(Value *Vec) {
5097  return Vec;
5098}
5099
5100Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) {
5101  return V;
5102}
5103
5104Value *InnerLoopUnroller::getConsecutiveVector(Value* Val, int StartIdx,
5105                                               bool Negate) {
5106  // When unrolling and the VF is 1, we only need to add a simple scalar.
5107  Type *ITy = Val->getType();
5108  assert(!ITy->isVectorTy() && "Val must be a scalar");
5109  Constant *C = ConstantInt::get(ITy, StartIdx, Negate);
5110  return Builder.CreateAdd(Val, C, "induction");
5111}
5112
5113