LoopVectorize.cpp revision 4ade92b6145a0d298b3c5ae1af79aca2598a327d
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is a simple loop vectorizer. We currently only support single block
11// loops. We have a very simple and restrictive legality check: we need to read
12// and write from disjoint memory locations. We still don't have a cost model.
13// We do support integer reductions.
14//
15// This pass has three parts:
16// 1. The main loop pass that drives the different parts.
17// 2. LoopVectorizationLegality - A helper class that checks for the legality
18//    of the vectorization.
19// 3. SingleBlockLoopVectorizer - A helper class that performs the actual
20//    widening of instructions.
21//
22//===----------------------------------------------------------------------===//
23#define LV_NAME "loop-vectorize"
24#define DEBUG_TYPE LV_NAME
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Instructions.h"
28#include "llvm/LLVMContext.h"
29#include "llvm/Pass.h"
30#include "llvm/Analysis/LoopPass.h"
31#include "llvm/Value.h"
32#include "llvm/Function.h"
33#include "llvm/Analysis/Verifier.h"
34#include "llvm/Module.h"
35#include "llvm/Type.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/Analysis/AliasAnalysis.h"
39#include "llvm/Analysis/AliasSetTracker.h"
40#include "llvm/Transforms/Scalar.h"
41#include "llvm/Analysis/ScalarEvolution.h"
42#include "llvm/Analysis/ScalarEvolutionExpressions.h"
43#include "llvm/Analysis/ScalarEvolutionExpander.h"
44#include "llvm/Transforms/Utils/BasicBlockUtils.h"
45#include "llvm/Analysis/ValueTracking.h"
46#include "llvm/Analysis/LoopInfo.h"
47#include "llvm/Support/CommandLine.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/raw_ostream.h"
50#include "llvm/DataLayout.h"
51#include "llvm/Transforms/Utils/Local.h"
52#include <algorithm>
53using namespace llvm;
54
55static cl::opt<unsigned>
56DefaultVectorizationFactor("default-loop-vectorize-width",
57                          cl::init(4), cl::Hidden,
58                          cl::desc("Set the default loop vectorization width"));
59namespace {
60
61// Forward declaration.
62class LoopVectorizationLegality;
63
64/// Vectorize a simple loop. This class performs the widening of simple single
65/// basic block loops into vectors. It does not perform any
66/// vectorization-legality checks, and just does it.  It widens the vectors
67/// to a given vectorization factor (VF).
68class SingleBlockLoopVectorizer {
69public:
70  /// Ctor.
71  SingleBlockLoopVectorizer(Loop *OrigLoop, ScalarEvolution *Se, LoopInfo *Li,
72                            LPPassManager *Lpm, unsigned VecWidth):
73  Orig(OrigLoop), SE(Se), LI(Li), LPM(Lpm), VF(VecWidth),
74  Builder(Se->getContext()), Induction(0), OldInduction(0) { }
75
76  // Perform the actual loop widening (vectorization).
77  void vectorize(LoopVectorizationLegality *Legal) {
78    ///Create a new empty loop. Unlink the old loop and connect the new one.
79    createEmptyLoop();
80    /// Widen each instruction in the old loop to a new one in the new loop.
81    /// Use the Legality module to find the induction and reduction variables.
82   vectorizeLoop(Legal);
83    // register the new loop.
84    cleanup();
85 }
86
87private:
88  /// Create an empty loop, based on the loop ranges of the old loop.
89  void createEmptyLoop();
90  /// Copy and widen the instructions from the old loop.
91  void vectorizeLoop(LoopVectorizationLegality *Legal);
92  /// Insert the new loop to the loop hierarchy and pass manager.
93  void cleanup();
94
95  /// This instruction is un-vectorizable. Implement it as a sequence
96  /// of scalars.
97  void scalarizeInstruction(Instruction *Instr);
98
99  /// Create a broadcast instruction. This method generates a broadcast
100  /// instruction (shuffle) for loop invariant values and for the induction
101  /// value. If this is the induction variable then we extend it to N, N+1, ...
102  /// this is needed because each iteration in the loop corresponds to a SIMD
103  /// element.
104  Value *getBroadcastInstrs(Value *V);
105
106  /// This is a helper function used by getBroadcastInstrs. It adds 0, 1, 2 ..
107  /// for each element in the vector. Starting from zero.
108  Value *getConsecutiveVector(Value* Val);
109
110  /// Check that the GEP operands are all uniform except for the last index
111  /// which has to be the induction variable.
112  bool isConsecutiveGep(GetElementPtrInst *Gep);
113
114  /// When we go over instructions in the basic block we rely on previous
115  /// values within the current basic block or on loop invariant values.
116  /// When we widen (vectorize) values we place them in the map. If the values
117  /// are not within the map, they have to be loop invariant, so we simply
118  /// broadcast them into a vector.
119  Value *getVectorValue(Value *V);
120
121  /// Get a uniform vector of constant integers. We use this to get
122  /// vectors of ones and zeros for the reduction code.
123  Constant* getUniformVector(unsigned Val, Type* ScalarTy);
124
125  typedef DenseMap<Value*, Value*> ValueMap;
126
127  /// The original loop.
128  Loop *Orig;
129  // Scev analysis to use.
130  ScalarEvolution *SE;
131  // Loop Info.
132  LoopInfo *LI;
133  // Loop Pass Manager;
134  LPPassManager *LPM;
135  // The vectorization factor to use.
136  unsigned VF;
137
138  // The builder that we use
139  IRBuilder<> Builder;
140
141  // --- Vectorization state ---
142
143  /// Middle Block between the vector and the scalar.
144  BasicBlock *LoopMiddleBlock;
145  ///The ExitBlock of the scalar loop.
146  BasicBlock *LoopExitBlock;
147  ///The vector loop body.
148  BasicBlock *LoopVectorBody;
149  ///The scalar loop body.
150  BasicBlock *LoopScalarBody;
151  ///The first bypass block.
152  BasicBlock *LoopBypassBlock;
153
154  /// The new Induction variable which was added to the new block.
155  PHINode *Induction;
156  /// The induction variable of the old basic block.
157  PHINode *OldInduction;
158  // Maps scalars to widened vectors.
159  ValueMap WidenMap;
160};
161
162/// Perform the vectorization legality check. This class does not look at the
163/// profitability of vectorization, only the legality. At the moment the checks
164/// are very simple and focus on single basic block loops with a constant
165/// iteration count and no reductions.
166class LoopVectorizationLegality {
167public:
168  LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl):
169  TheLoop(Lp), SE(Se), DL(Dl), Induction(0) { }
170
171  /// This represents the kinds of reductions that we support.
172  enum ReductionKind {
173    IntegerAdd, /// Sum of numbers.
174    IntegerMult, /// Product of numbers.
175    NoReduction /// Not a reduction.
176  };
177
178  // Holds a pairing of reduction instruction and the reduction kind.
179  typedef std::pair<Instruction*, ReductionKind> ReductionPair;
180
181  /// ReductionList contains the reduction variables
182  /// as well as a single EXIT (from the block) value and the kind of
183  /// reduction variable..
184  /// Notice that the EXIT instruction can also be the PHI itself.
185  typedef DenseMap<PHINode*, ReductionPair> ReductionList;
186
187  /// Returns the maximum vectorization factor that we *can* use to vectorize
188  /// this loop. This does not mean that it is profitable to vectorize this
189  /// loop, only that it is legal to do so. This may be a large number. We
190  /// can vectorize to any SIMD width below this number.
191  unsigned getLoopMaxVF();
192
193  /// Returns the Induction variable.
194  PHINode *getInduction() {return Induction;}
195
196  /// Returns the reduction variables found in the loop.
197  ReductionList *getReductionVars() { return &Reductions; }
198
199private:
200  /// Check if a single basic block loop is vectorizable.
201  /// At this point we know that this is a loop with a constant trip count
202  /// and we only need to check individual instructions.
203  bool canVectorizeBlock(BasicBlock &BB);
204
205  // Check if a pointer value is known to be disjoint.
206  // Example: Alloca, Global, NoAlias.
207  bool isIdentifiedSafeObject(Value* Val);
208
209  /// Returns True, if 'Phi' is the kind of reduction variable for type
210  /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
211  bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
212  /// Checks if a constant matches the reduction kind.
213  /// Sums starts with zero. Products start at one.
214  bool isReductionConstant(Value *V, ReductionKind Kind);
215  /// Returns true if the instruction I can be a reduction variable of type
216  /// 'Kind'.
217  bool isReductionInstr(Instruction *I, ReductionKind Kind);
218
219  /// The loop that we evaluate.
220  Loop *TheLoop;
221  /// Scev analysis.
222  ScalarEvolution *SE;
223  /// DataLayout analysis.
224  DataLayout *DL;
225
226  //  ---  vectorization state --- //
227
228  /// Holds the induction variable.
229  PHINode *Induction;
230  /// Holds the reduction variables.
231  ReductionList Reductions;
232  /// Allowed outside users. This holds the reduction
233  /// vars which can be accessed from outside the loop.
234  SmallPtrSet<Value*, 4> AllowedExit;
235};
236
237struct LoopVectorize : public LoopPass {
238  static char ID; // Pass identification, replacement for typeid
239
240  LoopVectorize() : LoopPass(ID) {
241    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
242  }
243
244  ScalarEvolution *SE;
245  DataLayout *DL;
246  LoopInfo *LI;
247
248  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
249
250    // Only vectorize innermost loops.
251    if (!L->empty())
252      return false;
253
254    SE = &getAnalysis<ScalarEvolution>();
255    DL = getAnalysisIfAvailable<DataLayout>();
256    LI = &getAnalysis<LoopInfo>();
257
258    DEBUG(dbgs() << "LV: Checking a loop in \"" <<
259          L->getHeader()->getParent()->getName() << "\"\n");
260
261    // Check if it is legal to vectorize the loop.
262    LoopVectorizationLegality LVL(L, SE, DL);
263    unsigned MaxVF = LVL.getLoopMaxVF();
264
265    // Check that we can vectorize using the chosen vectorization width.
266    if (MaxVF < DefaultVectorizationFactor) {
267      DEBUG(dbgs() << "LV: non-vectorizable MaxVF ("<< MaxVF << ").\n");
268      return false;
269    }
270
271    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< MaxVF << ").\n");
272
273    // If we decided that is is *legal* to vectorizer the loop. Do it.
274    SingleBlockLoopVectorizer LB(L, SE, LI, &LPM, DefaultVectorizationFactor);
275    LB.vectorize(&LVL);
276
277    DEBUG(verifyFunction(*L->getHeader()->getParent()));
278    return true;
279  }
280
281  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
282    LoopPass::getAnalysisUsage(AU);
283    AU.addRequiredID(LoopSimplifyID);
284    AU.addRequiredID(LCSSAID);
285    AU.addRequired<LoopInfo>();
286    AU.addRequired<ScalarEvolution>();
287  }
288
289};
290
291Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) {
292  // Instructions that access the old induction variable
293  // actually want to get the new one.
294  if (V == OldInduction)
295    V = Induction;
296  // Create the types.
297  LLVMContext &C = V->getContext();
298  Type *VTy = VectorType::get(V->getType(), VF);
299  Type *I32 = IntegerType::getInt32Ty(C);
300  Constant *Zero = ConstantInt::get(I32, 0);
301  Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF));
302  Value *UndefVal = UndefValue::get(VTy);
303  // Insert the value into a new vector.
304  Value *SingleElem = Builder.CreateInsertElement(UndefVal, V, Zero);
305  // Broadcast the scalar into all locations in the vector.
306  Value *Shuf = Builder.CreateShuffleVector(SingleElem, UndefVal, Zeros,
307                                             "broadcast");
308  // We are accessing the induction variable. Make sure to promote the
309  // index for each consecutive SIMD lane. This adds 0,1,2 ... to all lanes.
310  if (V == Induction)
311    return getConsecutiveVector(Shuf);
312  return Shuf;
313}
314
315Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) {
316  assert(Val->getType()->isVectorTy() && "Must be a vector");
317  assert(Val->getType()->getScalarType()->isIntegerTy() &&
318         "Elem must be an integer");
319  // Create the types.
320  Type *ITy = Val->getType()->getScalarType();
321  VectorType *Ty = cast<VectorType>(Val->getType());
322  unsigned VLen = Ty->getNumElements();
323  SmallVector<Constant*, 8> Indices;
324
325  // Create a vector of consecutive numbers from zero to VF.
326  for (unsigned i = 0; i < VLen; ++i)
327    Indices.push_back(ConstantInt::get(ITy, i));
328
329  // Add the consecutive indices to the vector value.
330  Constant *Cv = ConstantVector::get(Indices);
331  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
332  return Builder.CreateAdd(Val, Cv, "induction");
333}
334
335
336bool SingleBlockLoopVectorizer::isConsecutiveGep(GetElementPtrInst *Gep) {
337  if (!Gep)
338    return false;
339
340  unsigned NumOperands = Gep->getNumOperands();
341  Value *LastIndex = Gep->getOperand(NumOperands - 1);
342
343  // Check that all of the gep indices are uniform except for the last.
344  for (unsigned i = 0; i < NumOperands - 1; ++i)
345    if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), Orig))
346      return false;
347
348  // We can emit wide load/stores only of the last index is the induction
349  // variable.
350  const SCEV *Last = SE->getSCEV(LastIndex);
351  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
352    const SCEV *Step = AR->getStepRecurrence(*SE);
353
354    // The memory is consecutive because the last index is consecutive
355    // and all other indices are loop invariant.
356    if (Step->isOne())
357      return true;
358  }
359
360  return false;
361}
362
363Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) {
364  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
365  // If we saved a vectorized copy of V, use it.
366  ValueMap::iterator it = WidenMap.find(V);
367  if (it != WidenMap.end())
368     return it->second;
369
370  // Broadcast V and save the value for future uses.
371  Value *B = getBroadcastInstrs(V);
372  WidenMap[V] = B;
373  return B;
374}
375
376Constant*
377SingleBlockLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) {
378  SmallVector<Constant*, 8> Indices;
379  // Create a vector of consecutive numbers from zero to VF.
380  for (unsigned i = 0; i < VF; ++i)
381    Indices.push_back(ConstantInt::get(ScalarTy, Val));
382
383  // Add the consecutive indices to the vector value.
384  return ConstantVector::get(Indices);
385}
386
387void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
388  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
389  // Holds vector parameters or scalars, in case of uniform vals.
390  SmallVector<Value*, 8> Params;
391
392  // Find all of the vectorized parameters.
393  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
394    Value *SrcOp = Instr->getOperand(op);
395
396    // If we are accessing the old induction variable, use the new one.
397    if (SrcOp == OldInduction) {
398      Params.push_back(getBroadcastInstrs(Induction));
399      continue;
400    }
401
402    // Try using previously calculated values.
403    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
404
405    // If the src is an instruction that appeared earlier in the basic block
406    // then it should already be vectorized.
407    if (SrcInst && SrcInst->getParent() == Instr->getParent()) {
408      assert(WidenMap.count(SrcInst) && "Source operand is unavailable");
409      // The parameter is a vector value from earlier.
410      Params.push_back(WidenMap[SrcInst]);
411    } else {
412      // The parameter is a scalar from outside the loop. Maybe even a constant.
413      Params.push_back(SrcOp);
414    }
415  }
416
417  assert(Params.size() == Instr->getNumOperands() &&
418         "Invalid number of operands");
419
420  // Does this instruction return a value ?
421  bool IsVoidRetTy = Instr->getType()->isVoidTy();
422  Value *VecResults = 0;
423
424  // If we have a return value, create an empty vector. We place the scalarized
425  // instructions in this vector.
426  if (!IsVoidRetTy)
427    VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF));
428
429  // For each scalar that we create.
430  for (unsigned i = 0; i < VF; ++i) {
431    Instruction *Cloned = Instr->clone();
432    if (!IsVoidRetTy)
433      Cloned->setName(Instr->getName() + ".cloned");
434    // Replace the operands of the cloned instrucions with extracted scalars.
435    for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
436      Value *Op = Params[op];
437      // Param is a vector. Need to extract the right lane.
438      if (Op->getType()->isVectorTy())
439        Op = Builder.CreateExtractElement(Op, Builder.getInt32(i));
440      Cloned->setOperand(op, Op);
441    }
442
443    // Place the cloned scalar in the new loop.
444    Builder.Insert(Cloned);
445
446    // If the original scalar returns a value we need to place it in a vector
447    // so that future users will be able to use it.
448    if (!IsVoidRetTy)
449      VecResults = Builder.CreateInsertElement(VecResults, Cloned,
450                                               Builder.getInt32(i));
451  }
452
453  if (!IsVoidRetTy)
454    WidenMap[Instr] = VecResults;
455}
456
457void SingleBlockLoopVectorizer::createEmptyLoop() {
458  /*
459   In this function we generate a new loop. The new loop will contain
460   the vectorized instructions while the old loop will continue to run the
461   scalar remainder.
462
463   [  ] <-- vector loop bypass.
464  /  |
465 /   v
466|   [ ]     <-- vector pre header.
467|    |
468|    v
469|   [  ] \
470|   [  ]_|   <-- vector loop.
471|    |
472 \   v
473   >[ ]   <--- middle-block.
474  /  |
475 /   v
476|   [ ]     <--- new preheader.
477|    |
478|    v
479|   [ ] \
480|   [ ]_|   <-- old scalar loop to handle remainder.
481 \   |
482  \  v
483   >[ ]     <-- exit block.
484   ...
485   */
486
487  // This is the original scalar-loop preheader.
488  BasicBlock *BypassBlock = Orig->getLoopPreheader();
489  BasicBlock *ExitBlock = Orig->getExitBlock();
490  assert(ExitBlock && "Must have an exit block");
491
492  assert(Orig->getNumBlocks() == 1 && "Invalid loop");
493  assert(BypassBlock && "Invalid loop structure");
494
495  BasicBlock *VectorPH =
496      BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
497  BasicBlock *VecBody = VectorPH->splitBasicBlock(VectorPH->getTerminator(),
498                                                 "vector.body");
499
500  BasicBlock *MiddleBlock = VecBody->splitBasicBlock(VecBody->getTerminator(),
501                                                  "middle.block");
502  BasicBlock *ScalarPH =
503    MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(),
504                                 "scalar.preheader");
505  // Find the induction variable.
506  BasicBlock *OldBasicBlock = Orig->getHeader();
507  OldInduction = dyn_cast<PHINode>(OldBasicBlock->begin());
508  assert(OldInduction && "We must have a single phi node.");
509  Type *IdxTy = OldInduction->getType();
510
511  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
512  // inside the loop.
513  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
514
515  // Generate the induction variable.
516  Induction = Builder.CreatePHI(IdxTy, 2, "index");
517  Constant *Zero = ConstantInt::get(IdxTy, 0);
518  Constant *Step = ConstantInt::get(IdxTy, VF);
519
520  // Find the loop boundaries.
521  const SCEV *ExitCount = SE->getExitCount(Orig, Orig->getHeader());
522  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
523
524  // Get the total trip count from the count by adding 1.
525  ExitCount = SE->getAddExpr(ExitCount,
526                             SE->getConstant(ExitCount->getType(), 1));
527
528  // Expand the trip count and place the new instructions in the preheader.
529  // Notice that the pre-header does not change, only the loop body.
530  SCEVExpander Exp(*SE, "induction");
531  Instruction *Loc = BypassBlock->getTerminator();
532
533  // We may need to extend the index in case there is a type mismatch.
534  // We know that the count starts at zero and does not overflow.
535  // We are using Zext because it should be less expensive.
536  if (ExitCount->getType() != Induction->getType())
537    ExitCount = SE->getZeroExtendExpr(ExitCount, IdxTy);
538
539  // Count holds the overall loop count (N).
540  Value *Count = Exp.expandCodeFor(ExitCount, Induction->getType(), Loc);
541  // Now we need to generate the expression for N - (N % VF), which is
542  // the part that the vectorized body will execute.
543  Constant *CIVF = ConstantInt::get(IdxTy, VF);
544  Value *R = BinaryOperator::CreateURem(Count, CIVF, "n.mod.vf", Loc);
545  Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc);
546
547  // Now, compare the new count to zero. If it is zero, jump to the scalar part.
548  Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
549                               CountRoundDown, ConstantInt::getNullValue(IdxTy),
550                               "cmp.zero", Loc);
551  BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc);
552  // Remove the old terminator.
553  Loc->eraseFromParent();
554
555  // Add a check in the middle block to see if we have completed
556  // all of the iterations in the first vector loop.
557  // If (N - N%VF) == N, then we *don't* need to run the remainder.
558  Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
559                                CountRoundDown, "cmp.n",
560                                MiddleBlock->getTerminator());
561
562  BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
563  // Remove the old terminator.
564  MiddleBlock->getTerminator()->eraseFromParent();
565
566  // Create i+1 and fill the PHINode.
567  Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
568  Induction->addIncoming(Zero, VectorPH);
569  Induction->addIncoming(NextIdx, VecBody);
570  // Create the compare.
571  Value *ICmp = Builder.CreateICmpEQ(NextIdx, CountRoundDown);
572  Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
573
574  // Now we have two terminators. Remove the old one from the block.
575  VecBody->getTerminator()->eraseFromParent();
576
577  // Fix the scalar body iteration count.
578  unsigned BlockIdx = OldInduction->getBasicBlockIndex(ScalarPH);
579  OldInduction->setIncomingValue(BlockIdx, CountRoundDown);
580
581  // Get ready to start creating new instructions into the vectorized body.
582  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
583
584  // Register the new loop.
585  Loop* Lp = new Loop();
586  LPM->insertLoop(Lp, Orig->getParentLoop());
587
588  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
589
590  Loop *ParentLoop = Orig->getParentLoop();
591  if (ParentLoop) {
592    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
593    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
594    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
595  }
596
597  // Save the state.
598  LoopMiddleBlock = MiddleBlock;
599  LoopExitBlock = ExitBlock;
600  LoopVectorBody = VecBody;
601  LoopScalarBody = OldBasicBlock;
602  LoopBypassBlock = BypassBlock;
603}
604
605void
606SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
607  typedef SmallVector<PHINode*, 4> PhiVector;
608  BasicBlock &BB = *Orig->getHeader();
609
610  // In order to support reduction variables we need to be able to vectorize
611  // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
612  // steages. First, we create a new vector PHI node with no incoming edges.
613  // We use this value when we vectorize all of the instructions that use the
614  // PHI. Next, after all of the instructions in the block are complete we
615  // add the new incoming edges to the PHI. At this point all of the
616  // instructions in the basic block are vectorized, so we can use them to
617  // construct the PHI.
618  PhiVector PHIsToFix;
619
620  // For each instruction in the old loop.
621  for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
622    Instruction *Inst = it;
623
624    switch (Inst->getOpcode()) {
625      case Instruction::Br:
626        // Nothing to do for PHIs and BR, since we already took care of the
627        // loop control flow instructions.
628        continue;
629      case Instruction::PHI:{
630        PHINode* P = cast<PHINode>(Inst);
631        // Special handling for the induction var.
632        if (OldInduction == Inst)
633          continue;
634        // This is phase I of vectorizing PHIs.
635        // This has to be a reduction variable.
636        assert(Legal->getReductionVars()->count(P) && "Not a Reduction");
637        Type *VecTy = VectorType::get(Inst->getType(), VF);
638        WidenMap[Inst] = Builder.CreatePHI(VecTy, 2, "vec.phi");
639        PHIsToFix.push_back(P);
640        continue;
641      }
642      case Instruction::Add:
643      case Instruction::FAdd:
644      case Instruction::Sub:
645      case Instruction::FSub:
646      case Instruction::Mul:
647      case Instruction::FMul:
648      case Instruction::UDiv:
649      case Instruction::SDiv:
650      case Instruction::FDiv:
651      case Instruction::URem:
652      case Instruction::SRem:
653      case Instruction::FRem:
654      case Instruction::Shl:
655      case Instruction::LShr:
656      case Instruction::AShr:
657      case Instruction::And:
658      case Instruction::Or:
659      case Instruction::Xor: {
660        // Just widen binops.
661        BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
662        Value *A = getVectorValue(Inst->getOperand(0));
663        Value *B = getVectorValue(Inst->getOperand(1));
664        // Use this vector value for all users of the original instruction.
665        WidenMap[Inst] = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
666        break;
667      }
668      case Instruction::Select: {
669        // Widen selects.
670        // TODO: If the selector is loop invariant we can issue a select
671        // instruction with a scalar condition.
672        Value *A = getVectorValue(Inst->getOperand(0));
673        Value *B = getVectorValue(Inst->getOperand(1));
674        Value *C = getVectorValue(Inst->getOperand(2));
675        WidenMap[Inst] = Builder.CreateSelect(A, B, C);
676        break;
677      }
678
679      case Instruction::ICmp:
680      case Instruction::FCmp: {
681        // Widen compares. Generate vector compares.
682        bool FCmp = (Inst->getOpcode() == Instruction::FCmp);
683        CmpInst *Cmp = dyn_cast<CmpInst>(Inst);
684        Value *A = getVectorValue(Inst->getOperand(0));
685        Value *B = getVectorValue(Inst->getOperand(1));
686        if (FCmp)
687          WidenMap[Inst] = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
688        else
689          WidenMap[Inst] = Builder.CreateICmp(Cmp->getPredicate(), A, B);
690        break;
691      }
692
693      case Instruction::Store: {
694        // Attempt to issue a wide store.
695        StoreInst *SI = dyn_cast<StoreInst>(Inst);
696        Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF);
697        Value *Ptr = SI->getPointerOperand();
698        unsigned Alignment = SI->getAlignment();
699        GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
700        // This store does not use GEPs.
701        if (!isConsecutiveGep(Gep)) {
702          scalarizeInstruction(Inst);
703          break;
704        }
705
706        // Create the new GEP with the new induction variable.
707        GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
708        unsigned NumOperands = Gep->getNumOperands();
709        Gep2->setOperand(NumOperands - 1, Induction);
710        Ptr = Builder.Insert(Gep2);
711        Ptr = Builder.CreateBitCast(Ptr, StTy->getPointerTo());
712        Value *Val = getVectorValue(SI->getValueOperand());
713        Builder.CreateStore(Val, Ptr)->setAlignment(Alignment);
714        break;
715      }
716      case Instruction::Load: {
717        // Attempt to issue a wide load.
718        LoadInst *LI = dyn_cast<LoadInst>(Inst);
719        Type *RetTy = VectorType::get(LI->getType(), VF);
720        Value *Ptr = LI->getPointerOperand();
721        unsigned Alignment = LI->getAlignment();
722        GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
723
724        // We don't have a gep. Scalarize the load.
725        if (!isConsecutiveGep(Gep)) {
726          scalarizeInstruction(Inst);
727          break;
728        }
729
730        // Create the new GEP with the new induction variable.
731        GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
732        unsigned NumOperands = Gep->getNumOperands();
733        Gep2->setOperand(NumOperands - 1, Induction);
734        Ptr = Builder.Insert(Gep2);
735        Ptr = Builder.CreateBitCast(Ptr, RetTy->getPointerTo());
736        LI = Builder.CreateLoad(Ptr);
737        LI->setAlignment(Alignment);
738        // Use this vector value for all users of the load.
739        WidenMap[Inst] = LI;
740        break;
741      }
742      case Instruction::ZExt:
743      case Instruction::SExt:
744      case Instruction::FPToUI:
745      case Instruction::FPToSI:
746      case Instruction::FPExt:
747      case Instruction::PtrToInt:
748      case Instruction::IntToPtr:
749      case Instruction::SIToFP:
750      case Instruction::UIToFP:
751      case Instruction::Trunc:
752      case Instruction::FPTrunc:
753      case Instruction::BitCast: {
754        /// Vectorize bitcasts.
755        CastInst *CI = dyn_cast<CastInst>(Inst);
756        Value *A = getVectorValue(Inst->getOperand(0));
757        Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
758        WidenMap[Inst] = Builder.CreateCast(CI->getOpcode(), A, DestTy);
759        break;
760      }
761
762      default:
763        /// All other instructions are unsupported. Scalarize them.
764        scalarizeInstruction(Inst);
765        break;
766    }// end of switch.
767  }// end of for_each instr.
768
769  // At this point every instruction in the original loop is widended to
770  // a vector form. We are almost done. Now, we need to fix the PHI nodes
771  // that we vectorized. The PHI nodes are currently empty because we did
772  // not want to introduce cycles. Notice that the remaining PHI nodes
773  // that we need to fix are reduction variables.
774
775  // Create the 'reduced' values for each of the induction vars.
776  // The reduced values are the vector values that we scalarize and combine
777  // after the loop is finished.
778  for (PhiVector::iterator it = PHIsToFix.begin(), e = PHIsToFix.end();
779       it != e; ++it) {
780    PHINode *RdxPhi = *it;
781    PHINode *VecRdxPhi = dyn_cast<PHINode>(WidenMap[RdxPhi]);
782    assert(RdxPhi && "Unable to recover vectorized PHI");
783
784    // Find the reduction variable.
785    assert(Legal->getReductionVars()->count(RdxPhi) &&
786           "Unable to find the reduction variable");
787    LoopVectorizationLegality::ReductionPair ReductionVar =
788      (*Legal->getReductionVars())[RdxPhi];
789
790    // This is the vector-clone of the value that leaves the loop.
791    Value *VectorExit = getVectorValue(ReductionVar.first);
792    Type *VecTy = VectorExit->getType();
793
794    // This is the kind of reduction.
795    LoopVectorizationLegality::ReductionKind RdxKind = ReductionVar.second;
796    // Find the reduction identity variable.
797    // Zero for addition. One for Multiplication.
798    unsigned IdentitySclr =
799      (RdxKind == LoopVectorizationLegality::IntegerAdd ? 0 : 1);
800    Constant *Identity = getUniformVector(IdentitySclr, VecTy->getScalarType());
801
802    // Fix the vector-loop phi.
803    // We created the induction variable so we know that the
804    // preheader is the first entry.
805    BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
806    VecRdxPhi->addIncoming(Identity, VecPreheader);
807    unsigned SelfEdgeIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody);
808    Value *Val = getVectorValue(RdxPhi->getIncomingValue(SelfEdgeIdx));
809    VecRdxPhi->addIncoming(Val, LoopVectorBody);
810
811    // Before each round, move the insertion point right between
812    // the PHIs and the values we are going to write.
813    // This allows us to write both PHINodes and the extractelement
814    // instructions.
815    Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
816
817    // This PHINode contains the vectorized reduction variable, or
818    // the identity vector, if we bypass the vector loop.
819    PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
820    NewPhi->addIncoming(Identity, LoopBypassBlock);
821    NewPhi->addIncoming(getVectorValue(ReductionVar.first), LoopVectorBody);
822
823    // Extract the first scalar.
824    Value *Scalar0 =
825      Builder.CreateExtractElement(NewPhi, Builder.getInt32(0));
826    // Extract and sum the remaining vector elements.
827    for (unsigned i=1; i < VF; ++i) {
828      Value *Scalar1 =
829        Builder.CreateExtractElement(NewPhi, Builder.getInt32(i));
830      if (RdxKind == LoopVectorizationLegality::IntegerAdd) {
831        Scalar0 = Builder.CreateAdd(Scalar0, Scalar1);
832      } else {
833        Scalar0 = Builder.CreateMul(Scalar0, Scalar1);
834      }
835    }
836
837    // Now, we need to fix the users of the reduction variable
838    // inside and outside of the scalar remainder loop.
839    // We know that the loop is in LCSSA form. We need to update the
840    // PHI nodes in the exit blocks.
841    for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
842         LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
843      PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
844      if (!LCSSAPhi) continue;
845
846      // All PHINodes need to have a single entry edge, or two if we already fixed them.
847      assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
848
849      // We found our reduction value exit-PHI. Update it with the incoming bypass edge.
850      if (LCSSAPhi->getIncomingValue(0) == ReductionVar.first) {
851        // Add an edge coming from the bypass.
852        LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
853        break;
854      }
855    }// end of the LCSSA phi scan.
856
857    // Fix the scalar loop reduction variable with the incoming reduction sum
858    // from the vector body and from the backedge value.
859    int IncomingEdgeBlockIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody);
860    int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); // The other block.
861    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
862    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, ReductionVar.first);
863  }// end of for each redux variable.
864}
865
866void SingleBlockLoopVectorizer::cleanup() {
867  // The original basic block.
868  SE->forgetLoop(Orig);
869}
870
871unsigned LoopVectorizationLegality::getLoopMaxVF() {
872  if (!TheLoop->getLoopPreheader()) {
873    assert(false && "No preheader!!");
874    DEBUG(dbgs() << "LV: Loop not normalized." << "\n");
875    return  1;
876  }
877
878  // We can only vectorize single basic block loops.
879  unsigned NumBlocks = TheLoop->getNumBlocks();
880  if (NumBlocks != 1) {
881    DEBUG(dbgs() << "LV: Too many blocks:" << NumBlocks << "\n");
882    return 1;
883  }
884
885  // We need to have a loop header.
886  BasicBlock *BB = TheLoop->getHeader();
887  DEBUG(dbgs() << "LV: Found a loop: " << BB->getName() << "\n");
888
889  // Go over each instruction and look at memory deps.
890  if (!canVectorizeBlock(*BB)) {
891    DEBUG(dbgs() << "LV: Can't vectorize this loop header\n");
892    return 1;
893  }
894
895  // ScalarEvolution needs to be able to find the exit count.
896  const SCEV *ExitCount = SE->getExitCount(TheLoop, BB);
897  if (ExitCount == SE->getCouldNotCompute()) {
898    DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
899    return 1;
900  }
901
902  DEBUG(dbgs() << "LV: We can vectorize this loop!\n");
903
904  // Okay! We can vectorize. At this point we don't have any other mem analysis
905  // which may limit our maximum vectorization factor, so just return the
906  // maximum SIMD size.
907  return DefaultVectorizationFactor;
908}
909
910bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
911  // Holds the read and write pointers that we find.
912  typedef SmallVector<Value*, 10> ValueVector;
913  ValueVector Reads;
914  ValueVector Writes;
915
916  for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
917    Instruction *I = it;
918
919    PHINode *Phi = dyn_cast<PHINode>(I);
920    if (Phi) {
921      // This should not happen because the loop should be normalized.
922      if (Phi->getNumIncomingValues() != 2) {
923        DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
924        return false;
925      }
926      // We only look at integer phi nodes.
927      if (!Phi->getType()->isIntegerTy()) {
928        DEBUG(dbgs() << "LV: Found an non-int PHI.\n");
929        return false;
930      }
931      if (AddReductionVar(Phi, IntegerAdd)) {
932        DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
933        continue;
934      }
935      if (AddReductionVar(Phi, IntegerMult)) {
936        DEBUG(dbgs() << "LV: Found an Mult reduction PHI."<< *Phi <<"\n");
937        continue;
938      }
939      if (Induction) {
940        DEBUG(dbgs() << "LV: Found too many PHIs.\n");
941        return false;
942      }
943      // Found the induction variable.
944      Induction = Phi;
945
946      // Check that the PHI is consecutive and starts at zero.
947      const SCEV *PhiScev = SE->getSCEV(Phi);
948      const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
949      if (!AR) {
950        DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
951        return false;
952      }
953
954      const SCEV *Step = AR->getStepRecurrence(*SE);
955      const SCEV *Start = AR->getStart();
956
957      if (!Step->isOne() || !Start->isZero()) {
958        DEBUG(dbgs() << "LV: PHI does not start at zero or steps by one.\n");
959        return false;
960      }
961    }// end of PHI handling
962
963    // If this is a load, record its pointer. If it is not a load, abort.
964    // Notice that we don't handle function calls that read or write.
965    if (I->mayReadFromMemory()) {
966      LoadInst *Ld = dyn_cast<LoadInst>(I);
967      if (!Ld) return false;
968      if (!Ld->isSimple()) {
969        DEBUG(dbgs() << "LV: Found a non-simple load.\n");
970        return false;
971      }
972
973      Value* Ptr = Ld->getPointerOperand();
974      GetUnderlyingObjects(Ptr, Reads, DL);
975    }
976
977    // Record store pointers. Abort on all other instructions that write to
978    // memory.
979    if (I->mayWriteToMemory()) {
980      StoreInst *St = dyn_cast<StoreInst>(I);
981      if (!St) return false;
982      if (!St->isSimple()) {
983        DEBUG(dbgs() << "LV: Found a non-simple store.\n");
984        return false;
985      }
986
987      Value* Ptr = St->getPointerOperand();
988      GetUnderlyingObjects(Ptr, Writes, DL);
989    }
990
991    // We still don't handle functions.
992    CallInst *CI = dyn_cast<CallInst>(I);
993    if (CI) {
994      DEBUG(dbgs() << "LV: Found a call site:"<<
995            CI->getCalledFunction()->getName() << "\n");
996      return false;
997    }
998
999    // We do not re-vectorize vectors.
1000    if (!VectorType::isValidElementType(I->getType()) &&
1001        !I->getType()->isVoidTy()) {
1002      DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
1003      return false;
1004    }
1005
1006    // Reduction instructions are allowed to have exit users.
1007    // All other instructions must not have external users.
1008    if (!AllowedExit.count(I))
1009      //Check that all of the users of the loop are inside the BB.
1010      for (Value::use_iterator it = I->use_begin(), e = I->use_end();
1011           it != e; ++it) {
1012        Instruction *U = cast<Instruction>(*it);
1013        // This user may be a reduction exit value.
1014        BasicBlock *Parent = U->getParent();
1015        if (Parent != &BB) {
1016          DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
1017          return false;
1018        }
1019    }
1020  } // next instr.
1021
1022  if (!Induction) {
1023      DEBUG(dbgs() << "LV: Did not find an induction var.\n");
1024      return false;
1025  }
1026
1027  // Check that the underlying objects of the reads and writes are either
1028  // disjoint memory locations, or that they are no-alias arguments.
1029  ValueVector::iterator r, re, w, we;
1030  for (r = Reads.begin(), re = Reads.end(); r != re; ++r) {
1031    if (!isIdentifiedSafeObject(*r)) {
1032      DEBUG(dbgs() << "LV: Found a bad read Ptr: "<< **r << "\n");
1033      return false;
1034    }
1035  }
1036
1037  for (w = Writes.begin(), we = Writes.end(); w != we; ++w) {
1038    if (!isIdentifiedSafeObject(*w)) {
1039      DEBUG(dbgs() << "LV: Found a bad write Ptr: "<< **w << "\n");
1040      return false;
1041    }
1042  }
1043
1044  // Check that there are no multiple write locations to the same pointer.
1045  SmallPtrSet<Value*, 8> WritePointerSet;
1046  for (w = Writes.begin(), we = Writes.end(); w != we; ++w) {
1047    if (!WritePointerSet.insert(*w)) {
1048      DEBUG(dbgs() << "LV: Multiple writes to the same index :"<< **w << "\n");
1049      return false;
1050    }
1051  }
1052
1053  // Check that the reads and the writes are disjoint.
1054  for (r = Reads.begin(), re = Reads.end(); r != re; ++r) {
1055    if (WritePointerSet.count(*r)) {
1056      DEBUG(dbgs() << "Vectorizer: Found a read/write ptr:"<< **r << "\n");
1057      return false;
1058    }
1059  }
1060
1061  // All is okay.
1062  return true;
1063}
1064
1065/// Checks if the value is a Global variable or if it is an Arguments
1066/// marked with the NoAlias attribute.
1067bool LoopVectorizationLegality::isIdentifiedSafeObject(Value* Val) {
1068  assert(Val && "Invalid value");
1069  if (dyn_cast<GlobalValue>(Val))
1070    return true;
1071  if (dyn_cast<AllocaInst>(Val))
1072    return true;
1073  Argument *A = dyn_cast<Argument>(Val);
1074  if (!A)
1075    return false;
1076  return A->hasNoAliasAttr();
1077}
1078
1079bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
1080                                                    ReductionKind Kind) {
1081  if (Phi->getNumIncomingValues() != 2)
1082    return false;
1083
1084  // Find the possible incoming reduction variable.
1085  BasicBlock *BB = Phi->getParent();
1086  int SelfEdgeIdx = Phi->getBasicBlockIndex(BB);
1087  int InEdgeBlockIdx = (SelfEdgeIdx ? 0 : 1); // The other entry.
1088  Value *RdxStart = Phi->getIncomingValue(InEdgeBlockIdx);
1089
1090  // We must have a constant that starts the reduction.
1091  if (!isReductionConstant(RdxStart, Kind))
1092    return false;
1093
1094  // ExitInstruction is the single value which is used outside the loop.
1095  // We only allow for a single reduction value to be used outside the loop.
1096  // This includes users of the reduction, variables (which form a cycle
1097  // which ends in the phi node).
1098  Instruction *ExitInstruction = 0;
1099
1100  // Iter is our iterator. We start with the PHI node and scan for all of the
1101  // users of this instruction. All users must be instructions which can be
1102  // used as reduction variables (such as ADD). We may have a single
1103  // out-of-block user. They cycle must end with the original PHI.
1104  // Also, we can't have multiple block-local users.
1105  Instruction *Iter = Phi;
1106  while (true) {
1107    // Any reduction instr must be of one of the allowed kinds.
1108    if (!isReductionInstr(Iter, Kind))
1109      return false;
1110
1111    // Did we found a user inside this block ?
1112    bool FoundInBlockUser = false;
1113    // Did we reach the initial PHI node ?
1114    bool FoundStartPHI = false;
1115    // For each of the *users* of iter.
1116    for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
1117         it != e; ++it) {
1118      Instruction *U = cast<Instruction>(*it);
1119      // We already know that the PHI is a user.
1120      if (U == Phi) {
1121        FoundStartPHI = true;
1122        continue;
1123      }
1124      // Check if we found the exit user.
1125      BasicBlock *Parent = U->getParent();
1126      if (Parent != BB) {
1127        // We must have a single exit instruction.
1128        if (ExitInstruction != 0)
1129          return false;
1130        ExitInstruction = Iter;
1131      }
1132      // We can't have multiple inside users.
1133      if (FoundInBlockUser)
1134        return false;
1135      FoundInBlockUser = true;
1136      Iter = U;
1137    }
1138
1139    // We found a reduction var if we have reached the original
1140    // phi node and we only have a single instruction with out-of-loop
1141    // users.
1142   if (FoundStartPHI && ExitInstruction) {
1143     // This instruction is allowed to have out-of-loop users.
1144     AllowedExit.insert(ExitInstruction);
1145     // Mark this as a reduction var.
1146     Reductions[Phi] = std::make_pair(ExitInstruction, Kind);
1147     return true;
1148   }
1149  }
1150}
1151
1152bool
1153LoopVectorizationLegality::isReductionConstant(Value *V, ReductionKind Kind) {
1154  ConstantInt *CI = dyn_cast<ConstantInt>(V);
1155  if (!CI)
1156    return false;
1157  if (Kind == IntegerMult && CI->isOne())
1158    return true;
1159  if (Kind == IntegerAdd && CI->isZero())
1160    return true;
1161  return false;
1162}
1163
1164bool
1165LoopVectorizationLegality::isReductionInstr(Instruction *I,
1166                                            ReductionKind Kind) {
1167    switch (I->getOpcode()) {
1168    default:
1169      return false;
1170    case Instruction::PHI:
1171      // possibly.
1172      return true;
1173    case Instruction::Add:
1174    case Instruction::Sub:
1175      return Kind == IntegerAdd;
1176    case Instruction::Mul:
1177    case Instruction::UDiv:
1178    case Instruction::SDiv:
1179      return Kind == IntegerMult;
1180    }
1181}
1182
1183} // namespace
1184
1185char LoopVectorize::ID = 0;
1186static const char lv_name[] = "Loop Vectorization";
1187INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
1188INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
1189INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
1190INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1191INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
1192
1193namespace llvm {
1194  Pass *createLoopVectorizePass() {
1195    return new LoopVectorize();
1196  }
1197}
1198
1199