LoopVectorize.cpp revision 4bcd5f888fa762613cf8096a79ba7b8a72665de2
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11// and generates target-independent LLVM-IR. Legalization of the IR is done
12// in the codegen. However, the vectorizer uses (will use) the codegen
13// interfaces to generate IR that is likely to result in an optimal binary.
14//
15// The loop vectorizer combines consecutive loop iterations into a single
16// 'wide' iteration. After this transformation the index is incremented
17// by the SIMD vector width, and not by one.
18//
19// This pass has three parts:
20// 1. The main loop pass that drives the different parts.
21// 2. LoopVectorizationLegality - A unit that checks for the legality
22//    of the vectorization.
23// 3. InnerLoopVectorizer - A unit that performs the actual
24//    widening of instructions.
25// 4. LoopVectorizationCostModel - A unit that checks for the profitability
26//    of vectorization. It decides on the optimal vector width, which
27//    can be one, if vectorization is not profitable.
28//
29//===----------------------------------------------------------------------===//
30//
31// The reduction-variable vectorization is based on the paper:
32//  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33//
34// Variable uniformity checks are inspired by:
35//  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36//
37// Other ideas/concepts are from:
38//  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39//
40//  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
41//  Vectorizing Compilers.
42//
43//===----------------------------------------------------------------------===//
44
45#define LV_NAME "loop-vectorize"
46#define DEBUG_TYPE LV_NAME
47
48#include "llvm/Transforms/Vectorize.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/MapVector.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallSet.h"
53#include "llvm/ADT/SmallVector.h"
54#include "llvm/ADT/StringExtras.h"
55#include "llvm/Analysis/AliasAnalysis.h"
56#include "llvm/Analysis/AliasSetTracker.h"
57#include "llvm/Analysis/Dominators.h"
58#include "llvm/Analysis/LoopInfo.h"
59#include "llvm/Analysis/LoopIterator.h"
60#include "llvm/Analysis/LoopPass.h"
61#include "llvm/Analysis/ScalarEvolution.h"
62#include "llvm/Analysis/ScalarEvolutionExpander.h"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Analysis/TargetTransformInfo.h"
65#include "llvm/Analysis/ValueTracking.h"
66#include "llvm/Analysis/Verifier.h"
67#include "llvm/IR/Constants.h"
68#include "llvm/IR/DataLayout.h"
69#include "llvm/IR/DerivedTypes.h"
70#include "llvm/IR/Function.h"
71#include "llvm/IR/IRBuilder.h"
72#include "llvm/IR/Instructions.h"
73#include "llvm/IR/IntrinsicInst.h"
74#include "llvm/IR/LLVMContext.h"
75#include "llvm/IR/Module.h"
76#include "llvm/IR/Type.h"
77#include "llvm/IR/Value.h"
78#include "llvm/Pass.h"
79#include "llvm/Support/CommandLine.h"
80#include "llvm/Support/Debug.h"
81#include "llvm/Support/PatternMatch.h"
82#include "llvm/Support/raw_ostream.h"
83#include "llvm/Target/TargetLibraryInfo.h"
84#include "llvm/Transforms/Scalar.h"
85#include "llvm/Transforms/Utils/BasicBlockUtils.h"
86#include "llvm/Transforms/Utils/Local.h"
87#include <algorithm>
88#include <map>
89
90using namespace llvm;
91using namespace llvm::PatternMatch;
92
93static cl::opt<unsigned>
94VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
95                    cl::desc("Sets the SIMD width. Zero is autoselect."));
96
97static cl::opt<unsigned>
98VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
99                    cl::desc("Sets the vectorization unroll count. "
100                             "Zero is autoselect."));
101
102static cl::opt<bool>
103EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
104                   cl::desc("Enable if-conversion during vectorization."));
105
106/// We don't vectorize loops with a known constant trip count below this number.
107static cl::opt<unsigned>
108TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
109                             cl::Hidden,
110                             cl::desc("Don't vectorize loops with a constant "
111                                      "trip count that is smaller than this "
112                                      "value."));
113
114/// We don't unroll loops with a known constant trip count below this number.
115static const unsigned TinyTripCountUnrollThreshold = 128;
116
117/// When performing memory disambiguation checks at runtime do not make more
118/// than this number of comparisons.
119static const unsigned RuntimeMemoryCheckThreshold = 8;
120
121/// We use a metadata with this name  to indicate that a scalar loop was
122/// vectorized and that we don't need to re-vectorize it if we run into it
123/// again.
124static const char*
125AlreadyVectorizedMDName = "llvm.vectorizer.already_vectorized";
126
127namespace {
128
129// Forward declarations.
130class LoopVectorizationLegality;
131class LoopVectorizationCostModel;
132
133/// InnerLoopVectorizer vectorizes loops which contain only one basic
134/// block to a specified vectorization factor (VF).
135/// This class performs the widening of scalars into vectors, or multiple
136/// scalars. This class also implements the following features:
137/// * It inserts an epilogue loop for handling loops that don't have iteration
138///   counts that are known to be a multiple of the vectorization factor.
139/// * It handles the code generation for reduction variables.
140/// * Scalarization (implementation using scalars) of un-vectorizable
141///   instructions.
142/// InnerLoopVectorizer does not perform any vectorization-legality
143/// checks, and relies on the caller to check for the different legality
144/// aspects. The InnerLoopVectorizer relies on the
145/// LoopVectorizationLegality class to provide information about the induction
146/// and reduction variables that were found to a given vectorization factor.
147class InnerLoopVectorizer {
148public:
149  InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
150                      DominatorTree *DT, DataLayout *DL,
151                      const TargetLibraryInfo *TLI, unsigned VecWidth,
152                      unsigned UnrollFactor)
153      : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
154        VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
155        OldInduction(0), WidenMap(UnrollFactor) {}
156
157  // Perform the actual loop widening (vectorization).
158  void vectorize(LoopVectorizationLegality *Legal) {
159    // Create a new empty loop. Unlink the old loop and connect the new one.
160    createEmptyLoop(Legal);
161    // Widen each instruction in the old loop to a new one in the new loop.
162    // Use the Legality module to find the induction and reduction variables.
163    vectorizeLoop(Legal);
164    // Register the new loop and update the analysis passes.
165    updateAnalysis();
166  }
167
168private:
169  /// A small list of PHINodes.
170  typedef SmallVector<PHINode*, 4> PhiVector;
171  /// When we unroll loops we have multiple vector values for each scalar.
172  /// This data structure holds the unrolled and vectorized values that
173  /// originated from one scalar instruction.
174  typedef SmallVector<Value*, 2> VectorParts;
175
176  /// Add code that checks at runtime if the accessed arrays overlap.
177  /// Returns the comparator value or NULL if no check is needed.
178  Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
179                               Instruction *Loc);
180  /// Create an empty loop, based on the loop ranges of the old loop.
181  void createEmptyLoop(LoopVectorizationLegality *Legal);
182  /// Copy and widen the instructions from the old loop.
183  void vectorizeLoop(LoopVectorizationLegality *Legal);
184
185  /// A helper function that computes the predicate of the block BB, assuming
186  /// that the header block of the loop is set to True. It returns the *entry*
187  /// mask for the block BB.
188  VectorParts createBlockInMask(BasicBlock *BB);
189  /// A helper function that computes the predicate of the edge between SRC
190  /// and DST.
191  VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
192
193  /// A helper function to vectorize a single BB within the innermost loop.
194  void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
195                            PhiVector *PV);
196
197  /// Insert the new loop to the loop hierarchy and pass manager
198  /// and update the analysis passes.
199  void updateAnalysis();
200
201  /// This instruction is un-vectorizable. Implement it as a sequence
202  /// of scalars.
203  void scalarizeInstruction(Instruction *Instr);
204
205  /// Vectorize Load and Store instructions,
206  void vectorizeMemoryInstruction(Instruction *Instr,
207                                  LoopVectorizationLegality *Legal);
208
209  /// Create a broadcast instruction. This method generates a broadcast
210  /// instruction (shuffle) for loop invariant values and for the induction
211  /// value. If this is the induction variable then we extend it to N, N+1, ...
212  /// this is needed because each iteration in the loop corresponds to a SIMD
213  /// element.
214  Value *getBroadcastInstrs(Value *V);
215
216  /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
217  /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
218  /// The sequence starts at StartIndex.
219  Value *getConsecutiveVector(Value* Val, unsigned StartIdx, bool Negate);
220
221  /// When we go over instructions in the basic block we rely on previous
222  /// values within the current basic block or on loop invariant values.
223  /// When we widen (vectorize) values we place them in the map. If the values
224  /// are not within the map, they have to be loop invariant, so we simply
225  /// broadcast them into a vector.
226  VectorParts &getVectorValue(Value *V);
227
228  /// Generate a shuffle sequence that will reverse the vector Vec.
229  Value *reverseVector(Value *Vec);
230
231  /// This is a helper class that holds the vectorizer state. It maps scalar
232  /// instructions to vector instructions. When the code is 'unrolled' then
233  /// then a single scalar value is mapped to multiple vector parts. The parts
234  /// are stored in the VectorPart type.
235  struct ValueMap {
236    /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
237    /// are mapped.
238    ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
239
240    /// \return True if 'Key' is saved in the Value Map.
241    bool has(Value *Key) const { return MapStorage.count(Key); }
242
243    /// Initializes a new entry in the map. Sets all of the vector parts to the
244    /// save value in 'Val'.
245    /// \return A reference to a vector with splat values.
246    VectorParts &splat(Value *Key, Value *Val) {
247      VectorParts &Entry = MapStorage[Key];
248      Entry.assign(UF, Val);
249      return Entry;
250    }
251
252    ///\return A reference to the value that is stored at 'Key'.
253    VectorParts &get(Value *Key) {
254      VectorParts &Entry = MapStorage[Key];
255      if (Entry.empty())
256        Entry.resize(UF);
257      assert(Entry.size() == UF);
258      return Entry;
259    }
260
261  private:
262    /// The unroll factor. Each entry in the map stores this number of vector
263    /// elements.
264    unsigned UF;
265
266    /// Map storage. We use std::map and not DenseMap because insertions to a
267    /// dense map invalidates its iterators.
268    std::map<Value *, VectorParts> MapStorage;
269  };
270
271  /// The original loop.
272  Loop *OrigLoop;
273  /// Scev analysis to use.
274  ScalarEvolution *SE;
275  /// Loop Info.
276  LoopInfo *LI;
277  /// Dominator Tree.
278  DominatorTree *DT;
279  /// Data Layout.
280  DataLayout *DL;
281  /// Target Library Info.
282  const TargetLibraryInfo *TLI;
283
284  /// The vectorization SIMD factor to use. Each vector will have this many
285  /// vector elements.
286  unsigned VF;
287  /// The vectorization unroll factor to use. Each scalar is vectorized to this
288  /// many different vector instructions.
289  unsigned UF;
290
291  /// The builder that we use
292  IRBuilder<> Builder;
293
294  // --- Vectorization state ---
295
296  /// The vector-loop preheader.
297  BasicBlock *LoopVectorPreHeader;
298  /// The scalar-loop preheader.
299  BasicBlock *LoopScalarPreHeader;
300  /// Middle Block between the vector and the scalar.
301  BasicBlock *LoopMiddleBlock;
302  ///The ExitBlock of the scalar loop.
303  BasicBlock *LoopExitBlock;
304  ///The vector loop body.
305  BasicBlock *LoopVectorBody;
306  ///The scalar loop body.
307  BasicBlock *LoopScalarBody;
308  /// A list of all bypass blocks. The first block is the entry of the loop.
309  SmallVector<BasicBlock *, 4> LoopBypassBlocks;
310
311  /// The new Induction variable which was added to the new block.
312  PHINode *Induction;
313  /// The induction variable of the old basic block.
314  PHINode *OldInduction;
315  /// Maps scalars to widened vectors.
316  ValueMap WidenMap;
317};
318
319/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
320/// to what vectorization factor.
321/// This class does not look at the profitability of vectorization, only the
322/// legality. This class has two main kinds of checks:
323/// * Memory checks - The code in canVectorizeMemory checks if vectorization
324///   will change the order of memory accesses in a way that will change the
325///   correctness of the program.
326/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
327/// checks for a number of different conditions, such as the availability of a
328/// single induction variable, that all types are supported and vectorize-able,
329/// etc. This code reflects the capabilities of InnerLoopVectorizer.
330/// This class is also used by InnerLoopVectorizer for identifying
331/// induction variable and the different reduction variables.
332class LoopVectorizationLegality {
333public:
334  LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
335                            DominatorTree *DT, TargetTransformInfo* TTI,
336                            AliasAnalysis *AA, TargetLibraryInfo *TLI)
337      : TheLoop(L), SE(SE), DL(DL), DT(DT), TTI(TTI), AA(AA), TLI(TLI),
338        Induction(0) {}
339
340  /// This enum represents the kinds of reductions that we support.
341  enum ReductionKind {
342    RK_NoReduction, ///< Not a reduction.
343    RK_IntegerAdd,  ///< Sum of integers.
344    RK_IntegerMult, ///< Product of integers.
345    RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
346    RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
347    RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
348    RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
349    RK_FloatAdd,    ///< Sum of floats.
350    RK_FloatMult    ///< Product of floats.
351  };
352
353  /// This enum represents the kinds of inductions that we support.
354  enum InductionKind {
355    IK_NoInduction,         ///< Not an induction variable.
356    IK_IntInduction,        ///< Integer induction variable. Step = 1.
357    IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
358    IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
359    IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
360  };
361
362  // This enum represents the kind of minmax reduction.
363  enum MinMaxReductionKind {
364    MRK_Invalid,
365    MRK_UIntMin,
366    MRK_UIntMax,
367    MRK_SIntMin,
368    MRK_SIntMax
369  };
370
371  /// This POD struct holds information about reduction variables.
372  struct ReductionDescriptor {
373    ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
374      Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
375
376    ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
377                        MinMaxReductionKind MK)
378        : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
379
380    // The starting value of the reduction.
381    // It does not have to be zero!
382    Value *StartValue;
383    // The instruction who's value is used outside the loop.
384    Instruction *LoopExitInstr;
385    // The kind of the reduction.
386    ReductionKind Kind;
387    // If this a min/max reduction the kind of reduction.
388    MinMaxReductionKind MinMaxKind;
389  };
390
391  /// This POD struct holds information about a potential reduction operation.
392  struct ReductionInstDesc {
393    ReductionInstDesc(bool IsRedux, Instruction *I) :
394      IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
395
396    ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
397      IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
398
399    // Is this instruction a reduction candidate.
400    bool IsReduction;
401    // The last instruction in a min/max pattern (select of the select(icmp())
402    // pattern), or the current reduction instruction otherwise.
403    Instruction *PatternLastInst;
404    // If this is a min/max pattern the comparison predicate.
405    MinMaxReductionKind MinMaxKind;
406  };
407
408  // This POD struct holds information about the memory runtime legality
409  // check that a group of pointers do not overlap.
410  struct RuntimePointerCheck {
411    RuntimePointerCheck() : Need(false) {}
412
413    /// Reset the state of the pointer runtime information.
414    void reset() {
415      Need = false;
416      Pointers.clear();
417      Starts.clear();
418      Ends.clear();
419    }
420
421    /// Insert a pointer and calculate the start and end SCEVs.
422    void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr);
423
424    /// This flag indicates if we need to add the runtime check.
425    bool Need;
426    /// Holds the pointers that we need to check.
427    SmallVector<Value*, 2> Pointers;
428    /// Holds the pointer value at the beginning of the loop.
429    SmallVector<const SCEV*, 2> Starts;
430    /// Holds the pointer value at the end of the loop.
431    SmallVector<const SCEV*, 2> Ends;
432    /// Holds the information if this pointer is used for writing to memory.
433    SmallVector<bool, 2> IsWritePtr;
434  };
435
436  /// A POD for saving information about induction variables.
437  struct InductionInfo {
438    InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
439    InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
440    /// Start value.
441    Value *StartValue;
442    /// Induction kind.
443    InductionKind IK;
444  };
445
446  /// ReductionList contains the reduction descriptors for all
447  /// of the reductions that were found in the loop.
448  typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
449
450  /// InductionList saves induction variables and maps them to the
451  /// induction descriptor.
452  typedef MapVector<PHINode*, InductionInfo> InductionList;
453
454  /// Alias(Multi)Map stores the values (GEPs or underlying objects and their
455  /// respective Store/Load instruction(s) to calculate aliasing.
456  typedef MapVector<Value*, Instruction* > AliasMap;
457  typedef DenseMap<Value*, std::vector<Instruction*> > AliasMultiMap;
458
459  /// Returns true if it is legal to vectorize this loop.
460  /// This does not mean that it is profitable to vectorize this
461  /// loop, only that it is legal to do so.
462  bool canVectorize();
463
464  /// Returns the Induction variable.
465  PHINode *getInduction() { return Induction; }
466
467  /// Returns the reduction variables found in the loop.
468  ReductionList *getReductionVars() { return &Reductions; }
469
470  /// Returns the induction variables found in the loop.
471  InductionList *getInductionVars() { return &Inductions; }
472
473  /// Returns True if V is an induction variable in this loop.
474  bool isInductionVariable(const Value *V);
475
476  /// Return true if the block BB needs to be predicated in order for the loop
477  /// to be vectorized.
478  bool blockNeedsPredication(BasicBlock *BB);
479
480  /// Check if this  pointer is consecutive when vectorizing. This happens
481  /// when the last index of the GEP is the induction variable, or that the
482  /// pointer itself is an induction variable.
483  /// This check allows us to vectorize A[idx] into a wide load/store.
484  /// Returns:
485  /// 0 - Stride is unknown or non consecutive.
486  /// 1 - Address is consecutive.
487  /// -1 - Address is consecutive, and decreasing.
488  int isConsecutivePtr(Value *Ptr);
489
490  /// Returns true if the value V is uniform within the loop.
491  bool isUniform(Value *V);
492
493  /// Returns true if this instruction will remain scalar after vectorization.
494  bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
495
496  /// Returns the information that we collected about runtime memory check.
497  RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
498
499  /// This function returns the identity element (or neutral element) for
500  /// the operation K.
501  static Constant *getReductionIdentity(ReductionKind K, Type *Tp,
502                                        MinMaxReductionKind MinMaxK);
503private:
504  /// Check if a single basic block loop is vectorizable.
505  /// At this point we know that this is a loop with a constant trip count
506  /// and we only need to check individual instructions.
507  bool canVectorizeInstrs();
508
509  /// When we vectorize loops we may change the order in which
510  /// we read and write from memory. This method checks if it is
511  /// legal to vectorize the code, considering only memory constrains.
512  /// Returns true if the loop is vectorizable
513  bool canVectorizeMemory();
514
515  /// Return true if we can vectorize this loop using the IF-conversion
516  /// transformation.
517  bool canVectorizeWithIfConvert();
518
519  /// Collect the variables that need to stay uniform after vectorization.
520  void collectLoopUniforms();
521
522  /// Return true if all of the instructions in the block can be speculatively
523  /// executed.
524  bool blockCanBePredicated(BasicBlock *BB);
525
526  /// Returns True, if 'Phi' is the kind of reduction variable for type
527  /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
528  bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
529  /// Returns a struct describing if the instruction 'I' can be a reduction
530  /// variable of type 'Kind'. If the reduction is a min/max pattern of
531  /// select(icmp()) this function advances the instruction pointer 'I' from the
532  /// compare instruction to the select instruction and stores this pointer in
533  /// 'PatternLastInst' member of the returned struct.
534  ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
535                                     ReductionInstDesc &Desc);
536  /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
537  /// pattern corresponding to a min(X, Y) or max(X, Y).
538  static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
539                                                    ReductionInstDesc &Prev);
540  /// Returns the induction kind of Phi. This function may return NoInduction
541  /// if the PHI is not an induction variable.
542  InductionKind isInductionVariable(PHINode *Phi);
543  /// Return true if can compute the address bounds of Ptr within the loop.
544  bool hasComputableBounds(Value *Ptr);
545  /// Return true if there is the chance of write reorder.
546  bool hasPossibleGlobalWriteReorder(Value *Object,
547                                     Instruction *Inst,
548                                     AliasMultiMap &WriteObjects,
549                                     unsigned MaxByteWidth);
550  /// Return the AA location for a load or a store.
551  AliasAnalysis::Location getLoadStoreLocation(Instruction *Inst);
552
553
554  /// The loop that we evaluate.
555  Loop *TheLoop;
556  /// Scev analysis.
557  ScalarEvolution *SE;
558  /// DataLayout analysis.
559  DataLayout *DL;
560  /// Dominators.
561  DominatorTree *DT;
562  /// Target Info.
563  TargetTransformInfo *TTI;
564  /// Alias Analysis.
565  AliasAnalysis *AA;
566  /// Target Library Info.
567  TargetLibraryInfo *TLI;
568
569  //  ---  vectorization state --- //
570
571  /// Holds the integer induction variable. This is the counter of the
572  /// loop.
573  PHINode *Induction;
574  /// Holds the reduction variables.
575  ReductionList Reductions;
576  /// Holds all of the induction variables that we found in the loop.
577  /// Notice that inductions don't need to start at zero and that induction
578  /// variables can be pointers.
579  InductionList Inductions;
580
581  /// Allowed outside users. This holds the reduction
582  /// vars which can be accessed from outside the loop.
583  SmallPtrSet<Value*, 4> AllowedExit;
584  /// This set holds the variables which are known to be uniform after
585  /// vectorization.
586  SmallPtrSet<Instruction*, 4> Uniforms;
587  /// We need to check that all of the pointers in this list are disjoint
588  /// at runtime.
589  RuntimePointerCheck PtrRtCheck;
590};
591
592/// LoopVectorizationCostModel - estimates the expected speedups due to
593/// vectorization.
594/// In many cases vectorization is not profitable. This can happen because of
595/// a number of reasons. In this class we mainly attempt to predict the
596/// expected speedup/slowdowns due to the supported instruction set. We use the
597/// TargetTransformInfo to query the different backends for the cost of
598/// different operations.
599class LoopVectorizationCostModel {
600public:
601  LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
602                             LoopVectorizationLegality *Legal,
603                             const TargetTransformInfo &TTI,
604                             DataLayout *DL, const TargetLibraryInfo *TLI)
605      : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
606
607  /// Information about vectorization costs
608  struct VectorizationFactor {
609    unsigned Width; // Vector width with best cost
610    unsigned Cost; // Cost of the loop with that width
611  };
612  /// \return The most profitable vectorization factor and the cost of that VF.
613  /// This method checks every power of two up to VF. If UserVF is not ZERO
614  /// then this vectorization factor will be selected if vectorization is
615  /// possible.
616  VectorizationFactor selectVectorizationFactor(bool OptForSize,
617                                                unsigned UserVF);
618
619  /// \return The size (in bits) of the widest type in the code that
620  /// needs to be vectorized. We ignore values that remain scalar such as
621  /// 64 bit loop indices.
622  unsigned getWidestType();
623
624  /// \return The most profitable unroll factor.
625  /// If UserUF is non-zero then this method finds the best unroll-factor
626  /// based on register pressure and other parameters.
627  /// VF and LoopCost are the selected vectorization factor and the cost of the
628  /// selected VF.
629  unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
630                              unsigned LoopCost);
631
632  /// \brief A struct that represents some properties of the register usage
633  /// of a loop.
634  struct RegisterUsage {
635    /// Holds the number of loop invariant values that are used in the loop.
636    unsigned LoopInvariantRegs;
637    /// Holds the maximum number of concurrent live intervals in the loop.
638    unsigned MaxLocalUsers;
639    /// Holds the number of instructions in the loop.
640    unsigned NumInstructions;
641  };
642
643  /// \return  information about the register usage of the loop.
644  RegisterUsage calculateRegisterUsage();
645
646private:
647  /// Returns the expected execution cost. The unit of the cost does
648  /// not matter because we use the 'cost' units to compare different
649  /// vector widths. The cost that is returned is *not* normalized by
650  /// the factor width.
651  unsigned expectedCost(unsigned VF);
652
653  /// Returns the execution time cost of an instruction for a given vector
654  /// width. Vector width of one means scalar.
655  unsigned getInstructionCost(Instruction *I, unsigned VF);
656
657  /// A helper function for converting Scalar types to vector types.
658  /// If the incoming type is void, we return void. If the VF is 1, we return
659  /// the scalar type.
660  static Type* ToVectorTy(Type *Scalar, unsigned VF);
661
662  /// Returns whether the instruction is a load or store and will be a emitted
663  /// as a vector operation.
664  bool isConsecutiveLoadOrStore(Instruction *I);
665
666  /// The loop that we evaluate.
667  Loop *TheLoop;
668  /// Scev analysis.
669  ScalarEvolution *SE;
670  /// Loop Info analysis.
671  LoopInfo *LI;
672  /// Vectorization legality.
673  LoopVectorizationLegality *Legal;
674  /// Vector target information.
675  const TargetTransformInfo &TTI;
676  /// Target data layout information.
677  DataLayout *DL;
678  /// Target Library Info.
679  const TargetLibraryInfo *TLI;
680};
681
682/// The LoopVectorize Pass.
683struct LoopVectorize : public LoopPass {
684  /// Pass identification, replacement for typeid
685  static char ID;
686
687  explicit LoopVectorize() : LoopPass(ID) {
688    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
689  }
690
691  ScalarEvolution *SE;
692  DataLayout *DL;
693  LoopInfo *LI;
694  TargetTransformInfo *TTI;
695  DominatorTree *DT;
696  AliasAnalysis *AA;
697  TargetLibraryInfo *TLI;
698
699  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
700    // We only vectorize innermost loops.
701    if (!L->empty())
702      return false;
703
704    SE = &getAnalysis<ScalarEvolution>();
705    DL = getAnalysisIfAvailable<DataLayout>();
706    LI = &getAnalysis<LoopInfo>();
707    TTI = &getAnalysis<TargetTransformInfo>();
708    DT = &getAnalysis<DominatorTree>();
709    AA = getAnalysisIfAvailable<AliasAnalysis>();
710    TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
711
712    if (DL == NULL) {
713      DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout");
714      return false;
715    }
716
717    DEBUG(dbgs() << "LV: Checking a loop in \"" <<
718          L->getHeader()->getParent()->getName() << "\"\n");
719
720    // Check if it is legal to vectorize the loop.
721    LoopVectorizationLegality LVL(L, SE, DL, DT, TTI, AA, TLI);
722    if (!LVL.canVectorize()) {
723      DEBUG(dbgs() << "LV: Not vectorizing.\n");
724      return false;
725    }
726
727    // Use the cost model.
728    LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
729
730    // Check the function attributes to find out if this function should be
731    // optimized for size.
732    Function *F = L->getHeader()->getParent();
733    Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
734    Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
735    unsigned FnIndex = AttributeSet::FunctionIndex;
736    bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
737    bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
738
739    if (NoFloat) {
740      DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
741            "attribute is used.\n");
742      return false;
743    }
744
745    // Select the optimal vectorization factor.
746    LoopVectorizationCostModel::VectorizationFactor VF;
747    VF = CM.selectVectorizationFactor(OptForSize, VectorizationFactor);
748    // Select the unroll factor.
749    unsigned UF = CM.selectUnrollFactor(OptForSize, VectorizationUnroll,
750                                        VF.Width, VF.Cost);
751
752    if (VF.Width == 1) {
753      DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
754      return false;
755    }
756
757    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
758          F->getParent()->getModuleIdentifier()<<"\n");
759    DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
760
761    // If we decided that it is *legal* to vectorize the loop then do it.
762    InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
763    LB.vectorize(&LVL);
764
765    DEBUG(verifyFunction(*L->getHeader()->getParent()));
766    return true;
767  }
768
769  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
770    LoopPass::getAnalysisUsage(AU);
771    AU.addRequiredID(LoopSimplifyID);
772    AU.addRequiredID(LCSSAID);
773    AU.addRequired<DominatorTree>();
774    AU.addRequired<LoopInfo>();
775    AU.addRequired<ScalarEvolution>();
776    AU.addRequired<TargetTransformInfo>();
777    AU.addPreserved<LoopInfo>();
778    AU.addPreserved<DominatorTree>();
779  }
780
781};
782
783} // end anonymous namespace
784
785//===----------------------------------------------------------------------===//
786// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
787// LoopVectorizationCostModel.
788//===----------------------------------------------------------------------===//
789
790void
791LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
792                                                       Loop *Lp, Value *Ptr,
793                                                       bool WritePtr) {
794  const SCEV *Sc = SE->getSCEV(Ptr);
795  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
796  assert(AR && "Invalid addrec expression");
797  const SCEV *Ex = SE->getExitCount(Lp, Lp->getLoopLatch());
798  const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
799  Pointers.push_back(Ptr);
800  Starts.push_back(AR->getStart());
801  Ends.push_back(ScEnd);
802  IsWritePtr.push_back(WritePtr);
803}
804
805Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
806  // Save the current insertion location.
807  Instruction *Loc = Builder.GetInsertPoint();
808
809  // We need to place the broadcast of invariant variables outside the loop.
810  Instruction *Instr = dyn_cast<Instruction>(V);
811  bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
812  bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
813
814  // Place the code for broadcasting invariant variables in the new preheader.
815  if (Invariant)
816    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
817
818  // Broadcast the scalar into all locations in the vector.
819  Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
820
821  // Restore the builder insertion point.
822  if (Invariant)
823    Builder.SetInsertPoint(Loc);
824
825  return Shuf;
826}
827
828Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, unsigned StartIdx,
829                                                 bool Negate) {
830  assert(Val->getType()->isVectorTy() && "Must be a vector");
831  assert(Val->getType()->getScalarType()->isIntegerTy() &&
832         "Elem must be an integer");
833  // Create the types.
834  Type *ITy = Val->getType()->getScalarType();
835  VectorType *Ty = cast<VectorType>(Val->getType());
836  int VLen = Ty->getNumElements();
837  SmallVector<Constant*, 8> Indices;
838
839  // Create a vector of consecutive numbers from zero to VF.
840  for (int i = 0; i < VLen; ++i) {
841    int Idx = Negate ? (-i): i;
842    Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx));
843  }
844
845  // Add the consecutive indices to the vector value.
846  Constant *Cv = ConstantVector::get(Indices);
847  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
848  return Builder.CreateAdd(Val, Cv, "induction");
849}
850
851int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
852  assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
853  // Make sure that the pointer does not point to structs.
854  if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType())
855    return 0;
856
857  // If this value is a pointer induction variable we know it is consecutive.
858  PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
859  if (Phi && Inductions.count(Phi)) {
860    InductionInfo II = Inductions[Phi];
861    if (IK_PtrInduction == II.IK)
862      return 1;
863    else if (IK_ReversePtrInduction == II.IK)
864      return -1;
865  }
866
867  GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
868  if (!Gep)
869    return 0;
870
871  unsigned NumOperands = Gep->getNumOperands();
872  Value *LastIndex = Gep->getOperand(NumOperands - 1);
873
874  Value *GpPtr = Gep->getPointerOperand();
875  // If this GEP value is a consecutive pointer induction variable and all of
876  // the indices are constant then we know it is consecutive. We can
877  Phi = dyn_cast<PHINode>(GpPtr);
878  if (Phi && Inductions.count(Phi)) {
879
880    // Make sure that the pointer does not point to structs.
881    PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
882    if (GepPtrType->getElementType()->isAggregateType())
883      return 0;
884
885    // Make sure that all of the index operands are loop invariant.
886    for (unsigned i = 1; i < NumOperands; ++i)
887      if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
888        return 0;
889
890    InductionInfo II = Inductions[Phi];
891    if (IK_PtrInduction == II.IK)
892      return 1;
893    else if (IK_ReversePtrInduction == II.IK)
894      return -1;
895  }
896
897  // Check that all of the gep indices are uniform except for the last.
898  for (unsigned i = 0; i < NumOperands - 1; ++i)
899    if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
900      return 0;
901
902  // We can emit wide load/stores only if the last index is the induction
903  // variable.
904  const SCEV *Last = SE->getSCEV(LastIndex);
905  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
906    const SCEV *Step = AR->getStepRecurrence(*SE);
907
908    // The memory is consecutive because the last index is consecutive
909    // and all other indices are loop invariant.
910    if (Step->isOne())
911      return 1;
912    if (Step->isAllOnesValue())
913      return -1;
914  }
915
916  return 0;
917}
918
919bool LoopVectorizationLegality::isUniform(Value *V) {
920  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
921}
922
923InnerLoopVectorizer::VectorParts&
924InnerLoopVectorizer::getVectorValue(Value *V) {
925  assert(V != Induction && "The new induction variable should not be used.");
926  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
927
928  // If we have this scalar in the map, return it.
929  if (WidenMap.has(V))
930    return WidenMap.get(V);
931
932  // If this scalar is unknown, assume that it is a constant or that it is
933  // loop invariant. Broadcast V and save the value for future uses.
934  Value *B = getBroadcastInstrs(V);
935  return WidenMap.splat(V, B);
936}
937
938Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
939  assert(Vec->getType()->isVectorTy() && "Invalid type");
940  SmallVector<Constant*, 8> ShuffleMask;
941  for (unsigned i = 0; i < VF; ++i)
942    ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
943
944  return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
945                                     ConstantVector::get(ShuffleMask),
946                                     "reverse");
947}
948
949
950void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
951                                             LoopVectorizationLegality *Legal) {
952  // Attempt to issue a wide load.
953  LoadInst *LI = dyn_cast<LoadInst>(Instr);
954  StoreInst *SI = dyn_cast<StoreInst>(Instr);
955
956  assert((LI || SI) && "Invalid Load/Store instruction");
957
958  Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
959  Type *DataTy = VectorType::get(ScalarDataTy, VF);
960  Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
961  unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
962
963  unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
964  unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
965
966  if (ScalarAllocatedSize != VectorElementSize)
967    return scalarizeInstruction(Instr);
968
969  // If the pointer is loop invariant or if it is non consecutive,
970  // scalarize the load.
971  int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
972  bool Reverse = ConsecutiveStride < 0;
973  bool UniformLoad = LI && Legal->isUniform(Ptr);
974  if (!ConsecutiveStride || UniformLoad)
975    return scalarizeInstruction(Instr);
976
977  Constant *Zero = Builder.getInt32(0);
978  VectorParts &Entry = WidenMap.get(Instr);
979
980  // Handle consecutive loads/stores.
981  GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
982  if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
983    Value *PtrOperand = Gep->getPointerOperand();
984    Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
985    FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
986
987    // Create the new GEP with the new induction variable.
988    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
989    Gep2->setOperand(0, FirstBasePtr);
990    Gep2->setName("gep.indvar.base");
991    Ptr = Builder.Insert(Gep2);
992  } else if (Gep) {
993    assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
994                               OrigLoop) && "Base ptr must be invariant");
995
996    // The last index does not have to be the induction. It can be
997    // consecutive and be a function of the index. For example A[I+1];
998    unsigned NumOperands = Gep->getNumOperands();
999
1000    Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
1001    VectorParts &GEPParts = getVectorValue(LastGepOperand);
1002    Value *LastIndex = GEPParts[0];
1003    LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
1004
1005    // Create the new GEP with the new induction variable.
1006    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1007    Gep2->setOperand(NumOperands - 1, LastIndex);
1008    Gep2->setName("gep.indvar.idx");
1009    Ptr = Builder.Insert(Gep2);
1010  } else {
1011    // Use the induction element ptr.
1012    assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1013    VectorParts &PtrVal = getVectorValue(Ptr);
1014    Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1015  }
1016
1017  // Handle Stores:
1018  if (SI) {
1019    assert(!Legal->isUniform(SI->getPointerOperand()) &&
1020           "We do not allow storing to uniform addresses");
1021
1022    VectorParts &StoredVal = getVectorValue(SI->getValueOperand());
1023    for (unsigned Part = 0; Part < UF; ++Part) {
1024      // Calculate the pointer for the specific unroll-part.
1025      Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1026
1027      if (Reverse) {
1028        // If we store to reverse consecutive memory locations then we need
1029        // to reverse the order of elements in the stored value.
1030        StoredVal[Part] = reverseVector(StoredVal[Part]);
1031        // If the address is consecutive but reversed, then the
1032        // wide store needs to start at the last vector element.
1033        PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1034        PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1035      }
1036
1037      Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo());
1038      Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
1039    }
1040  }
1041
1042  for (unsigned Part = 0; Part < UF; ++Part) {
1043    // Calculate the pointer for the specific unroll-part.
1044    Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1045
1046    if (Reverse) {
1047      // If the address is consecutive but reversed, then the
1048      // wide store needs to start at the last vector element.
1049      PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1050      PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1051    }
1052
1053    Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo());
1054    Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
1055    cast<LoadInst>(LI)->setAlignment(Alignment);
1056    Entry[Part] = Reverse ? reverseVector(LI) :  LI;
1057  }
1058}
1059
1060void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
1061  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1062  // Holds vector parameters or scalars, in case of uniform vals.
1063  SmallVector<VectorParts, 4> Params;
1064
1065  // Find all of the vectorized parameters.
1066  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1067    Value *SrcOp = Instr->getOperand(op);
1068
1069    // If we are accessing the old induction variable, use the new one.
1070    if (SrcOp == OldInduction) {
1071      Params.push_back(getVectorValue(SrcOp));
1072      continue;
1073    }
1074
1075    // Try using previously calculated values.
1076    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1077
1078    // If the src is an instruction that appeared earlier in the basic block
1079    // then it should already be vectorized.
1080    if (SrcInst && OrigLoop->contains(SrcInst)) {
1081      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
1082      // The parameter is a vector value from earlier.
1083      Params.push_back(WidenMap.get(SrcInst));
1084    } else {
1085      // The parameter is a scalar from outside the loop. Maybe even a constant.
1086      VectorParts Scalars;
1087      Scalars.append(UF, SrcOp);
1088      Params.push_back(Scalars);
1089    }
1090  }
1091
1092  assert(Params.size() == Instr->getNumOperands() &&
1093         "Invalid number of operands");
1094
1095  // Does this instruction return a value ?
1096  bool IsVoidRetTy = Instr->getType()->isVoidTy();
1097
1098  Value *UndefVec = IsVoidRetTy ? 0 :
1099    UndefValue::get(VectorType::get(Instr->getType(), VF));
1100  // Create a new entry in the WidenMap and initialize it to Undef or Null.
1101  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1102
1103  // For each vector unroll 'part':
1104  for (unsigned Part = 0; Part < UF; ++Part) {
1105    // For each scalar that we create:
1106    for (unsigned Width = 0; Width < VF; ++Width) {
1107      Instruction *Cloned = Instr->clone();
1108      if (!IsVoidRetTy)
1109        Cloned->setName(Instr->getName() + ".cloned");
1110      // Replace the operands of the cloned instrucions with extracted scalars.
1111      for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1112        Value *Op = Params[op][Part];
1113        // Param is a vector. Need to extract the right lane.
1114        if (Op->getType()->isVectorTy())
1115          Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
1116        Cloned->setOperand(op, Op);
1117      }
1118
1119      // Place the cloned scalar in the new loop.
1120      Builder.Insert(Cloned);
1121
1122      // If the original scalar returns a value we need to place it in a vector
1123      // so that future users will be able to use it.
1124      if (!IsVoidRetTy)
1125        VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
1126                                                       Builder.getInt32(Width));
1127    }
1128  }
1129}
1130
1131Instruction *
1132InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
1133                                     Instruction *Loc) {
1134  LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
1135  Legal->getRuntimePointerCheck();
1136
1137  if (!PtrRtCheck->Need)
1138    return NULL;
1139
1140  Instruction *MemoryRuntimeCheck = 0;
1141  unsigned NumPointers = PtrRtCheck->Pointers.size();
1142  SmallVector<Value* , 2> Starts;
1143  SmallVector<Value* , 2> Ends;
1144
1145  SCEVExpander Exp(*SE, "induction");
1146
1147  // Use this type for pointer arithmetic.
1148  Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0);
1149
1150  for (unsigned i = 0; i < NumPointers; ++i) {
1151    Value *Ptr = PtrRtCheck->Pointers[i];
1152    const SCEV *Sc = SE->getSCEV(Ptr);
1153
1154    if (SE->isLoopInvariant(Sc, OrigLoop)) {
1155      DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
1156            *Ptr <<"\n");
1157      Starts.push_back(Ptr);
1158      Ends.push_back(Ptr);
1159    } else {
1160      DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
1161
1162      Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
1163      Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
1164      Starts.push_back(Start);
1165      Ends.push_back(End);
1166    }
1167  }
1168
1169  IRBuilder<> ChkBuilder(Loc);
1170
1171  for (unsigned i = 0; i < NumPointers; ++i) {
1172    for (unsigned j = i+1; j < NumPointers; ++j) {
1173      // No need to check if two readonly pointers intersect.
1174      if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
1175        continue;
1176
1177      Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy, "bc");
1178      Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy, "bc");
1179      Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy, "bc");
1180      Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy, "bc");
1181
1182      Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1183      Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1184      Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1185      if (MemoryRuntimeCheck)
1186        IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1187                                         "conflict.rdx");
1188
1189      MemoryRuntimeCheck = cast<Instruction>(IsConflict);
1190    }
1191  }
1192
1193  return MemoryRuntimeCheck;
1194}
1195
1196void
1197InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
1198  /*
1199   In this function we generate a new loop. The new loop will contain
1200   the vectorized instructions while the old loop will continue to run the
1201   scalar remainder.
1202
1203       [ ] <-- vector loop bypass (may consist of multiple blocks).
1204     /  |
1205    /   v
1206   |   [ ]     <-- vector pre header.
1207   |    |
1208   |    v
1209   |   [  ] \
1210   |   [  ]_|   <-- vector loop.
1211   |    |
1212    \   v
1213      >[ ]   <--- middle-block.
1214     /  |
1215    /   v
1216   |   [ ]     <--- new preheader.
1217   |    |
1218   |    v
1219   |   [ ] \
1220   |   [ ]_|   <-- old scalar loop to handle remainder.
1221    \   |
1222     \  v
1223      >[ ]     <-- exit block.
1224   ...
1225   */
1226
1227  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
1228  BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
1229  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
1230  assert(ExitBlock && "Must have an exit block");
1231
1232  // Mark the old scalar loop with metadata that tells us not to vectorize this
1233  // loop again if we run into it.
1234  MDNode *MD = MDNode::get(OldBasicBlock->getContext(), ArrayRef<Value*>());
1235  OldBasicBlock->getTerminator()->setMetadata(AlreadyVectorizedMDName, MD);
1236
1237  // Some loops have a single integer induction variable, while other loops
1238  // don't. One example is c++ iterators that often have multiple pointer
1239  // induction variables. In the code below we also support a case where we
1240  // don't have a single induction variable.
1241  OldInduction = Legal->getInduction();
1242  Type *IdxTy = OldInduction ? OldInduction->getType() :
1243  DL->getIntPtrType(SE->getContext());
1244
1245  // Find the loop boundaries.
1246  const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getLoopLatch());
1247  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
1248
1249  // Get the total trip count from the count by adding 1.
1250  ExitCount = SE->getAddExpr(ExitCount,
1251                             SE->getConstant(ExitCount->getType(), 1));
1252
1253  // Expand the trip count and place the new instructions in the preheader.
1254  // Notice that the pre-header does not change, only the loop body.
1255  SCEVExpander Exp(*SE, "induction");
1256
1257  // Count holds the overall loop count (N).
1258  Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
1259                                   BypassBlock->getTerminator());
1260
1261  // The loop index does not have to start at Zero. Find the original start
1262  // value from the induction PHI node. If we don't have an induction variable
1263  // then we know that it starts at zero.
1264  Value *StartIdx = OldInduction ?
1265  OldInduction->getIncomingValueForBlock(BypassBlock):
1266  ConstantInt::get(IdxTy, 0);
1267
1268  assert(BypassBlock && "Invalid loop structure");
1269  LoopBypassBlocks.push_back(BypassBlock);
1270
1271  // Split the single block loop into the two loop structure described above.
1272  BasicBlock *VectorPH =
1273  BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
1274  BasicBlock *VecBody =
1275  VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
1276  BasicBlock *MiddleBlock =
1277  VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
1278  BasicBlock *ScalarPH =
1279  MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
1280
1281  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
1282  // inside the loop.
1283  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1284
1285  // Generate the induction variable.
1286  Induction = Builder.CreatePHI(IdxTy, 2, "index");
1287  // The loop step is equal to the vectorization factor (num of SIMD elements)
1288  // times the unroll factor (num of SIMD instructions).
1289  Constant *Step = ConstantInt::get(IdxTy, VF * UF);
1290
1291  // This is the IR builder that we use to add all of the logic for bypassing
1292  // the new vector loop.
1293  IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
1294
1295  // We may need to extend the index in case there is a type mismatch.
1296  // We know that the count starts at zero and does not overflow.
1297  if (Count->getType() != IdxTy) {
1298    // The exit count can be of pointer type. Convert it to the correct
1299    // integer type.
1300    if (ExitCount->getType()->isPointerTy())
1301      Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
1302    else
1303      Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
1304  }
1305
1306  // Add the start index to the loop count to get the new end index.
1307  Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
1308
1309  // Now we need to generate the expression for N - (N % VF), which is
1310  // the part that the vectorized body will execute.
1311  Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
1312  Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
1313  Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
1314                                                     "end.idx.rnd.down");
1315
1316  // Now, compare the new count to zero. If it is zero skip the vector loop and
1317  // jump to the scalar loop.
1318  Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
1319                                          "cmp.zero");
1320
1321  BasicBlock *LastBypassBlock = BypassBlock;
1322
1323  // Generate the code that checks in runtime if arrays overlap. We put the
1324  // checks into a separate block to make the more common case of few elements
1325  // faster.
1326  Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
1327                                                 BypassBlock->getTerminator());
1328  if (MemRuntimeCheck) {
1329    // Create a new block containing the memory check.
1330    BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
1331                                                          "vector.memcheck");
1332    LoopBypassBlocks.push_back(CheckBlock);
1333
1334    // Replace the branch into the memory check block with a conditional branch
1335    // for the "few elements case".
1336    Instruction *OldTerm = BypassBlock->getTerminator();
1337    BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
1338    OldTerm->eraseFromParent();
1339
1340    Cmp = MemRuntimeCheck;
1341    LastBypassBlock = CheckBlock;
1342  }
1343
1344  LastBypassBlock->getTerminator()->eraseFromParent();
1345  BranchInst::Create(MiddleBlock, VectorPH, Cmp,
1346                     LastBypassBlock);
1347
1348  // We are going to resume the execution of the scalar loop.
1349  // Go over all of the induction variables that we found and fix the
1350  // PHIs that are left in the scalar version of the loop.
1351  // The starting values of PHI nodes depend on the counter of the last
1352  // iteration in the vectorized loop.
1353  // If we come from a bypass edge then we need to start from the original
1354  // start value.
1355
1356  // This variable saves the new starting index for the scalar loop.
1357  PHINode *ResumeIndex = 0;
1358  LoopVectorizationLegality::InductionList::iterator I, E;
1359  LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
1360  for (I = List->begin(), E = List->end(); I != E; ++I) {
1361    PHINode *OrigPhi = I->first;
1362    LoopVectorizationLegality::InductionInfo II = I->second;
1363    PHINode *ResumeVal = PHINode::Create(OrigPhi->getType(), 2, "resume.val",
1364                                         MiddleBlock->getTerminator());
1365    Value *EndValue = 0;
1366    switch (II.IK) {
1367    case LoopVectorizationLegality::IK_NoInduction:
1368      llvm_unreachable("Unknown induction");
1369    case LoopVectorizationLegality::IK_IntInduction: {
1370      // Handle the integer induction counter:
1371      assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
1372      assert(OrigPhi == OldInduction && "Unknown integer PHI");
1373      // We know what the end value is.
1374      EndValue = IdxEndRoundDown;
1375      // We also know which PHI node holds it.
1376      ResumeIndex = ResumeVal;
1377      break;
1378    }
1379    case LoopVectorizationLegality::IK_ReverseIntInduction: {
1380      // Convert the CountRoundDown variable to the PHI size.
1381      unsigned CRDSize = CountRoundDown->getType()->getScalarSizeInBits();
1382      unsigned IISize = II.StartValue->getType()->getScalarSizeInBits();
1383      Value *CRD = CountRoundDown;
1384      if (CRDSize > IISize)
1385        CRD = CastInst::Create(Instruction::Trunc, CountRoundDown,
1386                               II.StartValue->getType(), "tr.crd",
1387                               LoopBypassBlocks.back()->getTerminator());
1388      else if (CRDSize < IISize)
1389        CRD = CastInst::Create(Instruction::SExt, CountRoundDown,
1390                               II.StartValue->getType(),
1391                               "sext.crd",
1392                               LoopBypassBlocks.back()->getTerminator());
1393      // Handle reverse integer induction counter:
1394      EndValue =
1395        BinaryOperator::CreateSub(II.StartValue, CRD, "rev.ind.end",
1396                                  LoopBypassBlocks.back()->getTerminator());
1397      break;
1398    }
1399    case LoopVectorizationLegality::IK_PtrInduction: {
1400      // For pointer induction variables, calculate the offset using
1401      // the end index.
1402      EndValue =
1403        GetElementPtrInst::Create(II.StartValue, CountRoundDown, "ptr.ind.end",
1404                                  LoopBypassBlocks.back()->getTerminator());
1405      break;
1406    }
1407    case LoopVectorizationLegality::IK_ReversePtrInduction: {
1408      // The value at the end of the loop for the reverse pointer is calculated
1409      // by creating a GEP with a negative index starting from the start value.
1410      Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
1411      Value *NegIdx = BinaryOperator::CreateSub(Zero, CountRoundDown,
1412                                  "rev.ind.end",
1413                                  LoopBypassBlocks.back()->getTerminator());
1414      EndValue = GetElementPtrInst::Create(II.StartValue, NegIdx,
1415                                  "rev.ptr.ind.end",
1416                                  LoopBypassBlocks.back()->getTerminator());
1417      break;
1418    }
1419    }// end of case
1420
1421    // The new PHI merges the original incoming value, in case of a bypass,
1422    // or the value at the end of the vectorized loop.
1423    for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1424      ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1425    ResumeVal->addIncoming(EndValue, VecBody);
1426
1427    // Fix the scalar body counter (PHI node).
1428    unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
1429    OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
1430  }
1431
1432  // If we are generating a new induction variable then we also need to
1433  // generate the code that calculates the exit value. This value is not
1434  // simply the end of the counter because we may skip the vectorized body
1435  // in case of a runtime check.
1436  if (!OldInduction){
1437    assert(!ResumeIndex && "Unexpected resume value found");
1438    ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
1439                                  MiddleBlock->getTerminator());
1440    for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1441      ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
1442    ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
1443  }
1444
1445  // Make sure that we found the index where scalar loop needs to continue.
1446  assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
1447         "Invalid resume Index");
1448
1449  // Add a check in the middle block to see if we have completed
1450  // all of the iterations in the first vector loop.
1451  // If (N - N%VF) == N, then we *don't* need to run the remainder.
1452  Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
1453                                ResumeIndex, "cmp.n",
1454                                MiddleBlock->getTerminator());
1455
1456  BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
1457  // Remove the old terminator.
1458  MiddleBlock->getTerminator()->eraseFromParent();
1459
1460  // Create i+1 and fill the PHINode.
1461  Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
1462  Induction->addIncoming(StartIdx, VectorPH);
1463  Induction->addIncoming(NextIdx, VecBody);
1464  // Create the compare.
1465  Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
1466  Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
1467
1468  // Now we have two terminators. Remove the old one from the block.
1469  VecBody->getTerminator()->eraseFromParent();
1470
1471  // Get ready to start creating new instructions into the vectorized body.
1472  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1473
1474  // Create and register the new vector loop.
1475  Loop* Lp = new Loop();
1476  Loop *ParentLoop = OrigLoop->getParentLoop();
1477
1478  // Insert the new loop into the loop nest and register the new basic blocks.
1479  if (ParentLoop) {
1480    ParentLoop->addChildLoop(Lp);
1481    for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
1482      ParentLoop->addBasicBlockToLoop(LoopBypassBlocks[I], LI->getBase());
1483    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
1484    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
1485    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
1486  } else {
1487    LI->addTopLevelLoop(Lp);
1488  }
1489
1490  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
1491
1492  // Save the state.
1493  LoopVectorPreHeader = VectorPH;
1494  LoopScalarPreHeader = ScalarPH;
1495  LoopMiddleBlock = MiddleBlock;
1496  LoopExitBlock = ExitBlock;
1497  LoopVectorBody = VecBody;
1498  LoopScalarBody = OldBasicBlock;
1499}
1500
1501/// This function returns the identity element (or neutral element) for
1502/// the operation K.
1503Constant*
1504LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp,
1505                                                MinMaxReductionKind MinMaxK) {
1506  switch (K) {
1507  case RK_IntegerXor:
1508  case RK_IntegerAdd:
1509  case RK_IntegerOr:
1510    // Adding, Xoring, Oring zero to a number does not change it.
1511    return ConstantInt::get(Tp, 0);
1512  case RK_IntegerMult:
1513    // Multiplying a number by 1 does not change it.
1514    return ConstantInt::get(Tp, 1);
1515  case RK_IntegerAnd:
1516    // AND-ing a number with an all-1 value does not change it.
1517    return ConstantInt::get(Tp, -1, true);
1518  case  RK_FloatMult:
1519    // Multiplying a number by 1 does not change it.
1520    return ConstantFP::get(Tp, 1.0L);
1521  case  RK_FloatAdd:
1522    // Adding zero to a number does not change it.
1523    return ConstantFP::get(Tp, 0.0L);
1524  case  RK_IntegerMinMax:
1525    switch(MinMaxK) {
1526    default: llvm_unreachable("Unknown min/max predicate");
1527    case MRK_UIntMin:
1528      return ConstantInt::getAllOnesValue(Tp);
1529    case MRK_UIntMax:
1530      return ConstantInt::get(Tp, 0);
1531    case MRK_SIntMin: {
1532      unsigned BitWidth = Tp->getPrimitiveSizeInBits();
1533      return ConstantInt::get(Tp->getContext(),
1534                              APInt::getSignedMaxValue(BitWidth));
1535    }
1536    case LoopVectorizationLegality::MRK_SIntMax: {
1537      unsigned BitWidth = Tp->getPrimitiveSizeInBits();
1538      return ConstantInt::get(Tp->getContext(),
1539                              APInt::getSignedMinValue(BitWidth));
1540    }
1541    }
1542  default:
1543    llvm_unreachable("Unknown reduction kind");
1544  }
1545}
1546
1547static Intrinsic::ID
1548getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
1549  // If we have an intrinsic call, check if it is trivially vectorizable.
1550  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1551    switch (II->getIntrinsicID()) {
1552    case Intrinsic::sqrt:
1553    case Intrinsic::sin:
1554    case Intrinsic::cos:
1555    case Intrinsic::exp:
1556    case Intrinsic::exp2:
1557    case Intrinsic::log:
1558    case Intrinsic::log10:
1559    case Intrinsic::log2:
1560    case Intrinsic::fabs:
1561    case Intrinsic::floor:
1562    case Intrinsic::ceil:
1563    case Intrinsic::trunc:
1564    case Intrinsic::rint:
1565    case Intrinsic::nearbyint:
1566    case Intrinsic::pow:
1567    case Intrinsic::fma:
1568    case Intrinsic::fmuladd:
1569      return II->getIntrinsicID();
1570    default:
1571      return Intrinsic::not_intrinsic;
1572    }
1573  }
1574
1575  if (!TLI)
1576    return Intrinsic::not_intrinsic;
1577
1578  LibFunc::Func Func;
1579  Function *F = CI->getCalledFunction();
1580  // We're going to make assumptions on the semantics of the functions, check
1581  // that the target knows that it's available in this environment.
1582  if (!F || !TLI->getLibFunc(F->getName(), Func))
1583    return Intrinsic::not_intrinsic;
1584
1585  // Otherwise check if we have a call to a function that can be turned into a
1586  // vector intrinsic.
1587  switch (Func) {
1588  default:
1589    break;
1590  case LibFunc::sin:
1591  case LibFunc::sinf:
1592  case LibFunc::sinl:
1593    return Intrinsic::sin;
1594  case LibFunc::cos:
1595  case LibFunc::cosf:
1596  case LibFunc::cosl:
1597    return Intrinsic::cos;
1598  case LibFunc::exp:
1599  case LibFunc::expf:
1600  case LibFunc::expl:
1601    return Intrinsic::exp;
1602  case LibFunc::exp2:
1603  case LibFunc::exp2f:
1604  case LibFunc::exp2l:
1605    return Intrinsic::exp2;
1606  case LibFunc::log:
1607  case LibFunc::logf:
1608  case LibFunc::logl:
1609    return Intrinsic::log;
1610  case LibFunc::log10:
1611  case LibFunc::log10f:
1612  case LibFunc::log10l:
1613    return Intrinsic::log10;
1614  case LibFunc::log2:
1615  case LibFunc::log2f:
1616  case LibFunc::log2l:
1617    return Intrinsic::log2;
1618  case LibFunc::fabs:
1619  case LibFunc::fabsf:
1620  case LibFunc::fabsl:
1621    return Intrinsic::fabs;
1622  case LibFunc::floor:
1623  case LibFunc::floorf:
1624  case LibFunc::floorl:
1625    return Intrinsic::floor;
1626  case LibFunc::ceil:
1627  case LibFunc::ceilf:
1628  case LibFunc::ceill:
1629    return Intrinsic::ceil;
1630  case LibFunc::trunc:
1631  case LibFunc::truncf:
1632  case LibFunc::truncl:
1633    return Intrinsic::trunc;
1634  case LibFunc::rint:
1635  case LibFunc::rintf:
1636  case LibFunc::rintl:
1637    return Intrinsic::rint;
1638  case LibFunc::nearbyint:
1639  case LibFunc::nearbyintf:
1640  case LibFunc::nearbyintl:
1641    return Intrinsic::nearbyint;
1642  case LibFunc::pow:
1643  case LibFunc::powf:
1644  case LibFunc::powl:
1645    return Intrinsic::pow;
1646  }
1647
1648  return Intrinsic::not_intrinsic;
1649}
1650
1651/// This function translates the reduction kind to an LLVM binary operator.
1652static unsigned
1653getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
1654  switch (Kind) {
1655    case LoopVectorizationLegality::RK_IntegerAdd:
1656      return Instruction::Add;
1657    case LoopVectorizationLegality::RK_IntegerMult:
1658      return Instruction::Mul;
1659    case LoopVectorizationLegality::RK_IntegerOr:
1660      return Instruction::Or;
1661    case LoopVectorizationLegality::RK_IntegerAnd:
1662      return Instruction::And;
1663    case LoopVectorizationLegality::RK_IntegerXor:
1664      return Instruction::Xor;
1665    case LoopVectorizationLegality::RK_FloatMult:
1666      return Instruction::FMul;
1667    case LoopVectorizationLegality::RK_FloatAdd:
1668      return Instruction::FAdd;
1669    case LoopVectorizationLegality::RK_IntegerMinMax:
1670      return Instruction::ICmp;
1671    default:
1672      llvm_unreachable("Unknown reduction operation");
1673  }
1674}
1675
1676Value *createMinMaxOp(IRBuilder<> &Builder,
1677                      LoopVectorizationLegality::MinMaxReductionKind RK,
1678                      Value *Left,
1679                      Value *Right) {
1680  CmpInst::Predicate P = CmpInst::ICMP_NE;
1681  switch (RK) {
1682  default:
1683    llvm_unreachable("Unknown min/max reduction kind");
1684  case LoopVectorizationLegality::MRK_UIntMin:
1685    P = CmpInst::ICMP_ULT;
1686    break;
1687  case LoopVectorizationLegality::MRK_UIntMax:
1688    P = CmpInst::ICMP_UGT;
1689    break;
1690  case LoopVectorizationLegality::MRK_SIntMin:
1691    P = CmpInst::ICMP_SLT;
1692    break;
1693  case LoopVectorizationLegality::MRK_SIntMax:
1694    P = CmpInst::ICMP_SGT;
1695  }
1696  Value *Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
1697  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
1698  return Select;
1699}
1700
1701void
1702InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
1703  //===------------------------------------------------===//
1704  //
1705  // Notice: any optimization or new instruction that go
1706  // into the code below should be also be implemented in
1707  // the cost-model.
1708  //
1709  //===------------------------------------------------===//
1710  Constant *Zero = Builder.getInt32(0);
1711
1712  // In order to support reduction variables we need to be able to vectorize
1713  // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
1714  // stages. First, we create a new vector PHI node with no incoming edges.
1715  // We use this value when we vectorize all of the instructions that use the
1716  // PHI. Next, after all of the instructions in the block are complete we
1717  // add the new incoming edges to the PHI. At this point all of the
1718  // instructions in the basic block are vectorized, so we can use them to
1719  // construct the PHI.
1720  PhiVector RdxPHIsToFix;
1721
1722  // Scan the loop in a topological order to ensure that defs are vectorized
1723  // before users.
1724  LoopBlocksDFS DFS(OrigLoop);
1725  DFS.perform(LI);
1726
1727  // Vectorize all of the blocks in the original loop.
1728  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
1729       be = DFS.endRPO(); bb != be; ++bb)
1730    vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
1731
1732  // At this point every instruction in the original loop is widened to
1733  // a vector form. We are almost done. Now, we need to fix the PHI nodes
1734  // that we vectorized. The PHI nodes are currently empty because we did
1735  // not want to introduce cycles. Notice that the remaining PHI nodes
1736  // that we need to fix are reduction variables.
1737
1738  // Create the 'reduced' values for each of the induction vars.
1739  // The reduced values are the vector values that we scalarize and combine
1740  // after the loop is finished.
1741  for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
1742       it != e; ++it) {
1743    PHINode *RdxPhi = *it;
1744    assert(RdxPhi && "Unable to recover vectorized PHI");
1745
1746    // Find the reduction variable descriptor.
1747    assert(Legal->getReductionVars()->count(RdxPhi) &&
1748           "Unable to find the reduction variable");
1749    LoopVectorizationLegality::ReductionDescriptor RdxDesc =
1750    (*Legal->getReductionVars())[RdxPhi];
1751
1752    // We need to generate a reduction vector from the incoming scalar.
1753    // To do so, we need to generate the 'identity' vector and overide
1754    // one of the elements with the incoming scalar reduction. We need
1755    // to do it in the vector-loop preheader.
1756    Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
1757
1758    // This is the vector-clone of the value that leaves the loop.
1759    VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
1760    Type *VecTy = VectorExit[0]->getType();
1761
1762    // Find the reduction identity variable. Zero for addition, or, xor,
1763    // one for multiplication, -1 for And.
1764    Constant *Iden =
1765      LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
1766                                                      VecTy->getScalarType(),
1767                                                      RdxDesc.MinMaxKind);
1768    Constant *Identity = ConstantVector::getSplat(VF, Iden);
1769
1770    // This vector is the Identity vector where the first element is the
1771    // incoming scalar reduction.
1772    Value *VectorStart = Builder.CreateInsertElement(Identity,
1773                                                     RdxDesc.StartValue, Zero);
1774
1775    // Fix the vector-loop phi.
1776    // We created the induction variable so we know that the
1777    // preheader is the first entry.
1778    BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
1779
1780    // Reductions do not have to start at zero. They can start with
1781    // any loop invariant values.
1782    VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
1783    BasicBlock *Latch = OrigLoop->getLoopLatch();
1784    Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
1785    VectorParts &Val = getVectorValue(LoopVal);
1786    for (unsigned part = 0; part < UF; ++part) {
1787      // Make sure to add the reduction stat value only to the
1788      // first unroll part.
1789      Value *StartVal = (part == 0) ? VectorStart : Identity;
1790      cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
1791      cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
1792    }
1793
1794    // Before each round, move the insertion point right between
1795    // the PHIs and the values we are going to write.
1796    // This allows us to write both PHINodes and the extractelement
1797    // instructions.
1798    Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
1799
1800    VectorParts RdxParts;
1801    for (unsigned part = 0; part < UF; ++part) {
1802      // This PHINode contains the vectorized reduction variable, or
1803      // the initial value vector, if we bypass the vector loop.
1804      VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
1805      PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
1806      Value *StartVal = (part == 0) ? VectorStart : Identity;
1807      for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1808        NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
1809      NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
1810      RdxParts.push_back(NewPhi);
1811    }
1812
1813    // Reduce all of the unrolled parts into a single vector.
1814    Value *ReducedPartRdx = RdxParts[0];
1815    unsigned Op = getReductionBinOp(RdxDesc.Kind);
1816    for (unsigned part = 1; part < UF; ++part) {
1817      if (Op != Instruction::ICmp)
1818        ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op,
1819                                             RdxParts[part], ReducedPartRdx,
1820                                             "bin.rdx");
1821      else
1822        ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
1823                                        ReducedPartRdx, RdxParts[part]);
1824    }
1825
1826    // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1827    // and vector ops, reducing the set of values being computed by half each
1828    // round.
1829    assert(isPowerOf2_32(VF) &&
1830           "Reduction emission only supported for pow2 vectors!");
1831    Value *TmpVec = ReducedPartRdx;
1832    SmallVector<Constant*, 32> ShuffleMask(VF, 0);
1833    for (unsigned i = VF; i != 1; i >>= 1) {
1834      // Move the upper half of the vector to the lower half.
1835      for (unsigned j = 0; j != i/2; ++j)
1836        ShuffleMask[j] = Builder.getInt32(i/2 + j);
1837
1838      // Fill the rest of the mask with undef.
1839      std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
1840                UndefValue::get(Builder.getInt32Ty()));
1841
1842      Value *Shuf =
1843        Builder.CreateShuffleVector(TmpVec,
1844                                    UndefValue::get(TmpVec->getType()),
1845                                    ConstantVector::get(ShuffleMask),
1846                                    "rdx.shuf");
1847
1848      if (Op != Instruction::ICmp)
1849        TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
1850                                     "bin.rdx");
1851      else
1852        TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
1853    }
1854
1855    // The result is in the first element of the vector.
1856    Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1857
1858    // Now, we need to fix the users of the reduction variable
1859    // inside and outside of the scalar remainder loop.
1860    // We know that the loop is in LCSSA form. We need to update the
1861    // PHI nodes in the exit blocks.
1862    for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
1863         LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
1864      PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
1865      if (!LCSSAPhi) continue;
1866
1867      // All PHINodes need to have a single entry edge, or two if
1868      // we already fixed them.
1869      assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
1870
1871      // We found our reduction value exit-PHI. Update it with the
1872      // incoming bypass edge.
1873      if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
1874        // Add an edge coming from the bypass.
1875        LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
1876        break;
1877      }
1878    }// end of the LCSSA phi scan.
1879
1880    // Fix the scalar loop reduction variable with the incoming reduction sum
1881    // from the vector body and from the backedge value.
1882    int IncomingEdgeBlockIdx =
1883    (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
1884    assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
1885    // Pick the other block.
1886    int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
1887    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
1888    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
1889  }// end of for each redux variable.
1890
1891  // The Loop exit block may have single value PHI nodes where the incoming
1892  // value is 'undef'. While vectorizing we only handled real values that
1893  // were defined inside the loop. Here we handle the 'undef case'.
1894  // See PR14725.
1895  for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
1896       LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
1897    PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
1898    if (!LCSSAPhi) continue;
1899    if (LCSSAPhi->getNumIncomingValues() == 1)
1900      LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
1901                            LoopMiddleBlock);
1902  }
1903}
1904
1905InnerLoopVectorizer::VectorParts
1906InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
1907  assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
1908         "Invalid edge");
1909
1910  VectorParts SrcMask = createBlockInMask(Src);
1911
1912  // The terminator has to be a branch inst!
1913  BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
1914  assert(BI && "Unexpected terminator found");
1915
1916  if (BI->isConditional()) {
1917    VectorParts EdgeMask = getVectorValue(BI->getCondition());
1918
1919    if (BI->getSuccessor(0) != Dst)
1920      for (unsigned part = 0; part < UF; ++part)
1921        EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
1922
1923    for (unsigned part = 0; part < UF; ++part)
1924      EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
1925    return EdgeMask;
1926  }
1927
1928  return SrcMask;
1929}
1930
1931InnerLoopVectorizer::VectorParts
1932InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
1933  assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
1934
1935  // Loop incoming mask is all-one.
1936  if (OrigLoop->getHeader() == BB) {
1937    Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
1938    return getVectorValue(C);
1939  }
1940
1941  // This is the block mask. We OR all incoming edges, and with zero.
1942  Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
1943  VectorParts BlockMask = getVectorValue(Zero);
1944
1945  // For each pred:
1946  for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
1947    VectorParts EM = createEdgeMask(*it, BB);
1948    for (unsigned part = 0; part < UF; ++part)
1949      BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
1950  }
1951
1952  return BlockMask;
1953}
1954
1955void
1956InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
1957                                          BasicBlock *BB, PhiVector *PV) {
1958  // For each instruction in the old loop.
1959  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
1960    VectorParts &Entry = WidenMap.get(it);
1961    switch (it->getOpcode()) {
1962    case Instruction::Br:
1963      // Nothing to do for PHIs and BR, since we already took care of the
1964      // loop control flow instructions.
1965      continue;
1966    case Instruction::PHI:{
1967      PHINode* P = cast<PHINode>(it);
1968      // Handle reduction variables:
1969      if (Legal->getReductionVars()->count(P)) {
1970        for (unsigned part = 0; part < UF; ++part) {
1971          // This is phase one of vectorizing PHIs.
1972          Type *VecTy = VectorType::get(it->getType(), VF);
1973          Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
1974                                        LoopVectorBody-> getFirstInsertionPt());
1975        }
1976        PV->push_back(P);
1977        continue;
1978      }
1979
1980      // Check for PHI nodes that are lowered to vector selects.
1981      if (P->getParent() != OrigLoop->getHeader()) {
1982        // We know that all PHIs in non header blocks are converted into
1983        // selects, so we don't have to worry about the insertion order and we
1984        // can just use the builder.
1985        // At this point we generate the predication tree. There may be
1986        // duplications since this is a simple recursive scan, but future
1987        // optimizations will clean it up.
1988
1989        unsigned NumIncoming = P->getNumIncomingValues();
1990        assert(NumIncoming > 1 && "Invalid PHI");
1991
1992        // Generate a sequence of selects of the form:
1993        // SELECT(Mask3, In3,
1994        //      SELECT(Mask2, In2,
1995        //                   ( ...)))
1996        for (unsigned In = 0; In < NumIncoming; In++) {
1997          VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
1998                                            P->getParent());
1999          VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
2000
2001          for (unsigned part = 0; part < UF; ++part) {
2002            // We don't need to 'select' the first PHI operand because it is
2003            // the default value if all of the other masks don't match.
2004            if (In == 0)
2005              Entry[part] = In0[part];
2006            else
2007              // Select between the current value and the previous incoming edge
2008              // based on the incoming mask.
2009              Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2010                                                 Entry[part], "predphi");
2011          }
2012        }
2013        continue;
2014      }
2015
2016      // This PHINode must be an induction variable.
2017      // Make sure that we know about it.
2018      assert(Legal->getInductionVars()->count(P) &&
2019             "Not an induction variable");
2020
2021      LoopVectorizationLegality::InductionInfo II =
2022        Legal->getInductionVars()->lookup(P);
2023
2024      switch (II.IK) {
2025      case LoopVectorizationLegality::IK_NoInduction:
2026        llvm_unreachable("Unknown induction");
2027      case LoopVectorizationLegality::IK_IntInduction: {
2028        assert(P == OldInduction && "Unexpected PHI");
2029        Value *Broadcasted = getBroadcastInstrs(Induction);
2030        // After broadcasting the induction variable we need to make the
2031        // vector consecutive by adding 0, 1, 2 ...
2032        for (unsigned part = 0; part < UF; ++part)
2033          Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
2034        continue;
2035      }
2036      case LoopVectorizationLegality::IK_ReverseIntInduction:
2037      case LoopVectorizationLegality::IK_PtrInduction:
2038      case LoopVectorizationLegality::IK_ReversePtrInduction:
2039        // Handle reverse integer and pointer inductions.
2040        Value *StartIdx = 0;
2041        // If we have a single integer induction variable then use it.
2042        // Otherwise, start counting at zero.
2043        if (OldInduction) {
2044          LoopVectorizationLegality::InductionInfo OldII =
2045            Legal->getInductionVars()->lookup(OldInduction);
2046          StartIdx = OldII.StartValue;
2047        } else {
2048          StartIdx = ConstantInt::get(Induction->getType(), 0);
2049        }
2050        // This is the normalized GEP that starts counting at zero.
2051        Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
2052                                                 "normalized.idx");
2053
2054        // Handle the reverse integer induction variable case.
2055        if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
2056          IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
2057          Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
2058                                                 "resize.norm.idx");
2059          Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
2060                                                 "reverse.idx");
2061
2062          // This is a new value so do not hoist it out.
2063          Value *Broadcasted = getBroadcastInstrs(ReverseInd);
2064          // After broadcasting the induction variable we need to make the
2065          // vector consecutive by adding  ... -3, -2, -1, 0.
2066          for (unsigned part = 0; part < UF; ++part)
2067            Entry[part] = getConsecutiveVector(Broadcasted, -VF * part, true);
2068          continue;
2069        }
2070
2071        // Handle the pointer induction variable case.
2072        assert(P->getType()->isPointerTy() && "Unexpected type.");
2073
2074        // Is this a reverse induction ptr or a consecutive induction ptr.
2075        bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
2076                        II.IK);
2077
2078        // This is the vector of results. Notice that we don't generate
2079        // vector geps because scalar geps result in better code.
2080        for (unsigned part = 0; part < UF; ++part) {
2081          Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
2082          for (unsigned int i = 0; i < VF; ++i) {
2083            int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
2084            Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
2085            Value *GlobalIdx;
2086            if (!Reverse)
2087              GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
2088            else
2089              GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
2090
2091            Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
2092                                               "next.gep");
2093            VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
2094                                                 Builder.getInt32(i),
2095                                                 "insert.gep");
2096          }
2097          Entry[part] = VecVal;
2098        }
2099        continue;
2100      }
2101
2102    }// End of PHI.
2103
2104    case Instruction::Add:
2105    case Instruction::FAdd:
2106    case Instruction::Sub:
2107    case Instruction::FSub:
2108    case Instruction::Mul:
2109    case Instruction::FMul:
2110    case Instruction::UDiv:
2111    case Instruction::SDiv:
2112    case Instruction::FDiv:
2113    case Instruction::URem:
2114    case Instruction::SRem:
2115    case Instruction::FRem:
2116    case Instruction::Shl:
2117    case Instruction::LShr:
2118    case Instruction::AShr:
2119    case Instruction::And:
2120    case Instruction::Or:
2121    case Instruction::Xor: {
2122      // Just widen binops.
2123      BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
2124      VectorParts &A = getVectorValue(it->getOperand(0));
2125      VectorParts &B = getVectorValue(it->getOperand(1));
2126
2127      // Use this vector value for all users of the original instruction.
2128      for (unsigned Part = 0; Part < UF; ++Part) {
2129        Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
2130
2131        // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
2132        BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
2133        if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
2134          VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
2135          VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
2136        }
2137        if (VecOp && isa<PossiblyExactOperator>(VecOp))
2138          VecOp->setIsExact(BinOp->isExact());
2139
2140        Entry[Part] = V;
2141      }
2142      break;
2143    }
2144    case Instruction::Select: {
2145      // Widen selects.
2146      // If the selector is loop invariant we can create a select
2147      // instruction with a scalar condition. Otherwise, use vector-select.
2148      bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
2149                                               OrigLoop);
2150
2151      // The condition can be loop invariant  but still defined inside the
2152      // loop. This means that we can't just use the original 'cond' value.
2153      // We have to take the 'vectorized' value and pick the first lane.
2154      // Instcombine will make this a no-op.
2155      VectorParts &Cond = getVectorValue(it->getOperand(0));
2156      VectorParts &Op0  = getVectorValue(it->getOperand(1));
2157      VectorParts &Op1  = getVectorValue(it->getOperand(2));
2158      Value *ScalarCond = Builder.CreateExtractElement(Cond[0],
2159                                                       Builder.getInt32(0));
2160      for (unsigned Part = 0; Part < UF; ++Part) {
2161        Entry[Part] = Builder.CreateSelect(
2162          InvariantCond ? ScalarCond : Cond[Part],
2163          Op0[Part],
2164          Op1[Part]);
2165      }
2166      break;
2167    }
2168
2169    case Instruction::ICmp:
2170    case Instruction::FCmp: {
2171      // Widen compares. Generate vector compares.
2172      bool FCmp = (it->getOpcode() == Instruction::FCmp);
2173      CmpInst *Cmp = dyn_cast<CmpInst>(it);
2174      VectorParts &A = getVectorValue(it->getOperand(0));
2175      VectorParts &B = getVectorValue(it->getOperand(1));
2176      for (unsigned Part = 0; Part < UF; ++Part) {
2177        Value *C = 0;
2178        if (FCmp)
2179          C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
2180        else
2181          C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
2182        Entry[Part] = C;
2183      }
2184      break;
2185    }
2186
2187    case Instruction::Store:
2188    case Instruction::Load:
2189        vectorizeMemoryInstruction(it, Legal);
2190        break;
2191    case Instruction::ZExt:
2192    case Instruction::SExt:
2193    case Instruction::FPToUI:
2194    case Instruction::FPToSI:
2195    case Instruction::FPExt:
2196    case Instruction::PtrToInt:
2197    case Instruction::IntToPtr:
2198    case Instruction::SIToFP:
2199    case Instruction::UIToFP:
2200    case Instruction::Trunc:
2201    case Instruction::FPTrunc:
2202    case Instruction::BitCast: {
2203      CastInst *CI = dyn_cast<CastInst>(it);
2204      /// Optimize the special case where the source is the induction
2205      /// variable. Notice that we can only optimize the 'trunc' case
2206      /// because: a. FP conversions lose precision, b. sext/zext may wrap,
2207      /// c. other casts depend on pointer size.
2208      if (CI->getOperand(0) == OldInduction &&
2209          it->getOpcode() == Instruction::Trunc) {
2210        Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
2211                                               CI->getType());
2212        Value *Broadcasted = getBroadcastInstrs(ScalarCast);
2213        for (unsigned Part = 0; Part < UF; ++Part)
2214          Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
2215        break;
2216      }
2217      /// Vectorize casts.
2218      Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
2219
2220      VectorParts &A = getVectorValue(it->getOperand(0));
2221      for (unsigned Part = 0; Part < UF; ++Part)
2222        Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
2223      break;
2224    }
2225
2226    case Instruction::Call: {
2227      // Ignore dbg intrinsics.
2228      if (isa<DbgInfoIntrinsic>(it))
2229        break;
2230
2231      Module *M = BB->getParent()->getParent();
2232      CallInst *CI = cast<CallInst>(it);
2233      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
2234      assert(ID && "Not an intrinsic call!");
2235      for (unsigned Part = 0; Part < UF; ++Part) {
2236        SmallVector<Value*, 4> Args;
2237        for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
2238          VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
2239          Args.push_back(Arg[Part]);
2240        }
2241        Type *Tys[] = { VectorType::get(CI->getType()->getScalarType(), VF) };
2242        Function *F = Intrinsic::getDeclaration(M, ID, Tys);
2243        Entry[Part] = Builder.CreateCall(F, Args);
2244      }
2245      break;
2246    }
2247
2248    default:
2249      // All other instructions are unsupported. Scalarize them.
2250      scalarizeInstruction(it);
2251      break;
2252    }// end of switch.
2253  }// end of for_each instr.
2254}
2255
2256void InnerLoopVectorizer::updateAnalysis() {
2257  // Forget the original basic block.
2258  SE->forgetLoop(OrigLoop);
2259
2260  // Update the dominator tree information.
2261  assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
2262         "Entry does not dominate exit.");
2263
2264  for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2265    DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
2266  DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
2267  DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
2268  DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
2269  DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
2270  DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
2271  DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2272
2273  DEBUG(DT->verifyAnalysis());
2274}
2275
2276bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
2277  if (!EnableIfConversion)
2278    return false;
2279
2280  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
2281  std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
2282
2283  // Collect the blocks that need predication.
2284  for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
2285    BasicBlock *BB = LoopBlocks[i];
2286
2287    // We don't support switch statements inside loops.
2288    if (!isa<BranchInst>(BB->getTerminator()))
2289      return false;
2290
2291    // We must be able to predicate all blocks that need to be predicated.
2292    if (blockNeedsPredication(BB) && !blockCanBePredicated(BB))
2293      return false;
2294  }
2295
2296  // We can if-convert this loop.
2297  return true;
2298}
2299
2300bool LoopVectorizationLegality::canVectorize() {
2301  assert(TheLoop->getLoopPreheader() && "No preheader!!");
2302
2303  // We can only vectorize innermost loops.
2304  if (TheLoop->getSubLoopsVector().size())
2305    return false;
2306
2307  // We must have a single backedge.
2308  if (TheLoop->getNumBackEdges() != 1)
2309    return false;
2310
2311  // We must have a single exiting block.
2312  if (!TheLoop->getExitingBlock())
2313    return false;
2314
2315  unsigned NumBlocks = TheLoop->getNumBlocks();
2316
2317  // Check if we can if-convert non single-bb loops.
2318  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
2319    DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
2320    return false;
2321  }
2322
2323  // We need to have a loop header.
2324  BasicBlock *Latch = TheLoop->getLoopLatch();
2325  DEBUG(dbgs() << "LV: Found a loop: " <<
2326        TheLoop->getHeader()->getName() << "\n");
2327
2328  // ScalarEvolution needs to be able to find the exit count.
2329  const SCEV *ExitCount = SE->getExitCount(TheLoop, Latch);
2330  if (ExitCount == SE->getCouldNotCompute()) {
2331    DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
2332    return false;
2333  }
2334
2335  // Do not loop-vectorize loops with a tiny trip count.
2336  unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
2337  if (TC > 0u && TC < TinyTripCountVectorThreshold) {
2338    DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
2339          "This loop is not worth vectorizing.\n");
2340    return false;
2341  }
2342
2343  // Check if we can vectorize the instructions and CFG in this loop.
2344  if (!canVectorizeInstrs()) {
2345    DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
2346    return false;
2347  }
2348
2349  // Go over each instruction and look at memory deps.
2350  if (!canVectorizeMemory()) {
2351    DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
2352    return false;
2353  }
2354
2355  // Collect all of the variables that remain uniform after vectorization.
2356  collectLoopUniforms();
2357
2358  DEBUG(dbgs() << "LV: We can vectorize this loop" <<
2359        (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
2360        <<"!\n");
2361
2362  // Okay! We can vectorize. At this point we don't have any other mem analysis
2363  // which may limit our maximum vectorization factor, so just return true with
2364  // no restrictions.
2365  return true;
2366}
2367
2368bool LoopVectorizationLegality::canVectorizeInstrs() {
2369  BasicBlock *PreHeader = TheLoop->getLoopPreheader();
2370  BasicBlock *Header = TheLoop->getHeader();
2371
2372  // If we marked the scalar loop as "already vectorized" then no need
2373  // to vectorize it again.
2374  if (Header->getTerminator()->getMetadata(AlreadyVectorizedMDName)) {
2375    DEBUG(dbgs() << "LV: This loop was vectorized before\n");
2376    return false;
2377  }
2378
2379  // For each block in the loop.
2380  for (Loop::block_iterator bb = TheLoop->block_begin(),
2381       be = TheLoop->block_end(); bb != be; ++bb) {
2382
2383    // Scan the instructions in the block and look for hazards.
2384    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2385         ++it) {
2386
2387      if (PHINode *Phi = dyn_cast<PHINode>(it)) {
2388        // Check that this PHI type is allowed.
2389        if (!Phi->getType()->isIntegerTy() &&
2390            !Phi->getType()->isFloatingPointTy() &&
2391            !Phi->getType()->isPointerTy()) {
2392          DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
2393          return false;
2394        }
2395
2396        // If this PHINode is not in the header block, then we know that we
2397        // can convert it to select during if-conversion. No need to check if
2398        // the PHIs in this block are induction or reduction variables.
2399        if (*bb != Header)
2400          continue;
2401
2402        // We only allow if-converted PHIs with more than two incoming values.
2403        if (Phi->getNumIncomingValues() != 2) {
2404          DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
2405          return false;
2406        }
2407
2408        // This is the value coming from the preheader.
2409        Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
2410        // Check if this is an induction variable.
2411        InductionKind IK = isInductionVariable(Phi);
2412
2413        if (IK_NoInduction != IK) {
2414          // Int inductions are special because we only allow one IV.
2415          if (IK == IK_IntInduction) {
2416            if (Induction) {
2417              DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
2418              return false;
2419            }
2420            Induction = Phi;
2421          }
2422
2423          DEBUG(dbgs() << "LV: Found an induction variable.\n");
2424          Inductions[Phi] = InductionInfo(StartValue, IK);
2425          continue;
2426        }
2427
2428        if (AddReductionVar(Phi, RK_IntegerAdd)) {
2429          DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
2430          continue;
2431        }
2432        if (AddReductionVar(Phi, RK_IntegerMult)) {
2433          DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
2434          continue;
2435        }
2436        if (AddReductionVar(Phi, RK_IntegerOr)) {
2437          DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
2438          continue;
2439        }
2440        if (AddReductionVar(Phi, RK_IntegerAnd)) {
2441          DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
2442          continue;
2443        }
2444        if (AddReductionVar(Phi, RK_IntegerXor)) {
2445          DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
2446          continue;
2447        }
2448        if (AddReductionVar(Phi, RK_IntegerMinMax)) {
2449          DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
2450          continue;
2451        }
2452        if (AddReductionVar(Phi, RK_FloatMult)) {
2453          DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
2454          continue;
2455        }
2456        if (AddReductionVar(Phi, RK_FloatAdd)) {
2457          DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
2458          continue;
2459        }
2460
2461        DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
2462        return false;
2463      }// end of PHI handling
2464
2465      // We still don't handle functions. However, we can ignore dbg intrinsic
2466      // calls and we do handle certain intrinsic and libm functions.
2467      CallInst *CI = dyn_cast<CallInst>(it);
2468      if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
2469        DEBUG(dbgs() << "LV: Found a call site.\n");
2470        return false;
2471      }
2472
2473      // Check that the instruction return type is vectorizable.
2474      if (!VectorType::isValidElementType(it->getType()) &&
2475          !it->getType()->isVoidTy()) {
2476        DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
2477        return false;
2478      }
2479
2480      // Check that the stored type is vectorizable.
2481      if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
2482        Type *T = ST->getValueOperand()->getType();
2483        if (!VectorType::isValidElementType(T))
2484          return false;
2485      }
2486
2487      // Reduction instructions are allowed to have exit users.
2488      // All other instructions must not have external users.
2489      if (!AllowedExit.count(it))
2490        //Check that all of the users of the loop are inside the BB.
2491        for (Value::use_iterator I = it->use_begin(), E = it->use_end();
2492             I != E; ++I) {
2493          Instruction *U = cast<Instruction>(*I);
2494          // This user may be a reduction exit value.
2495          if (!TheLoop->contains(U)) {
2496            DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
2497            return false;
2498          }
2499        }
2500    } // next instr.
2501
2502  }
2503
2504  if (!Induction) {
2505    DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
2506    assert(getInductionVars()->size() && "No induction variables");
2507  }
2508
2509  return true;
2510}
2511
2512void LoopVectorizationLegality::collectLoopUniforms() {
2513  // We now know that the loop is vectorizable!
2514  // Collect variables that will remain uniform after vectorization.
2515  std::vector<Value*> Worklist;
2516  BasicBlock *Latch = TheLoop->getLoopLatch();
2517
2518  // Start with the conditional branch and walk up the block.
2519  Worklist.push_back(Latch->getTerminator()->getOperand(0));
2520
2521  while (Worklist.size()) {
2522    Instruction *I = dyn_cast<Instruction>(Worklist.back());
2523    Worklist.pop_back();
2524
2525    // Look at instructions inside this loop.
2526    // Stop when reaching PHI nodes.
2527    // TODO: we need to follow values all over the loop, not only in this block.
2528    if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
2529      continue;
2530
2531    // This is a known uniform.
2532    Uniforms.insert(I);
2533
2534    // Insert all operands.
2535    for (int i = 0, Op = I->getNumOperands(); i < Op; ++i) {
2536      Worklist.push_back(I->getOperand(i));
2537    }
2538  }
2539}
2540
2541AliasAnalysis::Location
2542LoopVectorizationLegality::getLoadStoreLocation(Instruction *Inst) {
2543  if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
2544    return AA->getLocation(Store);
2545  else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
2546    return AA->getLocation(Load);
2547
2548  llvm_unreachable("Should be either load or store instruction");
2549}
2550
2551bool
2552LoopVectorizationLegality::hasPossibleGlobalWriteReorder(
2553                                                Value *Object,
2554                                                Instruction *Inst,
2555                                                AliasMultiMap& WriteObjects,
2556                                                unsigned MaxByteWidth) {
2557
2558  AliasAnalysis::Location ThisLoc = getLoadStoreLocation(Inst);
2559
2560  std::vector<Instruction*>::iterator
2561              it = WriteObjects[Object].begin(),
2562              end = WriteObjects[Object].end();
2563
2564  for (; it != end; ++it) {
2565    Instruction* I = *it;
2566    if (I == Inst)
2567      continue;
2568
2569    AliasAnalysis::Location ThatLoc = getLoadStoreLocation(I);
2570    if (AA->alias(ThisLoc.getWithNewSize(MaxByteWidth),
2571                  ThatLoc.getWithNewSize(MaxByteWidth)))
2572      return true;
2573  }
2574  return false;
2575}
2576
2577bool LoopVectorizationLegality::canVectorizeMemory() {
2578
2579  typedef SmallVector<Value*, 16> ValueVector;
2580  typedef SmallPtrSet<Value*, 16> ValueSet;
2581  // Holds the Load and Store *instructions*.
2582  ValueVector Loads;
2583  ValueVector Stores;
2584  PtrRtCheck.Pointers.clear();
2585  PtrRtCheck.Need = false;
2586
2587  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
2588
2589  // For each block.
2590  for (Loop::block_iterator bb = TheLoop->block_begin(),
2591       be = TheLoop->block_end(); bb != be; ++bb) {
2592
2593    // Scan the BB and collect legal loads and stores.
2594    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2595         ++it) {
2596
2597      // If this is a load, save it. If this instruction can read from memory
2598      // but is not a load, then we quit. Notice that we don't handle function
2599      // calls that read or write.
2600      if (it->mayReadFromMemory()) {
2601        LoadInst *Ld = dyn_cast<LoadInst>(it);
2602        if (!Ld) return false;
2603        if (!Ld->isSimple() && !IsAnnotatedParallel) {
2604          DEBUG(dbgs() << "LV: Found a non-simple load.\n");
2605          return false;
2606        }
2607        Loads.push_back(Ld);
2608        continue;
2609      }
2610
2611      // Save 'store' instructions. Abort if other instructions write to memory.
2612      if (it->mayWriteToMemory()) {
2613        StoreInst *St = dyn_cast<StoreInst>(it);
2614        if (!St) return false;
2615        if (!St->isSimple() && !IsAnnotatedParallel) {
2616          DEBUG(dbgs() << "LV: Found a non-simple store.\n");
2617          return false;
2618        }
2619        Stores.push_back(St);
2620      }
2621    } // next instr.
2622  } // next block.
2623
2624  // Now we have two lists that hold the loads and the stores.
2625  // Next, we find the pointers that they use.
2626
2627  // Check if we see any stores. If there are no stores, then we don't
2628  // care if the pointers are *restrict*.
2629  if (!Stores.size()) {
2630    DEBUG(dbgs() << "LV: Found a read-only loop!\n");
2631    return true;
2632  }
2633
2634  // Holds the read and read-write *pointers* that we find. These maps hold
2635  // unique values for pointers (so no need for multi-map).
2636  AliasMap Reads;
2637  AliasMap ReadWrites;
2638
2639  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
2640  // multiple times on the same object. If the ptr is accessed twice, once
2641  // for read and once for write, it will only appear once (on the write
2642  // list). This is okay, since we are going to check for conflicts between
2643  // writes and between reads and writes, but not between reads and reads.
2644  ValueSet Seen;
2645
2646  ValueVector::iterator I, IE;
2647  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
2648    StoreInst *ST = cast<StoreInst>(*I);
2649    Value* Ptr = ST->getPointerOperand();
2650
2651    if (isUniform(Ptr)) {
2652      DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
2653      return false;
2654    }
2655
2656    // If we did *not* see this pointer before, insert it to
2657    // the read-write list. At this phase it is only a 'write' list.
2658    if (Seen.insert(Ptr))
2659      ReadWrites.insert(std::make_pair(Ptr, ST));
2660  }
2661
2662  if (IsAnnotatedParallel) {
2663    DEBUG(dbgs()
2664          << "LV: A loop annotated parallel, ignore memory dependency "
2665          << "checks.\n");
2666    return true;
2667  }
2668
2669  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
2670    LoadInst *LD = cast<LoadInst>(*I);
2671    Value* Ptr = LD->getPointerOperand();
2672    // If we did *not* see this pointer before, insert it to the
2673    // read list. If we *did* see it before, then it is already in
2674    // the read-write list. This allows us to vectorize expressions
2675    // such as A[i] += x;  Because the address of A[i] is a read-write
2676    // pointer. This only works if the index of A[i] is consecutive.
2677    // If the address of i is unknown (for example A[B[i]]) then we may
2678    // read a few words, modify, and write a few words, and some of the
2679    // words may be written to the same address.
2680    if (Seen.insert(Ptr) || 0 == isConsecutivePtr(Ptr))
2681      Reads.insert(std::make_pair(Ptr, LD));
2682  }
2683
2684  // If we write (or read-write) to a single destination and there are no
2685  // other reads in this loop then is it safe to vectorize.
2686  if (ReadWrites.size() == 1 && Reads.size() == 0) {
2687    DEBUG(dbgs() << "LV: Found a write-only loop!\n");
2688    return true;
2689  }
2690
2691  unsigned NumReadPtrs = 0;
2692  unsigned NumWritePtrs = 0;
2693
2694  // Find pointers with computable bounds. We are going to use this information
2695  // to place a runtime bound check.
2696  bool CanDoRT = true;
2697  AliasMap::iterator MI, ME;
2698  for (MI = ReadWrites.begin(), ME = ReadWrites.end(); MI != ME; ++MI) {
2699    Value *V = (*MI).first;
2700    if (hasComputableBounds(V)) {
2701      PtrRtCheck.insert(SE, TheLoop, V, true);
2702      NumWritePtrs++;
2703      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *V <<"\n");
2704    } else {
2705      CanDoRT = false;
2706      break;
2707    }
2708  }
2709  for (MI = Reads.begin(), ME = Reads.end(); MI != ME; ++MI) {
2710    Value *V = (*MI).first;
2711    if (hasComputableBounds(V)) {
2712      PtrRtCheck.insert(SE, TheLoop, V, false);
2713      NumReadPtrs++;
2714      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *V <<"\n");
2715    } else {
2716      CanDoRT = false;
2717      break;
2718    }
2719  }
2720
2721  // Check that we did not collect too many pointers or found a
2722  // unsizeable pointer.
2723  unsigned NumComparisons = (NumWritePtrs * (NumReadPtrs + NumWritePtrs - 1));
2724  DEBUG(dbgs() << "LV: We need to compare " << NumComparisons << " ptrs.\n");
2725  if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
2726    PtrRtCheck.reset();
2727    CanDoRT = false;
2728  }
2729
2730  if (CanDoRT) {
2731    DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
2732  }
2733
2734  bool NeedRTCheck = false;
2735
2736  // Biggest vectorized access possible, vector width * unroll factor.
2737  // TODO: We're being very pessimistic here, find a way to know the
2738  // real access width before getting here.
2739  unsigned MaxByteWidth = (TTI->getRegisterBitWidth(true) / 8) *
2740                           TTI->getMaximumUnrollFactor();
2741  // Now that the pointers are in two lists (Reads and ReadWrites), we
2742  // can check that there are no conflicts between each of the writes and
2743  // between the writes to the reads.
2744  // Note that WriteObjects duplicates the stores (indexed now by underlying
2745  // objects) to avoid pointing to elements inside ReadWrites.
2746  // TODO: Maybe create a new type where they can interact without duplication.
2747  AliasMultiMap WriteObjects;
2748  ValueVector TempObjects;
2749
2750  // Check that the read-writes do not conflict with other read-write
2751  // pointers.
2752  bool AllWritesIdentified = true;
2753  for (MI = ReadWrites.begin(), ME = ReadWrites.end(); MI != ME; ++MI) {
2754    Value *Val = (*MI).first;
2755    Instruction *Inst = (*MI).second;
2756
2757    GetUnderlyingObjects(Val, TempObjects, DL);
2758    for (ValueVector::iterator UI=TempObjects.begin(), UE=TempObjects.end();
2759         UI != UE; ++UI) {
2760      if (!isIdentifiedObject(*UI)) {
2761        DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **UI <<"\n");
2762        NeedRTCheck = true;
2763        AllWritesIdentified = false;
2764      }
2765
2766      // Never seen it before, can't alias.
2767      if (WriteObjects[*UI].empty()) {
2768        DEBUG(dbgs() << "LV: Adding Underlying value:" << **UI <<"\n");
2769        WriteObjects[*UI].push_back(Inst);
2770        continue;
2771      }
2772      // Direct alias found.
2773      if (!AA || dyn_cast<GlobalValue>(*UI) == NULL) {
2774        DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
2775              << **UI <<"\n");
2776        return false;
2777      }
2778      DEBUG(dbgs() << "LV: Found a conflicting global value:"
2779            << **UI <<"\n");
2780      DEBUG(dbgs() << "LV: While examining store:" << *Inst <<"\n");
2781      DEBUG(dbgs() << "LV: On value:" << *Val <<"\n");
2782
2783      // If global alias, make sure they do alias.
2784      if (hasPossibleGlobalWriteReorder(*UI,
2785                                        Inst,
2786                                        WriteObjects,
2787                                        MaxByteWidth)) {
2788        DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
2789              << *UI <<"\n");
2790        return false;
2791      }
2792
2793      // Didn't alias, insert into map for further reference.
2794      WriteObjects[*UI].push_back(Inst);
2795    }
2796    TempObjects.clear();
2797  }
2798
2799  /// Check that the reads don't conflict with the read-writes.
2800  for (MI = Reads.begin(), ME = Reads.end(); MI != ME; ++MI) {
2801    Value *Val = (*MI).first;
2802    GetUnderlyingObjects(Val, TempObjects, DL);
2803    for (ValueVector::iterator UI=TempObjects.begin(), UE=TempObjects.end();
2804         UI != UE; ++UI) {
2805      // If all of the writes are identified then we don't care if the read
2806      // pointer is identified or not.
2807      if (!AllWritesIdentified && !isIdentifiedObject(*UI)) {
2808        DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **UI <<"\n");
2809        NeedRTCheck = true;
2810      }
2811
2812      // Never seen it before, can't alias.
2813      if (WriteObjects[*UI].empty())
2814        continue;
2815      // Direct alias found.
2816      if (!AA || dyn_cast<GlobalValue>(*UI) == NULL) {
2817        DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
2818              << **UI <<"\n");
2819        return false;
2820      }
2821      DEBUG(dbgs() << "LV: Found a global value:  "
2822            << **UI <<"\n");
2823      Instruction *Inst = (*MI).second;
2824      DEBUG(dbgs() << "LV: While examining load:" << *Inst <<"\n");
2825      DEBUG(dbgs() << "LV: On value:" << *Val <<"\n");
2826
2827      // If global alias, make sure they do alias.
2828      if (hasPossibleGlobalWriteReorder(*UI,
2829                                        Inst,
2830                                        WriteObjects,
2831                                        MaxByteWidth)) {
2832        DEBUG(dbgs() << "LV: Found a possible read-write reorder:"
2833              << *UI <<"\n");
2834        return false;
2835      }
2836    }
2837    TempObjects.clear();
2838  }
2839
2840  PtrRtCheck.Need = NeedRTCheck;
2841  if (NeedRTCheck && !CanDoRT) {
2842    DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
2843          "the array bounds.\n");
2844    PtrRtCheck.reset();
2845    return false;
2846  }
2847
2848  DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") <<
2849        " need a runtime memory check.\n");
2850  return true;
2851}
2852
2853bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
2854                                                ReductionKind Kind) {
2855  if (Phi->getNumIncomingValues() != 2)
2856    return false;
2857
2858  // Reduction variables are only found in the loop header block.
2859  if (Phi->getParent() != TheLoop->getHeader())
2860    return false;
2861
2862  // Obtain the reduction start value from the value that comes from the loop
2863  // preheader.
2864  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
2865
2866  // ExitInstruction is the single value which is used outside the loop.
2867  // We only allow for a single reduction value to be used outside the loop.
2868  // This includes users of the reduction, variables (which form a cycle
2869  // which ends in the phi node).
2870  Instruction *ExitInstruction = 0;
2871  // Indicates that we found a binary operation in our scan.
2872  bool FoundBinOp = false;
2873
2874  // Iter is our iterator. We start with the PHI node and scan for all of the
2875  // users of this instruction. All users must be instructions that can be
2876  // used as reduction variables (such as ADD). We may have a single
2877  // out-of-block user. The cycle must end with the original PHI.
2878  Instruction *Iter = Phi;
2879
2880  // To recognize min/max patterns formed by a icmp select sequence, we store
2881  // the number of instruction we saw from the recognized min/max pattern,
2882  // such that we don't stop when we see the phi has two uses (one by the select
2883  // and one by the icmp) and to make sure we only see exactly the two
2884  // instructions.
2885  unsigned NumICmpSelectPatternInst = 0;
2886  ReductionInstDesc ReduxDesc(false, 0);
2887
2888  // Avoid cycles in the chain.
2889  SmallPtrSet<Instruction *, 8> VisitedInsts;
2890  while (VisitedInsts.insert(Iter)) {
2891    // If the instruction has no users then this is a broken
2892    // chain and can't be a reduction variable.
2893    if (Iter->use_empty())
2894      return false;
2895
2896    // Did we find a user inside this loop already ?
2897    bool FoundInBlockUser = false;
2898    // Did we reach the initial PHI node already ?
2899    bool FoundStartPHI = false;
2900
2901    // Is this a bin op ?
2902    FoundBinOp |= !isa<PHINode>(Iter);
2903
2904    // For each of the *users* of iter.
2905    for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
2906         it != e; ++it) {
2907      Instruction *U = cast<Instruction>(*it);
2908      // We already know that the PHI is a user.
2909      if (U == Phi) {
2910        FoundStartPHI = true;
2911        continue;
2912      }
2913
2914      // Check if we found the exit user.
2915      BasicBlock *Parent = U->getParent();
2916      if (!TheLoop->contains(Parent)) {
2917        // Exit if you find multiple outside users.
2918        if (ExitInstruction != 0)
2919          return false;
2920        ExitInstruction = Iter;
2921      }
2922
2923      // We allow in-loop PHINodes which are not the original reduction PHI
2924      // node. If this PHI is the only user of Iter (happens in IF w/ no ELSE
2925      // structure) then don't skip this PHI.
2926      if (isa<PHINode>(Iter) && isa<PHINode>(U) &&
2927          U->getParent() != TheLoop->getHeader() &&
2928          TheLoop->contains(U) &&
2929          Iter->hasNUsesOrMore(2))
2930        continue;
2931
2932      // We can't have multiple inside users except for a combination of
2933      // icmp/select both using the phi.
2934      if (FoundInBlockUser && !NumICmpSelectPatternInst)
2935        return false;
2936      FoundInBlockUser = true;
2937
2938      // Any reduction instr must be of one of the allowed kinds.
2939      ReduxDesc = isReductionInstr(U, Kind, ReduxDesc);
2940      if (!ReduxDesc.IsReduction)
2941        return false;
2942
2943      if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(U) ||
2944                                       isa<SelectInst>(U)))
2945          ++NumICmpSelectPatternInst;
2946
2947      // Reductions of instructions such as Div, and Sub is only
2948      // possible if the LHS is the reduction variable.
2949      if (!U->isCommutative() && !isa<PHINode>(U) && !isa<SelectInst>(U) &&
2950          !isa<ICmpInst>(U) && U->getOperand(0) != Iter)
2951        return false;
2952
2953      Iter = ReduxDesc.PatternLastInst;
2954    }
2955
2956    // This means we have seen one but not the other instruction of the
2957    // pattern or more than just a select and cmp.
2958    if (Kind == RK_IntegerMinMax && NumICmpSelectPatternInst != 2)
2959      return false;
2960
2961    // We found a reduction var if we have reached the original
2962    // phi node and we only have a single instruction with out-of-loop
2963    // users.
2964    if (FoundStartPHI) {
2965      // This instruction is allowed to have out-of-loop users.
2966      AllowedExit.insert(ExitInstruction);
2967
2968      // Save the description of this reduction variable.
2969      ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
2970                             ReduxDesc.MinMaxKind);
2971      Reductions[Phi] = RD;
2972      // We've ended the cycle. This is a reduction variable if we have an
2973      // outside user and it has a binary op.
2974      return FoundBinOp && ExitInstruction;
2975    }
2976  }
2977
2978  return false;
2979}
2980
2981/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
2982/// pattern corresponding to a min(X, Y) or max(X, Y).
2983LoopVectorizationLegality::ReductionInstDesc
2984LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I, ReductionInstDesc &Prev) {
2985
2986  assert((isa<ICmpInst>(I) || isa<SelectInst>(I)) &&
2987         "Expect a select instruction");
2988  ICmpInst *Cmp = 0;
2989  SelectInst *Select = 0;
2990
2991  // We must handle the select(cmp()) as a single instruction. Advance to the
2992  // select.
2993  if ((Cmp = dyn_cast<ICmpInst>(I))) {
2994    if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin())))
2995      return ReductionInstDesc(false, I);
2996    return ReductionInstDesc(Select, Prev.MinMaxKind);
2997  }
2998
2999  // Only handle single use cases for now.
3000  if (!(Select = dyn_cast<SelectInst>(I)))
3001    return ReductionInstDesc(false, I);
3002  if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))))
3003    return ReductionInstDesc(false, I);
3004  if (!Cmp->hasOneUse())
3005    return ReductionInstDesc(false, I);
3006
3007  Value *CmpLeft = Cmp->getOperand(0);
3008  Value *CmpRight = Cmp->getOperand(1);
3009
3010  // Look for a min/max pattern.
3011  if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3012    return ReductionInstDesc(Select, MRK_UIntMin);
3013  else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3014    return ReductionInstDesc(Select, MRK_UIntMax);
3015  else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3016    return ReductionInstDesc(Select, MRK_SIntMax);
3017  else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3018    return ReductionInstDesc(Select, MRK_SIntMin);
3019
3020  return ReductionInstDesc(false, I);
3021}
3022
3023LoopVectorizationLegality::ReductionInstDesc
3024LoopVectorizationLegality::isReductionInstr(Instruction *I,
3025                                            ReductionKind Kind,
3026                                            ReductionInstDesc &Prev) {
3027  bool FP = I->getType()->isFloatingPointTy();
3028  bool FastMath = (FP && I->isCommutative() && I->isAssociative());
3029  switch (I->getOpcode()) {
3030  default:
3031    return ReductionInstDesc(false, I);
3032  case Instruction::PHI:
3033      if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd))
3034        return ReductionInstDesc(false, I);
3035    return ReductionInstDesc(I, Prev.MinMaxKind);
3036  case Instruction::Sub:
3037  case Instruction::Add:
3038    return ReductionInstDesc(Kind == RK_IntegerAdd, I);
3039  case Instruction::Mul:
3040    return ReductionInstDesc(Kind == RK_IntegerMult, I);
3041  case Instruction::And:
3042    return ReductionInstDesc(Kind == RK_IntegerAnd, I);
3043  case Instruction::Or:
3044    return ReductionInstDesc(Kind == RK_IntegerOr, I);
3045  case Instruction::Xor:
3046    return ReductionInstDesc(Kind == RK_IntegerXor, I);
3047  case Instruction::FMul:
3048    return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
3049  case Instruction::FAdd:
3050    return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
3051  case Instruction::ICmp:
3052  case Instruction::Select:
3053    if (Kind != RK_IntegerMinMax)
3054      return ReductionInstDesc(false, I);
3055    return isMinMaxSelectCmpPattern(I, Prev);
3056  }
3057}
3058
3059LoopVectorizationLegality::InductionKind
3060LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
3061  Type *PhiTy = Phi->getType();
3062  // We only handle integer and pointer inductions variables.
3063  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
3064    return IK_NoInduction;
3065
3066  // Check that the PHI is consecutive.
3067  const SCEV *PhiScev = SE->getSCEV(Phi);
3068  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
3069  if (!AR) {
3070    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
3071    return IK_NoInduction;
3072  }
3073  const SCEV *Step = AR->getStepRecurrence(*SE);
3074
3075  // Integer inductions need to have a stride of one.
3076  if (PhiTy->isIntegerTy()) {
3077    if (Step->isOne())
3078      return IK_IntInduction;
3079    if (Step->isAllOnesValue())
3080      return IK_ReverseIntInduction;
3081    return IK_NoInduction;
3082  }
3083
3084  // Calculate the pointer stride and check if it is consecutive.
3085  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
3086  if (!C)
3087    return IK_NoInduction;
3088
3089  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
3090  uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
3091  if (C->getValue()->equalsInt(Size))
3092    return IK_PtrInduction;
3093  else if (C->getValue()->equalsInt(0 - Size))
3094    return IK_ReversePtrInduction;
3095
3096  return IK_NoInduction;
3097}
3098
3099bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
3100  Value *In0 = const_cast<Value*>(V);
3101  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
3102  if (!PN)
3103    return false;
3104
3105  return Inductions.count(PN);
3106}
3107
3108bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
3109  assert(TheLoop->contains(BB) && "Unknown block used");
3110
3111  // Blocks that do not dominate the latch need predication.
3112  BasicBlock* Latch = TheLoop->getLoopLatch();
3113  return !DT->dominates(BB, Latch);
3114}
3115
3116bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) {
3117  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3118    // We don't predicate loads/stores at the moment.
3119    if (it->mayReadFromMemory() || it->mayWriteToMemory() || it->mayThrow())
3120      return false;
3121
3122    // The instructions below can trap.
3123    switch (it->getOpcode()) {
3124    default: continue;
3125    case Instruction::UDiv:
3126    case Instruction::SDiv:
3127    case Instruction::URem:
3128    case Instruction::SRem:
3129             return false;
3130    }
3131  }
3132
3133  return true;
3134}
3135
3136bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
3137  const SCEV *PhiScev = SE->getSCEV(Ptr);
3138  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
3139  if (!AR)
3140    return false;
3141
3142  return AR->isAffine();
3143}
3144
3145LoopVectorizationCostModel::VectorizationFactor
3146LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
3147                                                      unsigned UserVF) {
3148  // Width 1 means no vectorize
3149  VectorizationFactor Factor = { 1U, 0U };
3150  if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
3151    DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
3152    return Factor;
3153  }
3154
3155  // Find the trip count.
3156  unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
3157  DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
3158
3159  unsigned WidestType = getWidestType();
3160  unsigned WidestRegister = TTI.getRegisterBitWidth(true);
3161  unsigned MaxVectorSize = WidestRegister / WidestType;
3162  DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
3163  DEBUG(dbgs() << "LV: The Widest register is:" << WidestRegister << "bits.\n");
3164
3165  if (MaxVectorSize == 0) {
3166    DEBUG(dbgs() << "LV: The target has no vector registers.\n");
3167    MaxVectorSize = 1;
3168  }
3169
3170  assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
3171         " into one vector!");
3172
3173  unsigned VF = MaxVectorSize;
3174
3175  // If we optimize the program for size, avoid creating the tail loop.
3176  if (OptForSize) {
3177    // If we are unable to calculate the trip count then don't try to vectorize.
3178    if (TC < 2) {
3179      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
3180      return Factor;
3181    }
3182
3183    // Find the maximum SIMD width that can fit within the trip count.
3184    VF = TC % MaxVectorSize;
3185
3186    if (VF == 0)
3187      VF = MaxVectorSize;
3188
3189    // If the trip count that we found modulo the vectorization factor is not
3190    // zero then we require a tail.
3191    if (VF < 2) {
3192      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
3193      return Factor;
3194    }
3195  }
3196
3197  if (UserVF != 0) {
3198    assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
3199    DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
3200
3201    Factor.Width = UserVF;
3202    return Factor;
3203  }
3204
3205  float Cost = expectedCost(1);
3206  unsigned Width = 1;
3207  DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
3208  for (unsigned i=2; i <= VF; i*=2) {
3209    // Notice that the vector loop needs to be executed less times, so
3210    // we need to divide the cost of the vector loops by the width of
3211    // the vector elements.
3212    float VectorCost = expectedCost(i) / (float)i;
3213    DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
3214          (int)VectorCost << ".\n");
3215    if (VectorCost < Cost) {
3216      Cost = VectorCost;
3217      Width = i;
3218    }
3219  }
3220
3221  DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
3222  Factor.Width = Width;
3223  Factor.Cost = Width * Cost;
3224  return Factor;
3225}
3226
3227unsigned LoopVectorizationCostModel::getWidestType() {
3228  unsigned MaxWidth = 8;
3229
3230  // For each block.
3231  for (Loop::block_iterator bb = TheLoop->block_begin(),
3232       be = TheLoop->block_end(); bb != be; ++bb) {
3233    BasicBlock *BB = *bb;
3234
3235    // For each instruction in the loop.
3236    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3237      Type *T = it->getType();
3238
3239      // Only examine Loads, Stores and PHINodes.
3240      if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
3241        continue;
3242
3243      // Examine PHI nodes that are reduction variables.
3244      if (PHINode *PN = dyn_cast<PHINode>(it))
3245        if (!Legal->getReductionVars()->count(PN))
3246          continue;
3247
3248      // Examine the stored values.
3249      if (StoreInst *ST = dyn_cast<StoreInst>(it))
3250        T = ST->getValueOperand()->getType();
3251
3252      // Ignore loaded pointer types and stored pointer types that are not
3253      // consecutive. However, we do want to take consecutive stores/loads of
3254      // pointer vectors into account.
3255      if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
3256        continue;
3257
3258      MaxWidth = std::max(MaxWidth,
3259                          (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
3260    }
3261  }
3262
3263  return MaxWidth;
3264}
3265
3266unsigned
3267LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
3268                                               unsigned UserUF,
3269                                               unsigned VF,
3270                                               unsigned LoopCost) {
3271
3272  // -- The unroll heuristics --
3273  // We unroll the loop in order to expose ILP and reduce the loop overhead.
3274  // There are many micro-architectural considerations that we can't predict
3275  // at this level. For example frontend pressure (on decode or fetch) due to
3276  // code size, or the number and capabilities of the execution ports.
3277  //
3278  // We use the following heuristics to select the unroll factor:
3279  // 1. If the code has reductions the we unroll in order to break the cross
3280  // iteration dependency.
3281  // 2. If the loop is really small then we unroll in order to reduce the loop
3282  // overhead.
3283  // 3. We don't unroll if we think that we will spill registers to memory due
3284  // to the increased register pressure.
3285
3286  // Use the user preference, unless 'auto' is selected.
3287  if (UserUF != 0)
3288    return UserUF;
3289
3290  // When we optimize for size we don't unroll.
3291  if (OptForSize)
3292    return 1;
3293
3294  // Do not unroll loops with a relatively small trip count.
3295  unsigned TC = SE->getSmallConstantTripCount(TheLoop,
3296                                              TheLoop->getLoopLatch());
3297  if (TC > 1 && TC < TinyTripCountUnrollThreshold)
3298    return 1;
3299
3300  unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
3301  DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
3302        " vector registers\n");
3303
3304  LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
3305  // We divide by these constants so assume that we have at least one
3306  // instruction that uses at least one register.
3307  R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
3308  R.NumInstructions = std::max(R.NumInstructions, 1U);
3309
3310  // We calculate the unroll factor using the following formula.
3311  // Subtract the number of loop invariants from the number of available
3312  // registers. These registers are used by all of the unrolled instances.
3313  // Next, divide the remaining registers by the number of registers that is
3314  // required by the loop, in order to estimate how many parallel instances
3315  // fit without causing spills.
3316  unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
3317
3318  // Clamp the unroll factor ranges to reasonable factors.
3319  unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
3320
3321  // If we did not calculate the cost for VF (because the user selected the VF)
3322  // then we calculate the cost of VF here.
3323  if (LoopCost == 0)
3324    LoopCost = expectedCost(VF);
3325
3326  // Clamp the calculated UF to be between the 1 and the max unroll factor
3327  // that the target allows.
3328  if (UF > MaxUnrollSize)
3329    UF = MaxUnrollSize;
3330  else if (UF < 1)
3331    UF = 1;
3332
3333  if (Legal->getReductionVars()->size()) {
3334    DEBUG(dbgs() << "LV: Unrolling because of reductions. \n");
3335    return UF;
3336  }
3337
3338  // We want to unroll tiny loops in order to reduce the loop overhead.
3339  // We assume that the cost overhead is 1 and we use the cost model
3340  // to estimate the cost of the loop and unroll until the cost of the
3341  // loop overhead is about 5% of the cost of the loop.
3342  DEBUG(dbgs() << "LV: Loop cost is "<< LoopCost <<" \n");
3343  if (LoopCost < 20) {
3344    DEBUG(dbgs() << "LV: Unrolling to reduce branch cost. \n");
3345    unsigned NewUF = 20/LoopCost + 1;
3346    return std::min(NewUF, UF);
3347  }
3348
3349  DEBUG(dbgs() << "LV: Not Unrolling. \n");
3350  return 1;
3351}
3352
3353LoopVectorizationCostModel::RegisterUsage
3354LoopVectorizationCostModel::calculateRegisterUsage() {
3355  // This function calculates the register usage by measuring the highest number
3356  // of values that are alive at a single location. Obviously, this is a very
3357  // rough estimation. We scan the loop in a topological order in order and
3358  // assign a number to each instruction. We use RPO to ensure that defs are
3359  // met before their users. We assume that each instruction that has in-loop
3360  // users starts an interval. We record every time that an in-loop value is
3361  // used, so we have a list of the first and last occurrences of each
3362  // instruction. Next, we transpose this data structure into a multi map that
3363  // holds the list of intervals that *end* at a specific location. This multi
3364  // map allows us to perform a linear search. We scan the instructions linearly
3365  // and record each time that a new interval starts, by placing it in a set.
3366  // If we find this value in the multi-map then we remove it from the set.
3367  // The max register usage is the maximum size of the set.
3368  // We also search for instructions that are defined outside the loop, but are
3369  // used inside the loop. We need this number separately from the max-interval
3370  // usage number because when we unroll, loop-invariant values do not take
3371  // more register.
3372  LoopBlocksDFS DFS(TheLoop);
3373  DFS.perform(LI);
3374
3375  RegisterUsage R;
3376  R.NumInstructions = 0;
3377
3378  // Each 'key' in the map opens a new interval. The values
3379  // of the map are the index of the 'last seen' usage of the
3380  // instruction that is the key.
3381  typedef DenseMap<Instruction*, unsigned> IntervalMap;
3382  // Maps instruction to its index.
3383  DenseMap<unsigned, Instruction*> IdxToInstr;
3384  // Marks the end of each interval.
3385  IntervalMap EndPoint;
3386  // Saves the list of instruction indices that are used in the loop.
3387  SmallSet<Instruction*, 8> Ends;
3388  // Saves the list of values that are used in the loop but are
3389  // defined outside the loop, such as arguments and constants.
3390  SmallPtrSet<Value*, 8> LoopInvariants;
3391
3392  unsigned Index = 0;
3393  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
3394       be = DFS.endRPO(); bb != be; ++bb) {
3395    R.NumInstructions += (*bb)->size();
3396    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3397         ++it) {
3398      Instruction *I = it;
3399      IdxToInstr[Index++] = I;
3400
3401      // Save the end location of each USE.
3402      for (unsigned i = 0; i < I->getNumOperands(); ++i) {
3403        Value *U = I->getOperand(i);
3404        Instruction *Instr = dyn_cast<Instruction>(U);
3405
3406        // Ignore non-instruction values such as arguments, constants, etc.
3407        if (!Instr) continue;
3408
3409        // If this instruction is outside the loop then record it and continue.
3410        if (!TheLoop->contains(Instr)) {
3411          LoopInvariants.insert(Instr);
3412          continue;
3413        }
3414
3415        // Overwrite previous end points.
3416        EndPoint[Instr] = Index;
3417        Ends.insert(Instr);
3418      }
3419    }
3420  }
3421
3422  // Saves the list of intervals that end with the index in 'key'.
3423  typedef SmallVector<Instruction*, 2> InstrList;
3424  DenseMap<unsigned, InstrList> TransposeEnds;
3425
3426  // Transpose the EndPoints to a list of values that end at each index.
3427  for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
3428       it != e; ++it)
3429    TransposeEnds[it->second].push_back(it->first);
3430
3431  SmallSet<Instruction*, 8> OpenIntervals;
3432  unsigned MaxUsage = 0;
3433
3434
3435  DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
3436  for (unsigned int i = 0; i < Index; ++i) {
3437    Instruction *I = IdxToInstr[i];
3438    // Ignore instructions that are never used within the loop.
3439    if (!Ends.count(I)) continue;
3440
3441    // Remove all of the instructions that end at this location.
3442    InstrList &List = TransposeEnds[i];
3443    for (unsigned int j=0, e = List.size(); j < e; ++j)
3444      OpenIntervals.erase(List[j]);
3445
3446    // Count the number of live interals.
3447    MaxUsage = std::max(MaxUsage, OpenIntervals.size());
3448
3449    DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
3450          OpenIntervals.size() <<"\n");
3451
3452    // Add the current instruction to the list of open intervals.
3453    OpenIntervals.insert(I);
3454  }
3455
3456  unsigned Invariant = LoopInvariants.size();
3457  DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
3458  DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
3459  DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
3460
3461  R.LoopInvariantRegs = Invariant;
3462  R.MaxLocalUsers = MaxUsage;
3463  return R;
3464}
3465
3466unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
3467  unsigned Cost = 0;
3468
3469  // For each block.
3470  for (Loop::block_iterator bb = TheLoop->block_begin(),
3471       be = TheLoop->block_end(); bb != be; ++bb) {
3472    unsigned BlockCost = 0;
3473    BasicBlock *BB = *bb;
3474
3475    // For each instruction in the old loop.
3476    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3477      // Skip dbg intrinsics.
3478      if (isa<DbgInfoIntrinsic>(it))
3479        continue;
3480
3481      unsigned C = getInstructionCost(it, VF);
3482      Cost += C;
3483      DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " <<
3484            VF << " For instruction: "<< *it << "\n");
3485    }
3486
3487    // We assume that if-converted blocks have a 50% chance of being executed.
3488    // When the code is scalar then some of the blocks are avoided due to CF.
3489    // When the code is vectorized we execute all code paths.
3490    if (Legal->blockNeedsPredication(*bb) && VF == 1)
3491      BlockCost /= 2;
3492
3493    Cost += BlockCost;
3494  }
3495
3496  return Cost;
3497}
3498
3499unsigned
3500LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
3501  // If we know that this instruction will remain uniform, check the cost of
3502  // the scalar version.
3503  if (Legal->isUniformAfterVectorization(I))
3504    VF = 1;
3505
3506  Type *RetTy = I->getType();
3507  Type *VectorTy = ToVectorTy(RetTy, VF);
3508
3509  // TODO: We need to estimate the cost of intrinsic calls.
3510  switch (I->getOpcode()) {
3511  case Instruction::GetElementPtr:
3512    // We mark this instruction as zero-cost because the cost of GEPs in
3513    // vectorized code depends on whether the corresponding memory instruction
3514    // is scalarized or not. Therefore, we handle GEPs with the memory
3515    // instruction cost.
3516    return 0;
3517  case Instruction::Br: {
3518    return TTI.getCFInstrCost(I->getOpcode());
3519  }
3520  case Instruction::PHI:
3521    //TODO: IF-converted IFs become selects.
3522    return 0;
3523  case Instruction::Add:
3524  case Instruction::FAdd:
3525  case Instruction::Sub:
3526  case Instruction::FSub:
3527  case Instruction::Mul:
3528  case Instruction::FMul:
3529  case Instruction::UDiv:
3530  case Instruction::SDiv:
3531  case Instruction::FDiv:
3532  case Instruction::URem:
3533  case Instruction::SRem:
3534  case Instruction::FRem:
3535  case Instruction::Shl:
3536  case Instruction::LShr:
3537  case Instruction::AShr:
3538  case Instruction::And:
3539  case Instruction::Or:
3540  case Instruction::Xor: {
3541    // Certain instructions can be cheaper to vectorize if they have a constant
3542    // second vector operand. One example of this are shifts on x86.
3543    TargetTransformInfo::OperandValueKind Op1VK =
3544      TargetTransformInfo::OK_AnyValue;
3545    TargetTransformInfo::OperandValueKind Op2VK =
3546      TargetTransformInfo::OK_AnyValue;
3547
3548    if (isa<ConstantInt>(I->getOperand(1)))
3549      Op2VK = TargetTransformInfo::OK_UniformConstantValue;
3550
3551    return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
3552  }
3553  case Instruction::Select: {
3554    SelectInst *SI = cast<SelectInst>(I);
3555    const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
3556    bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
3557    Type *CondTy = SI->getCondition()->getType();
3558    if (!ScalarCond)
3559      CondTy = VectorType::get(CondTy, VF);
3560
3561    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
3562  }
3563  case Instruction::ICmp:
3564  case Instruction::FCmp: {
3565    Type *ValTy = I->getOperand(0)->getType();
3566    VectorTy = ToVectorTy(ValTy, VF);
3567    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
3568  }
3569  case Instruction::Store:
3570  case Instruction::Load: {
3571    StoreInst *SI = dyn_cast<StoreInst>(I);
3572    LoadInst *LI = dyn_cast<LoadInst>(I);
3573    Type *ValTy = (SI ? SI->getValueOperand()->getType() :
3574                   LI->getType());
3575    VectorTy = ToVectorTy(ValTy, VF);
3576
3577    unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
3578    unsigned AS = SI ? SI->getPointerAddressSpace() :
3579      LI->getPointerAddressSpace();
3580    Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
3581    // We add the cost of address computation here instead of with the gep
3582    // instruction because only here we know whether the operation is
3583    // scalarized.
3584    if (VF == 1)
3585      return TTI.getAddressComputationCost(VectorTy) +
3586        TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
3587
3588    // Scalarized loads/stores.
3589    int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
3590    bool Reverse = ConsecutiveStride < 0;
3591    unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
3592    unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
3593    if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
3594      unsigned Cost = 0;
3595      // The cost of extracting from the value vector and pointer vector.
3596      Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
3597      for (unsigned i = 0; i < VF; ++i) {
3598        //  The cost of extracting the pointer operand.
3599        Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
3600        // In case of STORE, the cost of ExtractElement from the vector.
3601        // In case of LOAD, the cost of InsertElement into the returned
3602        // vector.
3603        Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
3604                                            Instruction::InsertElement,
3605                                            VectorTy, i);
3606      }
3607
3608      // The cost of the scalar loads/stores.
3609      Cost += VF * TTI.getAddressComputationCost(ValTy->getScalarType());
3610      Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
3611                                       Alignment, AS);
3612      return Cost;
3613    }
3614
3615    // Wide load/stores.
3616    unsigned Cost = TTI.getAddressComputationCost(VectorTy);
3617    Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
3618
3619    if (Reverse)
3620      Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
3621                                  VectorTy, 0);
3622    return Cost;
3623  }
3624  case Instruction::ZExt:
3625  case Instruction::SExt:
3626  case Instruction::FPToUI:
3627  case Instruction::FPToSI:
3628  case Instruction::FPExt:
3629  case Instruction::PtrToInt:
3630  case Instruction::IntToPtr:
3631  case Instruction::SIToFP:
3632  case Instruction::UIToFP:
3633  case Instruction::Trunc:
3634  case Instruction::FPTrunc:
3635  case Instruction::BitCast: {
3636    // We optimize the truncation of induction variable.
3637    // The cost of these is the same as the scalar operation.
3638    if (I->getOpcode() == Instruction::Trunc &&
3639        Legal->isInductionVariable(I->getOperand(0)))
3640      return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
3641                                  I->getOperand(0)->getType());
3642
3643    Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
3644    return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
3645  }
3646  case Instruction::Call: {
3647    CallInst *CI = cast<CallInst>(I);
3648    Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
3649    assert(ID && "Not an intrinsic call!");
3650    Type *RetTy = ToVectorTy(CI->getType(), VF);
3651    SmallVector<Type*, 4> Tys;
3652    for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
3653      Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
3654    return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
3655  }
3656  default: {
3657    // We are scalarizing the instruction. Return the cost of the scalar
3658    // instruction, plus the cost of insert and extract into vector
3659    // elements, times the vector width.
3660    unsigned Cost = 0;
3661
3662    if (!RetTy->isVoidTy() && VF != 1) {
3663      unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
3664                                                VectorTy);
3665      unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
3666                                                VectorTy);
3667
3668      // The cost of inserting the results plus extracting each one of the
3669      // operands.
3670      Cost += VF * (InsCost + ExtCost * I->getNumOperands());
3671    }
3672
3673    // The cost of executing VF copies of the scalar instruction. This opcode
3674    // is unknown. Assume that it is the same as 'mul'.
3675    Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
3676    return Cost;
3677  }
3678  }// end of switch.
3679}
3680
3681Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
3682  if (Scalar->isVoidTy() || VF == 1)
3683    return Scalar;
3684  return VectorType::get(Scalar, VF);
3685}
3686
3687char LoopVectorize::ID = 0;
3688static const char lv_name[] = "Loop Vectorization";
3689INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
3690INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
3691INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
3692INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
3693INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
3694INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
3695
3696namespace llvm {
3697  Pass *createLoopVectorizePass() {
3698    return new LoopVectorize();
3699  }
3700}
3701
3702bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
3703  // Check for a store.
3704  if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
3705    return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
3706
3707  // Check for a load.
3708  if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
3709    return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
3710
3711  return false;
3712}
3713