LoopVectorize.cpp revision 5df684a6d1bc655c93df4d2f1efafe9093420f4f
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11// and generates target-independent LLVM-IR.
12// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13// of instructions in order to estimate the profitability of vectorization.
14//
15// The loop vectorizer combines consecutive loop iterations into a single
16// 'wide' iteration. After this transformation the index is incremented
17// by the SIMD vector width, and not by one.
18//
19// This pass has three parts:
20// 1. The main loop pass that drives the different parts.
21// 2. LoopVectorizationLegality - A unit that checks for the legality
22//    of the vectorization.
23// 3. InnerLoopVectorizer - A unit that performs the actual
24//    widening of instructions.
25// 4. LoopVectorizationCostModel - A unit that checks for the profitability
26//    of vectorization. It decides on the optimal vector width, which
27//    can be one, if vectorization is not profitable.
28//
29//===----------------------------------------------------------------------===//
30//
31// The reduction-variable vectorization is based on the paper:
32//  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33//
34// Variable uniformity checks are inspired by:
35//  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36//
37// Other ideas/concepts are from:
38//  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39//
40//  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
41//  Vectorizing Compilers.
42//
43//===----------------------------------------------------------------------===//
44
45#define LV_NAME "loop-vectorize"
46#define DEBUG_TYPE LV_NAME
47
48#include "llvm/Transforms/Vectorize.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/EquivalenceClasses.h"
51#include "llvm/ADT/MapVector.h"
52#include "llvm/ADT/SmallPtrSet.h"
53#include "llvm/ADT/SmallSet.h"
54#include "llvm/ADT/SmallVector.h"
55#include "llvm/ADT/StringExtras.h"
56#include "llvm/Analysis/AliasAnalysis.h"
57#include "llvm/Analysis/AliasSetTracker.h"
58#include "llvm/Analysis/Dominators.h"
59#include "llvm/Analysis/LoopInfo.h"
60#include "llvm/Analysis/LoopIterator.h"
61#include "llvm/Analysis/LoopPass.h"
62#include "llvm/Analysis/ScalarEvolution.h"
63#include "llvm/Analysis/ScalarEvolutionExpander.h"
64#include "llvm/Analysis/ScalarEvolutionExpressions.h"
65#include "llvm/Analysis/TargetTransformInfo.h"
66#include "llvm/Analysis/ValueTracking.h"
67#include "llvm/Analysis/Verifier.h"
68#include "llvm/IR/Constants.h"
69#include "llvm/IR/DataLayout.h"
70#include "llvm/IR/DerivedTypes.h"
71#include "llvm/IR/Function.h"
72#include "llvm/IR/IRBuilder.h"
73#include "llvm/IR/Instructions.h"
74#include "llvm/IR/IntrinsicInst.h"
75#include "llvm/IR/LLVMContext.h"
76#include "llvm/IR/Module.h"
77#include "llvm/IR/Type.h"
78#include "llvm/IR/Value.h"
79#include "llvm/Pass.h"
80#include "llvm/Support/CommandLine.h"
81#include "llvm/Support/Debug.h"
82#include "llvm/Support/PatternMatch.h"
83#include "llvm/Support/raw_ostream.h"
84#include "llvm/Support/ValueHandle.h"
85#include "llvm/Target/TargetLibraryInfo.h"
86#include "llvm/Transforms/Scalar.h"
87#include "llvm/Transforms/Utils/BasicBlockUtils.h"
88#include "llvm/Transforms/Utils/Local.h"
89#include <algorithm>
90#include <map>
91
92using namespace llvm;
93using namespace llvm::PatternMatch;
94
95static cl::opt<unsigned>
96VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
97                    cl::desc("Sets the SIMD width. Zero is autoselect."));
98
99static cl::opt<unsigned>
100VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
101                    cl::desc("Sets the vectorization unroll count. "
102                             "Zero is autoselect."));
103
104static cl::opt<bool>
105EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
106                   cl::desc("Enable if-conversion during vectorization."));
107
108/// We don't vectorize loops with a known constant trip count below this number.
109static cl::opt<unsigned>
110TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
111                             cl::Hidden,
112                             cl::desc("Don't vectorize loops with a constant "
113                                      "trip count that is smaller than this "
114                                      "value."));
115
116/// We don't unroll loops with a known constant trip count below this number.
117static const unsigned TinyTripCountUnrollThreshold = 128;
118
119/// When performing memory disambiguation checks at runtime do not make more
120/// than this number of comparisons.
121static const unsigned RuntimeMemoryCheckThreshold = 8;
122
123/// Maximum simd width.
124static const unsigned MaxVectorWidth = 64;
125
126/// Maximum vectorization unroll count.
127static const unsigned MaxUnrollFactor = 16;
128
129namespace {
130
131// Forward declarations.
132class LoopVectorizationLegality;
133class LoopVectorizationCostModel;
134
135/// InnerLoopVectorizer vectorizes loops which contain only one basic
136/// block to a specified vectorization factor (VF).
137/// This class performs the widening of scalars into vectors, or multiple
138/// scalars. This class also implements the following features:
139/// * It inserts an epilogue loop for handling loops that don't have iteration
140///   counts that are known to be a multiple of the vectorization factor.
141/// * It handles the code generation for reduction variables.
142/// * Scalarization (implementation using scalars) of un-vectorizable
143///   instructions.
144/// InnerLoopVectorizer does not perform any vectorization-legality
145/// checks, and relies on the caller to check for the different legality
146/// aspects. The InnerLoopVectorizer relies on the
147/// LoopVectorizationLegality class to provide information about the induction
148/// and reduction variables that were found to a given vectorization factor.
149class InnerLoopVectorizer {
150public:
151  InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
152                      DominatorTree *DT, DataLayout *DL,
153                      const TargetLibraryInfo *TLI, unsigned VecWidth,
154                      unsigned UnrollFactor)
155      : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
156        VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
157        OldInduction(0), WidenMap(UnrollFactor) {}
158
159  // Perform the actual loop widening (vectorization).
160  void vectorize(LoopVectorizationLegality *Legal) {
161    // Create a new empty loop. Unlink the old loop and connect the new one.
162    createEmptyLoop(Legal);
163    // Widen each instruction in the old loop to a new one in the new loop.
164    // Use the Legality module to find the induction and reduction variables.
165    vectorizeLoop(Legal);
166    // Register the new loop and update the analysis passes.
167    updateAnalysis();
168  }
169
170private:
171  /// A small list of PHINodes.
172  typedef SmallVector<PHINode*, 4> PhiVector;
173  /// When we unroll loops we have multiple vector values for each scalar.
174  /// This data structure holds the unrolled and vectorized values that
175  /// originated from one scalar instruction.
176  typedef SmallVector<Value*, 2> VectorParts;
177
178  /// Add code that checks at runtime if the accessed arrays overlap.
179  /// Returns the comparator value or NULL if no check is needed.
180  Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
181                               Instruction *Loc);
182  /// Create an empty loop, based on the loop ranges of the old loop.
183  void createEmptyLoop(LoopVectorizationLegality *Legal);
184  /// Copy and widen the instructions from the old loop.
185  void vectorizeLoop(LoopVectorizationLegality *Legal);
186
187  /// A helper function that computes the predicate of the block BB, assuming
188  /// that the header block of the loop is set to True. It returns the *entry*
189  /// mask for the block BB.
190  VectorParts createBlockInMask(BasicBlock *BB);
191  /// A helper function that computes the predicate of the edge between SRC
192  /// and DST.
193  VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
194
195  /// A helper function to vectorize a single BB within the innermost loop.
196  void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
197                            PhiVector *PV);
198
199  /// Insert the new loop to the loop hierarchy and pass manager
200  /// and update the analysis passes.
201  void updateAnalysis();
202
203  /// This instruction is un-vectorizable. Implement it as a sequence
204  /// of scalars.
205  void scalarizeInstruction(Instruction *Instr);
206
207  /// Vectorize Load and Store instructions,
208  void vectorizeMemoryInstruction(Instruction *Instr,
209                                  LoopVectorizationLegality *Legal);
210
211  /// Create a broadcast instruction. This method generates a broadcast
212  /// instruction (shuffle) for loop invariant values and for the induction
213  /// value. If this is the induction variable then we extend it to N, N+1, ...
214  /// this is needed because each iteration in the loop corresponds to a SIMD
215  /// element.
216  Value *getBroadcastInstrs(Value *V);
217
218  /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
219  /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
220  /// The sequence starts at StartIndex.
221  Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
222
223  /// When we go over instructions in the basic block we rely on previous
224  /// values within the current basic block or on loop invariant values.
225  /// When we widen (vectorize) values we place them in the map. If the values
226  /// are not within the map, they have to be loop invariant, so we simply
227  /// broadcast them into a vector.
228  VectorParts &getVectorValue(Value *V);
229
230  /// Generate a shuffle sequence that will reverse the vector Vec.
231  Value *reverseVector(Value *Vec);
232
233  /// This is a helper class that holds the vectorizer state. It maps scalar
234  /// instructions to vector instructions. When the code is 'unrolled' then
235  /// then a single scalar value is mapped to multiple vector parts. The parts
236  /// are stored in the VectorPart type.
237  struct ValueMap {
238    /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
239    /// are mapped.
240    ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
241
242    /// \return True if 'Key' is saved in the Value Map.
243    bool has(Value *Key) const { return MapStorage.count(Key); }
244
245    /// Initializes a new entry in the map. Sets all of the vector parts to the
246    /// save value in 'Val'.
247    /// \return A reference to a vector with splat values.
248    VectorParts &splat(Value *Key, Value *Val) {
249      VectorParts &Entry = MapStorage[Key];
250      Entry.assign(UF, Val);
251      return Entry;
252    }
253
254    ///\return A reference to the value that is stored at 'Key'.
255    VectorParts &get(Value *Key) {
256      VectorParts &Entry = MapStorage[Key];
257      if (Entry.empty())
258        Entry.resize(UF);
259      assert(Entry.size() == UF);
260      return Entry;
261    }
262
263  private:
264    /// The unroll factor. Each entry in the map stores this number of vector
265    /// elements.
266    unsigned UF;
267
268    /// Map storage. We use std::map and not DenseMap because insertions to a
269    /// dense map invalidates its iterators.
270    std::map<Value *, VectorParts> MapStorage;
271  };
272
273  /// The original loop.
274  Loop *OrigLoop;
275  /// Scev analysis to use.
276  ScalarEvolution *SE;
277  /// Loop Info.
278  LoopInfo *LI;
279  /// Dominator Tree.
280  DominatorTree *DT;
281  /// Data Layout.
282  DataLayout *DL;
283  /// Target Library Info.
284  const TargetLibraryInfo *TLI;
285
286  /// The vectorization SIMD factor to use. Each vector will have this many
287  /// vector elements.
288  unsigned VF;
289  /// The vectorization unroll factor to use. Each scalar is vectorized to this
290  /// many different vector instructions.
291  unsigned UF;
292
293  /// The builder that we use
294  IRBuilder<> Builder;
295
296  // --- Vectorization state ---
297
298  /// The vector-loop preheader.
299  BasicBlock *LoopVectorPreHeader;
300  /// The scalar-loop preheader.
301  BasicBlock *LoopScalarPreHeader;
302  /// Middle Block between the vector and the scalar.
303  BasicBlock *LoopMiddleBlock;
304  ///The ExitBlock of the scalar loop.
305  BasicBlock *LoopExitBlock;
306  ///The vector loop body.
307  BasicBlock *LoopVectorBody;
308  ///The scalar loop body.
309  BasicBlock *LoopScalarBody;
310  /// A list of all bypass blocks. The first block is the entry of the loop.
311  SmallVector<BasicBlock *, 4> LoopBypassBlocks;
312
313  /// The new Induction variable which was added to the new block.
314  PHINode *Induction;
315  /// The induction variable of the old basic block.
316  PHINode *OldInduction;
317  /// Holds the extended (to the widest induction type) start index.
318  Value *ExtendedIdx;
319  /// Maps scalars to widened vectors.
320  ValueMap WidenMap;
321};
322
323/// \brief Check if conditionally executed loads are hoistable.
324///
325/// This class has two functions: isHoistableLoad and canHoistAllLoads.
326/// isHoistableLoad should be called on all load instructions that are executed
327/// conditionally. After all conditional loads are processed, the client should
328/// call canHoistAllLoads to determine if all of the conditional executed loads
329/// have an unconditional memory access to the same memory address in the loop.
330class LoadHoisting {
331  typedef SmallPtrSet<Value *, 8> MemorySet;
332
333  Loop *TheLoop;
334  DominatorTree *DT;
335  MemorySet CondLoadAddrSet;
336
337public:
338  LoadHoisting(Loop *L, DominatorTree *D) : TheLoop(L), DT(D) {}
339
340  /// \brief Check if the instruction is a load with a identifiable address.
341  bool isHoistableLoad(Instruction *L);
342
343  /// \brief Check if all of the conditional loads are hoistable because there
344  /// exists an unconditional memory access to the same address in the loop.
345  bool canHoistAllLoads();
346};
347
348bool LoadHoisting::isHoistableLoad(Instruction *L) {
349  LoadInst *LI = dyn_cast<LoadInst>(L);
350  if (!LI)
351    return false;
352
353  CondLoadAddrSet.insert(LI->getPointerOperand());
354  return true;
355}
356
357static void addMemAccesses(BasicBlock *BB, SmallPtrSet<Value *, 8> &Set) {
358  for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
359    if (LoadInst *LI = dyn_cast<LoadInst>(BI)) // Try a load.
360      Set.insert(LI->getPointerOperand());
361    else if (StoreInst *SI = dyn_cast<StoreInst>(BI)) // Try a store.
362      Set.insert(SI->getPointerOperand());
363  }
364}
365
366bool LoadHoisting::canHoistAllLoads() {
367  // No conditional loads.
368  if (CondLoadAddrSet.empty())
369    return true;
370
371  MemorySet UncondMemAccesses;
372  std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
373  BasicBlock *LoopLatch = TheLoop->getLoopLatch();
374
375  // Iterate over the unconditional blocks and collect memory access addresses.
376  for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
377    BasicBlock *BB = LoopBlocks[i];
378
379    // Ignore conditional blocks.
380    if (BB != LoopLatch && !DT->dominates(BB, LoopLatch))
381      continue;
382
383    addMemAccesses(BB, UncondMemAccesses);
384  }
385
386  // And make sure there is a matching unconditional access for every
387  // conditional load.
388  for (MemorySet::iterator MI = CondLoadAddrSet.begin(),
389       ME = CondLoadAddrSet.end(); MI != ME; ++MI)
390    if (!UncondMemAccesses.count(*MI))
391      return false;
392
393  return true;
394}
395
396/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
397/// to what vectorization factor.
398/// This class does not look at the profitability of vectorization, only the
399/// legality. This class has two main kinds of checks:
400/// * Memory checks - The code in canVectorizeMemory checks if vectorization
401///   will change the order of memory accesses in a way that will change the
402///   correctness of the program.
403/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
404/// checks for a number of different conditions, such as the availability of a
405/// single induction variable, that all types are supported and vectorize-able,
406/// etc. This code reflects the capabilities of InnerLoopVectorizer.
407/// This class is also used by InnerLoopVectorizer for identifying
408/// induction variable and the different reduction variables.
409class LoopVectorizationLegality {
410public:
411  LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
412                            DominatorTree *DT, TargetTransformInfo* TTI,
413                            AliasAnalysis *AA, TargetLibraryInfo *TLI)
414      : TheLoop(L), SE(SE), DL(DL), DT(DT), TTI(TTI), AA(AA), TLI(TLI),
415        Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false),
416        LoadSpeculation(L, DT) {}
417
418  /// This enum represents the kinds of reductions that we support.
419  enum ReductionKind {
420    RK_NoReduction, ///< Not a reduction.
421    RK_IntegerAdd,  ///< Sum of integers.
422    RK_IntegerMult, ///< Product of integers.
423    RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
424    RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
425    RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
426    RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
427    RK_FloatAdd,    ///< Sum of floats.
428    RK_FloatMult,   ///< Product of floats.
429    RK_FloatMinMax  ///< Min/max implemented in terms of select(cmp()).
430  };
431
432  /// This enum represents the kinds of inductions that we support.
433  enum InductionKind {
434    IK_NoInduction,         ///< Not an induction variable.
435    IK_IntInduction,        ///< Integer induction variable. Step = 1.
436    IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
437    IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
438    IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
439  };
440
441  // This enum represents the kind of minmax reduction.
442  enum MinMaxReductionKind {
443    MRK_Invalid,
444    MRK_UIntMin,
445    MRK_UIntMax,
446    MRK_SIntMin,
447    MRK_SIntMax,
448    MRK_FloatMin,
449    MRK_FloatMax
450  };
451
452  /// This POD struct holds information about reduction variables.
453  struct ReductionDescriptor {
454    ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
455      Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
456
457    ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
458                        MinMaxReductionKind MK)
459        : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
460
461    // The starting value of the reduction.
462    // It does not have to be zero!
463    TrackingVH<Value> StartValue;
464    // The instruction who's value is used outside the loop.
465    Instruction *LoopExitInstr;
466    // The kind of the reduction.
467    ReductionKind Kind;
468    // If this a min/max reduction the kind of reduction.
469    MinMaxReductionKind MinMaxKind;
470  };
471
472  /// This POD struct holds information about a potential reduction operation.
473  struct ReductionInstDesc {
474    ReductionInstDesc(bool IsRedux, Instruction *I) :
475      IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
476
477    ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
478      IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
479
480    // Is this instruction a reduction candidate.
481    bool IsReduction;
482    // The last instruction in a min/max pattern (select of the select(icmp())
483    // pattern), or the current reduction instruction otherwise.
484    Instruction *PatternLastInst;
485    // If this is a min/max pattern the comparison predicate.
486    MinMaxReductionKind MinMaxKind;
487  };
488
489  // This POD struct holds information about the memory runtime legality
490  // check that a group of pointers do not overlap.
491  struct RuntimePointerCheck {
492    RuntimePointerCheck() : Need(false) {}
493
494    /// Reset the state of the pointer runtime information.
495    void reset() {
496      Need = false;
497      Pointers.clear();
498      Starts.clear();
499      Ends.clear();
500    }
501
502    /// Insert a pointer and calculate the start and end SCEVs.
503    void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr);
504
505    /// This flag indicates if we need to add the runtime check.
506    bool Need;
507    /// Holds the pointers that we need to check.
508    SmallVector<TrackingVH<Value>, 2> Pointers;
509    /// Holds the pointer value at the beginning of the loop.
510    SmallVector<const SCEV*, 2> Starts;
511    /// Holds the pointer value at the end of the loop.
512    SmallVector<const SCEV*, 2> Ends;
513    /// Holds the information if this pointer is used for writing to memory.
514    SmallVector<bool, 2> IsWritePtr;
515  };
516
517  /// A POD for saving information about induction variables.
518  struct InductionInfo {
519    InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
520    InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
521    /// Start value.
522    TrackingVH<Value> StartValue;
523    /// Induction kind.
524    InductionKind IK;
525  };
526
527  /// ReductionList contains the reduction descriptors for all
528  /// of the reductions that were found in the loop.
529  typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
530
531  /// InductionList saves induction variables and maps them to the
532  /// induction descriptor.
533  typedef MapVector<PHINode*, InductionInfo> InductionList;
534
535  /// Alias(Multi)Map stores the values (GEPs or underlying objects and their
536  /// respective Store/Load instruction(s) to calculate aliasing.
537  typedef MapVector<Value*, Instruction* > AliasMap;
538  typedef DenseMap<Value*, std::vector<Instruction*> > AliasMultiMap;
539
540  /// Returns true if it is legal to vectorize this loop.
541  /// This does not mean that it is profitable to vectorize this
542  /// loop, only that it is legal to do so.
543  bool canVectorize();
544
545  /// Returns the Induction variable.
546  PHINode *getInduction() { return Induction; }
547
548  /// Returns the reduction variables found in the loop.
549  ReductionList *getReductionVars() { return &Reductions; }
550
551  /// Returns the induction variables found in the loop.
552  InductionList *getInductionVars() { return &Inductions; }
553
554  /// Returns the widest induction type.
555  Type *getWidestInductionType() { return WidestIndTy; }
556
557  /// Returns True if V is an induction variable in this loop.
558  bool isInductionVariable(const Value *V);
559
560  /// Return true if the block BB needs to be predicated in order for the loop
561  /// to be vectorized.
562  bool blockNeedsPredication(BasicBlock *BB);
563
564  /// Check if this  pointer is consecutive when vectorizing. This happens
565  /// when the last index of the GEP is the induction variable, or that the
566  /// pointer itself is an induction variable.
567  /// This check allows us to vectorize A[idx] into a wide load/store.
568  /// Returns:
569  /// 0 - Stride is unknown or non consecutive.
570  /// 1 - Address is consecutive.
571  /// -1 - Address is consecutive, and decreasing.
572  int isConsecutivePtr(Value *Ptr);
573
574  /// Returns true if the value V is uniform within the loop.
575  bool isUniform(Value *V);
576
577  /// Returns true if this instruction will remain scalar after vectorization.
578  bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
579
580  /// Returns the information that we collected about runtime memory check.
581  RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
582
583  /// This function returns the identity element (or neutral element) for
584  /// the operation K.
585  static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
586private:
587  /// Check if a single basic block loop is vectorizable.
588  /// At this point we know that this is a loop with a constant trip count
589  /// and we only need to check individual instructions.
590  bool canVectorizeInstrs();
591
592  /// When we vectorize loops we may change the order in which
593  /// we read and write from memory. This method checks if it is
594  /// legal to vectorize the code, considering only memory constrains.
595  /// Returns true if the loop is vectorizable
596  bool canVectorizeMemory();
597
598  /// Return true if we can vectorize this loop using the IF-conversion
599  /// transformation.
600  bool canVectorizeWithIfConvert();
601
602  /// Collect the variables that need to stay uniform after vectorization.
603  void collectLoopUniforms();
604
605  /// Return true if all of the instructions in the block can be speculatively
606  /// executed.
607  bool blockCanBePredicated(BasicBlock *BB);
608
609  /// Returns True, if 'Phi' is the kind of reduction variable for type
610  /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
611  bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
612  /// Returns a struct describing if the instruction 'I' can be a reduction
613  /// variable of type 'Kind'. If the reduction is a min/max pattern of
614  /// select(icmp()) this function advances the instruction pointer 'I' from the
615  /// compare instruction to the select instruction and stores this pointer in
616  /// 'PatternLastInst' member of the returned struct.
617  ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
618                                     ReductionInstDesc &Desc);
619  /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
620  /// pattern corresponding to a min(X, Y) or max(X, Y).
621  static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
622                                                    ReductionInstDesc &Prev);
623  /// Returns the induction kind of Phi. This function may return NoInduction
624  /// if the PHI is not an induction variable.
625  InductionKind isInductionVariable(PHINode *Phi);
626  /// Return true if can compute the address bounds of Ptr within the loop.
627  bool hasComputableBounds(Value *Ptr);
628  /// Return true if there is the chance of write reorder.
629  bool hasPossibleGlobalWriteReorder(Value *Object,
630                                     Instruction *Inst,
631                                     AliasMultiMap &WriteObjects,
632                                     unsigned MaxByteWidth);
633  /// Return the AA location for a load or a store.
634  AliasAnalysis::Location getLoadStoreLocation(Instruction *Inst);
635
636
637  /// The loop that we evaluate.
638  Loop *TheLoop;
639  /// Scev analysis.
640  ScalarEvolution *SE;
641  /// DataLayout analysis.
642  DataLayout *DL;
643  /// Dominators.
644  DominatorTree *DT;
645  /// Target Info.
646  TargetTransformInfo *TTI;
647  /// Alias Analysis.
648  AliasAnalysis *AA;
649  /// Target Library Info.
650  TargetLibraryInfo *TLI;
651
652  //  ---  vectorization state --- //
653
654  /// Holds the integer induction variable. This is the counter of the
655  /// loop.
656  PHINode *Induction;
657  /// Holds the reduction variables.
658  ReductionList Reductions;
659  /// Holds all of the induction variables that we found in the loop.
660  /// Notice that inductions don't need to start at zero and that induction
661  /// variables can be pointers.
662  InductionList Inductions;
663  /// Holds the widest induction type encountered.
664  Type *WidestIndTy;
665
666  /// Allowed outside users. This holds the reduction
667  /// vars which can be accessed from outside the loop.
668  SmallPtrSet<Value*, 4> AllowedExit;
669  /// This set holds the variables which are known to be uniform after
670  /// vectorization.
671  SmallPtrSet<Instruction*, 4> Uniforms;
672  /// We need to check that all of the pointers in this list are disjoint
673  /// at runtime.
674  RuntimePointerCheck PtrRtCheck;
675  /// Can we assume the absence of NaNs.
676  bool HasFunNoNaNAttr;
677
678  /// Utility to determine whether loads can be speculated.
679  LoadHoisting LoadSpeculation;
680};
681
682/// LoopVectorizationCostModel - estimates the expected speedups due to
683/// vectorization.
684/// In many cases vectorization is not profitable. This can happen because of
685/// a number of reasons. In this class we mainly attempt to predict the
686/// expected speedup/slowdowns due to the supported instruction set. We use the
687/// TargetTransformInfo to query the different backends for the cost of
688/// different operations.
689class LoopVectorizationCostModel {
690public:
691  LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
692                             LoopVectorizationLegality *Legal,
693                             const TargetTransformInfo &TTI,
694                             DataLayout *DL, const TargetLibraryInfo *TLI)
695      : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
696
697  /// Information about vectorization costs
698  struct VectorizationFactor {
699    unsigned Width; // Vector width with best cost
700    unsigned Cost; // Cost of the loop with that width
701  };
702  /// \return The most profitable vectorization factor and the cost of that VF.
703  /// This method checks every power of two up to VF. If UserVF is not ZERO
704  /// then this vectorization factor will be selected if vectorization is
705  /// possible.
706  VectorizationFactor selectVectorizationFactor(bool OptForSize,
707                                                unsigned UserVF);
708
709  /// \return The size (in bits) of the widest type in the code that
710  /// needs to be vectorized. We ignore values that remain scalar such as
711  /// 64 bit loop indices.
712  unsigned getWidestType();
713
714  /// \return The most profitable unroll factor.
715  /// If UserUF is non-zero then this method finds the best unroll-factor
716  /// based on register pressure and other parameters.
717  /// VF and LoopCost are the selected vectorization factor and the cost of the
718  /// selected VF.
719  unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
720                              unsigned LoopCost);
721
722  /// \brief A struct that represents some properties of the register usage
723  /// of a loop.
724  struct RegisterUsage {
725    /// Holds the number of loop invariant values that are used in the loop.
726    unsigned LoopInvariantRegs;
727    /// Holds the maximum number of concurrent live intervals in the loop.
728    unsigned MaxLocalUsers;
729    /// Holds the number of instructions in the loop.
730    unsigned NumInstructions;
731  };
732
733  /// \return  information about the register usage of the loop.
734  RegisterUsage calculateRegisterUsage();
735
736private:
737  /// Returns the expected execution cost. The unit of the cost does
738  /// not matter because we use the 'cost' units to compare different
739  /// vector widths. The cost that is returned is *not* normalized by
740  /// the factor width.
741  unsigned expectedCost(unsigned VF);
742
743  /// Returns the execution time cost of an instruction for a given vector
744  /// width. Vector width of one means scalar.
745  unsigned getInstructionCost(Instruction *I, unsigned VF);
746
747  /// A helper function for converting Scalar types to vector types.
748  /// If the incoming type is void, we return void. If the VF is 1, we return
749  /// the scalar type.
750  static Type* ToVectorTy(Type *Scalar, unsigned VF);
751
752  /// Returns whether the instruction is a load or store and will be a emitted
753  /// as a vector operation.
754  bool isConsecutiveLoadOrStore(Instruction *I);
755
756  /// The loop that we evaluate.
757  Loop *TheLoop;
758  /// Scev analysis.
759  ScalarEvolution *SE;
760  /// Loop Info analysis.
761  LoopInfo *LI;
762  /// Vectorization legality.
763  LoopVectorizationLegality *Legal;
764  /// Vector target information.
765  const TargetTransformInfo &TTI;
766  /// Target data layout information.
767  DataLayout *DL;
768  /// Target Library Info.
769  const TargetLibraryInfo *TLI;
770};
771
772/// Utility class for getting and setting loop vectorizer hints in the form
773/// of loop metadata.
774struct LoopVectorizeHints {
775  /// Vectorization width.
776  unsigned Width;
777  /// Vectorization unroll factor.
778  unsigned Unroll;
779
780  LoopVectorizeHints(const Loop *L)
781  : Width(VectorizationFactor)
782  , Unroll(VectorizationUnroll)
783  , LoopID(L->getLoopID()) {
784    getHints(L);
785    // The command line options override any loop metadata except for when
786    // width == 1 which is used to indicate the loop is already vectorized.
787    if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1)
788      Width = VectorizationFactor;
789    if (VectorizationUnroll.getNumOccurrences() > 0)
790      Unroll = VectorizationUnroll;
791  }
792
793  /// Return the loop vectorizer metadata prefix.
794  static StringRef Prefix() { return "llvm.vectorizer."; }
795
796  MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) {
797    SmallVector<Value*, 2> Vals;
798    Vals.push_back(MDString::get(Context, Name));
799    Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
800    return MDNode::get(Context, Vals);
801  }
802
803  /// Mark the loop L as already vectorized by setting the width to 1.
804  void setAlreadyVectorized(Loop *L) {
805    LLVMContext &Context = L->getHeader()->getContext();
806
807    Width = 1;
808
809    // Create a new loop id with one more operand for the already_vectorized
810    // hint. If the loop already has a loop id then copy the existing operands.
811    SmallVector<Value*, 4> Vals(1);
812    if (LoopID)
813      for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i)
814        Vals.push_back(LoopID->getOperand(i));
815
816    Vals.push_back(createHint(Context, Twine(Prefix(), "width").str(), Width));
817
818    MDNode *NewLoopID = MDNode::get(Context, Vals);
819    // Set operand 0 to refer to the loop id itself.
820    NewLoopID->replaceOperandWith(0, NewLoopID);
821
822    L->setLoopID(NewLoopID);
823    if (LoopID)
824      LoopID->replaceAllUsesWith(NewLoopID);
825
826    LoopID = NewLoopID;
827  }
828
829private:
830  MDNode *LoopID;
831
832  /// Find hints specified in the loop metadata.
833  void getHints(const Loop *L) {
834    if (!LoopID)
835      return;
836
837    // First operand should refer to the loop id itself.
838    assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
839    assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
840
841    for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
842      const MDString *S = 0;
843      SmallVector<Value*, 4> Args;
844
845      // The expected hint is either a MDString or a MDNode with the first
846      // operand a MDString.
847      if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
848        if (!MD || MD->getNumOperands() == 0)
849          continue;
850        S = dyn_cast<MDString>(MD->getOperand(0));
851        for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
852          Args.push_back(MD->getOperand(i));
853      } else {
854        S = dyn_cast<MDString>(LoopID->getOperand(i));
855        assert(Args.size() == 0 && "too many arguments for MDString");
856      }
857
858      if (!S)
859        continue;
860
861      // Check if the hint starts with the vectorizer prefix.
862      StringRef Hint = S->getString();
863      if (!Hint.startswith(Prefix()))
864        continue;
865      // Remove the prefix.
866      Hint = Hint.substr(Prefix().size(), StringRef::npos);
867
868      if (Args.size() == 1)
869        getHint(Hint, Args[0]);
870    }
871  }
872
873  // Check string hint with one operand.
874  void getHint(StringRef Hint, Value *Arg) {
875    const ConstantInt *C = dyn_cast<ConstantInt>(Arg);
876    if (!C) return;
877    unsigned Val = C->getZExtValue();
878
879    if (Hint == "width") {
880      assert(isPowerOf2_32(Val) && Val <= MaxVectorWidth &&
881             "Invalid width metadata");
882      Width = Val;
883    } else if (Hint == "unroll") {
884      assert(isPowerOf2_32(Val) && Val <= MaxUnrollFactor &&
885             "Invalid unroll metadata");
886      Unroll = Val;
887    } else
888      DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint);
889  }
890};
891
892/// The LoopVectorize Pass.
893struct LoopVectorize : public LoopPass {
894  /// Pass identification, replacement for typeid
895  static char ID;
896
897  explicit LoopVectorize() : LoopPass(ID) {
898    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
899  }
900
901  ScalarEvolution *SE;
902  DataLayout *DL;
903  LoopInfo *LI;
904  TargetTransformInfo *TTI;
905  DominatorTree *DT;
906  AliasAnalysis *AA;
907  TargetLibraryInfo *TLI;
908
909  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
910    // We only vectorize innermost loops.
911    if (!L->empty())
912      return false;
913
914    SE = &getAnalysis<ScalarEvolution>();
915    DL = getAnalysisIfAvailable<DataLayout>();
916    LI = &getAnalysis<LoopInfo>();
917    TTI = &getAnalysis<TargetTransformInfo>();
918    DT = &getAnalysis<DominatorTree>();
919    AA = getAnalysisIfAvailable<AliasAnalysis>();
920    TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
921
922    if (DL == NULL) {
923      DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout");
924      return false;
925    }
926
927    DEBUG(dbgs() << "LV: Checking a loop in \"" <<
928          L->getHeader()->getParent()->getName() << "\"\n");
929
930    LoopVectorizeHints Hints(L);
931
932    if (Hints.Width == 1) {
933      DEBUG(dbgs() << "LV: Not vectorizing.\n");
934      return false;
935    }
936
937    // Check if it is legal to vectorize the loop.
938    LoopVectorizationLegality LVL(L, SE, DL, DT, TTI, AA, TLI);
939    if (!LVL.canVectorize()) {
940      DEBUG(dbgs() << "LV: Not vectorizing.\n");
941      return false;
942    }
943
944    // Use the cost model.
945    LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
946
947    // Check the function attributes to find out if this function should be
948    // optimized for size.
949    Function *F = L->getHeader()->getParent();
950    Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
951    Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
952    unsigned FnIndex = AttributeSet::FunctionIndex;
953    bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
954    bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
955
956    if (NoFloat) {
957      DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
958            "attribute is used.\n");
959      return false;
960    }
961
962    // Select the optimal vectorization factor.
963    LoopVectorizationCostModel::VectorizationFactor VF;
964    VF = CM.selectVectorizationFactor(OptForSize, Hints.Width);
965    // Select the unroll factor.
966    unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width,
967                                        VF.Cost);
968
969    if (VF.Width == 1) {
970      DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
971      return false;
972    }
973
974    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
975          F->getParent()->getModuleIdentifier()<<"\n");
976    DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
977
978    // If we decided that it is *legal* to vectorize the loop then do it.
979    InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
980    LB.vectorize(&LVL);
981
982    // Mark the loop as already vectorized to avoid vectorizing again.
983    Hints.setAlreadyVectorized(L);
984
985    DEBUG(verifyFunction(*L->getHeader()->getParent()));
986    return true;
987  }
988
989  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
990    LoopPass::getAnalysisUsage(AU);
991    AU.addRequiredID(LoopSimplifyID);
992    AU.addRequiredID(LCSSAID);
993    AU.addRequired<DominatorTree>();
994    AU.addRequired<LoopInfo>();
995    AU.addRequired<ScalarEvolution>();
996    AU.addRequired<TargetTransformInfo>();
997    AU.addPreserved<LoopInfo>();
998    AU.addPreserved<DominatorTree>();
999  }
1000
1001};
1002
1003} // end anonymous namespace
1004
1005//===----------------------------------------------------------------------===//
1006// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1007// LoopVectorizationCostModel.
1008//===----------------------------------------------------------------------===//
1009
1010void
1011LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
1012                                                       Loop *Lp, Value *Ptr,
1013                                                       bool WritePtr) {
1014  const SCEV *Sc = SE->getSCEV(Ptr);
1015  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
1016  assert(AR && "Invalid addrec expression");
1017  const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
1018  const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
1019  Pointers.push_back(Ptr);
1020  Starts.push_back(AR->getStart());
1021  Ends.push_back(ScEnd);
1022  IsWritePtr.push_back(WritePtr);
1023}
1024
1025Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1026  // Save the current insertion location.
1027  Instruction *Loc = Builder.GetInsertPoint();
1028
1029  // We need to place the broadcast of invariant variables outside the loop.
1030  Instruction *Instr = dyn_cast<Instruction>(V);
1031  bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
1032  bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
1033
1034  // Place the code for broadcasting invariant variables in the new preheader.
1035  if (Invariant)
1036    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1037
1038  // Broadcast the scalar into all locations in the vector.
1039  Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1040
1041  // Restore the builder insertion point.
1042  if (Invariant)
1043    Builder.SetInsertPoint(Loc);
1044
1045  return Shuf;
1046}
1047
1048Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
1049                                                 bool Negate) {
1050  assert(Val->getType()->isVectorTy() && "Must be a vector");
1051  assert(Val->getType()->getScalarType()->isIntegerTy() &&
1052         "Elem must be an integer");
1053  // Create the types.
1054  Type *ITy = Val->getType()->getScalarType();
1055  VectorType *Ty = cast<VectorType>(Val->getType());
1056  int VLen = Ty->getNumElements();
1057  SmallVector<Constant*, 8> Indices;
1058
1059  // Create a vector of consecutive numbers from zero to VF.
1060  for (int i = 0; i < VLen; ++i) {
1061    int64_t Idx = Negate ? (-i) : i;
1062    Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
1063  }
1064
1065  // Add the consecutive indices to the vector value.
1066  Constant *Cv = ConstantVector::get(Indices);
1067  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
1068  return Builder.CreateAdd(Val, Cv, "induction");
1069}
1070
1071int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
1072  assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
1073  // Make sure that the pointer does not point to structs.
1074  if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType())
1075    return 0;
1076
1077  // If this value is a pointer induction variable we know it is consecutive.
1078  PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
1079  if (Phi && Inductions.count(Phi)) {
1080    InductionInfo II = Inductions[Phi];
1081    if (IK_PtrInduction == II.IK)
1082      return 1;
1083    else if (IK_ReversePtrInduction == II.IK)
1084      return -1;
1085  }
1086
1087  GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
1088  if (!Gep)
1089    return 0;
1090
1091  unsigned NumOperands = Gep->getNumOperands();
1092  Value *LastIndex = Gep->getOperand(NumOperands - 1);
1093
1094  Value *GpPtr = Gep->getPointerOperand();
1095  // If this GEP value is a consecutive pointer induction variable and all of
1096  // the indices are constant then we know it is consecutive. We can
1097  Phi = dyn_cast<PHINode>(GpPtr);
1098  if (Phi && Inductions.count(Phi)) {
1099
1100    // Make sure that the pointer does not point to structs.
1101    PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
1102    if (GepPtrType->getElementType()->isAggregateType())
1103      return 0;
1104
1105    // Make sure that all of the index operands are loop invariant.
1106    for (unsigned i = 1; i < NumOperands; ++i)
1107      if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1108        return 0;
1109
1110    InductionInfo II = Inductions[Phi];
1111    if (IK_PtrInduction == II.IK)
1112      return 1;
1113    else if (IK_ReversePtrInduction == II.IK)
1114      return -1;
1115  }
1116
1117  // Check that all of the gep indices are uniform except for the last.
1118  for (unsigned i = 0; i < NumOperands - 1; ++i)
1119    if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
1120      return 0;
1121
1122  // We can emit wide load/stores only if the last index is the induction
1123  // variable.
1124  const SCEV *Last = SE->getSCEV(LastIndex);
1125  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
1126    const SCEV *Step = AR->getStepRecurrence(*SE);
1127
1128    // The memory is consecutive because the last index is consecutive
1129    // and all other indices are loop invariant.
1130    if (Step->isOne())
1131      return 1;
1132    if (Step->isAllOnesValue())
1133      return -1;
1134  }
1135
1136  return 0;
1137}
1138
1139bool LoopVectorizationLegality::isUniform(Value *V) {
1140  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
1141}
1142
1143InnerLoopVectorizer::VectorParts&
1144InnerLoopVectorizer::getVectorValue(Value *V) {
1145  assert(V != Induction && "The new induction variable should not be used.");
1146  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
1147
1148  // If we have this scalar in the map, return it.
1149  if (WidenMap.has(V))
1150    return WidenMap.get(V);
1151
1152  // If this scalar is unknown, assume that it is a constant or that it is
1153  // loop invariant. Broadcast V and save the value for future uses.
1154  Value *B = getBroadcastInstrs(V);
1155  return WidenMap.splat(V, B);
1156}
1157
1158Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
1159  assert(Vec->getType()->isVectorTy() && "Invalid type");
1160  SmallVector<Constant*, 8> ShuffleMask;
1161  for (unsigned i = 0; i < VF; ++i)
1162    ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
1163
1164  return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
1165                                     ConstantVector::get(ShuffleMask),
1166                                     "reverse");
1167}
1168
1169
1170void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
1171                                             LoopVectorizationLegality *Legal) {
1172  // Attempt to issue a wide load.
1173  LoadInst *LI = dyn_cast<LoadInst>(Instr);
1174  StoreInst *SI = dyn_cast<StoreInst>(Instr);
1175
1176  assert((LI || SI) && "Invalid Load/Store instruction");
1177
1178  Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
1179  Type *DataTy = VectorType::get(ScalarDataTy, VF);
1180  Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
1181  unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
1182  unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace();
1183  unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
1184  unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
1185
1186  if (ScalarAllocatedSize != VectorElementSize)
1187    return scalarizeInstruction(Instr);
1188
1189  // If the pointer is loop invariant or if it is non consecutive,
1190  // scalarize the load.
1191  int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
1192  bool Reverse = ConsecutiveStride < 0;
1193  bool UniformLoad = LI && Legal->isUniform(Ptr);
1194  if (!ConsecutiveStride || UniformLoad)
1195    return scalarizeInstruction(Instr);
1196
1197  Constant *Zero = Builder.getInt32(0);
1198  VectorParts &Entry = WidenMap.get(Instr);
1199
1200  // Handle consecutive loads/stores.
1201  GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1202  if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
1203    Value *PtrOperand = Gep->getPointerOperand();
1204    Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
1205    FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
1206
1207    // Create the new GEP with the new induction variable.
1208    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1209    Gep2->setOperand(0, FirstBasePtr);
1210    Gep2->setName("gep.indvar.base");
1211    Ptr = Builder.Insert(Gep2);
1212  } else if (Gep) {
1213    assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
1214                               OrigLoop) && "Base ptr must be invariant");
1215
1216    // The last index does not have to be the induction. It can be
1217    // consecutive and be a function of the index. For example A[I+1];
1218    unsigned NumOperands = Gep->getNumOperands();
1219
1220    Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
1221    VectorParts &GEPParts = getVectorValue(LastGepOperand);
1222    Value *LastIndex = GEPParts[0];
1223    LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
1224
1225    // Create the new GEP with the new induction variable.
1226    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1227    Gep2->setOperand(NumOperands - 1, LastIndex);
1228    Gep2->setName("gep.indvar.idx");
1229    Ptr = Builder.Insert(Gep2);
1230  } else {
1231    // Use the induction element ptr.
1232    assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1233    VectorParts &PtrVal = getVectorValue(Ptr);
1234    Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1235  }
1236
1237  // Handle Stores:
1238  if (SI) {
1239    assert(!Legal->isUniform(SI->getPointerOperand()) &&
1240           "We do not allow storing to uniform addresses");
1241
1242    VectorParts &StoredVal = getVectorValue(SI->getValueOperand());
1243    for (unsigned Part = 0; Part < UF; ++Part) {
1244      // Calculate the pointer for the specific unroll-part.
1245      Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1246
1247      if (Reverse) {
1248        // If we store to reverse consecutive memory locations then we need
1249        // to reverse the order of elements in the stored value.
1250        StoredVal[Part] = reverseVector(StoredVal[Part]);
1251        // If the address is consecutive but reversed, then the
1252        // wide store needs to start at the last vector element.
1253        PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1254        PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1255      }
1256
1257      Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
1258      Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
1259    }
1260  }
1261
1262  for (unsigned Part = 0; Part < UF; ++Part) {
1263    // Calculate the pointer for the specific unroll-part.
1264    Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1265
1266    if (Reverse) {
1267      // If the address is consecutive but reversed, then the
1268      // wide store needs to start at the last vector element.
1269      PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1270      PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1271    }
1272
1273    Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
1274    Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
1275    cast<LoadInst>(LI)->setAlignment(Alignment);
1276    Entry[Part] = Reverse ? reverseVector(LI) :  LI;
1277  }
1278}
1279
1280void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
1281  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1282  // Holds vector parameters or scalars, in case of uniform vals.
1283  SmallVector<VectorParts, 4> Params;
1284
1285  // Find all of the vectorized parameters.
1286  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1287    Value *SrcOp = Instr->getOperand(op);
1288
1289    // If we are accessing the old induction variable, use the new one.
1290    if (SrcOp == OldInduction) {
1291      Params.push_back(getVectorValue(SrcOp));
1292      continue;
1293    }
1294
1295    // Try using previously calculated values.
1296    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1297
1298    // If the src is an instruction that appeared earlier in the basic block
1299    // then it should already be vectorized.
1300    if (SrcInst && OrigLoop->contains(SrcInst)) {
1301      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
1302      // The parameter is a vector value from earlier.
1303      Params.push_back(WidenMap.get(SrcInst));
1304    } else {
1305      // The parameter is a scalar from outside the loop. Maybe even a constant.
1306      VectorParts Scalars;
1307      Scalars.append(UF, SrcOp);
1308      Params.push_back(Scalars);
1309    }
1310  }
1311
1312  assert(Params.size() == Instr->getNumOperands() &&
1313         "Invalid number of operands");
1314
1315  // Does this instruction return a value ?
1316  bool IsVoidRetTy = Instr->getType()->isVoidTy();
1317
1318  Value *UndefVec = IsVoidRetTy ? 0 :
1319    UndefValue::get(VectorType::get(Instr->getType(), VF));
1320  // Create a new entry in the WidenMap and initialize it to Undef or Null.
1321  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1322
1323  // For each vector unroll 'part':
1324  for (unsigned Part = 0; Part < UF; ++Part) {
1325    // For each scalar that we create:
1326    for (unsigned Width = 0; Width < VF; ++Width) {
1327      Instruction *Cloned = Instr->clone();
1328      if (!IsVoidRetTy)
1329        Cloned->setName(Instr->getName() + ".cloned");
1330      // Replace the operands of the cloned instrucions with extracted scalars.
1331      for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1332        Value *Op = Params[op][Part];
1333        // Param is a vector. Need to extract the right lane.
1334        if (Op->getType()->isVectorTy())
1335          Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
1336        Cloned->setOperand(op, Op);
1337      }
1338
1339      // Place the cloned scalar in the new loop.
1340      Builder.Insert(Cloned);
1341
1342      // If the original scalar returns a value we need to place it in a vector
1343      // so that future users will be able to use it.
1344      if (!IsVoidRetTy)
1345        VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
1346                                                       Builder.getInt32(Width));
1347    }
1348  }
1349}
1350
1351Instruction *
1352InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
1353                                     Instruction *Loc) {
1354  LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
1355  Legal->getRuntimePointerCheck();
1356
1357  if (!PtrRtCheck->Need)
1358    return NULL;
1359
1360  Instruction *MemoryRuntimeCheck = 0;
1361  unsigned NumPointers = PtrRtCheck->Pointers.size();
1362  SmallVector<Value* , 2> Starts;
1363  SmallVector<Value* , 2> Ends;
1364
1365  SCEVExpander Exp(*SE, "induction");
1366
1367  // Use this type for pointer arithmetic.
1368  Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0);
1369
1370  for (unsigned i = 0; i < NumPointers; ++i) {
1371    Value *Ptr = PtrRtCheck->Pointers[i];
1372    const SCEV *Sc = SE->getSCEV(Ptr);
1373
1374    if (SE->isLoopInvariant(Sc, OrigLoop)) {
1375      DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
1376            *Ptr <<"\n");
1377      Starts.push_back(Ptr);
1378      Ends.push_back(Ptr);
1379    } else {
1380      DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
1381
1382      Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
1383      Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
1384      Starts.push_back(Start);
1385      Ends.push_back(End);
1386    }
1387  }
1388
1389  IRBuilder<> ChkBuilder(Loc);
1390
1391  for (unsigned i = 0; i < NumPointers; ++i) {
1392    for (unsigned j = i+1; j < NumPointers; ++j) {
1393      // No need to check if two readonly pointers intersect.
1394      if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
1395        continue;
1396
1397      Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy, "bc");
1398      Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy, "bc");
1399      Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy, "bc");
1400      Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy, "bc");
1401
1402      Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1403      Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1404      Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1405      if (MemoryRuntimeCheck)
1406        IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1407                                         "conflict.rdx");
1408
1409      MemoryRuntimeCheck = cast<Instruction>(IsConflict);
1410    }
1411  }
1412
1413  return MemoryRuntimeCheck;
1414}
1415
1416void
1417InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
1418  /*
1419   In this function we generate a new loop. The new loop will contain
1420   the vectorized instructions while the old loop will continue to run the
1421   scalar remainder.
1422
1423       [ ] <-- vector loop bypass (may consist of multiple blocks).
1424     /  |
1425    /   v
1426   |   [ ]     <-- vector pre header.
1427   |    |
1428   |    v
1429   |   [  ] \
1430   |   [  ]_|   <-- vector loop.
1431   |    |
1432    \   v
1433      >[ ]   <--- middle-block.
1434     /  |
1435    /   v
1436   |   [ ]     <--- new preheader.
1437   |    |
1438   |    v
1439   |   [ ] \
1440   |   [ ]_|   <-- old scalar loop to handle remainder.
1441    \   |
1442     \  v
1443      >[ ]     <-- exit block.
1444   ...
1445   */
1446
1447  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
1448  BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
1449  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
1450  assert(ExitBlock && "Must have an exit block");
1451
1452  // Some loops have a single integer induction variable, while other loops
1453  // don't. One example is c++ iterators that often have multiple pointer
1454  // induction variables. In the code below we also support a case where we
1455  // don't have a single induction variable.
1456  OldInduction = Legal->getInduction();
1457  Type *IdxTy = Legal->getWidestInductionType();
1458
1459  // Find the loop boundaries.
1460  const SCEV *ExitCount = SE->getBackedgeTakenCount(OrigLoop);
1461  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
1462
1463  // Get the total trip count from the count by adding 1.
1464  ExitCount = SE->getAddExpr(ExitCount,
1465                             SE->getConstant(ExitCount->getType(), 1));
1466
1467  // Expand the trip count and place the new instructions in the preheader.
1468  // Notice that the pre-header does not change, only the loop body.
1469  SCEVExpander Exp(*SE, "induction");
1470
1471  // Count holds the overall loop count (N).
1472  Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
1473                                   BypassBlock->getTerminator());
1474
1475  // The loop index does not have to start at Zero. Find the original start
1476  // value from the induction PHI node. If we don't have an induction variable
1477  // then we know that it starts at zero.
1478  Builder.SetInsertPoint(BypassBlock->getTerminator());
1479  Value *StartIdx = ExtendedIdx = OldInduction ?
1480    Builder.CreateZExt(OldInduction->getIncomingValueForBlock(BypassBlock),
1481                       IdxTy):
1482    ConstantInt::get(IdxTy, 0);
1483
1484  assert(BypassBlock && "Invalid loop structure");
1485  LoopBypassBlocks.push_back(BypassBlock);
1486
1487  // Split the single block loop into the two loop structure described above.
1488  BasicBlock *VectorPH =
1489  BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
1490  BasicBlock *VecBody =
1491  VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
1492  BasicBlock *MiddleBlock =
1493  VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
1494  BasicBlock *ScalarPH =
1495  MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
1496
1497  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
1498  // inside the loop.
1499  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1500
1501  // Generate the induction variable.
1502  Induction = Builder.CreatePHI(IdxTy, 2, "index");
1503  // The loop step is equal to the vectorization factor (num of SIMD elements)
1504  // times the unroll factor (num of SIMD instructions).
1505  Constant *Step = ConstantInt::get(IdxTy, VF * UF);
1506
1507  // This is the IR builder that we use to add all of the logic for bypassing
1508  // the new vector loop.
1509  IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
1510
1511  // We may need to extend the index in case there is a type mismatch.
1512  // We know that the count starts at zero and does not overflow.
1513  if (Count->getType() != IdxTy) {
1514    // The exit count can be of pointer type. Convert it to the correct
1515    // integer type.
1516    if (ExitCount->getType()->isPointerTy())
1517      Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
1518    else
1519      Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
1520  }
1521
1522  // Add the start index to the loop count to get the new end index.
1523  Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
1524
1525  // Now we need to generate the expression for N - (N % VF), which is
1526  // the part that the vectorized body will execute.
1527  Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
1528  Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
1529  Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
1530                                                     "end.idx.rnd.down");
1531
1532  // Now, compare the new count to zero. If it is zero skip the vector loop and
1533  // jump to the scalar loop.
1534  Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
1535                                          "cmp.zero");
1536
1537  BasicBlock *LastBypassBlock = BypassBlock;
1538
1539  // Generate the code that checks in runtime if arrays overlap. We put the
1540  // checks into a separate block to make the more common case of few elements
1541  // faster.
1542  Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
1543                                                 BypassBlock->getTerminator());
1544  if (MemRuntimeCheck) {
1545    // Create a new block containing the memory check.
1546    BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
1547                                                          "vector.memcheck");
1548    LoopBypassBlocks.push_back(CheckBlock);
1549
1550    // Replace the branch into the memory check block with a conditional branch
1551    // for the "few elements case".
1552    Instruction *OldTerm = BypassBlock->getTerminator();
1553    BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
1554    OldTerm->eraseFromParent();
1555
1556    Cmp = MemRuntimeCheck;
1557    LastBypassBlock = CheckBlock;
1558  }
1559
1560  LastBypassBlock->getTerminator()->eraseFromParent();
1561  BranchInst::Create(MiddleBlock, VectorPH, Cmp,
1562                     LastBypassBlock);
1563
1564  // We are going to resume the execution of the scalar loop.
1565  // Go over all of the induction variables that we found and fix the
1566  // PHIs that are left in the scalar version of the loop.
1567  // The starting values of PHI nodes depend on the counter of the last
1568  // iteration in the vectorized loop.
1569  // If we come from a bypass edge then we need to start from the original
1570  // start value.
1571
1572  // This variable saves the new starting index for the scalar loop.
1573  PHINode *ResumeIndex = 0;
1574  LoopVectorizationLegality::InductionList::iterator I, E;
1575  LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
1576  // Set builder to point to last bypass block.
1577  BypassBuilder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
1578  for (I = List->begin(), E = List->end(); I != E; ++I) {
1579    PHINode *OrigPhi = I->first;
1580    LoopVectorizationLegality::InductionInfo II = I->second;
1581
1582    Type *ResumeValTy = (OrigPhi == OldInduction) ? IdxTy : OrigPhi->getType();
1583    PHINode *ResumeVal = PHINode::Create(ResumeValTy, 2, "resume.val",
1584                                         MiddleBlock->getTerminator());
1585    // We might have extended the type of the induction variable but we need a
1586    // truncated version for the scalar loop.
1587    PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
1588      PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
1589                      MiddleBlock->getTerminator()) : 0;
1590
1591    Value *EndValue = 0;
1592    switch (II.IK) {
1593    case LoopVectorizationLegality::IK_NoInduction:
1594      llvm_unreachable("Unknown induction");
1595    case LoopVectorizationLegality::IK_IntInduction: {
1596      // Handle the integer induction counter.
1597      assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
1598
1599      // We have the canonical induction variable.
1600      if (OrigPhi == OldInduction) {
1601        // Create a truncated version of the resume value for the scalar loop,
1602        // we might have promoted the type to a larger width.
1603        EndValue =
1604          BypassBuilder.CreateTrunc(IdxEndRoundDown, OrigPhi->getType());
1605        // The new PHI merges the original incoming value, in case of a bypass,
1606        // or the value at the end of the vectorized loop.
1607        for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1608          TruncResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1609        TruncResumeVal->addIncoming(EndValue, VecBody);
1610
1611        // We know what the end value is.
1612        EndValue = IdxEndRoundDown;
1613        // We also know which PHI node holds it.
1614        ResumeIndex = ResumeVal;
1615        break;
1616      }
1617
1618      // Not the canonical induction variable - add the vector loop count to the
1619      // start value.
1620      Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1621                                                   II.StartValue->getType(),
1622                                                   "cast.crd");
1623      EndValue = BypassBuilder.CreateAdd(CRD, II.StartValue , "ind.end");
1624      break;
1625    }
1626    case LoopVectorizationLegality::IK_ReverseIntInduction: {
1627      // Convert the CountRoundDown variable to the PHI size.
1628      Value *CRD = BypassBuilder.CreateSExtOrTrunc(CountRoundDown,
1629                                                   II.StartValue->getType(),
1630                                                   "cast.crd");
1631      // Handle reverse integer induction counter.
1632      EndValue = BypassBuilder.CreateSub(II.StartValue, CRD, "rev.ind.end");
1633      break;
1634    }
1635    case LoopVectorizationLegality::IK_PtrInduction: {
1636      // For pointer induction variables, calculate the offset using
1637      // the end index.
1638      EndValue = BypassBuilder.CreateGEP(II.StartValue, CountRoundDown,
1639                                         "ptr.ind.end");
1640      break;
1641    }
1642    case LoopVectorizationLegality::IK_ReversePtrInduction: {
1643      // The value at the end of the loop for the reverse pointer is calculated
1644      // by creating a GEP with a negative index starting from the start value.
1645      Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
1646      Value *NegIdx = BypassBuilder.CreateSub(Zero, CountRoundDown,
1647                                              "rev.ind.end");
1648      EndValue = BypassBuilder.CreateGEP(II.StartValue, NegIdx,
1649                                         "rev.ptr.ind.end");
1650      break;
1651    }
1652    }// end of case
1653
1654    // The new PHI merges the original incoming value, in case of a bypass,
1655    // or the value at the end of the vectorized loop.
1656    for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) {
1657      if (OrigPhi == OldInduction)
1658        ResumeVal->addIncoming(StartIdx, LoopBypassBlocks[I]);
1659      else
1660        ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1661    }
1662    ResumeVal->addIncoming(EndValue, VecBody);
1663
1664    // Fix the scalar body counter (PHI node).
1665    unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
1666    // The old inductions phi node in the scalar body needs the truncated value.
1667    if (OrigPhi == OldInduction)
1668      OrigPhi->setIncomingValue(BlockIdx, TruncResumeVal);
1669    else
1670      OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
1671  }
1672
1673  // If we are generating a new induction variable then we also need to
1674  // generate the code that calculates the exit value. This value is not
1675  // simply the end of the counter because we may skip the vectorized body
1676  // in case of a runtime check.
1677  if (!OldInduction){
1678    assert(!ResumeIndex && "Unexpected resume value found");
1679    ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
1680                                  MiddleBlock->getTerminator());
1681    for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1682      ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
1683    ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
1684  }
1685
1686  // Make sure that we found the index where scalar loop needs to continue.
1687  assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
1688         "Invalid resume Index");
1689
1690  // Add a check in the middle block to see if we have completed
1691  // all of the iterations in the first vector loop.
1692  // If (N - N%VF) == N, then we *don't* need to run the remainder.
1693  Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
1694                                ResumeIndex, "cmp.n",
1695                                MiddleBlock->getTerminator());
1696
1697  BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
1698  // Remove the old terminator.
1699  MiddleBlock->getTerminator()->eraseFromParent();
1700
1701  // Create i+1 and fill the PHINode.
1702  Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
1703  Induction->addIncoming(StartIdx, VectorPH);
1704  Induction->addIncoming(NextIdx, VecBody);
1705  // Create the compare.
1706  Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
1707  Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
1708
1709  // Now we have two terminators. Remove the old one from the block.
1710  VecBody->getTerminator()->eraseFromParent();
1711
1712  // Get ready to start creating new instructions into the vectorized body.
1713  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1714
1715  // Create and register the new vector loop.
1716  Loop* Lp = new Loop();
1717  Loop *ParentLoop = OrigLoop->getParentLoop();
1718
1719  // Insert the new loop into the loop nest and register the new basic blocks.
1720  if (ParentLoop) {
1721    ParentLoop->addChildLoop(Lp);
1722    for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
1723      ParentLoop->addBasicBlockToLoop(LoopBypassBlocks[I], LI->getBase());
1724    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
1725    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
1726    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
1727  } else {
1728    LI->addTopLevelLoop(Lp);
1729  }
1730
1731  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
1732
1733  // Save the state.
1734  LoopVectorPreHeader = VectorPH;
1735  LoopScalarPreHeader = ScalarPH;
1736  LoopMiddleBlock = MiddleBlock;
1737  LoopExitBlock = ExitBlock;
1738  LoopVectorBody = VecBody;
1739  LoopScalarBody = OldBasicBlock;
1740}
1741
1742/// This function returns the identity element (or neutral element) for
1743/// the operation K.
1744Constant*
1745LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
1746  switch (K) {
1747  case RK_IntegerXor:
1748  case RK_IntegerAdd:
1749  case RK_IntegerOr:
1750    // Adding, Xoring, Oring zero to a number does not change it.
1751    return ConstantInt::get(Tp, 0);
1752  case RK_IntegerMult:
1753    // Multiplying a number by 1 does not change it.
1754    return ConstantInt::get(Tp, 1);
1755  case RK_IntegerAnd:
1756    // AND-ing a number with an all-1 value does not change it.
1757    return ConstantInt::get(Tp, -1, true);
1758  case  RK_FloatMult:
1759    // Multiplying a number by 1 does not change it.
1760    return ConstantFP::get(Tp, 1.0L);
1761  case  RK_FloatAdd:
1762    // Adding zero to a number does not change it.
1763    return ConstantFP::get(Tp, 0.0L);
1764  default:
1765    llvm_unreachable("Unknown reduction kind");
1766  }
1767}
1768
1769static Intrinsic::ID
1770getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
1771  // If we have an intrinsic call, check if it is trivially vectorizable.
1772  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1773    switch (II->getIntrinsicID()) {
1774    case Intrinsic::sqrt:
1775    case Intrinsic::sin:
1776    case Intrinsic::cos:
1777    case Intrinsic::exp:
1778    case Intrinsic::exp2:
1779    case Intrinsic::log:
1780    case Intrinsic::log10:
1781    case Intrinsic::log2:
1782    case Intrinsic::fabs:
1783    case Intrinsic::floor:
1784    case Intrinsic::ceil:
1785    case Intrinsic::trunc:
1786    case Intrinsic::rint:
1787    case Intrinsic::nearbyint:
1788    case Intrinsic::pow:
1789    case Intrinsic::fma:
1790    case Intrinsic::fmuladd:
1791      return II->getIntrinsicID();
1792    default:
1793      return Intrinsic::not_intrinsic;
1794    }
1795  }
1796
1797  if (!TLI)
1798    return Intrinsic::not_intrinsic;
1799
1800  LibFunc::Func Func;
1801  Function *F = CI->getCalledFunction();
1802  // We're going to make assumptions on the semantics of the functions, check
1803  // that the target knows that it's available in this environment.
1804  if (!F || !TLI->getLibFunc(F->getName(), Func))
1805    return Intrinsic::not_intrinsic;
1806
1807  // Otherwise check if we have a call to a function that can be turned into a
1808  // vector intrinsic.
1809  switch (Func) {
1810  default:
1811    break;
1812  case LibFunc::sin:
1813  case LibFunc::sinf:
1814  case LibFunc::sinl:
1815    return Intrinsic::sin;
1816  case LibFunc::cos:
1817  case LibFunc::cosf:
1818  case LibFunc::cosl:
1819    return Intrinsic::cos;
1820  case LibFunc::exp:
1821  case LibFunc::expf:
1822  case LibFunc::expl:
1823    return Intrinsic::exp;
1824  case LibFunc::exp2:
1825  case LibFunc::exp2f:
1826  case LibFunc::exp2l:
1827    return Intrinsic::exp2;
1828  case LibFunc::log:
1829  case LibFunc::logf:
1830  case LibFunc::logl:
1831    return Intrinsic::log;
1832  case LibFunc::log10:
1833  case LibFunc::log10f:
1834  case LibFunc::log10l:
1835    return Intrinsic::log10;
1836  case LibFunc::log2:
1837  case LibFunc::log2f:
1838  case LibFunc::log2l:
1839    return Intrinsic::log2;
1840  case LibFunc::fabs:
1841  case LibFunc::fabsf:
1842  case LibFunc::fabsl:
1843    return Intrinsic::fabs;
1844  case LibFunc::floor:
1845  case LibFunc::floorf:
1846  case LibFunc::floorl:
1847    return Intrinsic::floor;
1848  case LibFunc::ceil:
1849  case LibFunc::ceilf:
1850  case LibFunc::ceill:
1851    return Intrinsic::ceil;
1852  case LibFunc::trunc:
1853  case LibFunc::truncf:
1854  case LibFunc::truncl:
1855    return Intrinsic::trunc;
1856  case LibFunc::rint:
1857  case LibFunc::rintf:
1858  case LibFunc::rintl:
1859    return Intrinsic::rint;
1860  case LibFunc::nearbyint:
1861  case LibFunc::nearbyintf:
1862  case LibFunc::nearbyintl:
1863    return Intrinsic::nearbyint;
1864  case LibFunc::pow:
1865  case LibFunc::powf:
1866  case LibFunc::powl:
1867    return Intrinsic::pow;
1868  }
1869
1870  return Intrinsic::not_intrinsic;
1871}
1872
1873/// This function translates the reduction kind to an LLVM binary operator.
1874static unsigned
1875getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
1876  switch (Kind) {
1877    case LoopVectorizationLegality::RK_IntegerAdd:
1878      return Instruction::Add;
1879    case LoopVectorizationLegality::RK_IntegerMult:
1880      return Instruction::Mul;
1881    case LoopVectorizationLegality::RK_IntegerOr:
1882      return Instruction::Or;
1883    case LoopVectorizationLegality::RK_IntegerAnd:
1884      return Instruction::And;
1885    case LoopVectorizationLegality::RK_IntegerXor:
1886      return Instruction::Xor;
1887    case LoopVectorizationLegality::RK_FloatMult:
1888      return Instruction::FMul;
1889    case LoopVectorizationLegality::RK_FloatAdd:
1890      return Instruction::FAdd;
1891    case LoopVectorizationLegality::RK_IntegerMinMax:
1892      return Instruction::ICmp;
1893    case LoopVectorizationLegality::RK_FloatMinMax:
1894      return Instruction::FCmp;
1895    default:
1896      llvm_unreachable("Unknown reduction operation");
1897  }
1898}
1899
1900Value *createMinMaxOp(IRBuilder<> &Builder,
1901                      LoopVectorizationLegality::MinMaxReductionKind RK,
1902                      Value *Left,
1903                      Value *Right) {
1904  CmpInst::Predicate P = CmpInst::ICMP_NE;
1905  switch (RK) {
1906  default:
1907    llvm_unreachable("Unknown min/max reduction kind");
1908  case LoopVectorizationLegality::MRK_UIntMin:
1909    P = CmpInst::ICMP_ULT;
1910    break;
1911  case LoopVectorizationLegality::MRK_UIntMax:
1912    P = CmpInst::ICMP_UGT;
1913    break;
1914  case LoopVectorizationLegality::MRK_SIntMin:
1915    P = CmpInst::ICMP_SLT;
1916    break;
1917  case LoopVectorizationLegality::MRK_SIntMax:
1918    P = CmpInst::ICMP_SGT;
1919    break;
1920  case LoopVectorizationLegality::MRK_FloatMin:
1921    P = CmpInst::FCMP_OLT;
1922    break;
1923  case LoopVectorizationLegality::MRK_FloatMax:
1924    P = CmpInst::FCMP_OGT;
1925    break;
1926  }
1927
1928  Value *Cmp;
1929  if (RK == LoopVectorizationLegality::MRK_FloatMin || RK == LoopVectorizationLegality::MRK_FloatMax)
1930    Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
1931  else
1932    Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
1933
1934  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
1935  return Select;
1936}
1937
1938void
1939InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
1940  //===------------------------------------------------===//
1941  //
1942  // Notice: any optimization or new instruction that go
1943  // into the code below should be also be implemented in
1944  // the cost-model.
1945  //
1946  //===------------------------------------------------===//
1947  Constant *Zero = Builder.getInt32(0);
1948
1949  // In order to support reduction variables we need to be able to vectorize
1950  // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
1951  // stages. First, we create a new vector PHI node with no incoming edges.
1952  // We use this value when we vectorize all of the instructions that use the
1953  // PHI. Next, after all of the instructions in the block are complete we
1954  // add the new incoming edges to the PHI. At this point all of the
1955  // instructions in the basic block are vectorized, so we can use them to
1956  // construct the PHI.
1957  PhiVector RdxPHIsToFix;
1958
1959  // Scan the loop in a topological order to ensure that defs are vectorized
1960  // before users.
1961  LoopBlocksDFS DFS(OrigLoop);
1962  DFS.perform(LI);
1963
1964  // Vectorize all of the blocks in the original loop.
1965  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
1966       be = DFS.endRPO(); bb != be; ++bb)
1967    vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
1968
1969  // At this point every instruction in the original loop is widened to
1970  // a vector form. We are almost done. Now, we need to fix the PHI nodes
1971  // that we vectorized. The PHI nodes are currently empty because we did
1972  // not want to introduce cycles. Notice that the remaining PHI nodes
1973  // that we need to fix are reduction variables.
1974
1975  // Create the 'reduced' values for each of the induction vars.
1976  // The reduced values are the vector values that we scalarize and combine
1977  // after the loop is finished.
1978  for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
1979       it != e; ++it) {
1980    PHINode *RdxPhi = *it;
1981    assert(RdxPhi && "Unable to recover vectorized PHI");
1982
1983    // Find the reduction variable descriptor.
1984    assert(Legal->getReductionVars()->count(RdxPhi) &&
1985           "Unable to find the reduction variable");
1986    LoopVectorizationLegality::ReductionDescriptor RdxDesc =
1987    (*Legal->getReductionVars())[RdxPhi];
1988
1989    // We need to generate a reduction vector from the incoming scalar.
1990    // To do so, we need to generate the 'identity' vector and overide
1991    // one of the elements with the incoming scalar reduction. We need
1992    // to do it in the vector-loop preheader.
1993    Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
1994
1995    // This is the vector-clone of the value that leaves the loop.
1996    VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
1997    Type *VecTy = VectorExit[0]->getType();
1998
1999    // Find the reduction identity variable. Zero for addition, or, xor,
2000    // one for multiplication, -1 for And.
2001    Value *Identity;
2002    Value *VectorStart;
2003    if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
2004        RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
2005      // MinMax reduction have the start value as their identify.
2006      VectorStart = Identity = Builder.CreateVectorSplat(VF, RdxDesc.StartValue,
2007                                                         "minmax.ident");
2008    } else {
2009      Constant *Iden =
2010        LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
2011                                                        VecTy->getScalarType());
2012      Identity = ConstantVector::getSplat(VF, Iden);
2013
2014      // This vector is the Identity vector where the first element is the
2015      // incoming scalar reduction.
2016      VectorStart = Builder.CreateInsertElement(Identity,
2017                                                RdxDesc.StartValue, Zero);
2018    }
2019
2020    // Fix the vector-loop phi.
2021    // We created the induction variable so we know that the
2022    // preheader is the first entry.
2023    BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
2024
2025    // Reductions do not have to start at zero. They can start with
2026    // any loop invariant values.
2027    VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
2028    BasicBlock *Latch = OrigLoop->getLoopLatch();
2029    Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
2030    VectorParts &Val = getVectorValue(LoopVal);
2031    for (unsigned part = 0; part < UF; ++part) {
2032      // Make sure to add the reduction stat value only to the
2033      // first unroll part.
2034      Value *StartVal = (part == 0) ? VectorStart : Identity;
2035      cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
2036      cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
2037    }
2038
2039    // Before each round, move the insertion point right between
2040    // the PHIs and the values we are going to write.
2041    // This allows us to write both PHINodes and the extractelement
2042    // instructions.
2043    Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
2044
2045    VectorParts RdxParts;
2046    for (unsigned part = 0; part < UF; ++part) {
2047      // This PHINode contains the vectorized reduction variable, or
2048      // the initial value vector, if we bypass the vector loop.
2049      VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
2050      PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
2051      Value *StartVal = (part == 0) ? VectorStart : Identity;
2052      for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
2053        NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
2054      NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
2055      RdxParts.push_back(NewPhi);
2056    }
2057
2058    // Reduce all of the unrolled parts into a single vector.
2059    Value *ReducedPartRdx = RdxParts[0];
2060    unsigned Op = getReductionBinOp(RdxDesc.Kind);
2061    for (unsigned part = 1; part < UF; ++part) {
2062      if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2063        ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op,
2064                                             RdxParts[part], ReducedPartRdx,
2065                                             "bin.rdx");
2066      else
2067        ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
2068                                        ReducedPartRdx, RdxParts[part]);
2069    }
2070
2071    // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
2072    // and vector ops, reducing the set of values being computed by half each
2073    // round.
2074    assert(isPowerOf2_32(VF) &&
2075           "Reduction emission only supported for pow2 vectors!");
2076    Value *TmpVec = ReducedPartRdx;
2077    SmallVector<Constant*, 32> ShuffleMask(VF, 0);
2078    for (unsigned i = VF; i != 1; i >>= 1) {
2079      // Move the upper half of the vector to the lower half.
2080      for (unsigned j = 0; j != i/2; ++j)
2081        ShuffleMask[j] = Builder.getInt32(i/2 + j);
2082
2083      // Fill the rest of the mask with undef.
2084      std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
2085                UndefValue::get(Builder.getInt32Ty()));
2086
2087      Value *Shuf =
2088        Builder.CreateShuffleVector(TmpVec,
2089                                    UndefValue::get(TmpVec->getType()),
2090                                    ConstantVector::get(ShuffleMask),
2091                                    "rdx.shuf");
2092
2093      if (Op != Instruction::ICmp && Op != Instruction::FCmp)
2094        TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
2095                                     "bin.rdx");
2096      else
2097        TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
2098    }
2099
2100    // The result is in the first element of the vector.
2101    Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
2102
2103    // Now, we need to fix the users of the reduction variable
2104    // inside and outside of the scalar remainder loop.
2105    // We know that the loop is in LCSSA form. We need to update the
2106    // PHI nodes in the exit blocks.
2107    for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2108         LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2109      PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2110      if (!LCSSAPhi) continue;
2111
2112      // All PHINodes need to have a single entry edge, or two if
2113      // we already fixed them.
2114      assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
2115
2116      // We found our reduction value exit-PHI. Update it with the
2117      // incoming bypass edge.
2118      if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
2119        // Add an edge coming from the bypass.
2120        LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
2121        break;
2122      }
2123    }// end of the LCSSA phi scan.
2124
2125    // Fix the scalar loop reduction variable with the incoming reduction sum
2126    // from the vector body and from the backedge value.
2127    int IncomingEdgeBlockIdx =
2128    (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
2129    assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
2130    // Pick the other block.
2131    int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
2132    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
2133    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
2134  }// end of for each redux variable.
2135
2136  // The Loop exit block may have single value PHI nodes where the incoming
2137  // value is 'undef'. While vectorizing we only handled real values that
2138  // were defined inside the loop. Here we handle the 'undef case'.
2139  // See PR14725.
2140  for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
2141       LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
2142    PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
2143    if (!LCSSAPhi) continue;
2144    if (LCSSAPhi->getNumIncomingValues() == 1)
2145      LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
2146                            LoopMiddleBlock);
2147  }
2148}
2149
2150InnerLoopVectorizer::VectorParts
2151InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
2152  assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
2153         "Invalid edge");
2154
2155  VectorParts SrcMask = createBlockInMask(Src);
2156
2157  // The terminator has to be a branch inst!
2158  BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
2159  assert(BI && "Unexpected terminator found");
2160
2161  if (BI->isConditional()) {
2162    VectorParts EdgeMask = getVectorValue(BI->getCondition());
2163
2164    if (BI->getSuccessor(0) != Dst)
2165      for (unsigned part = 0; part < UF; ++part)
2166        EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
2167
2168    for (unsigned part = 0; part < UF; ++part)
2169      EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
2170    return EdgeMask;
2171  }
2172
2173  return SrcMask;
2174}
2175
2176InnerLoopVectorizer::VectorParts
2177InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
2178  assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
2179
2180  // Loop incoming mask is all-one.
2181  if (OrigLoop->getHeader() == BB) {
2182    Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
2183    return getVectorValue(C);
2184  }
2185
2186  // This is the block mask. We OR all incoming edges, and with zero.
2187  Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
2188  VectorParts BlockMask = getVectorValue(Zero);
2189
2190  // For each pred:
2191  for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
2192    VectorParts EM = createEdgeMask(*it, BB);
2193    for (unsigned part = 0; part < UF; ++part)
2194      BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
2195  }
2196
2197  return BlockMask;
2198}
2199
2200void
2201InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
2202                                          BasicBlock *BB, PhiVector *PV) {
2203  // For each instruction in the old loop.
2204  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2205    VectorParts &Entry = WidenMap.get(it);
2206    switch (it->getOpcode()) {
2207    case Instruction::Br:
2208      // Nothing to do for PHIs and BR, since we already took care of the
2209      // loop control flow instructions.
2210      continue;
2211    case Instruction::PHI:{
2212      PHINode* P = cast<PHINode>(it);
2213      // Handle reduction variables:
2214      if (Legal->getReductionVars()->count(P)) {
2215        for (unsigned part = 0; part < UF; ++part) {
2216          // This is phase one of vectorizing PHIs.
2217          Type *VecTy = VectorType::get(it->getType(), VF);
2218          Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
2219                                        LoopVectorBody-> getFirstInsertionPt());
2220        }
2221        PV->push_back(P);
2222        continue;
2223      }
2224
2225      // Check for PHI nodes that are lowered to vector selects.
2226      if (P->getParent() != OrigLoop->getHeader()) {
2227        // We know that all PHIs in non header blocks are converted into
2228        // selects, so we don't have to worry about the insertion order and we
2229        // can just use the builder.
2230        // At this point we generate the predication tree. There may be
2231        // duplications since this is a simple recursive scan, but future
2232        // optimizations will clean it up.
2233
2234        unsigned NumIncoming = P->getNumIncomingValues();
2235
2236        // Generate a sequence of selects of the form:
2237        // SELECT(Mask3, In3,
2238        //      SELECT(Mask2, In2,
2239        //                   ( ...)))
2240        for (unsigned In = 0; In < NumIncoming; In++) {
2241          VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
2242                                            P->getParent());
2243          VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
2244
2245          for (unsigned part = 0; part < UF; ++part) {
2246            // We might have single edge PHIs (blocks) - use an identity
2247            // 'select' for the first PHI operand.
2248            if (In == 0)
2249              Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2250                                                 In0[part]);
2251            else
2252              // Select between the current value and the previous incoming edge
2253              // based on the incoming mask.
2254              Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2255                                                 Entry[part], "predphi");
2256          }
2257        }
2258        continue;
2259      }
2260
2261      // This PHINode must be an induction variable.
2262      // Make sure that we know about it.
2263      assert(Legal->getInductionVars()->count(P) &&
2264             "Not an induction variable");
2265
2266      LoopVectorizationLegality::InductionInfo II =
2267        Legal->getInductionVars()->lookup(P);
2268
2269      switch (II.IK) {
2270      case LoopVectorizationLegality::IK_NoInduction:
2271        llvm_unreachable("Unknown induction");
2272      case LoopVectorizationLegality::IK_IntInduction: {
2273        assert(P->getType() == II.StartValue->getType() && "Types must match");
2274        Type *PhiTy = P->getType();
2275        Value *Broadcasted;
2276        if (P == OldInduction) {
2277          // Handle the canonical induction variable. We might have had to
2278          // extend the type.
2279          Broadcasted = Builder.CreateTrunc(Induction, PhiTy);
2280        } else {
2281          // Handle other induction variables that are now based on the
2282          // canonical one.
2283          Value *NormalizedIdx = Builder.CreateSub(Induction, ExtendedIdx,
2284                                                   "normalized.idx");
2285          NormalizedIdx = Builder.CreateSExtOrTrunc(NormalizedIdx, PhiTy);
2286          Broadcasted = Builder.CreateAdd(II.StartValue, NormalizedIdx,
2287                                          "offset.idx");
2288        }
2289        Broadcasted = getBroadcastInstrs(Broadcasted);
2290        // After broadcasting the induction variable we need to make the vector
2291        // consecutive by adding 0, 1, 2, etc.
2292        for (unsigned part = 0; part < UF; ++part)
2293          Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
2294        continue;
2295      }
2296      case LoopVectorizationLegality::IK_ReverseIntInduction:
2297      case LoopVectorizationLegality::IK_PtrInduction:
2298      case LoopVectorizationLegality::IK_ReversePtrInduction:
2299        // Handle reverse integer and pointer inductions.
2300        Value *StartIdx = ExtendedIdx;
2301        // This is the normalized GEP that starts counting at zero.
2302        Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
2303                                                 "normalized.idx");
2304
2305        // Handle the reverse integer induction variable case.
2306        if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
2307          IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
2308          Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
2309                                                 "resize.norm.idx");
2310          Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
2311                                                 "reverse.idx");
2312
2313          // This is a new value so do not hoist it out.
2314          Value *Broadcasted = getBroadcastInstrs(ReverseInd);
2315          // After broadcasting the induction variable we need to make the
2316          // vector consecutive by adding  ... -3, -2, -1, 0.
2317          for (unsigned part = 0; part < UF; ++part)
2318            Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
2319                                               true);
2320          continue;
2321        }
2322
2323        // Handle the pointer induction variable case.
2324        assert(P->getType()->isPointerTy() && "Unexpected type.");
2325
2326        // Is this a reverse induction ptr or a consecutive induction ptr.
2327        bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
2328                        II.IK);
2329
2330        // This is the vector of results. Notice that we don't generate
2331        // vector geps because scalar geps result in better code.
2332        for (unsigned part = 0; part < UF; ++part) {
2333          Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
2334          for (unsigned int i = 0; i < VF; ++i) {
2335            int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
2336            Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
2337            Value *GlobalIdx;
2338            if (!Reverse)
2339              GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
2340            else
2341              GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
2342
2343            Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
2344                                               "next.gep");
2345            VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
2346                                                 Builder.getInt32(i),
2347                                                 "insert.gep");
2348          }
2349          Entry[part] = VecVal;
2350        }
2351        continue;
2352      }
2353
2354    }// End of PHI.
2355
2356    case Instruction::Add:
2357    case Instruction::FAdd:
2358    case Instruction::Sub:
2359    case Instruction::FSub:
2360    case Instruction::Mul:
2361    case Instruction::FMul:
2362    case Instruction::UDiv:
2363    case Instruction::SDiv:
2364    case Instruction::FDiv:
2365    case Instruction::URem:
2366    case Instruction::SRem:
2367    case Instruction::FRem:
2368    case Instruction::Shl:
2369    case Instruction::LShr:
2370    case Instruction::AShr:
2371    case Instruction::And:
2372    case Instruction::Or:
2373    case Instruction::Xor: {
2374      // Just widen binops.
2375      BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
2376      VectorParts &A = getVectorValue(it->getOperand(0));
2377      VectorParts &B = getVectorValue(it->getOperand(1));
2378
2379      // Use this vector value for all users of the original instruction.
2380      for (unsigned Part = 0; Part < UF; ++Part) {
2381        Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
2382
2383        // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
2384        BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
2385        if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
2386          VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
2387          VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
2388        }
2389        if (VecOp && isa<PossiblyExactOperator>(VecOp))
2390          VecOp->setIsExact(BinOp->isExact());
2391
2392        Entry[Part] = V;
2393      }
2394      break;
2395    }
2396    case Instruction::Select: {
2397      // Widen selects.
2398      // If the selector is loop invariant we can create a select
2399      // instruction with a scalar condition. Otherwise, use vector-select.
2400      bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
2401                                               OrigLoop);
2402
2403      // The condition can be loop invariant  but still defined inside the
2404      // loop. This means that we can't just use the original 'cond' value.
2405      // We have to take the 'vectorized' value and pick the first lane.
2406      // Instcombine will make this a no-op.
2407      VectorParts &Cond = getVectorValue(it->getOperand(0));
2408      VectorParts &Op0  = getVectorValue(it->getOperand(1));
2409      VectorParts &Op1  = getVectorValue(it->getOperand(2));
2410      Value *ScalarCond = Builder.CreateExtractElement(Cond[0],
2411                                                       Builder.getInt32(0));
2412      for (unsigned Part = 0; Part < UF; ++Part) {
2413        Entry[Part] = Builder.CreateSelect(
2414          InvariantCond ? ScalarCond : Cond[Part],
2415          Op0[Part],
2416          Op1[Part]);
2417      }
2418      break;
2419    }
2420
2421    case Instruction::ICmp:
2422    case Instruction::FCmp: {
2423      // Widen compares. Generate vector compares.
2424      bool FCmp = (it->getOpcode() == Instruction::FCmp);
2425      CmpInst *Cmp = dyn_cast<CmpInst>(it);
2426      VectorParts &A = getVectorValue(it->getOperand(0));
2427      VectorParts &B = getVectorValue(it->getOperand(1));
2428      for (unsigned Part = 0; Part < UF; ++Part) {
2429        Value *C = 0;
2430        if (FCmp)
2431          C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
2432        else
2433          C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
2434        Entry[Part] = C;
2435      }
2436      break;
2437    }
2438
2439    case Instruction::Store:
2440    case Instruction::Load:
2441        vectorizeMemoryInstruction(it, Legal);
2442        break;
2443    case Instruction::ZExt:
2444    case Instruction::SExt:
2445    case Instruction::FPToUI:
2446    case Instruction::FPToSI:
2447    case Instruction::FPExt:
2448    case Instruction::PtrToInt:
2449    case Instruction::IntToPtr:
2450    case Instruction::SIToFP:
2451    case Instruction::UIToFP:
2452    case Instruction::Trunc:
2453    case Instruction::FPTrunc:
2454    case Instruction::BitCast: {
2455      CastInst *CI = dyn_cast<CastInst>(it);
2456      /// Optimize the special case where the source is the induction
2457      /// variable. Notice that we can only optimize the 'trunc' case
2458      /// because: a. FP conversions lose precision, b. sext/zext may wrap,
2459      /// c. other casts depend on pointer size.
2460      if (CI->getOperand(0) == OldInduction &&
2461          it->getOpcode() == Instruction::Trunc) {
2462        Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
2463                                               CI->getType());
2464        Value *Broadcasted = getBroadcastInstrs(ScalarCast);
2465        for (unsigned Part = 0; Part < UF; ++Part)
2466          Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
2467        break;
2468      }
2469      /// Vectorize casts.
2470      Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
2471
2472      VectorParts &A = getVectorValue(it->getOperand(0));
2473      for (unsigned Part = 0; Part < UF; ++Part)
2474        Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
2475      break;
2476    }
2477
2478    case Instruction::Call: {
2479      // Ignore dbg intrinsics.
2480      if (isa<DbgInfoIntrinsic>(it))
2481        break;
2482
2483      Module *M = BB->getParent()->getParent();
2484      CallInst *CI = cast<CallInst>(it);
2485      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
2486      assert(ID && "Not an intrinsic call!");
2487      for (unsigned Part = 0; Part < UF; ++Part) {
2488        SmallVector<Value*, 4> Args;
2489        for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
2490          VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
2491          Args.push_back(Arg[Part]);
2492        }
2493        Type *Tys[] = { VectorType::get(CI->getType()->getScalarType(), VF) };
2494        Function *F = Intrinsic::getDeclaration(M, ID, Tys);
2495        Entry[Part] = Builder.CreateCall(F, Args);
2496      }
2497      break;
2498    }
2499
2500    default:
2501      // All other instructions are unsupported. Scalarize them.
2502      scalarizeInstruction(it);
2503      break;
2504    }// end of switch.
2505  }// end of for_each instr.
2506}
2507
2508void InnerLoopVectorizer::updateAnalysis() {
2509  // Forget the original basic block.
2510  SE->forgetLoop(OrigLoop);
2511
2512  // Update the dominator tree information.
2513  assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
2514         "Entry does not dominate exit.");
2515
2516  for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2517    DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
2518  DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
2519  DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
2520  DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
2521  DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
2522  DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
2523  DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2524
2525  DEBUG(DT->verifyAnalysis());
2526}
2527
2528bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
2529  if (!EnableIfConversion)
2530    return false;
2531
2532  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
2533  std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
2534
2535  // Collect the blocks that need predication.
2536  for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
2537    BasicBlock *BB = LoopBlocks[i];
2538
2539    // We don't support switch statements inside loops.
2540    if (!isa<BranchInst>(BB->getTerminator()))
2541      return false;
2542
2543    // We must be able to predicate all blocks that need to be predicated.
2544    if (blockNeedsPredication(BB) && !blockCanBePredicated(BB))
2545      return false;
2546  }
2547
2548  // Check that we can actually speculate the hoistable loads.
2549  if (!LoadSpeculation.canHoistAllLoads())
2550    return false;
2551
2552  // We can if-convert this loop.
2553  return true;
2554}
2555
2556bool LoopVectorizationLegality::canVectorize() {
2557  // We must have a loop in canonical form. Loops with indirectbr in them cannot
2558  // be canonicalized.
2559  if (!TheLoop->getLoopPreheader())
2560    return false;
2561
2562  // We can only vectorize innermost loops.
2563  if (TheLoop->getSubLoopsVector().size())
2564    return false;
2565
2566  // We must have a single backedge.
2567  if (TheLoop->getNumBackEdges() != 1)
2568    return false;
2569
2570  // We must have a single exiting block.
2571  if (!TheLoop->getExitingBlock())
2572    return false;
2573
2574  unsigned NumBlocks = TheLoop->getNumBlocks();
2575
2576  // Check if we can if-convert non single-bb loops.
2577  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
2578    DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
2579    return false;
2580  }
2581
2582  // We need to have a loop header.
2583  BasicBlock *Latch = TheLoop->getLoopLatch();
2584  DEBUG(dbgs() << "LV: Found a loop: " <<
2585        TheLoop->getHeader()->getName() << "\n");
2586
2587  // ScalarEvolution needs to be able to find the exit count.
2588  const SCEV *ExitCount = SE->getBackedgeTakenCount(TheLoop);
2589  if (ExitCount == SE->getCouldNotCompute()) {
2590    DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
2591    return false;
2592  }
2593
2594  // Do not loop-vectorize loops with a tiny trip count.
2595  unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
2596  if (TC > 0u && TC < TinyTripCountVectorThreshold) {
2597    DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
2598          "This loop is not worth vectorizing.\n");
2599    return false;
2600  }
2601
2602  // Check if we can vectorize the instructions and CFG in this loop.
2603  if (!canVectorizeInstrs()) {
2604    DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
2605    return false;
2606  }
2607
2608  // Go over each instruction and look at memory deps.
2609  if (!canVectorizeMemory()) {
2610    DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
2611    return false;
2612  }
2613
2614  // Collect all of the variables that remain uniform after vectorization.
2615  collectLoopUniforms();
2616
2617  DEBUG(dbgs() << "LV: We can vectorize this loop" <<
2618        (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
2619        <<"!\n");
2620
2621  // Okay! We can vectorize. At this point we don't have any other mem analysis
2622  // which may limit our maximum vectorization factor, so just return true with
2623  // no restrictions.
2624  return true;
2625}
2626
2627static Type *convertPointerToIntegerType(DataLayout &DL, Type *Ty) {
2628  if (Ty->isPointerTy())
2629    return DL.getIntPtrType(Ty->getContext());
2630  return Ty;
2631}
2632
2633static Type* getWiderType(DataLayout &DL, Type *Ty0, Type *Ty1) {
2634  Ty0 = convertPointerToIntegerType(DL, Ty0);
2635  Ty1 = convertPointerToIntegerType(DL, Ty1);
2636  if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
2637    return Ty0;
2638  return Ty1;
2639}
2640
2641/// \brief Check that the instruction has outside loop users and is not an
2642/// identified reduction variable.
2643static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
2644                               SmallPtrSet<Value *, 4> &Reductions) {
2645  // Reduction instructions are allowed to have exit users. All other
2646  // instructions must not have external users.
2647  if (!Reductions.count(Inst))
2648    //Check that all of the users of the loop are inside the BB.
2649    for (Value::use_iterator I = Inst->use_begin(), E = Inst->use_end();
2650         I != E; ++I) {
2651      Instruction *U = cast<Instruction>(*I);
2652      // This user may be a reduction exit value.
2653      if (!TheLoop->contains(U)) {
2654        DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
2655        return true;
2656      }
2657    }
2658  return false;
2659}
2660
2661bool LoopVectorizationLegality::canVectorizeInstrs() {
2662  BasicBlock *PreHeader = TheLoop->getLoopPreheader();
2663  BasicBlock *Header = TheLoop->getHeader();
2664
2665  // Look for the attribute signaling the absence of NaNs.
2666  Function &F = *Header->getParent();
2667  if (F.hasFnAttribute("no-nans-fp-math"))
2668    HasFunNoNaNAttr = F.getAttributes().getAttribute(
2669      AttributeSet::FunctionIndex,
2670      "no-nans-fp-math").getValueAsString() == "true";
2671
2672  // For each block in the loop.
2673  for (Loop::block_iterator bb = TheLoop->block_begin(),
2674       be = TheLoop->block_end(); bb != be; ++bb) {
2675
2676    // Scan the instructions in the block and look for hazards.
2677    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2678         ++it) {
2679
2680      if (PHINode *Phi = dyn_cast<PHINode>(it)) {
2681        Type *PhiTy = Phi->getType();
2682        // Check that this PHI type is allowed.
2683        if (!PhiTy->isIntegerTy() &&
2684            !PhiTy->isFloatingPointTy() &&
2685            !PhiTy->isPointerTy()) {
2686          DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
2687          return false;
2688        }
2689
2690        // If this PHINode is not in the header block, then we know that we
2691        // can convert it to select during if-conversion. No need to check if
2692        // the PHIs in this block are induction or reduction variables.
2693        if (*bb != Header) {
2694          // Check that this instruction has no outside users or is an
2695          // identified reduction value with an outside user.
2696          if(!hasOutsideLoopUser(TheLoop, it, AllowedExit))
2697            continue;
2698          return false;
2699        }
2700
2701        // We only allow if-converted PHIs with more than two incoming values.
2702        if (Phi->getNumIncomingValues() != 2) {
2703          DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
2704          return false;
2705        }
2706
2707        // This is the value coming from the preheader.
2708        Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
2709        // Check if this is an induction variable.
2710        InductionKind IK = isInductionVariable(Phi);
2711
2712        if (IK_NoInduction != IK) {
2713          // Get the widest type.
2714          if (!WidestIndTy)
2715            WidestIndTy = convertPointerToIntegerType(*DL, PhiTy);
2716          else
2717            WidestIndTy = getWiderType(*DL, PhiTy, WidestIndTy);
2718
2719          // Int inductions are special because we only allow one IV.
2720          if (IK == IK_IntInduction) {
2721            // Use the phi node with the widest type as induction. Use the last
2722            // one if there are multiple (no good reason for doing this other
2723            // than it is expedient).
2724            if (!Induction || PhiTy == WidestIndTy)
2725              Induction = Phi;
2726          }
2727
2728          DEBUG(dbgs() << "LV: Found an induction variable.\n");
2729          Inductions[Phi] = InductionInfo(StartValue, IK);
2730          continue;
2731        }
2732
2733        if (AddReductionVar(Phi, RK_IntegerAdd)) {
2734          DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
2735          continue;
2736        }
2737        if (AddReductionVar(Phi, RK_IntegerMult)) {
2738          DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
2739          continue;
2740        }
2741        if (AddReductionVar(Phi, RK_IntegerOr)) {
2742          DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
2743          continue;
2744        }
2745        if (AddReductionVar(Phi, RK_IntegerAnd)) {
2746          DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
2747          continue;
2748        }
2749        if (AddReductionVar(Phi, RK_IntegerXor)) {
2750          DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
2751          continue;
2752        }
2753        if (AddReductionVar(Phi, RK_IntegerMinMax)) {
2754          DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
2755          continue;
2756        }
2757        if (AddReductionVar(Phi, RK_FloatMult)) {
2758          DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
2759          continue;
2760        }
2761        if (AddReductionVar(Phi, RK_FloatAdd)) {
2762          DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
2763          continue;
2764        }
2765        if (AddReductionVar(Phi, RK_FloatMinMax)) {
2766          DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<"\n");
2767          continue;
2768        }
2769
2770        DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
2771        return false;
2772      }// end of PHI handling
2773
2774      // We still don't handle functions. However, we can ignore dbg intrinsic
2775      // calls and we do handle certain intrinsic and libm functions.
2776      CallInst *CI = dyn_cast<CallInst>(it);
2777      if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
2778        DEBUG(dbgs() << "LV: Found a call site.\n");
2779        return false;
2780      }
2781
2782      // Check that the instruction return type is vectorizable.
2783      if (!VectorType::isValidElementType(it->getType()) &&
2784          !it->getType()->isVoidTy()) {
2785        DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
2786        return false;
2787      }
2788
2789      // Check that the stored type is vectorizable.
2790      if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
2791        Type *T = ST->getValueOperand()->getType();
2792        if (!VectorType::isValidElementType(T))
2793          return false;
2794      }
2795
2796      // Reduction instructions are allowed to have exit users.
2797      // All other instructions must not have external users.
2798      if (hasOutsideLoopUser(TheLoop, it, AllowedExit))
2799        return false;
2800
2801    } // next instr.
2802
2803  }
2804
2805  if (!Induction) {
2806    DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
2807    if (Inductions.empty())
2808      return false;
2809  }
2810
2811  return true;
2812}
2813
2814void LoopVectorizationLegality::collectLoopUniforms() {
2815  // We now know that the loop is vectorizable!
2816  // Collect variables that will remain uniform after vectorization.
2817  std::vector<Value*> Worklist;
2818  BasicBlock *Latch = TheLoop->getLoopLatch();
2819
2820  // Start with the conditional branch and walk up the block.
2821  Worklist.push_back(Latch->getTerminator()->getOperand(0));
2822
2823  while (Worklist.size()) {
2824    Instruction *I = dyn_cast<Instruction>(Worklist.back());
2825    Worklist.pop_back();
2826
2827    // Look at instructions inside this loop.
2828    // Stop when reaching PHI nodes.
2829    // TODO: we need to follow values all over the loop, not only in this block.
2830    if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
2831      continue;
2832
2833    // This is a known uniform.
2834    Uniforms.insert(I);
2835
2836    // Insert all operands.
2837    Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
2838  }
2839}
2840
2841/// \brief Analyses memory accesses in a loop.
2842///
2843/// Checks whether run time pointer checks are needed and builds sets for data
2844/// dependence checking.
2845class AccessAnalysis {
2846public:
2847  /// \brief Read or write access location.
2848  typedef std::pair<Value*, char> MemAccessInfo;
2849
2850  /// \brief Set of potential dependent memory accesses.
2851  typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
2852
2853  AccessAnalysis(DataLayout *Dl, DepCandidates &DA) :
2854    DL(Dl), DepCands(DA), AreAllWritesIdentified(true),
2855    AreAllReadsIdentified(true), IsRTCheckNeeded(false) {}
2856
2857  /// \brief Register a load  and whether it is only read from.
2858  void addLoad(Value *Ptr, bool IsReadOnly) {
2859    Accesses.insert(std::make_pair(Ptr, false));
2860    if (IsReadOnly)
2861      ReadOnlyPtr.insert(Ptr);
2862  }
2863
2864  /// \brief Register a store.
2865  void addStore(Value *Ptr) {
2866    Accesses.insert(std::make_pair(Ptr, true));
2867  }
2868
2869  /// \brief Check whether we can check the pointers at runtime for
2870  /// non-intersection.
2871  bool canCheckPtrAtRT(LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
2872                       unsigned &NumComparisons, ScalarEvolution *SE,
2873                       Loop *TheLoop);
2874
2875  /// \brief Goes over all memory accesses, checks whether a RT check is needed
2876  /// and builds sets of dependent accesses.
2877  void buildDependenceSets() {
2878    // Process read-write pointers first.
2879    processMemAccesses(false);
2880    // Next, process read pointers.
2881    processMemAccesses(true);
2882  }
2883
2884  bool isRTCheckNeeded() { return IsRTCheckNeeded; }
2885
2886  bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
2887
2888  DenseSet<MemAccessInfo> &getDependenciesToCheck() { return CheckDeps; }
2889
2890private:
2891  typedef DenseSet<MemAccessInfo> PtrAccessSet;
2892  typedef DenseMap<Value*, MemAccessInfo> UnderlyingObjToAccessMap;
2893
2894  /// \brief Go over all memory access or only the deferred ones if
2895  /// \p UseDeferred is true and check whether runtime pointer checks are needed
2896  /// and build sets of dependency check candidates.
2897  void processMemAccesses(bool UseDeferred);
2898
2899  /// Set of all accesses.
2900  PtrAccessSet Accesses;
2901
2902  /// Set of access to check after all writes have been processed.
2903  PtrAccessSet DeferredAccesses;
2904
2905  /// Map of pointers to last access encountered.
2906  UnderlyingObjToAccessMap ObjToLastAccess;
2907
2908  /// Set of accesses that need a further dependence check.
2909  DenseSet<MemAccessInfo> CheckDeps;
2910
2911  /// Set of pointers that are read only.
2912  SmallPtrSet<Value*, 16> ReadOnlyPtr;
2913
2914  /// Set of underlying objects already written to.
2915  SmallPtrSet<Value*, 16> WriteObjects;
2916
2917  DataLayout *DL;
2918
2919  /// Sets of potentially dependent accesses - members of one set share an
2920  /// underlying pointer. The set "CheckDeps" identfies which sets really need a
2921  /// dependence check.
2922  DepCandidates &DepCands;
2923
2924  bool AreAllWritesIdentified;
2925  bool AreAllReadsIdentified;
2926  bool IsRTCheckNeeded;
2927};
2928
2929/// \brief Check whether a pointer can participate in a runtime bounds check.
2930static bool hasComputableBounds(ScalarEvolution *SE, Value *Ptr) {
2931  const SCEV *PtrScev = SE->getSCEV(Ptr);
2932  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
2933  if (!AR)
2934    return false;
2935
2936  return AR->isAffine();
2937}
2938
2939bool AccessAnalysis::canCheckPtrAtRT(
2940                       LoopVectorizationLegality::RuntimePointerCheck &RtCheck,
2941                        unsigned &NumComparisons, ScalarEvolution *SE,
2942                        Loop *TheLoop) {
2943  // Find pointers with computable bounds. We are going to use this information
2944  // to place a runtime bound check.
2945  unsigned NumReadPtrChecks = 0;
2946  unsigned NumWritePtrChecks = 0;
2947  bool CanDoRT = true;
2948
2949  bool IsDepCheckNeeded = isDependencyCheckNeeded();
2950  // We assign consecutive id to access from different dependence sets.
2951  // Accesses within the same set don't need a runtime check.
2952  unsigned RunningDepId = 1;
2953  DenseMap<Value *, unsigned> DepSetId;
2954
2955  for (PtrAccessSet::iterator AI = Accesses.begin(), AE = Accesses.end();
2956       AI != AE; ++AI) {
2957    const MemAccessInfo &Access = *AI;
2958    Value *Ptr = Access.first;
2959    bool IsWrite = Access.second;
2960
2961    // Just add write checks if we have both.
2962    if (!IsWrite && Accesses.count(std::make_pair(Ptr, true)))
2963      continue;
2964
2965    if (IsWrite)
2966      ++NumWritePtrChecks;
2967    else
2968      ++NumReadPtrChecks;
2969
2970    if (hasComputableBounds(SE, Ptr)) {
2971      // The id of the dependence set.
2972      unsigned DepId;
2973
2974      if (IsDepCheckNeeded) {
2975        Value *Leader = DepCands.getLeaderValue(Access).first;
2976        unsigned &LeaderId = DepSetId[Leader];
2977        if (!LeaderId)
2978          LeaderId = RunningDepId++;
2979        DepId = LeaderId;
2980      } else
2981        // Each access has its own dependence set.
2982        DepId = RunningDepId++;
2983
2984      //RtCheck.insert(SE, TheLoop, Ptr, IsWrite, DepId);
2985
2986      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *Ptr <<"\n");
2987    } else {
2988      CanDoRT = false;
2989    }
2990  }
2991
2992  if (IsDepCheckNeeded && CanDoRT && RunningDepId == 2)
2993    NumComparisons = 0; // Only one dependence set.
2994  else
2995    NumComparisons = (NumWritePtrChecks * (NumReadPtrChecks +
2996                                           NumWritePtrChecks - 1));
2997  return CanDoRT;
2998}
2999
3000static bool isFunctionScopeIdentifiedObject(Value *Ptr) {
3001  return isNoAliasArgument(Ptr) || isNoAliasCall(Ptr) || isa<AllocaInst>(Ptr);
3002}
3003
3004void AccessAnalysis::processMemAccesses(bool UseDeferred) {
3005  // We process the set twice: first we process read-write pointers, last we
3006  // process read-only pointers. This allows us to skip dependence tests for
3007  // read-only pointers.
3008
3009  PtrAccessSet &S = UseDeferred ? DeferredAccesses : Accesses;
3010  for (PtrAccessSet::iterator AI = S.begin(), AE = S.end(); AI != AE; ++AI) {
3011    const MemAccessInfo &Access = *AI;
3012    Value *Ptr = Access.first;
3013    bool IsWrite = Access.second;
3014
3015    DepCands.insert(Access);
3016
3017    // Memorize read-only pointers for later processing and skip them in the
3018    // first round (they need to be checked after we have seen all write
3019    // pointers). Note: we also mark pointer that are not consecutive as
3020    // "read-only" pointers (so that we check "a[b[i]] +="). Hence, we need the
3021    // second check for "!IsWrite".
3022    bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
3023    if (!UseDeferred && IsReadOnlyPtr) {
3024      DeferredAccesses.insert(Access);
3025      continue;
3026    }
3027
3028    bool NeedDepCheck = false;
3029    // Check whether there is the possiblity of dependency because of underlying
3030    // objects being the same.
3031    typedef SmallVector<Value*, 16> ValueVector;
3032    ValueVector TempObjects;
3033    GetUnderlyingObjects(Ptr, TempObjects, DL);
3034    for (ValueVector::iterator UI = TempObjects.begin(), UE = TempObjects.end();
3035         UI != UE; ++UI) {
3036      Value *UnderlyingObj = *UI;
3037
3038      // If this is a write then it needs to be an identified object.  If this a
3039      // read and all writes (so far) are identified function scope objects we
3040      // don't need an identified underlying object but only an Argument (the
3041      // next write is going to invalidate this assumption if it is
3042      // unidentified).
3043      // This is a micro-optimization for the case where all writes are
3044      // identified and we have one argument pointer.
3045      // Otherwise, we do need a runtime check.
3046      if ((IsWrite && !isFunctionScopeIdentifiedObject(UnderlyingObj)) ||
3047          (!IsWrite && (!AreAllWritesIdentified ||
3048                        !isa<Argument>(UnderlyingObj)) &&
3049           !isIdentifiedObject(UnderlyingObj))) {
3050        DEBUG(dbgs() << "LV: Found an unidentified " <<
3051              (IsWrite ?  "write" : "read" ) << " ptr:" << *UnderlyingObj <<
3052              "\n");
3053        IsRTCheckNeeded = (IsRTCheckNeeded ||
3054                           !isIdentifiedObject(UnderlyingObj) ||
3055                           !AreAllReadsIdentified);
3056
3057        if (IsWrite)
3058          AreAllWritesIdentified = false;
3059        if (!IsWrite)
3060          AreAllReadsIdentified = false;
3061      }
3062
3063      // If this is a write - check other reads and writes for conflicts.  If
3064      // this is a read only check other writes for conflicts (but only if there
3065      // is no other write to the ptr - this is an optimization to catch "a[i] =
3066      // a[i] + " without having to do a dependence check).
3067      if ((IsWrite || IsReadOnlyPtr) && WriteObjects.count(UnderlyingObj))
3068        NeedDepCheck = true;
3069
3070      if (IsWrite)
3071        WriteObjects.insert(UnderlyingObj);
3072
3073      // Create sets of pointers connected by shared underlying objects.
3074      UnderlyingObjToAccessMap::iterator Prev =
3075        ObjToLastAccess.find(UnderlyingObj);
3076      if (Prev != ObjToLastAccess.end())
3077        DepCands.unionSets(Access, Prev->second);
3078
3079      ObjToLastAccess[UnderlyingObj] = Access;
3080    }
3081
3082    if (NeedDepCheck)
3083      CheckDeps.insert(Access);
3084  }
3085}
3086
3087/// \brief Checks memory dependences among accesses to the same underlying
3088/// object to determine whether there vectorization is legal or not (and at
3089/// which vectorization factor).
3090///
3091/// This class works under the assumption that we already checked that memory
3092/// locations with different underlying pointers are "must-not alias".
3093/// We use the ScalarEvolution framework to symbolically evalutate access
3094/// functions pairs. Since we currently don't restructure the loop we can rely
3095/// on the program order of memory accesses to determine their safety.
3096/// At the moment we will only deem accesses as safe for:
3097///  * A negative constant distance assuming program order.
3098///
3099///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
3100///            a[i] = tmp;                y = a[i];
3101///
3102///   The latter case is safe because later checks guarantuee that there can't
3103///   be a cycle through a phi node (that is, we check that "x" and "y" is not
3104///   the same variable: a header phi can only be an induction or a reduction, a
3105///   reduction can't have a memory sink, an induction can't have a memory
3106///   source). This is important and must not be violated (or we have to
3107///   resort to checking for cycles through memory).
3108///
3109///  * A positive constant distance assuming program order that is bigger
3110///    than the biggest memory access.
3111///
3112///     tmp = a[i]        OR              b[i] = x
3113///     a[i+2] = tmp                      y = b[i+2];
3114///
3115///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
3116///
3117///  * Zero distances and all accesses have the same size.
3118///
3119class MemoryDepChecker {
3120public:
3121  typedef std::pair<Value*, char> MemAccessInfo;
3122
3123  MemoryDepChecker(ScalarEvolution *Se, DataLayout *Dl, const Loop *L) :
3124    SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0) {}
3125
3126  /// \brief Register the location (instructions are given increasing numbers)
3127  /// of a write access.
3128  void addAccess(StoreInst *SI) {
3129    Value *Ptr = SI->getPointerOperand();
3130    Accesses[std::make_pair(Ptr, true)].push_back(AccessIdx);
3131    InstMap.push_back(SI);
3132    ++AccessIdx;
3133  }
3134
3135  /// \brief Register the location (instructions are given increasing numbers)
3136  /// of a write access.
3137  void addAccess(LoadInst *LI) {
3138    Value *Ptr = LI->getPointerOperand();
3139    Accesses[std::make_pair(Ptr, false)].push_back(AccessIdx);
3140    InstMap.push_back(LI);
3141    ++AccessIdx;
3142  }
3143
3144  /// \brief Check whether the dependencies between the accesses are safe.
3145  ///
3146  /// Only checks sets with elements in \p CheckDeps.
3147  bool areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3148                   DenseSet<MemAccessInfo> &CheckDeps);
3149
3150  /// \brief The maximum number of bytes of a vector register we can vectorize
3151  /// the accesses safely with.
3152  unsigned getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
3153
3154private:
3155  ScalarEvolution *SE;
3156  DataLayout *DL;
3157  const Loop *InnermostLoop;
3158
3159  /// \brief Maps access locations (ptr, read/write) to program order.
3160  DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
3161
3162  /// \brief Memory access instructions in program order.
3163  SmallVector<Instruction *, 16> InstMap;
3164
3165  /// \brief The program order index to be used for the next instruction.
3166  unsigned AccessIdx;
3167
3168  // We can access this many bytes in parallel safely.
3169  unsigned MaxSafeDepDistBytes;
3170
3171  /// \brief Check whether there is a plausible dependence between the two
3172  /// accesses.
3173  ///
3174  /// Access \p A must happen before \p B in program order. The two indices
3175  /// identify the index into the program order map.
3176  ///
3177  /// This function checks  whether there is a plausible dependence (or the
3178  /// absence of such can't be proved) between the two accesses. If there is a
3179  /// plausible dependence but the dependence distance is bigger than one
3180  /// element access it records this distance in \p MaxSafeDepDistBytes (if this
3181  /// distance is smaller than any other distance encountered so far).
3182  /// Otherwise, this function returns true signaling a possible dependence.
3183  bool isDependent(const MemAccessInfo &A, unsigned AIdx,
3184                   const MemAccessInfo &B, unsigned BIdx);
3185
3186  /// \brief Check whether the data dependence could prevent store-load
3187  /// forwarding.
3188  bool couldPreventStoreLoadForward(unsigned Distance, unsigned TypeByteSize);
3189};
3190
3191static bool isInBoundsGep(Value *Ptr) {
3192  if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
3193    return GEP->isInBounds();
3194  return false;
3195}
3196
3197/// \brief Check whether the access through \p Ptr has a constant stride.
3198static int isStridedPtr(ScalarEvolution *SE, DataLayout *DL, Value *Ptr,
3199                        const Loop *Lp) {
3200  const Type *PtrTy = Ptr->getType();
3201  assert(PtrTy->isPointerTy() && "Unexpected non ptr");
3202
3203  // Make sure that the pointer does not point to aggregate types.
3204  if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType()) {
3205    DEBUG(dbgs() << "LV: Bad stride - Not a pointer to a scalar type" << *Ptr
3206          << "\n");
3207    return 0;
3208  }
3209
3210  const SCEV *PtrScev = SE->getSCEV(Ptr);
3211  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
3212  if (!AR) {
3213    DEBUG(dbgs() << "LV: Bad stride - Not an AddRecExpr pointer "
3214          << *Ptr << " SCEV: " << *PtrScev << "\n");
3215    return 0;
3216  }
3217
3218  // The accesss function must stride over the innermost loop.
3219  if (Lp != AR->getLoop()) {
3220    DEBUG(dbgs() << "LV: Bad stride - Not striding over innermost loop " << *Ptr
3221          << " SCEV: " << *PtrScev << "\n");
3222  }
3223
3224  // The address calculation must not wrap. Otherwise, a dependence could be
3225  // inverted. An inbounds getelementptr that is a AddRec with a unit stride
3226  // cannot wrap per definition. The unit stride requirement is checked later.
3227  bool IsInBoundsGEP = isInBoundsGep(Ptr);
3228  bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
3229  if (!IsNoWrapAddRec && !IsInBoundsGEP) {
3230    DEBUG(dbgs() << "LV: Bad stride - Pointer may wrap in the address space "
3231          << *Ptr << " SCEV: " << *PtrScev << "\n");
3232    return 0;
3233  }
3234
3235  // Check the step is constant.
3236  const SCEV *Step = AR->getStepRecurrence(*SE);
3237
3238  // Calculate the pointer stride and check if it is consecutive.
3239  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
3240  if (!C) {
3241    DEBUG(dbgs() << "LV: Bad stride - Not a constant strided " << *Ptr <<
3242          " SCEV: " << *PtrScev << "\n");
3243    return 0;
3244  }
3245
3246  int64_t Size = DL->getTypeAllocSize(PtrTy->getPointerElementType());
3247  const APInt &APStepVal = C->getValue()->getValue();
3248
3249  // Huge step value - give up.
3250  if (APStepVal.getBitWidth() > 64)
3251    return 0;
3252
3253  int64_t StepVal = APStepVal.getSExtValue();
3254
3255  // Strided access.
3256  int64_t Stride = StepVal / Size;
3257  int64_t Rem = StepVal % Size;
3258  if (Rem)
3259    return 0;
3260
3261  // If the SCEV could wrap but we have an inbounds gep with a unit stride we
3262  // know we can't "wrap around the address space".
3263  if (!IsNoWrapAddRec && IsInBoundsGEP && Stride != 1 && Stride != -1)
3264    return 0;
3265
3266  return Stride;
3267}
3268
3269bool MemoryDepChecker::couldPreventStoreLoadForward(unsigned Distance,
3270                                                    unsigned TypeByteSize) {
3271  // If loads occur at a distance that is not a multiple of a feasible vector
3272  // factor store-load forwarding does not take place.
3273  // Positive dependences might cause troubles because vectorizing them might
3274  // prevent store-load forwarding making vectorized code run a lot slower.
3275  //   a[i] = a[i-3] ^ a[i-8];
3276  //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
3277  //   hence on your typical architecture store-load forwarding does not take
3278  //   place. Vectorizing in such cases does not make sense.
3279  // Store-load forwarding distance.
3280  const unsigned NumCyclesForStoreLoadThroughMemory = 8*TypeByteSize;
3281  // Maximum vector factor.
3282  unsigned MaxVFWithoutSLForwardIssues = MaxVectorWidth*TypeByteSize;
3283  if(MaxSafeDepDistBytes < MaxVFWithoutSLForwardIssues)
3284    MaxVFWithoutSLForwardIssues = MaxSafeDepDistBytes;
3285
3286  for (unsigned vf = 2*TypeByteSize; vf <= MaxVFWithoutSLForwardIssues;
3287       vf *= 2) {
3288    if (Distance % vf && Distance / vf < NumCyclesForStoreLoadThroughMemory) {
3289      MaxVFWithoutSLForwardIssues = (vf >>=1);
3290      break;
3291    }
3292  }
3293
3294  if (MaxVFWithoutSLForwardIssues< 2*TypeByteSize) {
3295    DEBUG(dbgs() << "LV: Distance " << Distance <<
3296          " that could cause a store-load forwarding conflict\n");
3297    return true;
3298  }
3299
3300  if (MaxVFWithoutSLForwardIssues < MaxSafeDepDistBytes &&
3301      MaxVFWithoutSLForwardIssues != MaxVectorWidth*TypeByteSize)
3302    MaxSafeDepDistBytes = MaxVFWithoutSLForwardIssues;
3303  return false;
3304}
3305
3306bool MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
3307                                   const MemAccessInfo &B, unsigned BIdx) {
3308  assert (AIdx < BIdx && "Must pass arguments in program order");
3309
3310  Value *APtr = A.first;
3311  Value *BPtr = B.first;
3312  bool AIsWrite = A.second;
3313  bool BIsWrite = B.second;
3314
3315  // Two reads are independent.
3316  if (!AIsWrite && !BIsWrite)
3317    return false;
3318
3319  const SCEV *AScev = SE->getSCEV(APtr);
3320  const SCEV *BScev = SE->getSCEV(BPtr);
3321
3322  int StrideAPtr = isStridedPtr(SE, DL, APtr, InnermostLoop);
3323  int StrideBPtr = isStridedPtr(SE, DL, BPtr, InnermostLoop);
3324
3325  const SCEV *Src = AScev;
3326  const SCEV *Sink = BScev;
3327
3328  // If the induction step is negative we have to invert source and sink of the
3329  // dependence.
3330  if (StrideAPtr < 0) {
3331    //Src = BScev;
3332    //Sink = AScev;
3333    std::swap(APtr, BPtr);
3334    std::swap(Src, Sink);
3335    std::swap(AIsWrite, BIsWrite);
3336    std::swap(AIdx, BIdx);
3337    std::swap(StrideAPtr, StrideBPtr);
3338  }
3339
3340  const SCEV *Dist = SE->getMinusSCEV(Sink, Src);
3341
3342  DEBUG(dbgs() << "LV: Src Scev: " << *Src << "Sink Scev: " << *Sink
3343        << "(Induction step: " << StrideAPtr <<  ")\n");
3344  DEBUG(dbgs() << "LV: Distance for " << *InstMap[AIdx] << " to "
3345        << *InstMap[BIdx] << ": " << *Dist << "\n");
3346
3347  // Need consecutive accesses. We don't want to vectorize
3348  // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap in
3349  // the address space.
3350  if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr){
3351    DEBUG(dbgs() << "Non-consecutive pointer access\n");
3352    return true;
3353  }
3354
3355  const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
3356  if (!C) {
3357    DEBUG(dbgs() << "LV: Dependence because of non constant distance\n");
3358    return true;
3359  }
3360
3361  Type *ATy = APtr->getType()->getPointerElementType();
3362  Type *BTy = BPtr->getType()->getPointerElementType();
3363  unsigned TypeByteSize = DL->getTypeAllocSize(ATy);
3364
3365  // Negative distances are not plausible dependencies.
3366  const APInt &Val = C->getValue()->getValue();
3367  if (Val.isNegative()) {
3368    bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
3369    if (IsTrueDataDependence &&
3370        (couldPreventStoreLoadForward(Val.abs().getZExtValue(), TypeByteSize) ||
3371         ATy != BTy))
3372      return true;
3373
3374    DEBUG(dbgs() << "LV: Dependence is negative: NoDep\n");
3375    return false;
3376  }
3377
3378  // Write to the same location with the same size.
3379  // Could be improved to assert type sizes are the same (i32 == float, etc).
3380  if (Val == 0) {
3381    if (ATy == BTy)
3382      return false;
3383    DEBUG(dbgs() << "LV: Zero dependence difference but different types");
3384    return true;
3385  }
3386
3387  assert(Val.isStrictlyPositive() && "Expect a positive value");
3388
3389  // Positive distance bigger than max vectorization factor.
3390  if (ATy != BTy) {
3391    DEBUG(dbgs() <<
3392          "LV: ReadWrite-Write positive dependency with different types");
3393    return false;
3394  }
3395
3396  unsigned Distance = (unsigned) Val.getZExtValue();
3397
3398  // Bail out early if passed-in parameters make vectorization not feasible.
3399  unsigned ForcedFactor = VectorizationFactor ? VectorizationFactor : 1;
3400  unsigned ForcedUnroll = VectorizationUnroll ? VectorizationUnroll : 1;
3401
3402  // The distance must be bigger than the size needed for a vectorized version
3403  // of the operation and the size of the vectorized operation must not be
3404  // bigger than the currrent maximum size.
3405  if (Distance < 2*TypeByteSize ||
3406      2*TypeByteSize > MaxSafeDepDistBytes ||
3407      Distance < TypeByteSize * ForcedUnroll * ForcedFactor) {
3408    DEBUG(dbgs() << "LV: Failure because of Positive distance "
3409        << Val.getSExtValue() << "\n");
3410    return true;
3411  }
3412
3413  MaxSafeDepDistBytes = Distance < MaxSafeDepDistBytes ?
3414    Distance : MaxSafeDepDistBytes;
3415
3416  bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
3417  if (IsTrueDataDependence &&
3418      couldPreventStoreLoadForward(Distance, TypeByteSize))
3419     return true;
3420
3421  DEBUG(dbgs() << "LV: Positive distance " << Val.getSExtValue() <<
3422        " with max VF=" << MaxSafeDepDistBytes/TypeByteSize << "\n");
3423
3424  return false;
3425}
3426
3427bool
3428MemoryDepChecker::areDepsSafe(AccessAnalysis::DepCandidates &AccessSets,
3429                              DenseSet<MemAccessInfo> &CheckDeps) {
3430
3431  MaxSafeDepDistBytes = -1U;
3432  while (!CheckDeps.empty()) {
3433    MemAccessInfo CurAccess = *CheckDeps.begin();
3434
3435    // Get the relevant memory access set.
3436    EquivalenceClasses<MemAccessInfo>::iterator I =
3437      AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
3438
3439    // Check accesses within this set.
3440    EquivalenceClasses<MemAccessInfo>::member_iterator AI, AE;
3441    AI = AccessSets.member_begin(I), AE = AccessSets.member_end();
3442
3443    // Check every access pair.
3444    while (AI != AE) {
3445      CheckDeps.erase(*AI);
3446      EquivalenceClasses<MemAccessInfo>::member_iterator OI = llvm::next(AI);
3447      while (OI != AE) {
3448        // Check every accessing instruction pair in program order.
3449        for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
3450             I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
3451          for (std::vector<unsigned>::iterator I2 = Accesses[*OI].begin(),
3452               I2E = Accesses[*OI].end(); I2 != I2E; ++I2) {
3453            if (*I1 < *I2 && isDependent(*AI, *I1, *OI, *I2))
3454              return false;
3455            if (*I2 < *I1 && isDependent(*OI, *I2, *AI, *I1))
3456              return false;
3457          }
3458        ++OI;
3459      }
3460      AI++;
3461    }
3462  }
3463  return true;
3464}
3465
3466AliasAnalysis::Location
3467LoopVectorizationLegality::getLoadStoreLocation(Instruction *Inst) {
3468  if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
3469    return AA->getLocation(Store);
3470  else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
3471    return AA->getLocation(Load);
3472
3473  llvm_unreachable("Should be either load or store instruction");
3474}
3475
3476bool
3477LoopVectorizationLegality::hasPossibleGlobalWriteReorder(
3478                                                Value *Object,
3479                                                Instruction *Inst,
3480                                                AliasMultiMap& WriteObjects,
3481                                                unsigned MaxByteWidth) {
3482
3483  AliasAnalysis::Location ThisLoc = getLoadStoreLocation(Inst);
3484
3485  std::vector<Instruction*>::iterator
3486              it = WriteObjects[Object].begin(),
3487              end = WriteObjects[Object].end();
3488
3489  for (; it != end; ++it) {
3490    Instruction* I = *it;
3491    if (I == Inst)
3492      continue;
3493
3494    AliasAnalysis::Location ThatLoc = getLoadStoreLocation(I);
3495    if (AA->alias(ThisLoc.getWithNewSize(MaxByteWidth),
3496                  ThatLoc.getWithNewSize(MaxByteWidth)))
3497      return true;
3498  }
3499  return false;
3500}
3501
3502bool LoopVectorizationLegality::canVectorizeMemory() {
3503
3504  typedef SmallVector<Value*, 16> ValueVector;
3505  typedef SmallPtrSet<Value*, 16> ValueSet;
3506  // Holds the Load and Store *instructions*.
3507  ValueVector Loads;
3508  ValueVector Stores;
3509  PtrRtCheck.Pointers.clear();
3510  PtrRtCheck.Need = false;
3511
3512  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
3513
3514  // For each block.
3515  for (Loop::block_iterator bb = TheLoop->block_begin(),
3516       be = TheLoop->block_end(); bb != be; ++bb) {
3517
3518    // Scan the BB and collect legal loads and stores.
3519    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3520         ++it) {
3521
3522      // If this is a load, save it. If this instruction can read from memory
3523      // but is not a load, then we quit. Notice that we don't handle function
3524      // calls that read or write.
3525      if (it->mayReadFromMemory()) {
3526        LoadInst *Ld = dyn_cast<LoadInst>(it);
3527        if (!Ld) return false;
3528        if (!Ld->isSimple() && !IsAnnotatedParallel) {
3529          DEBUG(dbgs() << "LV: Found a non-simple load.\n");
3530          return false;
3531        }
3532        Loads.push_back(Ld);
3533        continue;
3534      }
3535
3536      // Save 'store' instructions. Abort if other instructions write to memory.
3537      if (it->mayWriteToMemory()) {
3538        StoreInst *St = dyn_cast<StoreInst>(it);
3539        if (!St) return false;
3540        if (!St->isSimple() && !IsAnnotatedParallel) {
3541          DEBUG(dbgs() << "LV: Found a non-simple store.\n");
3542          return false;
3543        }
3544        Stores.push_back(St);
3545      }
3546    } // next instr.
3547  } // next block.
3548
3549  // Now we have two lists that hold the loads and the stores.
3550  // Next, we find the pointers that they use.
3551
3552  // Check if we see any stores. If there are no stores, then we don't
3553  // care if the pointers are *restrict*.
3554  if (!Stores.size()) {
3555    DEBUG(dbgs() << "LV: Found a read-only loop!\n");
3556    return true;
3557  }
3558
3559  // Holds the read and read-write *pointers* that we find. These maps hold
3560  // unique values for pointers (so no need for multi-map).
3561  AliasMap Reads;
3562  AliasMap ReadWrites;
3563
3564  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
3565  // multiple times on the same object. If the ptr is accessed twice, once
3566  // for read and once for write, it will only appear once (on the write
3567  // list). This is okay, since we are going to check for conflicts between
3568  // writes and between reads and writes, but not between reads and reads.
3569  ValueSet Seen;
3570
3571  ValueVector::iterator I, IE;
3572  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
3573    StoreInst *ST = cast<StoreInst>(*I);
3574    Value* Ptr = ST->getPointerOperand();
3575
3576    if (isUniform(Ptr)) {
3577      DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
3578      return false;
3579    }
3580
3581    // If we did *not* see this pointer before, insert it to
3582    // the read-write list. At this phase it is only a 'write' list.
3583    if (Seen.insert(Ptr))
3584      ReadWrites.insert(std::make_pair(Ptr, ST));
3585  }
3586
3587  if (IsAnnotatedParallel) {
3588    DEBUG(dbgs()
3589          << "LV: A loop annotated parallel, ignore memory dependency "
3590          << "checks.\n");
3591    return true;
3592  }
3593
3594  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
3595    LoadInst *LD = cast<LoadInst>(*I);
3596    Value* Ptr = LD->getPointerOperand();
3597    // If we did *not* see this pointer before, insert it to the
3598    // read list. If we *did* see it before, then it is already in
3599    // the read-write list. This allows us to vectorize expressions
3600    // such as A[i] += x;  Because the address of A[i] is a read-write
3601    // pointer. This only works if the index of A[i] is consecutive.
3602    // If the address of i is unknown (for example A[B[i]]) then we may
3603    // read a few words, modify, and write a few words, and some of the
3604    // words may be written to the same address.
3605    if (Seen.insert(Ptr) || 0 == isConsecutivePtr(Ptr))
3606      Reads.insert(std::make_pair(Ptr, LD));
3607  }
3608
3609  // If we write (or read-write) to a single destination and there are no
3610  // other reads in this loop then is it safe to vectorize.
3611  if (ReadWrites.size() == 1 && Reads.size() == 0) {
3612    DEBUG(dbgs() << "LV: Found a write-only loop!\n");
3613    return true;
3614  }
3615
3616  unsigned NumReadPtrs = 0;
3617  unsigned NumWritePtrs = 0;
3618
3619  // Find pointers with computable bounds. We are going to use this information
3620  // to place a runtime bound check.
3621  bool CanDoRT = true;
3622  AliasMap::iterator MI, ME;
3623  for (MI = ReadWrites.begin(), ME = ReadWrites.end(); MI != ME; ++MI) {
3624    Value *V = (*MI).first;
3625    if (hasComputableBounds(V)) {
3626      PtrRtCheck.insert(SE, TheLoop, V, true);
3627      NumWritePtrs++;
3628      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *V <<"\n");
3629    } else {
3630      CanDoRT = false;
3631      break;
3632    }
3633  }
3634  for (MI = Reads.begin(), ME = Reads.end(); MI != ME; ++MI) {
3635    Value *V = (*MI).first;
3636    if (hasComputableBounds(V)) {
3637      PtrRtCheck.insert(SE, TheLoop, V, false);
3638      NumReadPtrs++;
3639      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *V <<"\n");
3640    } else {
3641      CanDoRT = false;
3642      break;
3643    }
3644  }
3645
3646  // Check that we did not collect too many pointers or found a
3647  // unsizeable pointer.
3648  unsigned NumComparisons = (NumWritePtrs * (NumReadPtrs + NumWritePtrs - 1));
3649  DEBUG(dbgs() << "LV: We need to compare " << NumComparisons << " ptrs.\n");
3650  if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
3651    PtrRtCheck.reset();
3652    CanDoRT = false;
3653  }
3654
3655  if (CanDoRT) {
3656    DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
3657  }
3658
3659  bool NeedRTCheck = false;
3660
3661  // Biggest vectorized access possible, vector width * unroll factor.
3662  // TODO: We're being very pessimistic here, find a way to know the
3663  // real access width before getting here.
3664  unsigned MaxByteWidth = (TTI->getRegisterBitWidth(true) / 8) *
3665                           TTI->getMaximumUnrollFactor();
3666  // Now that the pointers are in two lists (Reads and ReadWrites), we
3667  // can check that there are no conflicts between each of the writes and
3668  // between the writes to the reads.
3669  // Note that WriteObjects duplicates the stores (indexed now by underlying
3670  // objects) to avoid pointing to elements inside ReadWrites.
3671  // TODO: Maybe create a new type where they can interact without duplication.
3672  AliasMultiMap WriteObjects;
3673  ValueVector TempObjects;
3674
3675  // Check that the read-writes do not conflict with other read-write
3676  // pointers.
3677  bool AllWritesIdentified = true;
3678  for (MI = ReadWrites.begin(), ME = ReadWrites.end(); MI != ME; ++MI) {
3679    Value *Val = (*MI).first;
3680    Instruction *Inst = (*MI).second;
3681
3682    GetUnderlyingObjects(Val, TempObjects, DL);
3683    for (ValueVector::iterator UI=TempObjects.begin(), UE=TempObjects.end();
3684         UI != UE; ++UI) {
3685      if (!isIdentifiedObject(*UI)) {
3686        DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **UI <<"\n");
3687        NeedRTCheck = true;
3688        AllWritesIdentified = false;
3689      }
3690
3691      // Never seen it before, can't alias.
3692      if (WriteObjects[*UI].empty()) {
3693        DEBUG(dbgs() << "LV: Adding Underlying value:" << **UI <<"\n");
3694        WriteObjects[*UI].push_back(Inst);
3695        continue;
3696      }
3697      // Direct alias found.
3698      if (!AA || dyn_cast<GlobalValue>(*UI) == NULL) {
3699        DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
3700              << **UI <<"\n");
3701        return false;
3702      }
3703      DEBUG(dbgs() << "LV: Found a conflicting global value:"
3704            << **UI <<"\n");
3705      DEBUG(dbgs() << "LV: While examining store:" << *Inst <<"\n");
3706      DEBUG(dbgs() << "LV: On value:" << *Val <<"\n");
3707
3708      // If global alias, make sure they do alias.
3709      if (hasPossibleGlobalWriteReorder(*UI,
3710                                        Inst,
3711                                        WriteObjects,
3712                                        MaxByteWidth)) {
3713        DEBUG(dbgs() << "LV: Found a possible write-write reorder:" << **UI
3714                     << "\n");
3715        return false;
3716      }
3717
3718      // Didn't alias, insert into map for further reference.
3719      WriteObjects[*UI].push_back(Inst);
3720    }
3721    TempObjects.clear();
3722  }
3723
3724  /// Check that the reads don't conflict with the read-writes.
3725  for (MI = Reads.begin(), ME = Reads.end(); MI != ME; ++MI) {
3726    Value *Val = (*MI).first;
3727    GetUnderlyingObjects(Val, TempObjects, DL);
3728    for (ValueVector::iterator UI=TempObjects.begin(), UE=TempObjects.end();
3729         UI != UE; ++UI) {
3730      // If all of the writes are identified then we don't care if the read
3731      // pointer is identified or not.
3732      if (!AllWritesIdentified && !isIdentifiedObject(*UI)) {
3733        DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **UI <<"\n");
3734        NeedRTCheck = true;
3735      }
3736
3737      // Never seen it before, can't alias.
3738      if (WriteObjects[*UI].empty())
3739        continue;
3740      // Direct alias found.
3741      if (!AA || dyn_cast<GlobalValue>(*UI) == NULL) {
3742        DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
3743              << **UI <<"\n");
3744        return false;
3745      }
3746      DEBUG(dbgs() << "LV: Found a global value:  "
3747            << **UI <<"\n");
3748      Instruction *Inst = (*MI).second;
3749      DEBUG(dbgs() << "LV: While examining load:" << *Inst <<"\n");
3750      DEBUG(dbgs() << "LV: On value:" << *Val <<"\n");
3751
3752      // If global alias, make sure they do alias.
3753      if (hasPossibleGlobalWriteReorder(*UI,
3754                                        Inst,
3755                                        WriteObjects,
3756                                        MaxByteWidth)) {
3757        DEBUG(dbgs() << "LV: Found a possible read-write reorder:" << **UI
3758                     << "\n");
3759        return false;
3760      }
3761    }
3762    TempObjects.clear();
3763  }
3764
3765  PtrRtCheck.Need = NeedRTCheck;
3766  if (NeedRTCheck && !CanDoRT) {
3767    DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
3768          "the array bounds.\n");
3769    PtrRtCheck.reset();
3770    return false;
3771  }
3772
3773  DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") <<
3774        " need a runtime memory check.\n");
3775  return true;
3776}
3777
3778static bool hasMultipleUsesOf(Instruction *I,
3779                              SmallPtrSet<Instruction *, 8> &Insts) {
3780  unsigned NumUses = 0;
3781  for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
3782    if (Insts.count(dyn_cast<Instruction>(*Use)))
3783      ++NumUses;
3784    if (NumUses > 1)
3785      return true;
3786  }
3787
3788  return false;
3789}
3790
3791static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) {
3792  for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
3793    if (!Set.count(dyn_cast<Instruction>(*Use)))
3794      return false;
3795  return true;
3796}
3797
3798bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
3799                                                ReductionKind Kind) {
3800  if (Phi->getNumIncomingValues() != 2)
3801    return false;
3802
3803  // Reduction variables are only found in the loop header block.
3804  if (Phi->getParent() != TheLoop->getHeader())
3805    return false;
3806
3807  // Obtain the reduction start value from the value that comes from the loop
3808  // preheader.
3809  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
3810
3811  // ExitInstruction is the single value which is used outside the loop.
3812  // We only allow for a single reduction value to be used outside the loop.
3813  // This includes users of the reduction, variables (which form a cycle
3814  // which ends in the phi node).
3815  Instruction *ExitInstruction = 0;
3816  // Indicates that we found a reduction operation in our scan.
3817  bool FoundReduxOp = false;
3818
3819  // We start with the PHI node and scan for all of the users of this
3820  // instruction. All users must be instructions that can be used as reduction
3821  // variables (such as ADD). We must have a single out-of-block user. The cycle
3822  // must include the original PHI.
3823  bool FoundStartPHI = false;
3824
3825  // To recognize min/max patterns formed by a icmp select sequence, we store
3826  // the number of instruction we saw from the recognized min/max pattern,
3827  //  to make sure we only see exactly the two instructions.
3828  unsigned NumCmpSelectPatternInst = 0;
3829  ReductionInstDesc ReduxDesc(false, 0);
3830
3831  SmallPtrSet<Instruction *, 8> VisitedInsts;
3832  SmallVector<Instruction *, 8> Worklist;
3833  Worklist.push_back(Phi);
3834  VisitedInsts.insert(Phi);
3835
3836  // A value in the reduction can be used:
3837  //  - By the reduction:
3838  //      - Reduction operation:
3839  //        - One use of reduction value (safe).
3840  //        - Multiple use of reduction value (not safe).
3841  //      - PHI:
3842  //        - All uses of the PHI must be the reduction (safe).
3843  //        - Otherwise, not safe.
3844  //  - By one instruction outside of the loop (safe).
3845  //  - By further instructions outside of the loop (not safe).
3846  //  - By an instruction that is not part of the reduction (not safe).
3847  //    This is either:
3848  //      * An instruction type other than PHI or the reduction operation.
3849  //      * A PHI in the header other than the initial PHI.
3850  while (!Worklist.empty()) {
3851    Instruction *Cur = Worklist.back();
3852    Worklist.pop_back();
3853
3854    // No Users.
3855    // If the instruction has no users then this is a broken chain and can't be
3856    // a reduction variable.
3857    if (Cur->use_empty())
3858      return false;
3859
3860    bool IsAPhi = isa<PHINode>(Cur);
3861
3862    // A header PHI use other than the original PHI.
3863    if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
3864      return false;
3865
3866    // Reductions of instructions such as Div, and Sub is only possible if the
3867    // LHS is the reduction variable.
3868    if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
3869        !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
3870        !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
3871      return false;
3872
3873    // Any reduction instruction must be of one of the allowed kinds.
3874    ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
3875    if (!ReduxDesc.IsReduction)
3876      return false;
3877
3878    // A reduction operation must only have one use of the reduction value.
3879    if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
3880        hasMultipleUsesOf(Cur, VisitedInsts))
3881      return false;
3882
3883    // All inputs to a PHI node must be a reduction value.
3884    if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
3885      return false;
3886
3887    if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
3888                                     isa<SelectInst>(Cur)))
3889      ++NumCmpSelectPatternInst;
3890    if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
3891                                   isa<SelectInst>(Cur)))
3892      ++NumCmpSelectPatternInst;
3893
3894    // Check  whether we found a reduction operator.
3895    FoundReduxOp |= !IsAPhi;
3896
3897    // Process users of current instruction. Push non PHI nodes after PHI nodes
3898    // onto the stack. This way we are going to have seen all inputs to PHI
3899    // nodes once we get to them.
3900    SmallVector<Instruction *, 8> NonPHIs;
3901    SmallVector<Instruction *, 8> PHIs;
3902    for (Value::use_iterator UI = Cur->use_begin(), E = Cur->use_end(); UI != E;
3903         ++UI) {
3904      Instruction *Usr = cast<Instruction>(*UI);
3905
3906      // Check if we found the exit user.
3907      BasicBlock *Parent = Usr->getParent();
3908      if (!TheLoop->contains(Parent)) {
3909        // Exit if you find multiple outside users.
3910        if (ExitInstruction != 0)
3911          return false;
3912        ExitInstruction = Cur;
3913        continue;
3914      }
3915
3916      // Process instructions only once (termination).
3917      if (VisitedInsts.insert(Usr)) {
3918        if (isa<PHINode>(Usr))
3919          PHIs.push_back(Usr);
3920        else
3921          NonPHIs.push_back(Usr);
3922      }
3923      // Remember that we completed the cycle.
3924      if (Usr == Phi)
3925        FoundStartPHI = true;
3926    }
3927    Worklist.append(PHIs.begin(), PHIs.end());
3928    Worklist.append(NonPHIs.begin(), NonPHIs.end());
3929  }
3930
3931  // This means we have seen one but not the other instruction of the
3932  // pattern or more than just a select and cmp.
3933  if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
3934      NumCmpSelectPatternInst != 2)
3935    return false;
3936
3937  if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
3938    return false;
3939
3940  // We found a reduction var if we have reached the original phi node and we
3941  // only have a single instruction with out-of-loop users.
3942
3943  // This instruction is allowed to have out-of-loop users.
3944  AllowedExit.insert(ExitInstruction);
3945
3946  // Save the description of this reduction variable.
3947  ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
3948                         ReduxDesc.MinMaxKind);
3949  Reductions[Phi] = RD;
3950  // We've ended the cycle. This is a reduction variable if we have an
3951  // outside user and it has a binary op.
3952
3953  return true;
3954}
3955
3956/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
3957/// pattern corresponding to a min(X, Y) or max(X, Y).
3958LoopVectorizationLegality::ReductionInstDesc
3959LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
3960                                                    ReductionInstDesc &Prev) {
3961
3962  assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
3963         "Expect a select instruction");
3964  Instruction *Cmp = 0;
3965  SelectInst *Select = 0;
3966
3967  // We must handle the select(cmp()) as a single instruction. Advance to the
3968  // select.
3969  if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
3970    if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin())))
3971      return ReductionInstDesc(false, I);
3972    return ReductionInstDesc(Select, Prev.MinMaxKind);
3973  }
3974
3975  // Only handle single use cases for now.
3976  if (!(Select = dyn_cast<SelectInst>(I)))
3977    return ReductionInstDesc(false, I);
3978  if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
3979      !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
3980    return ReductionInstDesc(false, I);
3981  if (!Cmp->hasOneUse())
3982    return ReductionInstDesc(false, I);
3983
3984  Value *CmpLeft;
3985  Value *CmpRight;
3986
3987  // Look for a min/max pattern.
3988  if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3989    return ReductionInstDesc(Select, MRK_UIntMin);
3990  else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3991    return ReductionInstDesc(Select, MRK_UIntMax);
3992  else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3993    return ReductionInstDesc(Select, MRK_SIntMax);
3994  else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3995    return ReductionInstDesc(Select, MRK_SIntMin);
3996  else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3997    return ReductionInstDesc(Select, MRK_FloatMin);
3998  else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3999    return ReductionInstDesc(Select, MRK_FloatMax);
4000  else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4001    return ReductionInstDesc(Select, MRK_FloatMin);
4002  else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
4003    return ReductionInstDesc(Select, MRK_FloatMax);
4004
4005  return ReductionInstDesc(false, I);
4006}
4007
4008LoopVectorizationLegality::ReductionInstDesc
4009LoopVectorizationLegality::isReductionInstr(Instruction *I,
4010                                            ReductionKind Kind,
4011                                            ReductionInstDesc &Prev) {
4012  bool FP = I->getType()->isFloatingPointTy();
4013  bool FastMath = (FP && I->isCommutative() && I->isAssociative());
4014  switch (I->getOpcode()) {
4015  default:
4016    return ReductionInstDesc(false, I);
4017  case Instruction::PHI:
4018      if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
4019                 Kind != RK_FloatMinMax))
4020        return ReductionInstDesc(false, I);
4021    return ReductionInstDesc(I, Prev.MinMaxKind);
4022  case Instruction::Sub:
4023  case Instruction::Add:
4024    return ReductionInstDesc(Kind == RK_IntegerAdd, I);
4025  case Instruction::Mul:
4026    return ReductionInstDesc(Kind == RK_IntegerMult, I);
4027  case Instruction::And:
4028    return ReductionInstDesc(Kind == RK_IntegerAnd, I);
4029  case Instruction::Or:
4030    return ReductionInstDesc(Kind == RK_IntegerOr, I);
4031  case Instruction::Xor:
4032    return ReductionInstDesc(Kind == RK_IntegerXor, I);
4033  case Instruction::FMul:
4034    return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
4035  case Instruction::FAdd:
4036    return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
4037  case Instruction::FCmp:
4038  case Instruction::ICmp:
4039  case Instruction::Select:
4040    if (Kind != RK_IntegerMinMax &&
4041        (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
4042      return ReductionInstDesc(false, I);
4043    return isMinMaxSelectCmpPattern(I, Prev);
4044  }
4045}
4046
4047LoopVectorizationLegality::InductionKind
4048LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
4049  Type *PhiTy = Phi->getType();
4050  // We only handle integer and pointer inductions variables.
4051  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
4052    return IK_NoInduction;
4053
4054  // Check that the PHI is consecutive.
4055  const SCEV *PhiScev = SE->getSCEV(Phi);
4056  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
4057  if (!AR) {
4058    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
4059    return IK_NoInduction;
4060  }
4061  const SCEV *Step = AR->getStepRecurrence(*SE);
4062
4063  // Integer inductions need to have a stride of one.
4064  if (PhiTy->isIntegerTy()) {
4065    if (Step->isOne())
4066      return IK_IntInduction;
4067    if (Step->isAllOnesValue())
4068      return IK_ReverseIntInduction;
4069    return IK_NoInduction;
4070  }
4071
4072  // Calculate the pointer stride and check if it is consecutive.
4073  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
4074  if (!C)
4075    return IK_NoInduction;
4076
4077  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
4078  uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
4079  if (C->getValue()->equalsInt(Size))
4080    return IK_PtrInduction;
4081  else if (C->getValue()->equalsInt(0 - Size))
4082    return IK_ReversePtrInduction;
4083
4084  return IK_NoInduction;
4085}
4086
4087bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
4088  Value *In0 = const_cast<Value*>(V);
4089  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
4090  if (!PN)
4091    return false;
4092
4093  return Inductions.count(PN);
4094}
4095
4096bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
4097  assert(TheLoop->contains(BB) && "Unknown block used");
4098
4099  // Blocks that do not dominate the latch need predication.
4100  BasicBlock* Latch = TheLoop->getLoopLatch();
4101  return !DT->dominates(BB, Latch);
4102}
4103
4104bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) {
4105  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4106    // We might be able to hoist the load.
4107    if (it->mayReadFromMemory() && !LoadSpeculation.isHoistableLoad(it))
4108      return false;
4109
4110    // We don't predicate stores at the moment.
4111    if (it->mayWriteToMemory() || it->mayThrow())
4112      return false;
4113
4114    // The instructions below can trap.
4115    switch (it->getOpcode()) {
4116    default: continue;
4117    case Instruction::UDiv:
4118    case Instruction::SDiv:
4119    case Instruction::URem:
4120    case Instruction::SRem:
4121             return false;
4122    }
4123  }
4124
4125  return true;
4126}
4127
4128bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
4129  const SCEV *PhiScev = SE->getSCEV(Ptr);
4130  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
4131  if (!AR)
4132    return false;
4133
4134  return AR->isAffine();
4135}
4136
4137LoopVectorizationCostModel::VectorizationFactor
4138LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
4139                                                      unsigned UserVF) {
4140  // Width 1 means no vectorize
4141  VectorizationFactor Factor = { 1U, 0U };
4142  if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
4143    DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
4144    return Factor;
4145  }
4146
4147  // Find the trip count.
4148  unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
4149  DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
4150
4151  unsigned WidestType = getWidestType();
4152  unsigned WidestRegister = TTI.getRegisterBitWidth(true);
4153  unsigned MaxVectorSize = WidestRegister / WidestType;
4154  DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
4155  DEBUG(dbgs() << "LV: The Widest register is:" << WidestRegister << "bits.\n");
4156
4157  if (MaxVectorSize == 0) {
4158    DEBUG(dbgs() << "LV: The target has no vector registers.\n");
4159    MaxVectorSize = 1;
4160  }
4161
4162  assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
4163         " into one vector!");
4164
4165  unsigned VF = MaxVectorSize;
4166
4167  // If we optimize the program for size, avoid creating the tail loop.
4168  if (OptForSize) {
4169    // If we are unable to calculate the trip count then don't try to vectorize.
4170    if (TC < 2) {
4171      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4172      return Factor;
4173    }
4174
4175    // Find the maximum SIMD width that can fit within the trip count.
4176    VF = TC % MaxVectorSize;
4177
4178    if (VF == 0)
4179      VF = MaxVectorSize;
4180
4181    // If the trip count that we found modulo the vectorization factor is not
4182    // zero then we require a tail.
4183    if (VF < 2) {
4184      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
4185      return Factor;
4186    }
4187  }
4188
4189  if (UserVF != 0) {
4190    assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
4191    DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
4192
4193    Factor.Width = UserVF;
4194    return Factor;
4195  }
4196
4197  float Cost = expectedCost(1);
4198  unsigned Width = 1;
4199  DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
4200  for (unsigned i=2; i <= VF; i*=2) {
4201    // Notice that the vector loop needs to be executed less times, so
4202    // we need to divide the cost of the vector loops by the width of
4203    // the vector elements.
4204    float VectorCost = expectedCost(i) / (float)i;
4205    DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
4206          (int)VectorCost << ".\n");
4207    if (VectorCost < Cost) {
4208      Cost = VectorCost;
4209      Width = i;
4210    }
4211  }
4212
4213  DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
4214  Factor.Width = Width;
4215  Factor.Cost = Width * Cost;
4216  return Factor;
4217}
4218
4219unsigned LoopVectorizationCostModel::getWidestType() {
4220  unsigned MaxWidth = 8;
4221
4222  // For each block.
4223  for (Loop::block_iterator bb = TheLoop->block_begin(),
4224       be = TheLoop->block_end(); bb != be; ++bb) {
4225    BasicBlock *BB = *bb;
4226
4227    // For each instruction in the loop.
4228    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4229      Type *T = it->getType();
4230
4231      // Only examine Loads, Stores and PHINodes.
4232      if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
4233        continue;
4234
4235      // Examine PHI nodes that are reduction variables.
4236      if (PHINode *PN = dyn_cast<PHINode>(it))
4237        if (!Legal->getReductionVars()->count(PN))
4238          continue;
4239
4240      // Examine the stored values.
4241      if (StoreInst *ST = dyn_cast<StoreInst>(it))
4242        T = ST->getValueOperand()->getType();
4243
4244      // Ignore loaded pointer types and stored pointer types that are not
4245      // consecutive. However, we do want to take consecutive stores/loads of
4246      // pointer vectors into account.
4247      if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
4248        continue;
4249
4250      MaxWidth = std::max(MaxWidth,
4251                          (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
4252    }
4253  }
4254
4255  return MaxWidth;
4256}
4257
4258unsigned
4259LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
4260                                               unsigned UserUF,
4261                                               unsigned VF,
4262                                               unsigned LoopCost) {
4263
4264  // -- The unroll heuristics --
4265  // We unroll the loop in order to expose ILP and reduce the loop overhead.
4266  // There are many micro-architectural considerations that we can't predict
4267  // at this level. For example frontend pressure (on decode or fetch) due to
4268  // code size, or the number and capabilities of the execution ports.
4269  //
4270  // We use the following heuristics to select the unroll factor:
4271  // 1. If the code has reductions the we unroll in order to break the cross
4272  // iteration dependency.
4273  // 2. If the loop is really small then we unroll in order to reduce the loop
4274  // overhead.
4275  // 3. We don't unroll if we think that we will spill registers to memory due
4276  // to the increased register pressure.
4277
4278  // Use the user preference, unless 'auto' is selected.
4279  if (UserUF != 0)
4280    return UserUF;
4281
4282  // When we optimize for size we don't unroll.
4283  if (OptForSize)
4284    return 1;
4285
4286  // Do not unroll loops with a relatively small trip count.
4287  unsigned TC = SE->getSmallConstantTripCount(TheLoop,
4288                                              TheLoop->getLoopLatch());
4289  if (TC > 1 && TC < TinyTripCountUnrollThreshold)
4290    return 1;
4291
4292  unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
4293  DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
4294        " vector registers\n");
4295
4296  LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
4297  // We divide by these constants so assume that we have at least one
4298  // instruction that uses at least one register.
4299  R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
4300  R.NumInstructions = std::max(R.NumInstructions, 1U);
4301
4302  // We calculate the unroll factor using the following formula.
4303  // Subtract the number of loop invariants from the number of available
4304  // registers. These registers are used by all of the unrolled instances.
4305  // Next, divide the remaining registers by the number of registers that is
4306  // required by the loop, in order to estimate how many parallel instances
4307  // fit without causing spills.
4308  unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
4309
4310  // Clamp the unroll factor ranges to reasonable factors.
4311  unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
4312
4313  // If we did not calculate the cost for VF (because the user selected the VF)
4314  // then we calculate the cost of VF here.
4315  if (LoopCost == 0)
4316    LoopCost = expectedCost(VF);
4317
4318  // Clamp the calculated UF to be between the 1 and the max unroll factor
4319  // that the target allows.
4320  if (UF > MaxUnrollSize)
4321    UF = MaxUnrollSize;
4322  else if (UF < 1)
4323    UF = 1;
4324
4325  if (Legal->getReductionVars()->size()) {
4326    DEBUG(dbgs() << "LV: Unrolling because of reductions. \n");
4327    return UF;
4328  }
4329
4330  // We want to unroll tiny loops in order to reduce the loop overhead.
4331  // We assume that the cost overhead is 1 and we use the cost model
4332  // to estimate the cost of the loop and unroll until the cost of the
4333  // loop overhead is about 5% of the cost of the loop.
4334  DEBUG(dbgs() << "LV: Loop cost is "<< LoopCost <<" \n");
4335  if (LoopCost < 20) {
4336    DEBUG(dbgs() << "LV: Unrolling to reduce branch cost. \n");
4337    unsigned NewUF = 20/LoopCost + 1;
4338    return std::min(NewUF, UF);
4339  }
4340
4341  DEBUG(dbgs() << "LV: Not Unrolling. \n");
4342  return 1;
4343}
4344
4345LoopVectorizationCostModel::RegisterUsage
4346LoopVectorizationCostModel::calculateRegisterUsage() {
4347  // This function calculates the register usage by measuring the highest number
4348  // of values that are alive at a single location. Obviously, this is a very
4349  // rough estimation. We scan the loop in a topological order in order and
4350  // assign a number to each instruction. We use RPO to ensure that defs are
4351  // met before their users. We assume that each instruction that has in-loop
4352  // users starts an interval. We record every time that an in-loop value is
4353  // used, so we have a list of the first and last occurrences of each
4354  // instruction. Next, we transpose this data structure into a multi map that
4355  // holds the list of intervals that *end* at a specific location. This multi
4356  // map allows us to perform a linear search. We scan the instructions linearly
4357  // and record each time that a new interval starts, by placing it in a set.
4358  // If we find this value in the multi-map then we remove it from the set.
4359  // The max register usage is the maximum size of the set.
4360  // We also search for instructions that are defined outside the loop, but are
4361  // used inside the loop. We need this number separately from the max-interval
4362  // usage number because when we unroll, loop-invariant values do not take
4363  // more register.
4364  LoopBlocksDFS DFS(TheLoop);
4365  DFS.perform(LI);
4366
4367  RegisterUsage R;
4368  R.NumInstructions = 0;
4369
4370  // Each 'key' in the map opens a new interval. The values
4371  // of the map are the index of the 'last seen' usage of the
4372  // instruction that is the key.
4373  typedef DenseMap<Instruction*, unsigned> IntervalMap;
4374  // Maps instruction to its index.
4375  DenseMap<unsigned, Instruction*> IdxToInstr;
4376  // Marks the end of each interval.
4377  IntervalMap EndPoint;
4378  // Saves the list of instruction indices that are used in the loop.
4379  SmallSet<Instruction*, 8> Ends;
4380  // Saves the list of values that are used in the loop but are
4381  // defined outside the loop, such as arguments and constants.
4382  SmallPtrSet<Value*, 8> LoopInvariants;
4383
4384  unsigned Index = 0;
4385  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
4386       be = DFS.endRPO(); bb != be; ++bb) {
4387    R.NumInstructions += (*bb)->size();
4388    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
4389         ++it) {
4390      Instruction *I = it;
4391      IdxToInstr[Index++] = I;
4392
4393      // Save the end location of each USE.
4394      for (unsigned i = 0; i < I->getNumOperands(); ++i) {
4395        Value *U = I->getOperand(i);
4396        Instruction *Instr = dyn_cast<Instruction>(U);
4397
4398        // Ignore non-instruction values such as arguments, constants, etc.
4399        if (!Instr) continue;
4400
4401        // If this instruction is outside the loop then record it and continue.
4402        if (!TheLoop->contains(Instr)) {
4403          LoopInvariants.insert(Instr);
4404          continue;
4405        }
4406
4407        // Overwrite previous end points.
4408        EndPoint[Instr] = Index;
4409        Ends.insert(Instr);
4410      }
4411    }
4412  }
4413
4414  // Saves the list of intervals that end with the index in 'key'.
4415  typedef SmallVector<Instruction*, 2> InstrList;
4416  DenseMap<unsigned, InstrList> TransposeEnds;
4417
4418  // Transpose the EndPoints to a list of values that end at each index.
4419  for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
4420       it != e; ++it)
4421    TransposeEnds[it->second].push_back(it->first);
4422
4423  SmallSet<Instruction*, 8> OpenIntervals;
4424  unsigned MaxUsage = 0;
4425
4426
4427  DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
4428  for (unsigned int i = 0; i < Index; ++i) {
4429    Instruction *I = IdxToInstr[i];
4430    // Ignore instructions that are never used within the loop.
4431    if (!Ends.count(I)) continue;
4432
4433    // Remove all of the instructions that end at this location.
4434    InstrList &List = TransposeEnds[i];
4435    for (unsigned int j=0, e = List.size(); j < e; ++j)
4436      OpenIntervals.erase(List[j]);
4437
4438    // Count the number of live interals.
4439    MaxUsage = std::max(MaxUsage, OpenIntervals.size());
4440
4441    DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
4442          OpenIntervals.size() <<"\n");
4443
4444    // Add the current instruction to the list of open intervals.
4445    OpenIntervals.insert(I);
4446  }
4447
4448  unsigned Invariant = LoopInvariants.size();
4449  DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
4450  DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
4451  DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
4452
4453  R.LoopInvariantRegs = Invariant;
4454  R.MaxLocalUsers = MaxUsage;
4455  return R;
4456}
4457
4458unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
4459  unsigned Cost = 0;
4460
4461  // For each block.
4462  for (Loop::block_iterator bb = TheLoop->block_begin(),
4463       be = TheLoop->block_end(); bb != be; ++bb) {
4464    unsigned BlockCost = 0;
4465    BasicBlock *BB = *bb;
4466
4467    // For each instruction in the old loop.
4468    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
4469      // Skip dbg intrinsics.
4470      if (isa<DbgInfoIntrinsic>(it))
4471        continue;
4472
4473      unsigned C = getInstructionCost(it, VF);
4474      Cost += C;
4475      DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " <<
4476            VF << " For instruction: "<< *it << "\n");
4477    }
4478
4479    // We assume that if-converted blocks have a 50% chance of being executed.
4480    // When the code is scalar then some of the blocks are avoided due to CF.
4481    // When the code is vectorized we execute all code paths.
4482    if (Legal->blockNeedsPredication(*bb) && VF == 1)
4483      BlockCost /= 2;
4484
4485    Cost += BlockCost;
4486  }
4487
4488  return Cost;
4489}
4490
4491unsigned
4492LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
4493  // If we know that this instruction will remain uniform, check the cost of
4494  // the scalar version.
4495  if (Legal->isUniformAfterVectorization(I))
4496    VF = 1;
4497
4498  Type *RetTy = I->getType();
4499  Type *VectorTy = ToVectorTy(RetTy, VF);
4500
4501  // TODO: We need to estimate the cost of intrinsic calls.
4502  switch (I->getOpcode()) {
4503  case Instruction::GetElementPtr:
4504    // We mark this instruction as zero-cost because the cost of GEPs in
4505    // vectorized code depends on whether the corresponding memory instruction
4506    // is scalarized or not. Therefore, we handle GEPs with the memory
4507    // instruction cost.
4508    return 0;
4509  case Instruction::Br: {
4510    return TTI.getCFInstrCost(I->getOpcode());
4511  }
4512  case Instruction::PHI:
4513    //TODO: IF-converted IFs become selects.
4514    return 0;
4515  case Instruction::Add:
4516  case Instruction::FAdd:
4517  case Instruction::Sub:
4518  case Instruction::FSub:
4519  case Instruction::Mul:
4520  case Instruction::FMul:
4521  case Instruction::UDiv:
4522  case Instruction::SDiv:
4523  case Instruction::FDiv:
4524  case Instruction::URem:
4525  case Instruction::SRem:
4526  case Instruction::FRem:
4527  case Instruction::Shl:
4528  case Instruction::LShr:
4529  case Instruction::AShr:
4530  case Instruction::And:
4531  case Instruction::Or:
4532  case Instruction::Xor: {
4533    // Certain instructions can be cheaper to vectorize if they have a constant
4534    // second vector operand. One example of this are shifts on x86.
4535    TargetTransformInfo::OperandValueKind Op1VK =
4536      TargetTransformInfo::OK_AnyValue;
4537    TargetTransformInfo::OperandValueKind Op2VK =
4538      TargetTransformInfo::OK_AnyValue;
4539
4540    if (isa<ConstantInt>(I->getOperand(1)))
4541      Op2VK = TargetTransformInfo::OK_UniformConstantValue;
4542
4543    return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
4544  }
4545  case Instruction::Select: {
4546    SelectInst *SI = cast<SelectInst>(I);
4547    const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
4548    bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
4549    Type *CondTy = SI->getCondition()->getType();
4550    if (!ScalarCond)
4551      CondTy = VectorType::get(CondTy, VF);
4552
4553    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
4554  }
4555  case Instruction::ICmp:
4556  case Instruction::FCmp: {
4557    Type *ValTy = I->getOperand(0)->getType();
4558    VectorTy = ToVectorTy(ValTy, VF);
4559    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
4560  }
4561  case Instruction::Store:
4562  case Instruction::Load: {
4563    StoreInst *SI = dyn_cast<StoreInst>(I);
4564    LoadInst *LI = dyn_cast<LoadInst>(I);
4565    Type *ValTy = (SI ? SI->getValueOperand()->getType() :
4566                   LI->getType());
4567    VectorTy = ToVectorTy(ValTy, VF);
4568
4569    unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
4570    unsigned AS = SI ? SI->getPointerAddressSpace() :
4571      LI->getPointerAddressSpace();
4572    Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
4573    // We add the cost of address computation here instead of with the gep
4574    // instruction because only here we know whether the operation is
4575    // scalarized.
4576    if (VF == 1)
4577      return TTI.getAddressComputationCost(VectorTy) +
4578        TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4579
4580    // Scalarized loads/stores.
4581    int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
4582    bool Reverse = ConsecutiveStride < 0;
4583    unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
4584    unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
4585    if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
4586      unsigned Cost = 0;
4587      // The cost of extracting from the value vector and pointer vector.
4588      Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
4589      for (unsigned i = 0; i < VF; ++i) {
4590        //  The cost of extracting the pointer operand.
4591        Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
4592        // In case of STORE, the cost of ExtractElement from the vector.
4593        // In case of LOAD, the cost of InsertElement into the returned
4594        // vector.
4595        Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
4596                                            Instruction::InsertElement,
4597                                            VectorTy, i);
4598      }
4599
4600      // The cost of the scalar loads/stores.
4601      Cost += VF * TTI.getAddressComputationCost(ValTy->getScalarType());
4602      Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
4603                                       Alignment, AS);
4604      return Cost;
4605    }
4606
4607    // Wide load/stores.
4608    unsigned Cost = TTI.getAddressComputationCost(VectorTy);
4609    Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
4610
4611    if (Reverse)
4612      Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
4613                                  VectorTy, 0);
4614    return Cost;
4615  }
4616  case Instruction::ZExt:
4617  case Instruction::SExt:
4618  case Instruction::FPToUI:
4619  case Instruction::FPToSI:
4620  case Instruction::FPExt:
4621  case Instruction::PtrToInt:
4622  case Instruction::IntToPtr:
4623  case Instruction::SIToFP:
4624  case Instruction::UIToFP:
4625  case Instruction::Trunc:
4626  case Instruction::FPTrunc:
4627  case Instruction::BitCast: {
4628    // We optimize the truncation of induction variable.
4629    // The cost of these is the same as the scalar operation.
4630    if (I->getOpcode() == Instruction::Trunc &&
4631        Legal->isInductionVariable(I->getOperand(0)))
4632      return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
4633                                  I->getOperand(0)->getType());
4634
4635    Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
4636    return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
4637  }
4638  case Instruction::Call: {
4639    CallInst *CI = cast<CallInst>(I);
4640    Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
4641    assert(ID && "Not an intrinsic call!");
4642    Type *RetTy = ToVectorTy(CI->getType(), VF);
4643    SmallVector<Type*, 4> Tys;
4644    for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
4645      Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
4646    return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
4647  }
4648  default: {
4649    // We are scalarizing the instruction. Return the cost of the scalar
4650    // instruction, plus the cost of insert and extract into vector
4651    // elements, times the vector width.
4652    unsigned Cost = 0;
4653
4654    if (!RetTy->isVoidTy() && VF != 1) {
4655      unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
4656                                                VectorTy);
4657      unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
4658                                                VectorTy);
4659
4660      // The cost of inserting the results plus extracting each one of the
4661      // operands.
4662      Cost += VF * (InsCost + ExtCost * I->getNumOperands());
4663    }
4664
4665    // The cost of executing VF copies of the scalar instruction. This opcode
4666    // is unknown. Assume that it is the same as 'mul'.
4667    Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
4668    return Cost;
4669  }
4670  }// end of switch.
4671}
4672
4673Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
4674  if (Scalar->isVoidTy() || VF == 1)
4675    return Scalar;
4676  return VectorType::get(Scalar, VF);
4677}
4678
4679char LoopVectorize::ID = 0;
4680static const char lv_name[] = "Loop Vectorization";
4681INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
4682INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
4683INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
4684INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
4685INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4686INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
4687
4688namespace llvm {
4689  Pass *createLoopVectorizePass() {
4690    return new LoopVectorize();
4691  }
4692}
4693
4694bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
4695  // Check for a store.
4696  if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
4697    return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
4698
4699  // Check for a load.
4700  if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
4701    return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
4702
4703  return false;
4704}
4705