LoopVectorize.cpp revision 5f7d81022398f332b222552f5d980c4e3f1c542c
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11// and generates target-independent LLVM-IR. Legalization of the IR is done
12// in the codegen. However, the vectorizes uses (will use) the codegen
13// interfaces to generate IR that is likely to result in an optimal binary.
14//
15// The loop vectorizer combines consecutive loop iteration into a single
16// 'wide' iteration. After this transformation the index is incremented
17// by the SIMD vector width, and not by one.
18//
19// This pass has three parts:
20// 1. The main loop pass that drives the different parts.
21// 2. LoopVectorizationLegality - A helper class that checks for the legality
22//    of the vectorization.
23// 3. SingleBlockLoopVectorizer - A helper class that performs the actual
24//    widening of instructions.
25//===----------------------------------------------------------------------===//
26//
27// The reduction-variable vectorization is based on the paper:
28//  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
29//
30// Variable uniformity checks are inspired by:
31// Karrenberg, R. and Hack, S. Whole Function Vectorization.
32//
33// Other ideas/concepts are from:
34//  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
35//
36//===----------------------------------------------------------------------===//
37#define LV_NAME "loop-vectorize"
38#define DEBUG_TYPE LV_NAME
39#include "llvm/Constants.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/Instructions.h"
42#include "llvm/LLVMContext.h"
43#include "llvm/Pass.h"
44#include "llvm/Analysis/LoopPass.h"
45#include "llvm/Value.h"
46#include "llvm/Function.h"
47#include "llvm/Analysis/Verifier.h"
48#include "llvm/Module.h"
49#include "llvm/Type.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/StringExtras.h"
52#include "llvm/Analysis/AliasAnalysis.h"
53#include "llvm/Analysis/AliasSetTracker.h"
54#include "llvm/Transforms/Scalar.h"
55#include "llvm/Analysis/ScalarEvolution.h"
56#include "llvm/Analysis/ScalarEvolutionExpressions.h"
57#include "llvm/Analysis/ScalarEvolutionExpander.h"
58#include "llvm/Transforms/Utils/BasicBlockUtils.h"
59#include "llvm/Analysis/ValueTracking.h"
60#include "llvm/Analysis/LoopInfo.h"
61#include "llvm/Support/CommandLine.h"
62#include "llvm/Support/Debug.h"
63#include "llvm/Support/raw_ostream.h"
64#include "llvm/DataLayout.h"
65#include "llvm/Transforms/Utils/Local.h"
66#include <algorithm>
67using namespace llvm;
68
69static cl::opt<unsigned>
70DefaultVectorizationFactor("default-loop-vectorize-width",
71                          cl::init(4), cl::Hidden,
72                          cl::desc("Set the default loop vectorization width"));
73namespace {
74
75// Forward declaration.
76class LoopVectorizationLegality;
77
78/// SingleBlockLoopVectorizer vectorizes loops which contain only one basic
79/// block to a specified vectorization factor (VF).
80/// This class performs the widening of scalars into vectors, or multiple
81/// scalars. This class also implements the following features:
82/// * It inserts an epilogue loop for handling loops that don't have iteration
83///   counts that are known to be a multiple of the vectorization factor.
84/// * It handles the code generation for reduction variables.
85/// * Scalarization (implementation using scalars) of un-vectorizable
86///   instructions.
87/// SingleBlockLoopVectorizer does not perform any vectorization-legality
88/// checks, and relies on the caller to check for the different legality
89/// aspects. The SingleBlockLoopVectorizer relies on the
90/// LoopVectorizationLegality class to provide information about the induction
91/// and reduction variables that were found to a given vectorization factor.
92class SingleBlockLoopVectorizer {
93public:
94  /// Ctor.
95  SingleBlockLoopVectorizer(Loop *Orig, ScalarEvolution *Se, LoopInfo *Li,
96                            LPPassManager *Lpm, unsigned VecWidth):
97  OrigLoop(Orig), SE(Se), LI(Li), LPM(Lpm), VF(VecWidth),
98  Builder(Se->getContext()), Induction(0), OldInduction(0) { }
99
100  // Perform the actual loop widening (vectorization).
101  void vectorize(LoopVectorizationLegality *Legal) {
102    ///Create a new empty loop. Unlink the old loop and connect the new one.
103    createEmptyLoop(Legal);
104    /// Widen each instruction in the old loop to a new one in the new loop.
105    /// Use the Legality module to find the induction and reduction variables.
106   vectorizeLoop(Legal);
107    // register the new loop.
108    cleanup();
109 }
110
111private:
112  /// Create an empty loop, based on the loop ranges of the old loop.
113  void createEmptyLoop(LoopVectorizationLegality *Legal);
114  /// Copy and widen the instructions from the old loop.
115  void vectorizeLoop(LoopVectorizationLegality *Legal);
116  /// Insert the new loop to the loop hierarchy and pass manager.
117  void cleanup();
118
119  /// This instruction is un-vectorizable. Implement it as a sequence
120  /// of scalars.
121  void scalarizeInstruction(Instruction *Instr);
122
123  /// Create a broadcast instruction. This method generates a broadcast
124  /// instruction (shuffle) for loop invariant values and for the induction
125  /// value. If this is the induction variable then we extend it to N, N+1, ...
126  /// this is needed because each iteration in the loop corresponds to a SIMD
127  /// element.
128  Value *getBroadcastInstrs(Value *V);
129
130  /// This is a helper function used by getBroadcastInstrs. It adds 0, 1, 2 ..
131  /// for each element in the vector. Starting from zero.
132  Value *getConsecutiveVector(Value* Val);
133
134  /// When we go over instructions in the basic block we rely on previous
135  /// values within the current basic block or on loop invariant values.
136  /// When we widen (vectorize) values we place them in the map. If the values
137  /// are not within the map, they have to be loop invariant, so we simply
138  /// broadcast them into a vector.
139  Value *getVectorValue(Value *V);
140
141  /// Get a uniform vector of constant integers. We use this to get
142  /// vectors of ones and zeros for the reduction code.
143  Constant* getUniformVector(unsigned Val, Type* ScalarTy);
144
145  typedef DenseMap<Value*, Value*> ValueMap;
146
147  /// The original loop.
148  Loop *OrigLoop;
149  // Scev analysis to use.
150  ScalarEvolution *SE;
151  // Loop Info.
152  LoopInfo *LI;
153  // Loop Pass Manager;
154  LPPassManager *LPM;
155  // The vectorization factor to use.
156  unsigned VF;
157
158  // The builder that we use
159  IRBuilder<> Builder;
160
161  // --- Vectorization state ---
162
163  /// Middle Block between the vector and the scalar.
164  BasicBlock *LoopMiddleBlock;
165  ///The ExitBlock of the scalar loop.
166  BasicBlock *LoopExitBlock;
167  ///The vector loop body.
168  BasicBlock *LoopVectorBody;
169  ///The scalar loop body.
170  BasicBlock *LoopScalarBody;
171  ///The first bypass block.
172  BasicBlock *LoopBypassBlock;
173
174  /// The new Induction variable which was added to the new block.
175  PHINode *Induction;
176  /// The induction variable of the old basic block.
177  PHINode *OldInduction;
178  // Maps scalars to widened vectors.
179  ValueMap WidenMap;
180};
181
182/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
183/// to what vectorization factor.
184/// This class does not look at the profitability of vectorization, only the
185/// legality. This class has two main kinds of checks:
186/// * Memory checks - The code in canVectorizeMemory checks if vectorization
187///   will change the order of memory accesses in a way that will change the
188///   correctness of the program.
189/// * Scalars checks - The code in canVectorizeBlock checks for a number
190///   of different conditions, such as the availability of a single induction
191///   variable, that all types are supported and vectorize-able, etc.
192/// This code reflects the capabilities of SingleBlockLoopVectorizer.
193/// This class is also used by SingleBlockLoopVectorizer for identifying
194/// induction variable and the different reduction variables.
195class LoopVectorizationLegality {
196public:
197  LoopVectorizationLegality(Loop *Lp, ScalarEvolution *Se, DataLayout *Dl):
198  TheLoop(Lp), SE(Se), DL(Dl), Induction(0) { }
199
200  /// This represents the kinds of reductions that we support.
201  /// We use the enum values to hold the 'identity' value for
202  /// each operand. This value does not change the result if applied.
203  enum ReductionKind {
204    NoReduction = -1, /// Not a reduction.
205    IntegerAdd  = 0,  /// Sum of numbers.
206    IntegerMult = 1  /// Product of numbers.
207  };
208
209  /// This POD struct holds information about reduction variables.
210  struct ReductionDescriptor {
211    // Default C'tor
212    ReductionDescriptor():
213    StartValue(0), LoopExitInstr(0), Kind(NoReduction) {}
214
215    // C'tor.
216    ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K):
217    StartValue(Start), LoopExitInstr(Exit), Kind(K) {}
218
219    // The starting value of the reduction.
220    // It does not have to be zero!
221    Value *StartValue;
222    // The instruction who's value is used outside the loop.
223    Instruction *LoopExitInstr;
224    // The kind of the reduction.
225    ReductionKind Kind;
226  };
227
228  /// ReductionList contains the reduction descriptors for all
229  /// of the reductions that were found in the loop.
230  typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
231
232  /// Returns the maximum vectorization factor that we *can* use to vectorize
233  /// this loop. This does not mean that it is profitable to vectorize this
234  /// loop, only that it is legal to do so. This may be a large number. We
235  /// can vectorize to any SIMD width below this number.
236  unsigned getLoopMaxVF();
237
238  /// Returns the Induction variable.
239  PHINode *getInduction() {return Induction;}
240
241  /// Returns the reduction variables found in the loop.
242  ReductionList *getReductionVars() { return &Reductions; }
243
244  /// Check if the pointer returned by this GEP is consecutive
245  /// when the index is vectorized. This happens when the last
246  /// index of the GEP is consecutive, like the induction variable.
247  /// This check allows us to vectorize A[idx] into a wide load/store.
248  bool isConsecutiveGep(Value *Ptr);
249
250private:
251  /// Check if a single basic block loop is vectorizable.
252  /// At this point we know that this is a loop with a constant trip count
253  /// and we only need to check individual instructions.
254  bool canVectorizeBlock(BasicBlock &BB);
255
256  /// When we vectorize loops we may change the order in which
257  /// we read and write from memory. This method checks if it is
258  /// legal to vectorize the code, considering only memory constrains.
259  /// Returns true if BB is vectorizable
260  bool canVectorizeMemory(BasicBlock &BB);
261
262  // Check if a pointer value is known to be disjoint.
263  // Example: Alloca, Global, NoAlias.
264  bool isIdentifiedSafeObject(Value* Val);
265
266  /// Returns True, if 'Phi' is the kind of reduction variable for type
267  /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
268  bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
269  /// Returns true if the instruction I can be a reduction variable of type
270  /// 'Kind'.
271  bool isReductionInstr(Instruction *I, ReductionKind Kind);
272  /// Returns True, if 'Phi' is an induction variable.
273  bool isInductionVariable(PHINode *Phi);
274
275  /// The loop that we evaluate.
276  Loop *TheLoop;
277  /// Scev analysis.
278  ScalarEvolution *SE;
279  /// DataLayout analysis.
280  DataLayout *DL;
281
282  //  ---  vectorization state --- //
283
284  /// Holds the induction variable.
285  PHINode *Induction;
286  /// Holds the reduction variables.
287  ReductionList Reductions;
288  /// Allowed outside users. This holds the reduction
289  /// vars which can be accessed from outside the loop.
290  SmallPtrSet<Value*, 4> AllowedExit;
291};
292
293struct LoopVectorize : public LoopPass {
294  static char ID; // Pass identification, replacement for typeid
295
296  LoopVectorize() : LoopPass(ID) {
297    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
298  }
299
300  ScalarEvolution *SE;
301  DataLayout *DL;
302  LoopInfo *LI;
303
304  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
305    // We only vectorize innermost loops.
306    if (!L->empty())
307      return false;
308
309    SE = &getAnalysis<ScalarEvolution>();
310    DL = getAnalysisIfAvailable<DataLayout>();
311    LI = &getAnalysis<LoopInfo>();
312
313    DEBUG(dbgs() << "LV: Checking a loop in \"" <<
314          L->getHeader()->getParent()->getName() << "\"\n");
315
316    // Check if it is legal to vectorize the loop.
317    LoopVectorizationLegality LVL(L, SE, DL);
318    unsigned MaxVF = LVL.getLoopMaxVF();
319
320    // Check that we can vectorize this loop using the chosen vectorization
321    // width.
322    if (MaxVF < DefaultVectorizationFactor) {
323      DEBUG(dbgs() << "LV: non-vectorizable MaxVF ("<< MaxVF << ").\n");
324      return false;
325    }
326
327    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< MaxVF << ").\n");
328
329    // If we decided that it is *legal* to vectorizer the loop then do it.
330    SingleBlockLoopVectorizer LB(L, SE, LI, &LPM, DefaultVectorizationFactor);
331    LB.vectorize(&LVL);
332
333    DEBUG(verifyFunction(*L->getHeader()->getParent()));
334    return true;
335  }
336
337  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
338    LoopPass::getAnalysisUsage(AU);
339    AU.addRequiredID(LoopSimplifyID);
340    AU.addRequiredID(LCSSAID);
341    AU.addRequired<LoopInfo>();
342    AU.addRequired<ScalarEvolution>();
343  }
344
345};
346
347Value *SingleBlockLoopVectorizer::getBroadcastInstrs(Value *V) {
348  // Instructions that access the old induction variable
349  // actually want to get the new one.
350  if (V == OldInduction)
351    V = Induction;
352  // Create the types.
353  LLVMContext &C = V->getContext();
354  Type *VTy = VectorType::get(V->getType(), VF);
355  Type *I32 = IntegerType::getInt32Ty(C);
356  Constant *Zero = ConstantInt::get(I32, 0);
357  Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32, VF));
358  Value *UndefVal = UndefValue::get(VTy);
359  // Insert the value into a new vector.
360  Value *SingleElem = Builder.CreateInsertElement(UndefVal, V, Zero);
361  // Broadcast the scalar into all locations in the vector.
362  Value *Shuf = Builder.CreateShuffleVector(SingleElem, UndefVal, Zeros,
363                                             "broadcast");
364  // We are accessing the induction variable. Make sure to promote the
365  // index for each consecutive SIMD lane. This adds 0,1,2 ... to all lanes.
366  if (V == Induction)
367    return getConsecutiveVector(Shuf);
368  return Shuf;
369}
370
371Value *SingleBlockLoopVectorizer::getConsecutiveVector(Value* Val) {
372  assert(Val->getType()->isVectorTy() && "Must be a vector");
373  assert(Val->getType()->getScalarType()->isIntegerTy() &&
374         "Elem must be an integer");
375  // Create the types.
376  Type *ITy = Val->getType()->getScalarType();
377  VectorType *Ty = cast<VectorType>(Val->getType());
378  unsigned VLen = Ty->getNumElements();
379  SmallVector<Constant*, 8> Indices;
380
381  // Create a vector of consecutive numbers from zero to VF.
382  for (unsigned i = 0; i < VLen; ++i)
383    Indices.push_back(ConstantInt::get(ITy, i));
384
385  // Add the consecutive indices to the vector value.
386  Constant *Cv = ConstantVector::get(Indices);
387  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
388  return Builder.CreateAdd(Val, Cv, "induction");
389}
390
391bool LoopVectorizationLegality::isConsecutiveGep(Value *Ptr) {
392  GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
393  if (!Gep)
394    return false;
395
396  unsigned NumOperands = Gep->getNumOperands();
397  Value *LastIndex = Gep->getOperand(NumOperands - 1);
398
399  // Check that all of the gep indices are uniform except for the last.
400  for (unsigned i = 0; i < NumOperands - 1; ++i)
401    if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
402      return false;
403
404  // We can emit wide load/stores only of the last index is the induction
405  // variable.
406  const SCEV *Last = SE->getSCEV(LastIndex);
407  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
408    const SCEV *Step = AR->getStepRecurrence(*SE);
409
410    // The memory is consecutive because the last index is consecutive
411    // and all other indices are loop invariant.
412    if (Step->isOne())
413      return true;
414  }
415
416  return false;
417}
418
419Value *SingleBlockLoopVectorizer::getVectorValue(Value *V) {
420  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
421  // If we saved a vectorized copy of V, use it.
422  Value *&MapEntry = WidenMap[V];
423  if (MapEntry)
424    return MapEntry;
425
426  // Broadcast V and save the value for future uses.
427  Value *B = getBroadcastInstrs(V);
428  MapEntry = B;
429  return B;
430}
431
432Constant*
433SingleBlockLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) {
434  SmallVector<Constant*, 8> Indices;
435  // Create a vector of consecutive numbers from zero to VF.
436  for (unsigned i = 0; i < VF; ++i)
437    Indices.push_back(ConstantInt::get(ScalarTy, Val));
438
439  // Add the consecutive indices to the vector value.
440  return ConstantVector::get(Indices);
441}
442
443void SingleBlockLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
444  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
445  // Holds vector parameters or scalars, in case of uniform vals.
446  SmallVector<Value*, 8> Params;
447
448  // Find all of the vectorized parameters.
449  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
450    Value *SrcOp = Instr->getOperand(op);
451
452    // If we are accessing the old induction variable, use the new one.
453    if (SrcOp == OldInduction) {
454      Params.push_back(getBroadcastInstrs(Induction));
455      continue;
456    }
457
458    // Try using previously calculated values.
459    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
460
461    // If the src is an instruction that appeared earlier in the basic block
462    // then it should already be vectorized.
463    if (SrcInst && SrcInst->getParent() == Instr->getParent()) {
464      assert(WidenMap.count(SrcInst) && "Source operand is unavailable");
465      // The parameter is a vector value from earlier.
466      Params.push_back(WidenMap[SrcInst]);
467    } else {
468      // The parameter is a scalar from outside the loop. Maybe even a constant.
469      Params.push_back(SrcOp);
470    }
471  }
472
473  assert(Params.size() == Instr->getNumOperands() &&
474         "Invalid number of operands");
475
476  // Does this instruction return a value ?
477  bool IsVoidRetTy = Instr->getType()->isVoidTy();
478  Value *VecResults = 0;
479
480  // If we have a return value, create an empty vector. We place the scalarized
481  // instructions in this vector.
482  if (!IsVoidRetTy)
483    VecResults = UndefValue::get(VectorType::get(Instr->getType(), VF));
484
485  // For each scalar that we create:
486  for (unsigned i = 0; i < VF; ++i) {
487    Instruction *Cloned = Instr->clone();
488    if (!IsVoidRetTy)
489      Cloned->setName(Instr->getName() + ".cloned");
490    // Replace the operands of the cloned instrucions with extracted scalars.
491    for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
492      Value *Op = Params[op];
493      // Param is a vector. Need to extract the right lane.
494      if (Op->getType()->isVectorTy())
495        Op = Builder.CreateExtractElement(Op, Builder.getInt32(i));
496      Cloned->setOperand(op, Op);
497    }
498
499    // Place the cloned scalar in the new loop.
500    Builder.Insert(Cloned);
501
502    // If the original scalar returns a value we need to place it in a vector
503    // so that future users will be able to use it.
504    if (!IsVoidRetTy)
505      VecResults = Builder.CreateInsertElement(VecResults, Cloned,
506                                               Builder.getInt32(i));
507  }
508
509  if (!IsVoidRetTy)
510    WidenMap[Instr] = VecResults;
511}
512
513void SingleBlockLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
514  /*
515   In this function we generate a new loop. The new loop will contain
516   the vectorized instructions while the old loop will continue to run the
517   scalar remainder.
518
519    [ ] <-- vector loop bypass.
520  /  |
521 /   v
522|   [ ]     <-- vector pre header.
523|    |
524|    v
525|   [  ] \
526|   [  ]_|   <-- vector loop.
527|    |
528 \   v
529   >[ ]   <--- middle-block.
530  /  |
531 /   v
532|   [ ]     <--- new preheader.
533|    |
534|    v
535|   [ ] \
536|   [ ]_|   <-- old scalar loop to handle remainder.
537 \   |
538  \  v
539   >[ ]     <-- exit block.
540   ...
541   */
542
543  // This is the original scalar-loop preheader.
544  BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
545  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
546  assert(ExitBlock && "Must have an exit block");
547
548  assert(OrigLoop->getNumBlocks() == 1 && "Invalid loop");
549  assert(BypassBlock && "Invalid loop structure");
550
551  BasicBlock *VectorPH =
552      BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
553  BasicBlock *VecBody = VectorPH->splitBasicBlock(VectorPH->getTerminator(),
554                                                 "vector.body");
555
556  BasicBlock *MiddleBlock = VecBody->splitBasicBlock(VecBody->getTerminator(),
557                                                  "middle.block");
558  BasicBlock *ScalarPH =
559    MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(),
560                                 "scalar.preheader");
561  // Find the induction variable.
562  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
563  OldInduction = Legal->getInduction();
564  assert(OldInduction && "We must have a single phi node.");
565  Type *IdxTy = OldInduction->getType();
566
567  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
568  // inside the loop.
569  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
570
571  // Generate the induction variable.
572  Induction = Builder.CreatePHI(IdxTy, 2, "index");
573  Constant *Zero = ConstantInt::get(IdxTy, 0);
574  Constant *Step = ConstantInt::get(IdxTy, VF);
575
576  // Find the loop boundaries.
577  const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getHeader());
578  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
579
580  // Get the total trip count from the count by adding 1.
581  ExitCount = SE->getAddExpr(ExitCount,
582                             SE->getConstant(ExitCount->getType(), 1));
583
584  // Expand the trip count and place the new instructions in the preheader.
585  // Notice that the pre-header does not change, only the loop body.
586  SCEVExpander Exp(*SE, "induction");
587  Instruction *Loc = BypassBlock->getTerminator();
588
589  // We may need to extend the index in case there is a type mismatch.
590  // We know that the count starts at zero and does not overflow.
591  // We are using Zext because it should be less expensive.
592  if (ExitCount->getType() != Induction->getType())
593    ExitCount = SE->getZeroExtendExpr(ExitCount, IdxTy);
594
595  // Count holds the overall loop count (N).
596  Value *Count = Exp.expandCodeFor(ExitCount, Induction->getType(), Loc);
597  // Now we need to generate the expression for N - (N % VF), which is
598  // the part that the vectorized body will execute.
599  Constant *CIVF = ConstantInt::get(IdxTy, VF);
600  Value *R = BinaryOperator::CreateURem(Count, CIVF, "n.mod.vf", Loc);
601  Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc);
602
603  // Now, compare the new count to zero. If it is zero, jump to the scalar part.
604  Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
605                               CountRoundDown, ConstantInt::getNullValue(IdxTy),
606                               "cmp.zero", Loc);
607  BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc);
608  // Remove the old terminator.
609  Loc->eraseFromParent();
610
611  // Add a check in the middle block to see if we have completed
612  // all of the iterations in the first vector loop.
613  // If (N - N%VF) == N, then we *don't* need to run the remainder.
614  Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
615                                CountRoundDown, "cmp.n",
616                                MiddleBlock->getTerminator());
617
618  BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
619  // Remove the old terminator.
620  MiddleBlock->getTerminator()->eraseFromParent();
621
622  // Create i+1 and fill the PHINode.
623  Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
624  Induction->addIncoming(Zero, VectorPH);
625  Induction->addIncoming(NextIdx, VecBody);
626  // Create the compare.
627  Value *ICmp = Builder.CreateICmpEQ(NextIdx, CountRoundDown);
628  Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
629
630  // Now we have two terminators. Remove the old one from the block.
631  VecBody->getTerminator()->eraseFromParent();
632
633  // Fix the scalar body iteration count.
634  unsigned BlockIdx = OldInduction->getBasicBlockIndex(ScalarPH);
635  OldInduction->setIncomingValue(BlockIdx, CountRoundDown);
636
637  // Get ready to start creating new instructions into the vectorized body.
638  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
639
640  // Register the new loop.
641  Loop* Lp = new Loop();
642  LPM->insertLoop(Lp, OrigLoop->getParentLoop());
643
644  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
645
646  Loop *ParentLoop = OrigLoop->getParentLoop();
647  if (ParentLoop) {
648    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
649    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
650    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
651  }
652
653  // Save the state.
654  LoopMiddleBlock = MiddleBlock;
655  LoopExitBlock = ExitBlock;
656  LoopVectorBody = VecBody;
657  LoopScalarBody = OldBasicBlock;
658  LoopBypassBlock = BypassBlock;
659}
660
661void
662SingleBlockLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
663  typedef SmallVector<PHINode*, 4> PhiVector;
664  BasicBlock &BB = *OrigLoop->getHeader();
665  Constant *Zero = ConstantInt::get(
666    IntegerType::getInt32Ty(BB.getContext()), 0);
667
668  // In order to support reduction variables we need to be able to vectorize
669  // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
670  // steages. First, we create a new vector PHI node with no incoming edges.
671  // We use this value when we vectorize all of the instructions that use the
672  // PHI. Next, after all of the instructions in the block are complete we
673  // add the new incoming edges to the PHI. At this point all of the
674  // instructions in the basic block are vectorized, so we can use them to
675  // construct the PHI.
676  PhiVector PHIsToFix;
677
678  // For each instruction in the old loop.
679  for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
680    Instruction *Inst = it;
681
682    switch (Inst->getOpcode()) {
683      case Instruction::Br:
684        // Nothing to do for PHIs and BR, since we already took care of the
685        // loop control flow instructions.
686        continue;
687      case Instruction::PHI:{
688        PHINode* P = cast<PHINode>(Inst);
689        // Special handling for the induction var.
690        if (OldInduction == Inst)
691          continue;
692        // This is phase one of vectorizing PHIs.
693        // This has to be a reduction variable.
694        assert(Legal->getReductionVars()->count(P) && "Not a Reduction");
695        Type *VecTy = VectorType::get(Inst->getType(), VF);
696        WidenMap[Inst] = Builder.CreatePHI(VecTy, 2, "vec.phi");
697        PHIsToFix.push_back(P);
698        continue;
699      }
700      case Instruction::Add:
701      case Instruction::FAdd:
702      case Instruction::Sub:
703      case Instruction::FSub:
704      case Instruction::Mul:
705      case Instruction::FMul:
706      case Instruction::UDiv:
707      case Instruction::SDiv:
708      case Instruction::FDiv:
709      case Instruction::URem:
710      case Instruction::SRem:
711      case Instruction::FRem:
712      case Instruction::Shl:
713      case Instruction::LShr:
714      case Instruction::AShr:
715      case Instruction::And:
716      case Instruction::Or:
717      case Instruction::Xor: {
718        // Just widen binops.
719        BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
720        Value *A = getVectorValue(Inst->getOperand(0));
721        Value *B = getVectorValue(Inst->getOperand(1));
722        // Use this vector value for all users of the original instruction.
723        WidenMap[Inst] = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
724        break;
725      }
726      case Instruction::Select: {
727        // Widen selects.
728        // If the selector is loop invariant we can create a select
729        // instruction with a scalar condition. Otherwise, use vector-select.
730        Value *Cond = Inst->getOperand(0);
731        bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(Cond), OrigLoop);
732
733        // The condition can be loop invariant  but still defined inside the
734        // loop. This means that we can't just use the original 'cond' value.
735        // We have to take the 'vectorized' value and pick the first lane.
736        // Instcombine will make this a no-op.
737        Cond = getVectorValue(Cond);
738        if (InvariantCond)
739          Cond = Builder.CreateExtractElement(Cond, Builder.getInt32(0));
740
741        Value *Op0 = getVectorValue(Inst->getOperand(1));
742        Value *Op1 = getVectorValue(Inst->getOperand(2));
743        WidenMap[Inst] = Builder.CreateSelect(Cond, Op0, Op1);
744        break;
745      }
746
747      case Instruction::ICmp:
748      case Instruction::FCmp: {
749        // Widen compares. Generate vector compares.
750        bool FCmp = (Inst->getOpcode() == Instruction::FCmp);
751        CmpInst *Cmp = dyn_cast<CmpInst>(Inst);
752        Value *A = getVectorValue(Inst->getOperand(0));
753        Value *B = getVectorValue(Inst->getOperand(1));
754        if (FCmp)
755          WidenMap[Inst] = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
756        else
757          WidenMap[Inst] = Builder.CreateICmp(Cmp->getPredicate(), A, B);
758        break;
759      }
760
761      case Instruction::Store: {
762        // Attempt to issue a wide store.
763        StoreInst *SI = dyn_cast<StoreInst>(Inst);
764        Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF);
765        Value *Ptr = SI->getPointerOperand();
766        unsigned Alignment = SI->getAlignment();
767        GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
768        // This store does not use GEPs.
769        if (!Legal->isConsecutiveGep(Gep)) {
770          scalarizeInstruction(Inst);
771          break;
772        }
773
774        // The last index does not have to be the induction. It can be
775        // consecutive and be a function of the index. For example A[I+1];
776        unsigned NumOperands = Gep->getNumOperands();
777        Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1));
778        LastIndex = Builder.CreateExtractElement(LastIndex, Builder.getInt32(0));
779
780        // Create the new GEP with the new induction variable.
781        GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
782        Gep2->setOperand(NumOperands - 1, LastIndex);
783        Ptr = Builder.Insert(Gep2);
784        Ptr = Builder.CreateBitCast(Ptr, StTy->getPointerTo());
785        Value *Val = getVectorValue(SI->getValueOperand());
786        Builder.CreateStore(Val, Ptr)->setAlignment(Alignment);
787        break;
788      }
789      case Instruction::Load: {
790        // Attempt to issue a wide load.
791        LoadInst *LI = dyn_cast<LoadInst>(Inst);
792        Type *RetTy = VectorType::get(LI->getType(), VF);
793        Value *Ptr = LI->getPointerOperand();
794        unsigned Alignment = LI->getAlignment();
795        GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
796
797        // We don't have a gep. Scalarize the load.
798        if (!Legal->isConsecutiveGep(Gep)) {
799          scalarizeInstruction(Inst);
800          break;
801        }
802
803        // The last index does not have to be the induction. It can be
804        // consecutive and be a function of the index. For example A[I+1];
805        unsigned NumOperands = Gep->getNumOperands();
806        Value *LastIndex = getVectorValue(Gep->getOperand(NumOperands -1));
807        LastIndex = Builder.CreateExtractElement(LastIndex, Builder.getInt32(0));
808
809        // Create the new GEP with the new induction variable.
810        GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
811        Gep2->setOperand(NumOperands - 1, LastIndex);
812        Ptr = Builder.Insert(Gep2);
813        Ptr = Builder.CreateBitCast(Ptr, RetTy->getPointerTo());
814        LI = Builder.CreateLoad(Ptr);
815        LI->setAlignment(Alignment);
816        // Use this vector value for all users of the load.
817        WidenMap[Inst] = LI;
818        break;
819      }
820      case Instruction::ZExt:
821      case Instruction::SExt:
822      case Instruction::FPToUI:
823      case Instruction::FPToSI:
824      case Instruction::FPExt:
825      case Instruction::PtrToInt:
826      case Instruction::IntToPtr:
827      case Instruction::SIToFP:
828      case Instruction::UIToFP:
829      case Instruction::Trunc:
830      case Instruction::FPTrunc:
831      case Instruction::BitCast: {
832        /// Vectorize bitcasts.
833        CastInst *CI = dyn_cast<CastInst>(Inst);
834        Value *A = getVectorValue(Inst->getOperand(0));
835        Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
836        WidenMap[Inst] = Builder.CreateCast(CI->getOpcode(), A, DestTy);
837        break;
838      }
839
840      default:
841        /// All other instructions are unsupported. Scalarize them.
842        scalarizeInstruction(Inst);
843        break;
844    }// end of switch.
845  }// end of for_each instr.
846
847  // At this point every instruction in the original loop is widended to
848  // a vector form. We are almost done. Now, we need to fix the PHI nodes
849  // that we vectorized. The PHI nodes are currently empty because we did
850  // not want to introduce cycles. Notice that the remaining PHI nodes
851  // that we need to fix are reduction variables.
852
853  // Create the 'reduced' values for each of the induction vars.
854  // The reduced values are the vector values that we scalarize and combine
855  // after the loop is finished.
856  for (PhiVector::iterator it = PHIsToFix.begin(), e = PHIsToFix.end();
857       it != e; ++it) {
858    PHINode *RdxPhi = *it;
859    PHINode *VecRdxPhi = dyn_cast<PHINode>(WidenMap[RdxPhi]);
860    assert(RdxPhi && "Unable to recover vectorized PHI");
861
862    // Find the reduction variable descriptor.
863    assert(Legal->getReductionVars()->count(RdxPhi) &&
864           "Unable to find the reduction variable");
865    LoopVectorizationLegality::ReductionDescriptor RdxDesc =
866      (*Legal->getReductionVars())[RdxPhi];
867
868    // We need to generate a reduction vector from the incoming scalar.
869    // To do so, we need to generate the 'identity' vector and overide
870    // one of the elements with the incoming scalar reduction. We need
871    // to do it in the vector-loop preheader.
872    Builder.SetInsertPoint(LoopBypassBlock->getTerminator());
873
874    // This is the vector-clone of the value that leaves the loop.
875    Value *VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
876    Type *VecTy = VectorExit->getType();
877
878    // Find the reduction identity variable. The value of the enum is the
879    // identity. Zero for addition. One for Multiplication.
880    unsigned IdentitySclr =  RdxDesc.Kind;
881    Constant *Identity = getUniformVector(IdentitySclr,
882                                          VecTy->getScalarType());
883
884    // This vector is the Identity vector where the first element is the
885    // incoming scalar reduction.
886    Value *VectorStart = Builder.CreateInsertElement(Identity,
887                                                    RdxDesc.StartValue, Zero);
888
889
890    // Fix the vector-loop phi.
891    // We created the induction variable so we know that the
892    // preheader is the first entry.
893    BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
894
895    // Reductions do not have to start at zero. They can start with
896    // any loop invariant values.
897    VecRdxPhi->addIncoming(VectorStart, VecPreheader);
898    unsigned SelfEdgeIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody);
899    Value *Val = getVectorValue(RdxPhi->getIncomingValue(SelfEdgeIdx));
900    VecRdxPhi->addIncoming(Val, LoopVectorBody);
901
902    // Before each round, move the insertion point right between
903    // the PHIs and the values we are going to write.
904    // This allows us to write both PHINodes and the extractelement
905    // instructions.
906    Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
907
908    // This PHINode contains the vectorized reduction variable, or
909    // the initial value vector, if we bypass the vector loop.
910    PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
911    NewPhi->addIncoming(VectorStart, LoopBypassBlock);
912    NewPhi->addIncoming(getVectorValue(RdxDesc.LoopExitInstr), LoopVectorBody);
913
914    // Extract the first scalar.
915    Value *Scalar0 =
916      Builder.CreateExtractElement(NewPhi, Builder.getInt32(0));
917    // Extract and sum the remaining vector elements.
918    for (unsigned i=1; i < VF; ++i) {
919      Value *Scalar1 =
920        Builder.CreateExtractElement(NewPhi, Builder.getInt32(i));
921      if (RdxDesc.Kind == LoopVectorizationLegality::IntegerAdd) {
922        Scalar0 = Builder.CreateAdd(Scalar0, Scalar1);
923      } else {
924        Scalar0 = Builder.CreateMul(Scalar0, Scalar1);
925      }
926    }
927
928    // Now, we need to fix the users of the reduction variable
929    // inside and outside of the scalar remainder loop.
930    // We know that the loop is in LCSSA form. We need to update the
931    // PHI nodes in the exit blocks.
932    for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
933         LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
934      PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
935      if (!LCSSAPhi) continue;
936
937      // All PHINodes need to have a single entry edge, or two if
938      // we already fixed them.
939      assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
940
941      // We found our reduction value exit-PHI. Update it with the
942      // incoming bypass edge.
943      if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
944        // Add an edge coming from the bypass.
945        LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
946        break;
947      }
948    }// end of the LCSSA phi scan.
949
950    // Fix the scalar loop reduction variable with the incoming reduction sum
951    // from the vector body and from the backedge value.
952    int IncomingEdgeBlockIdx = (RdxPhi)->getBasicBlockIndex(LoopScalarBody);
953    int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); // The other block.
954    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
955    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
956  }// end of for each redux variable.
957}
958
959void SingleBlockLoopVectorizer::cleanup() {
960  // The original basic block.
961  SE->forgetLoop(OrigLoop);
962}
963
964unsigned LoopVectorizationLegality::getLoopMaxVF() {
965  if (!TheLoop->getLoopPreheader()) {
966    assert(false && "No preheader!!");
967    DEBUG(dbgs() << "LV: Loop not normalized." << "\n");
968    return  1;
969  }
970
971  // We can only vectorize single basic block loops.
972  unsigned NumBlocks = TheLoop->getNumBlocks();
973  if (NumBlocks != 1) {
974    DEBUG(dbgs() << "LV: Too many blocks:" << NumBlocks << "\n");
975    return 1;
976  }
977
978  // We need to have a loop header.
979  BasicBlock *BB = TheLoop->getHeader();
980  DEBUG(dbgs() << "LV: Found a loop: " << BB->getName() << "\n");
981
982  // Go over each instruction and look at memory deps.
983  if (!canVectorizeBlock(*BB)) {
984    DEBUG(dbgs() << "LV: Can't vectorize this loop header\n");
985    return 1;
986  }
987
988  // ScalarEvolution needs to be able to find the exit count.
989  const SCEV *ExitCount = SE->getExitCount(TheLoop, BB);
990  if (ExitCount == SE->getCouldNotCompute()) {
991    DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
992    return 1;
993  }
994
995  DEBUG(dbgs() << "LV: We can vectorize this loop!\n");
996
997  // Okay! We can vectorize. At this point we don't have any other mem analysis
998  // which may limit our maximum vectorization factor, so just return the
999  // maximum SIMD size.
1000  return DefaultVectorizationFactor;
1001}
1002
1003bool LoopVectorizationLegality::canVectorizeBlock(BasicBlock &BB) {
1004  // Scan the instructions in the block and look for hazards.
1005  for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
1006    Instruction *I = it;
1007
1008    PHINode *Phi = dyn_cast<PHINode>(I);
1009    if (Phi) {
1010      // This should not happen because the loop should be normalized.
1011      if (Phi->getNumIncomingValues() != 2) {
1012        DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
1013        return false;
1014      }
1015      // We only look at integer phi nodes.
1016      if (!Phi->getType()->isIntegerTy()) {
1017        DEBUG(dbgs() << "LV: Found an non-int PHI.\n");
1018        return false;
1019      }
1020
1021      if (isInductionVariable(Phi)) {
1022        if (Induction) {
1023          DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
1024          return false;
1025        }
1026        DEBUG(dbgs() << "LV: Found the induction PHI."<< *Phi <<"\n");
1027        Induction = Phi;
1028        continue;
1029      }
1030      if (AddReductionVar(Phi, IntegerAdd)) {
1031        DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
1032        continue;
1033      }
1034      if (AddReductionVar(Phi, IntegerMult)) {
1035        DEBUG(dbgs() << "LV: Found an Mult reduction PHI."<< *Phi <<"\n");
1036        continue;
1037      }
1038
1039      DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
1040      return false;
1041    }// end of PHI handling
1042
1043    // We still don't handle functions.
1044    CallInst *CI = dyn_cast<CallInst>(I);
1045    if (CI) {
1046      DEBUG(dbgs() << "LV: Found a call site:"<<
1047            CI->getCalledFunction()->getName() << "\n");
1048      return false;
1049    }
1050
1051    // We do not re-vectorize vectors.
1052    if (!VectorType::isValidElementType(I->getType()) &&
1053        !I->getType()->isVoidTy()) {
1054      DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
1055      return false;
1056    }
1057
1058    // Reduction instructions are allowed to have exit users.
1059    // All other instructions must not have external users.
1060    if (!AllowedExit.count(I))
1061      //Check that all of the users of the loop are inside the BB.
1062      for (Value::use_iterator it = I->use_begin(), e = I->use_end();
1063           it != e; ++it) {
1064        Instruction *U = cast<Instruction>(*it);
1065        // This user may be a reduction exit value.
1066        BasicBlock *Parent = U->getParent();
1067        if (Parent != &BB) {
1068          DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
1069          return false;
1070        }
1071    }
1072  } // next instr.
1073
1074  if (!Induction) {
1075      DEBUG(dbgs() << "LV: Did not find an induction var.\n");
1076      return false;
1077  }
1078
1079  // If the memory dependencies do not prevent us from
1080  // vectorizing, then vectorize.
1081  return canVectorizeMemory(BB);
1082}
1083
1084bool LoopVectorizationLegality::canVectorizeMemory(BasicBlock &BB) {
1085  typedef SmallVector<Value*, 16> ValueVector;
1086  typedef SmallPtrSet<Value*, 16> ValueSet;
1087  // Holds the Load and Store *instructions*.
1088  ValueVector Loads;
1089  ValueVector Stores;
1090
1091  // Scan the BB and collect legal loads and stores.
1092  for (BasicBlock::iterator it = BB.begin(), e = BB.end(); it != e; ++it) {
1093    Instruction *I = it;
1094
1095    // If this is a load, save it. If this instruction can read from memory
1096    // but is not a load, then we quit. Notice that we don't handle function
1097    // calls that read or write.
1098    if (I->mayReadFromMemory()) {
1099      LoadInst *Ld = dyn_cast<LoadInst>(I);
1100      if (!Ld) return false;
1101      if (!Ld->isSimple()) {
1102        DEBUG(dbgs() << "LV: Found a non-simple load.\n");
1103        return false;
1104      }
1105      Loads.push_back(Ld);
1106      continue;
1107    }
1108
1109    // Save store instructions. Abort if other instructions write to memory.
1110    if (I->mayWriteToMemory()) {
1111      StoreInst *St = dyn_cast<StoreInst>(I);
1112      if (!St) return false;
1113      if (!St->isSimple()) {
1114        DEBUG(dbgs() << "LV: Found a non-simple store.\n");
1115        return false;
1116      }
1117      Stores.push_back(St);
1118    }
1119  } // next instr.
1120
1121  // Now we have two lists that hold the loads and the stores.
1122  // Next, we find the pointers that they use.
1123
1124  // Check if we see any stores. If there are no stores, then we don't
1125  // care if the pointers are *restrict*.
1126  if (!Stores.size()) {
1127        DEBUG(dbgs() << "LV: Found a read-only loop!\n");
1128        return true;
1129  }
1130
1131  // Holds the read and read-write *pointers* that we find.
1132  ValueVector Reads;
1133  ValueVector ReadWrites;
1134
1135  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1136  // multiple times on the same object. If the ptr is accessed twice, once
1137  // for read and once for write, it will only appear once (on the write
1138  // list). This is okay, since we are going to check for conflicts between
1139  // writes and between reads and writes, but not between reads and reads.
1140  ValueSet Seen;
1141
1142  ValueVector::iterator I, IE;
1143  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1144    StoreInst *ST = dyn_cast<StoreInst>(*I);
1145    assert(ST && "Bad StoreInst");
1146    Value* Ptr = ST->getPointerOperand();
1147    // If we did *not* see this pointer before, insert it to
1148    // the read-write list. At this phase it is only a 'write' list.
1149    if (Seen.insert(Ptr))
1150      ReadWrites.push_back(Ptr);
1151  }
1152
1153  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1154    LoadInst *LD = dyn_cast<LoadInst>(*I);
1155    assert(LD && "Bad LoadInst");
1156    Value* Ptr = LD->getPointerOperand();
1157    // If we did *not* see this pointer before, insert it to the
1158    // read list. If we *did* see it before, then it is already in
1159    // the read-write list. This allows us to vectorize expressions
1160    // such as A[i] += x;  Because the address of A[i] is a read-write
1161    // pointer. This only works if the index of A[i] is consecutive.
1162    // If the address of i is unknown (for example A[B[i]]) then we may
1163    // read a few words, modify, and write a few words, and some of the
1164    // words may be written to the same address.
1165    if (Seen.insert(Ptr) || !isConsecutiveGep(Ptr))
1166      Reads.push_back(Ptr);
1167  }
1168
1169  // Now that the pointers are in two lists (Reads and ReadWrites), we
1170  // can check that there are no conflicts between each of the writes and
1171  // between the writes to the reads.
1172  ValueSet WriteObjects;
1173  ValueVector TempObjects;
1174
1175  // Check that the read-writes do not conflict with other read-write
1176  // pointers.
1177  for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) {
1178    GetUnderlyingObjects(*I, TempObjects, DL);
1179    for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
1180         it != e; ++it) {
1181      if (!isIdentifiedSafeObject(*it)) {
1182        DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n");
1183        return false;
1184      }
1185      if (!WriteObjects.insert(*it)) {
1186        DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
1187              << **it <<"\n");
1188        return false;
1189      }
1190    }
1191    TempObjects.clear();
1192  }
1193
1194  /// Check that the reads don't conflict with the read-writes.
1195  for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) {
1196    GetUnderlyingObjects(*I, TempObjects, DL);
1197    for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
1198         it != e; ++it) {
1199      if (!isIdentifiedSafeObject(*it)) {
1200        DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n");
1201        return false;
1202      }
1203      if (WriteObjects.count(*it)) {
1204        DEBUG(dbgs() << "LV: Found a possible read/write reorder:"
1205              << **it <<"\n");
1206        return false;
1207      }
1208    }
1209    TempObjects.clear();
1210  }
1211
1212  // All is okay.
1213  return true;
1214}
1215
1216/// Checks if the value is a Global variable or if it is an Arguments
1217/// marked with the NoAlias attribute.
1218bool LoopVectorizationLegality::isIdentifiedSafeObject(Value* Val) {
1219  assert(Val && "Invalid value");
1220  if (isa<GlobalValue>(Val))
1221    return true;
1222  if (isa<AllocaInst>(Val))
1223    return true;
1224  if (Argument *A = dyn_cast<Argument>(Val))
1225    return A->hasNoAliasAttr();
1226  return false;
1227}
1228
1229bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
1230                                                ReductionKind Kind) {
1231  if (Phi->getNumIncomingValues() != 2)
1232    return false;
1233
1234  // Find the possible incoming reduction variable.
1235  BasicBlock *BB = Phi->getParent();
1236  int SelfEdgeIdx = Phi->getBasicBlockIndex(BB);
1237  int InEdgeBlockIdx = (SelfEdgeIdx ? 0 : 1); // The other entry.
1238  Value *RdxStart = Phi->getIncomingValue(InEdgeBlockIdx);
1239
1240  // ExitInstruction is the single value which is used outside the loop.
1241  // We only allow for a single reduction value to be used outside the loop.
1242  // This includes users of the reduction, variables (which form a cycle
1243  // which ends in the phi node).
1244  Instruction *ExitInstruction = 0;
1245
1246  // Iter is our iterator. We start with the PHI node and scan for all of the
1247  // users of this instruction. All users must be instructions which can be
1248  // used as reduction variables (such as ADD). We may have a single
1249  // out-of-block user. They cycle must end with the original PHI.
1250  // Also, we can't have multiple block-local users.
1251  Instruction *Iter = Phi;
1252  while (true) {
1253    // Any reduction instr must be of one of the allowed kinds.
1254    if (!isReductionInstr(Iter, Kind))
1255      return false;
1256
1257    // Did we found a user inside this block ?
1258    bool FoundInBlockUser = false;
1259    // Did we reach the initial PHI node ?
1260    bool FoundStartPHI = false;
1261
1262    // If the instruction has no users then this is a broken
1263    // chain and can't be a reduction variable.
1264    if (Iter->use_empty())
1265      return false;
1266
1267    // For each of the *users* of iter.
1268    for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
1269         it != e; ++it) {
1270      Instruction *U = cast<Instruction>(*it);
1271      // We already know that the PHI is a user.
1272      if (U == Phi) {
1273        FoundStartPHI = true;
1274        continue;
1275      }
1276      // Check if we found the exit user.
1277      BasicBlock *Parent = U->getParent();
1278      if (Parent != BB) {
1279        // We must have a single exit instruction.
1280        if (ExitInstruction != 0)
1281          return false;
1282        ExitInstruction = Iter;
1283      }
1284      // We can't have multiple inside users.
1285      if (FoundInBlockUser)
1286        return false;
1287      FoundInBlockUser = true;
1288      Iter = U;
1289    }
1290
1291    // We found a reduction var if we have reached the original
1292    // phi node and we only have a single instruction with out-of-loop
1293    // users.
1294   if (FoundStartPHI && ExitInstruction) {
1295     // This instruction is allowed to have out-of-loop users.
1296     AllowedExit.insert(ExitInstruction);
1297
1298     // Save the description of this reduction variable.
1299     ReductionDescriptor RD(RdxStart, ExitInstruction, Kind);
1300     Reductions[Phi] = RD;
1301     return true;
1302   }
1303  }
1304}
1305
1306bool
1307LoopVectorizationLegality::isReductionInstr(Instruction *I,
1308                                            ReductionKind Kind) {
1309    switch (I->getOpcode()) {
1310    default:
1311      return false;
1312    case Instruction::PHI:
1313      // possibly.
1314      return true;
1315    case Instruction::Add:
1316    case Instruction::Sub:
1317      return Kind == IntegerAdd;
1318    case Instruction::Mul:
1319    case Instruction::UDiv:
1320    case Instruction::SDiv:
1321      return Kind == IntegerMult;
1322    }
1323}
1324
1325bool LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
1326  // Check that the PHI is consecutive and starts at zero.
1327  const SCEV *PhiScev = SE->getSCEV(Phi);
1328  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1329  if (!AR) {
1330    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1331    return false;
1332  }
1333  const SCEV *Step = AR->getStepRecurrence(*SE);
1334  const SCEV *Start = AR->getStart();
1335
1336  if (!Step->isOne() || !Start->isZero()) {
1337    DEBUG(dbgs() << "LV: PHI does not start at zero or steps by one.\n");
1338    return false;
1339  }
1340  return true;
1341}
1342
1343} // namespace
1344
1345char LoopVectorize::ID = 0;
1346static const char lv_name[] = "Loop Vectorization";
1347INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
1348INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
1349INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
1350INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1351INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
1352
1353namespace llvm {
1354  Pass *createLoopVectorizePass() {
1355    return new LoopVectorize();
1356  }
1357}
1358
1359