LoopVectorize.cpp revision 738295e4570f502360c11bc51843f5a8516a9526
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11// and generates target-independent LLVM-IR. Legalization of the IR is done
12// in the codegen. However, the vectorizer uses (will use) the codegen
13// interfaces to generate IR that is likely to result in an optimal binary.
14//
15// The loop vectorizer combines consecutive loop iterations into a single
16// 'wide' iteration. After this transformation the index is incremented
17// by the SIMD vector width, and not by one.
18//
19// This pass has three parts:
20// 1. The main loop pass that drives the different parts.
21// 2. LoopVectorizationLegality - A unit that checks for the legality
22//    of the vectorization.
23// 3. InnerLoopVectorizer - A unit that performs the actual
24//    widening of instructions.
25// 4. LoopVectorizationCostModel - A unit that checks for the profitability
26//    of vectorization. It decides on the optimal vector width, which
27//    can be one, if vectorization is not profitable.
28//
29//===----------------------------------------------------------------------===//
30//
31// The reduction-variable vectorization is based on the paper:
32//  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33//
34// Variable uniformity checks are inspired by:
35//  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36//
37// Other ideas/concepts are from:
38//  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39//
40//  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
41//  Vectorizing Compilers.
42//
43//===----------------------------------------------------------------------===//
44
45#define LV_NAME "loop-vectorize"
46#define DEBUG_TYPE LV_NAME
47
48#include "llvm/Transforms/Vectorize.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/MapVector.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallSet.h"
53#include "llvm/ADT/SmallVector.h"
54#include "llvm/ADT/StringExtras.h"
55#include "llvm/Analysis/AliasAnalysis.h"
56#include "llvm/Analysis/AliasSetTracker.h"
57#include "llvm/Analysis/Dominators.h"
58#include "llvm/Analysis/LoopInfo.h"
59#include "llvm/Analysis/LoopIterator.h"
60#include "llvm/Analysis/LoopPass.h"
61#include "llvm/Analysis/ScalarEvolution.h"
62#include "llvm/Analysis/ScalarEvolutionExpander.h"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Analysis/TargetTransformInfo.h"
65#include "llvm/Analysis/ValueTracking.h"
66#include "llvm/Analysis/Verifier.h"
67#include "llvm/IR/Constants.h"
68#include "llvm/IR/DataLayout.h"
69#include "llvm/IR/DerivedTypes.h"
70#include "llvm/IR/Function.h"
71#include "llvm/IR/IRBuilder.h"
72#include "llvm/IR/Instructions.h"
73#include "llvm/IR/IntrinsicInst.h"
74#include "llvm/IR/LLVMContext.h"
75#include "llvm/IR/Module.h"
76#include "llvm/IR/Type.h"
77#include "llvm/IR/Value.h"
78#include "llvm/Pass.h"
79#include "llvm/Support/CommandLine.h"
80#include "llvm/Support/Debug.h"
81#include "llvm/Support/raw_ostream.h"
82#include "llvm/Target/TargetLibraryInfo.h"
83#include "llvm/Transforms/Scalar.h"
84#include "llvm/Transforms/Utils/BasicBlockUtils.h"
85#include "llvm/Transforms/Utils/Local.h"
86#include <algorithm>
87#include <map>
88
89using namespace llvm;
90
91static cl::opt<unsigned>
92VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
93                    cl::desc("Sets the SIMD width. Zero is autoselect."));
94
95static cl::opt<unsigned>
96VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
97                    cl::desc("Sets the vectorization unroll count. "
98                             "Zero is autoselect."));
99
100static cl::opt<bool>
101EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
102                   cl::desc("Enable if-conversion during vectorization."));
103
104/// We don't vectorize loops with a known constant trip count below this number.
105static cl::opt<unsigned>
106TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
107                             cl::Hidden,
108                             cl::desc("Don't vectorize loops with a constant "
109                                      "trip count that is smaller than this "
110                                      "value."));
111
112/// We don't unroll loops with a known constant trip count below this number.
113static const unsigned TinyTripCountUnrollThreshold = 128;
114
115/// When performing a runtime memory check, do not check more than this
116/// number of pointers. Notice that the check is quadratic!
117static const unsigned RuntimeMemoryCheckThreshold = 4;
118
119/// We use a metadata with this name  to indicate that a scalar loop was
120/// vectorized and that we don't need to re-vectorize it if we run into it
121/// again.
122static const char*
123AlreadyVectorizedMDName = "llvm.vectorizer.already_vectorized";
124
125namespace {
126
127// Forward declarations.
128class LoopVectorizationLegality;
129class LoopVectorizationCostModel;
130
131/// InnerLoopVectorizer vectorizes loops which contain only one basic
132/// block to a specified vectorization factor (VF).
133/// This class performs the widening of scalars into vectors, or multiple
134/// scalars. This class also implements the following features:
135/// * It inserts an epilogue loop for handling loops that don't have iteration
136///   counts that are known to be a multiple of the vectorization factor.
137/// * It handles the code generation for reduction variables.
138/// * Scalarization (implementation using scalars) of un-vectorizable
139///   instructions.
140/// InnerLoopVectorizer does not perform any vectorization-legality
141/// checks, and relies on the caller to check for the different legality
142/// aspects. The InnerLoopVectorizer relies on the
143/// LoopVectorizationLegality class to provide information about the induction
144/// and reduction variables that were found to a given vectorization factor.
145class InnerLoopVectorizer {
146public:
147  InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
148                      DominatorTree *DT, DataLayout *DL,
149                      const TargetLibraryInfo *TLI, unsigned VecWidth,
150                      unsigned UnrollFactor)
151      : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
152        VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
153        OldInduction(0), WidenMap(UnrollFactor) {}
154
155  // Perform the actual loop widening (vectorization).
156  void vectorize(LoopVectorizationLegality *Legal) {
157    // Create a new empty loop. Unlink the old loop and connect the new one.
158    createEmptyLoop(Legal);
159    // Widen each instruction in the old loop to a new one in the new loop.
160    // Use the Legality module to find the induction and reduction variables.
161    vectorizeLoop(Legal);
162    // Register the new loop and update the analysis passes.
163    updateAnalysis();
164  }
165
166private:
167  /// A small list of PHINodes.
168  typedef SmallVector<PHINode*, 4> PhiVector;
169  /// When we unroll loops we have multiple vector values for each scalar.
170  /// This data structure holds the unrolled and vectorized values that
171  /// originated from one scalar instruction.
172  typedef SmallVector<Value*, 2> VectorParts;
173
174  /// Add code that checks at runtime if the accessed arrays overlap.
175  /// Returns the comparator value or NULL if no check is needed.
176  Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
177                               Instruction *Loc);
178  /// Create an empty loop, based on the loop ranges of the old loop.
179  void createEmptyLoop(LoopVectorizationLegality *Legal);
180  /// Copy and widen the instructions from the old loop.
181  void vectorizeLoop(LoopVectorizationLegality *Legal);
182
183  /// A helper function that computes the predicate of the block BB, assuming
184  /// that the header block of the loop is set to True. It returns the *entry*
185  /// mask for the block BB.
186  VectorParts createBlockInMask(BasicBlock *BB);
187  /// A helper function that computes the predicate of the edge between SRC
188  /// and DST.
189  VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
190
191  /// A helper function to vectorize a single BB within the innermost loop.
192  void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
193                            PhiVector *PV);
194
195  /// Insert the new loop to the loop hierarchy and pass manager
196  /// and update the analysis passes.
197  void updateAnalysis();
198
199  /// This instruction is un-vectorizable. Implement it as a sequence
200  /// of scalars.
201  void scalarizeInstruction(Instruction *Instr);
202
203  /// Vectorize Load and Store instructions,
204  void vectorizeMemoryInstruction(Instruction *Instr,
205                                  LoopVectorizationLegality *Legal);
206
207  /// Create a broadcast instruction. This method generates a broadcast
208  /// instruction (shuffle) for loop invariant values and for the induction
209  /// value. If this is the induction variable then we extend it to N, N+1, ...
210  /// this is needed because each iteration in the loop corresponds to a SIMD
211  /// element.
212  Value *getBroadcastInstrs(Value *V);
213
214  /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
215  /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
216  /// The sequence starts at StartIndex.
217  Value *getConsecutiveVector(Value* Val, unsigned StartIdx, bool Negate);
218
219  /// When we go over instructions in the basic block we rely on previous
220  /// values within the current basic block or on loop invariant values.
221  /// When we widen (vectorize) values we place them in the map. If the values
222  /// are not within the map, they have to be loop invariant, so we simply
223  /// broadcast them into a vector.
224  VectorParts &getVectorValue(Value *V);
225
226  /// Generate a shuffle sequence that will reverse the vector Vec.
227  Value *reverseVector(Value *Vec);
228
229  /// This is a helper class that holds the vectorizer state. It maps scalar
230  /// instructions to vector instructions. When the code is 'unrolled' then
231  /// then a single scalar value is mapped to multiple vector parts. The parts
232  /// are stored in the VectorPart type.
233  struct ValueMap {
234    /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
235    /// are mapped.
236    ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
237
238    /// \return True if 'Key' is saved in the Value Map.
239    bool has(Value *Key) const { return MapStorage.count(Key); }
240
241    /// Initializes a new entry in the map. Sets all of the vector parts to the
242    /// save value in 'Val'.
243    /// \return A reference to a vector with splat values.
244    VectorParts &splat(Value *Key, Value *Val) {
245      VectorParts &Entry = MapStorage[Key];
246      Entry.assign(UF, Val);
247      return Entry;
248    }
249
250    ///\return A reference to the value that is stored at 'Key'.
251    VectorParts &get(Value *Key) {
252      VectorParts &Entry = MapStorage[Key];
253      if (Entry.empty())
254        Entry.resize(UF);
255      assert(Entry.size() == UF);
256      return Entry;
257    }
258
259  private:
260    /// The unroll factor. Each entry in the map stores this number of vector
261    /// elements.
262    unsigned UF;
263
264    /// Map storage. We use std::map and not DenseMap because insertions to a
265    /// dense map invalidates its iterators.
266    std::map<Value *, VectorParts> MapStorage;
267  };
268
269  /// The original loop.
270  Loop *OrigLoop;
271  /// Scev analysis to use.
272  ScalarEvolution *SE;
273  /// Loop Info.
274  LoopInfo *LI;
275  /// Dominator Tree.
276  DominatorTree *DT;
277  /// Data Layout.
278  DataLayout *DL;
279  /// Target Library Info.
280  const TargetLibraryInfo *TLI;
281
282  /// The vectorization SIMD factor to use. Each vector will have this many
283  /// vector elements.
284  unsigned VF;
285  /// The vectorization unroll factor to use. Each scalar is vectorized to this
286  /// many different vector instructions.
287  unsigned UF;
288
289  /// The builder that we use
290  IRBuilder<> Builder;
291
292  // --- Vectorization state ---
293
294  /// The vector-loop preheader.
295  BasicBlock *LoopVectorPreHeader;
296  /// The scalar-loop preheader.
297  BasicBlock *LoopScalarPreHeader;
298  /// Middle Block between the vector and the scalar.
299  BasicBlock *LoopMiddleBlock;
300  ///The ExitBlock of the scalar loop.
301  BasicBlock *LoopExitBlock;
302  ///The vector loop body.
303  BasicBlock *LoopVectorBody;
304  ///The scalar loop body.
305  BasicBlock *LoopScalarBody;
306  /// A list of all bypass blocks. The first block is the entry of the loop.
307  SmallVector<BasicBlock *, 4> LoopBypassBlocks;
308
309  /// The new Induction variable which was added to the new block.
310  PHINode *Induction;
311  /// The induction variable of the old basic block.
312  PHINode *OldInduction;
313  /// Maps scalars to widened vectors.
314  ValueMap WidenMap;
315};
316
317/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
318/// to what vectorization factor.
319/// This class does not look at the profitability of vectorization, only the
320/// legality. This class has two main kinds of checks:
321/// * Memory checks - The code in canVectorizeMemory checks if vectorization
322///   will change the order of memory accesses in a way that will change the
323///   correctness of the program.
324/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
325/// checks for a number of different conditions, such as the availability of a
326/// single induction variable, that all types are supported and vectorize-able,
327/// etc. This code reflects the capabilities of InnerLoopVectorizer.
328/// This class is also used by InnerLoopVectorizer for identifying
329/// induction variable and the different reduction variables.
330class LoopVectorizationLegality {
331public:
332  LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
333                            DominatorTree *DT, TargetTransformInfo* TTI,
334                            AliasAnalysis *AA, TargetLibraryInfo *TLI)
335      : TheLoop(L), SE(SE), DL(DL), DT(DT), TTI(TTI), AA(AA), TLI(TLI),
336        Induction(0) {}
337
338  /// This enum represents the kinds of reductions that we support.
339  enum ReductionKind {
340    RK_NoReduction, ///< Not a reduction.
341    RK_IntegerAdd,  ///< Sum of integers.
342    RK_IntegerMult, ///< Product of integers.
343    RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
344    RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
345    RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
346    RK_FloatAdd,    ///< Sum of floats.
347    RK_FloatMult    ///< Product of floats.
348  };
349
350  /// This enum represents the kinds of inductions that we support.
351  enum InductionKind {
352    IK_NoInduction,         ///< Not an induction variable.
353    IK_IntInduction,        ///< Integer induction variable. Step = 1.
354    IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
355    IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
356    IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
357  };
358
359  /// This POD struct holds information about reduction variables.
360  struct ReductionDescriptor {
361    ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
362      Kind(RK_NoReduction) {}
363
364    ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K)
365        : StartValue(Start), LoopExitInstr(Exit), Kind(K) {}
366
367    // The starting value of the reduction.
368    // It does not have to be zero!
369    Value *StartValue;
370    // The instruction who's value is used outside the loop.
371    Instruction *LoopExitInstr;
372    // The kind of the reduction.
373    ReductionKind Kind;
374  };
375
376  // This POD struct holds information about the memory runtime legality
377  // check that a group of pointers do not overlap.
378  struct RuntimePointerCheck {
379    RuntimePointerCheck() : Need(false) {}
380
381    /// Reset the state of the pointer runtime information.
382    void reset() {
383      Need = false;
384      Pointers.clear();
385      Starts.clear();
386      Ends.clear();
387    }
388
389    /// Insert a pointer and calculate the start and end SCEVs.
390    void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr);
391
392    /// This flag indicates if we need to add the runtime check.
393    bool Need;
394    /// Holds the pointers that we need to check.
395    SmallVector<Value*, 2> Pointers;
396    /// Holds the pointer value at the beginning of the loop.
397    SmallVector<const SCEV*, 2> Starts;
398    /// Holds the pointer value at the end of the loop.
399    SmallVector<const SCEV*, 2> Ends;
400  };
401
402  /// A POD for saving information about induction variables.
403  struct InductionInfo {
404    InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
405    InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
406    /// Start value.
407    Value *StartValue;
408    /// Induction kind.
409    InductionKind IK;
410  };
411
412  /// ReductionList contains the reduction descriptors for all
413  /// of the reductions that were found in the loop.
414  typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
415
416  /// InductionList saves induction variables and maps them to the
417  /// induction descriptor.
418  typedef MapVector<PHINode*, InductionInfo> InductionList;
419
420  /// Alias(Multi)Map stores the values (GEPs or underlying objects and their
421  /// respective Store/Load instruction(s) to calculate aliasing.
422  typedef DenseMap<Value*, Instruction* > AliasMap;
423  typedef DenseMap<Value*, std::vector<Instruction*> > AliasMultiMap;
424
425  /// Returns true if it is legal to vectorize this loop.
426  /// This does not mean that it is profitable to vectorize this
427  /// loop, only that it is legal to do so.
428  bool canVectorize();
429
430  /// Returns the Induction variable.
431  PHINode *getInduction() { return Induction; }
432
433  /// Returns the reduction variables found in the loop.
434  ReductionList *getReductionVars() { return &Reductions; }
435
436  /// Returns the induction variables found in the loop.
437  InductionList *getInductionVars() { return &Inductions; }
438
439  /// Returns True if V is an induction variable in this loop.
440  bool isInductionVariable(const Value *V);
441
442  /// Return true if the block BB needs to be predicated in order for the loop
443  /// to be vectorized.
444  bool blockNeedsPredication(BasicBlock *BB);
445
446  /// Check if this  pointer is consecutive when vectorizing. This happens
447  /// when the last index of the GEP is the induction variable, or that the
448  /// pointer itself is an induction variable.
449  /// This check allows us to vectorize A[idx] into a wide load/store.
450  /// Returns:
451  /// 0 - Stride is unknown or non consecutive.
452  /// 1 - Address is consecutive.
453  /// -1 - Address is consecutive, and decreasing.
454  int isConsecutivePtr(Value *Ptr);
455
456  /// Returns true if the value V is uniform within the loop.
457  bool isUniform(Value *V);
458
459  /// Returns true if this instruction will remain scalar after vectorization.
460  bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
461
462  /// Returns the information that we collected about runtime memory check.
463  RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
464private:
465  /// Check if a single basic block loop is vectorizable.
466  /// At this point we know that this is a loop with a constant trip count
467  /// and we only need to check individual instructions.
468  bool canVectorizeInstrs();
469
470  /// When we vectorize loops we may change the order in which
471  /// we read and write from memory. This method checks if it is
472  /// legal to vectorize the code, considering only memory constrains.
473  /// Returns true if the loop is vectorizable
474  bool canVectorizeMemory();
475
476  /// Return true if we can vectorize this loop using the IF-conversion
477  /// transformation.
478  bool canVectorizeWithIfConvert();
479
480  /// Collect the variables that need to stay uniform after vectorization.
481  void collectLoopUniforms();
482
483  /// Return true if all of the instructions in the block can be speculatively
484  /// executed.
485  bool blockCanBePredicated(BasicBlock *BB);
486
487  /// Returns True, if 'Phi' is the kind of reduction variable for type
488  /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
489  bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
490  /// Returns true if the instruction I can be a reduction variable of type
491  /// 'Kind'.
492  bool isReductionInstr(Instruction *I, ReductionKind Kind);
493  /// Returns the induction kind of Phi. This function may return NoInduction
494  /// if the PHI is not an induction variable.
495  InductionKind isInductionVariable(PHINode *Phi);
496  /// Return true if can compute the address bounds of Ptr within the loop.
497  bool hasComputableBounds(Value *Ptr);
498  /// Return true if there is the chance of write reorder.
499  bool hasPossibleGlobalWriteReorder(Value *Object,
500                                     Instruction *Inst,
501                                     AliasMultiMap &WriteObjects,
502                                     unsigned MaxByteWidth);
503  /// Return the AA location for a load or a store.
504  AliasAnalysis::Location getLoadStoreLocation(Instruction *Inst);
505
506
507  /// The loop that we evaluate.
508  Loop *TheLoop;
509  /// Scev analysis.
510  ScalarEvolution *SE;
511  /// DataLayout analysis.
512  DataLayout *DL;
513  /// Dominators.
514  DominatorTree *DT;
515  /// Target Info.
516  TargetTransformInfo *TTI;
517  /// Alias Analysis.
518  AliasAnalysis *AA;
519  /// Target Library Info.
520  TargetLibraryInfo *TLI;
521
522  //  ---  vectorization state --- //
523
524  /// Holds the integer induction variable. This is the counter of the
525  /// loop.
526  PHINode *Induction;
527  /// Holds the reduction variables.
528  ReductionList Reductions;
529  /// Holds all of the induction variables that we found in the loop.
530  /// Notice that inductions don't need to start at zero and that induction
531  /// variables can be pointers.
532  InductionList Inductions;
533
534  /// Allowed outside users. This holds the reduction
535  /// vars which can be accessed from outside the loop.
536  SmallPtrSet<Value*, 4> AllowedExit;
537  /// This set holds the variables which are known to be uniform after
538  /// vectorization.
539  SmallPtrSet<Instruction*, 4> Uniforms;
540  /// We need to check that all of the pointers in this list are disjoint
541  /// at runtime.
542  RuntimePointerCheck PtrRtCheck;
543};
544
545/// LoopVectorizationCostModel - estimates the expected speedups due to
546/// vectorization.
547/// In many cases vectorization is not profitable. This can happen because of
548/// a number of reasons. In this class we mainly attempt to predict the
549/// expected speedup/slowdowns due to the supported instruction set. We use the
550/// TargetTransformInfo to query the different backends for the cost of
551/// different operations.
552class LoopVectorizationCostModel {
553public:
554  LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
555                             LoopVectorizationLegality *Legal,
556                             const TargetTransformInfo &TTI,
557                             DataLayout *DL, const TargetLibraryInfo *TLI)
558      : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
559
560  /// Information about vectorization costs
561  struct VectorizationFactor {
562    unsigned Width; // Vector width with best cost
563    unsigned Cost; // Cost of the loop with that width
564  };
565  /// \return The most profitable vectorization factor and the cost of that VF.
566  /// This method checks every power of two up to VF. If UserVF is not ZERO
567  /// then this vectorization factor will be selected if vectorization is
568  /// possible.
569  VectorizationFactor selectVectorizationFactor(bool OptForSize,
570                                                unsigned UserVF);
571
572  /// \return The size (in bits) of the widest type in the code that
573  /// needs to be vectorized. We ignore values that remain scalar such as
574  /// 64 bit loop indices.
575  unsigned getWidestType();
576
577  /// \return The most profitable unroll factor.
578  /// If UserUF is non-zero then this method finds the best unroll-factor
579  /// based on register pressure and other parameters.
580  /// VF and LoopCost are the selected vectorization factor and the cost of the
581  /// selected VF.
582  unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
583                              unsigned LoopCost);
584
585  /// \brief A struct that represents some properties of the register usage
586  /// of a loop.
587  struct RegisterUsage {
588    /// Holds the number of loop invariant values that are used in the loop.
589    unsigned LoopInvariantRegs;
590    /// Holds the maximum number of concurrent live intervals in the loop.
591    unsigned MaxLocalUsers;
592    /// Holds the number of instructions in the loop.
593    unsigned NumInstructions;
594  };
595
596  /// \return  information about the register usage of the loop.
597  RegisterUsage calculateRegisterUsage();
598
599private:
600  /// Returns the expected execution cost. The unit of the cost does
601  /// not matter because we use the 'cost' units to compare different
602  /// vector widths. The cost that is returned is *not* normalized by
603  /// the factor width.
604  unsigned expectedCost(unsigned VF);
605
606  /// Returns the execution time cost of an instruction for a given vector
607  /// width. Vector width of one means scalar.
608  unsigned getInstructionCost(Instruction *I, unsigned VF);
609
610  /// A helper function for converting Scalar types to vector types.
611  /// If the incoming type is void, we return void. If the VF is 1, we return
612  /// the scalar type.
613  static Type* ToVectorTy(Type *Scalar, unsigned VF);
614
615  /// Returns whether the instruction is a load or store and will be a emitted
616  /// as a vector operation.
617  bool isConsecutiveLoadOrStore(Instruction *I);
618
619  /// The loop that we evaluate.
620  Loop *TheLoop;
621  /// Scev analysis.
622  ScalarEvolution *SE;
623  /// Loop Info analysis.
624  LoopInfo *LI;
625  /// Vectorization legality.
626  LoopVectorizationLegality *Legal;
627  /// Vector target information.
628  const TargetTransformInfo &TTI;
629  /// Target data layout information.
630  DataLayout *DL;
631  /// Target Library Info.
632  const TargetLibraryInfo *TLI;
633};
634
635/// The LoopVectorize Pass.
636struct LoopVectorize : public LoopPass {
637  /// Pass identification, replacement for typeid
638  static char ID;
639
640  explicit LoopVectorize() : LoopPass(ID) {
641    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
642  }
643
644  ScalarEvolution *SE;
645  DataLayout *DL;
646  LoopInfo *LI;
647  TargetTransformInfo *TTI;
648  DominatorTree *DT;
649  AliasAnalysis *AA;
650  TargetLibraryInfo *TLI;
651
652  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
653    // We only vectorize innermost loops.
654    if (!L->empty())
655      return false;
656
657    SE = &getAnalysis<ScalarEvolution>();
658    DL = getAnalysisIfAvailable<DataLayout>();
659    LI = &getAnalysis<LoopInfo>();
660    TTI = &getAnalysis<TargetTransformInfo>();
661    DT = &getAnalysis<DominatorTree>();
662    AA = getAnalysisIfAvailable<AliasAnalysis>();
663    TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
664
665    DEBUG(dbgs() << "LV: Checking a loop in \"" <<
666          L->getHeader()->getParent()->getName() << "\"\n");
667
668    // Check if it is legal to vectorize the loop.
669    LoopVectorizationLegality LVL(L, SE, DL, DT, TTI, AA, TLI);
670    if (!LVL.canVectorize()) {
671      DEBUG(dbgs() << "LV: Not vectorizing.\n");
672      return false;
673    }
674
675    // Use the cost model.
676    LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
677
678    // Check the function attributes to find out if this function should be
679    // optimized for size.
680    Function *F = L->getHeader()->getParent();
681    Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
682    Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
683    unsigned FnIndex = AttributeSet::FunctionIndex;
684    bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
685    bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
686
687    if (NoFloat) {
688      DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
689            "attribute is used.\n");
690      return false;
691    }
692
693    // Select the optimal vectorization factor.
694    LoopVectorizationCostModel::VectorizationFactor VF;
695    VF = CM.selectVectorizationFactor(OptForSize, VectorizationFactor);
696    // Select the unroll factor.
697    unsigned UF = CM.selectUnrollFactor(OptForSize, VectorizationUnroll,
698                                        VF.Width, VF.Cost);
699
700    if (VF.Width == 1) {
701      DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
702      return false;
703    }
704
705    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
706          F->getParent()->getModuleIdentifier()<<"\n");
707    DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
708
709    // If we decided that it is *legal* to vectorize the loop then do it.
710    InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
711    LB.vectorize(&LVL);
712
713    DEBUG(verifyFunction(*L->getHeader()->getParent()));
714    return true;
715  }
716
717  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
718    LoopPass::getAnalysisUsage(AU);
719    AU.addRequiredID(LoopSimplifyID);
720    AU.addRequiredID(LCSSAID);
721    AU.addRequired<DominatorTree>();
722    AU.addRequired<LoopInfo>();
723    AU.addRequired<ScalarEvolution>();
724    AU.addRequired<TargetTransformInfo>();
725    AU.addPreserved<LoopInfo>();
726    AU.addPreserved<DominatorTree>();
727  }
728
729};
730
731} // end anonymous namespace
732
733//===----------------------------------------------------------------------===//
734// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
735// LoopVectorizationCostModel.
736//===----------------------------------------------------------------------===//
737
738void
739LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
740                                                       Loop *Lp, Value *Ptr) {
741  const SCEV *Sc = SE->getSCEV(Ptr);
742  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
743  assert(AR && "Invalid addrec expression");
744  const SCEV *Ex = SE->getExitCount(Lp, Lp->getLoopLatch());
745  const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
746  Pointers.push_back(Ptr);
747  Starts.push_back(AR->getStart());
748  Ends.push_back(ScEnd);
749}
750
751Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
752  // Save the current insertion location.
753  Instruction *Loc = Builder.GetInsertPoint();
754
755  // We need to place the broadcast of invariant variables outside the loop.
756  Instruction *Instr = dyn_cast<Instruction>(V);
757  bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
758  bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
759
760  // Place the code for broadcasting invariant variables in the new preheader.
761  if (Invariant)
762    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
763
764  // Broadcast the scalar into all locations in the vector.
765  Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
766
767  // Restore the builder insertion point.
768  if (Invariant)
769    Builder.SetInsertPoint(Loc);
770
771  return Shuf;
772}
773
774Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, unsigned StartIdx,
775                                                 bool Negate) {
776  assert(Val->getType()->isVectorTy() && "Must be a vector");
777  assert(Val->getType()->getScalarType()->isIntegerTy() &&
778         "Elem must be an integer");
779  // Create the types.
780  Type *ITy = Val->getType()->getScalarType();
781  VectorType *Ty = cast<VectorType>(Val->getType());
782  int VLen = Ty->getNumElements();
783  SmallVector<Constant*, 8> Indices;
784
785  // Create a vector of consecutive numbers from zero to VF.
786  for (int i = 0; i < VLen; ++i) {
787    int Idx = Negate ? (-i): i;
788    Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx));
789  }
790
791  // Add the consecutive indices to the vector value.
792  Constant *Cv = ConstantVector::get(Indices);
793  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
794  return Builder.CreateAdd(Val, Cv, "induction");
795}
796
797int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
798  assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
799  // Make sure that the pointer does not point to structs.
800  if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType())
801    return 0;
802
803  // If this value is a pointer induction variable we know it is consecutive.
804  PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
805  if (Phi && Inductions.count(Phi)) {
806    InductionInfo II = Inductions[Phi];
807    if (IK_PtrInduction == II.IK)
808      return 1;
809    else if (IK_ReversePtrInduction == II.IK)
810      return -1;
811  }
812
813  GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
814  if (!Gep)
815    return 0;
816
817  unsigned NumOperands = Gep->getNumOperands();
818  Value *LastIndex = Gep->getOperand(NumOperands - 1);
819
820  Value *GpPtr = Gep->getPointerOperand();
821  // If this GEP value is a consecutive pointer induction variable and all of
822  // the indices are constant then we know it is consecutive. We can
823  Phi = dyn_cast<PHINode>(GpPtr);
824  if (Phi && Inductions.count(Phi)) {
825
826    // Make sure that the pointer does not point to structs.
827    PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
828    if (GepPtrType->getElementType()->isAggregateType())
829      return 0;
830
831    // Make sure that all of the index operands are loop invariant.
832    for (unsigned i = 1; i < NumOperands; ++i)
833      if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
834        return 0;
835
836    InductionInfo II = Inductions[Phi];
837    if (IK_PtrInduction == II.IK)
838      return 1;
839    else if (IK_ReversePtrInduction == II.IK)
840      return -1;
841  }
842
843  // Check that all of the gep indices are uniform except for the last.
844  for (unsigned i = 0; i < NumOperands - 1; ++i)
845    if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
846      return 0;
847
848  // We can emit wide load/stores only if the last index is the induction
849  // variable.
850  const SCEV *Last = SE->getSCEV(LastIndex);
851  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
852    const SCEV *Step = AR->getStepRecurrence(*SE);
853
854    // The memory is consecutive because the last index is consecutive
855    // and all other indices are loop invariant.
856    if (Step->isOne())
857      return 1;
858    if (Step->isAllOnesValue())
859      return -1;
860  }
861
862  return 0;
863}
864
865bool LoopVectorizationLegality::isUniform(Value *V) {
866  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
867}
868
869InnerLoopVectorizer::VectorParts&
870InnerLoopVectorizer::getVectorValue(Value *V) {
871  assert(V != Induction && "The new induction variable should not be used.");
872  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
873
874  // If we have this scalar in the map, return it.
875  if (WidenMap.has(V))
876    return WidenMap.get(V);
877
878  // If this scalar is unknown, assume that it is a constant or that it is
879  // loop invariant. Broadcast V and save the value for future uses.
880  Value *B = getBroadcastInstrs(V);
881  return WidenMap.splat(V, B);
882}
883
884Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
885  assert(Vec->getType()->isVectorTy() && "Invalid type");
886  SmallVector<Constant*, 8> ShuffleMask;
887  for (unsigned i = 0; i < VF; ++i)
888    ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
889
890  return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
891                                     ConstantVector::get(ShuffleMask),
892                                     "reverse");
893}
894
895
896void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
897                                             LoopVectorizationLegality *Legal) {
898  // Attempt to issue a wide load.
899  LoadInst *LI = dyn_cast<LoadInst>(Instr);
900  StoreInst *SI = dyn_cast<StoreInst>(Instr);
901
902  assert((LI || SI) && "Invalid Load/Store instruction");
903
904  Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
905  Type *DataTy = VectorType::get(ScalarDataTy, VF);
906  Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
907  unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
908
909  // If the pointer is loop invariant or if it is non consecutive,
910  // scalarize the load.
911  int Stride = Legal->isConsecutivePtr(Ptr);
912  bool Reverse = Stride < 0;
913  bool UniformLoad = LI && Legal->isUniform(Ptr);
914  if (Stride == 0 || UniformLoad)
915    return scalarizeInstruction(Instr);
916
917  Constant *Zero = Builder.getInt32(0);
918  VectorParts &Entry = WidenMap.get(Instr);
919
920  // Handle consecutive loads/stores.
921  GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
922  if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
923    Value *PtrOperand = Gep->getPointerOperand();
924    Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
925    FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
926
927    // Create the new GEP with the new induction variable.
928    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
929    Gep2->setOperand(0, FirstBasePtr);
930    Gep2->setName("gep.indvar.base");
931    Ptr = Builder.Insert(Gep2);
932  } else if (Gep) {
933    assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
934                               OrigLoop) && "Base ptr must be invariant");
935
936    // The last index does not have to be the induction. It can be
937    // consecutive and be a function of the index. For example A[I+1];
938    unsigned NumOperands = Gep->getNumOperands();
939
940    Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
941    VectorParts &GEPParts = getVectorValue(LastGepOperand);
942    Value *LastIndex = GEPParts[0];
943    LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
944
945    // Create the new GEP with the new induction variable.
946    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
947    Gep2->setOperand(NumOperands - 1, LastIndex);
948    Gep2->setName("gep.indvar.idx");
949    Ptr = Builder.Insert(Gep2);
950  } else {
951    // Use the induction element ptr.
952    assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
953    VectorParts &PtrVal = getVectorValue(Ptr);
954    Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
955  }
956
957  // Handle Stores:
958  if (SI) {
959    assert(!Legal->isUniform(SI->getPointerOperand()) &&
960           "We do not allow storing to uniform addresses");
961
962    VectorParts &StoredVal = getVectorValue(SI->getValueOperand());
963    for (unsigned Part = 0; Part < UF; ++Part) {
964      // Calculate the pointer for the specific unroll-part.
965      Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
966
967      if (Reverse) {
968        // If we store to reverse consecutive memory locations then we need
969        // to reverse the order of elements in the stored value.
970        StoredVal[Part] = reverseVector(StoredVal[Part]);
971        // If the address is consecutive but reversed, then the
972        // wide store needs to start at the last vector element.
973        PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
974        PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
975      }
976
977      Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo());
978      Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
979    }
980  }
981
982  for (unsigned Part = 0; Part < UF; ++Part) {
983    // Calculate the pointer for the specific unroll-part.
984    Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
985
986    if (Reverse) {
987      // If the address is consecutive but reversed, then the
988      // wide store needs to start at the last vector element.
989      PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
990      PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
991    }
992
993    Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo());
994    Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
995    cast<LoadInst>(LI)->setAlignment(Alignment);
996    Entry[Part] = Reverse ? reverseVector(LI) :  LI;
997  }
998}
999
1000void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
1001  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1002  // Holds vector parameters or scalars, in case of uniform vals.
1003  SmallVector<VectorParts, 4> Params;
1004
1005  // Find all of the vectorized parameters.
1006  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1007    Value *SrcOp = Instr->getOperand(op);
1008
1009    // If we are accessing the old induction variable, use the new one.
1010    if (SrcOp == OldInduction) {
1011      Params.push_back(getVectorValue(SrcOp));
1012      continue;
1013    }
1014
1015    // Try using previously calculated values.
1016    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1017
1018    // If the src is an instruction that appeared earlier in the basic block
1019    // then it should already be vectorized.
1020    if (SrcInst && OrigLoop->contains(SrcInst)) {
1021      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
1022      // The parameter is a vector value from earlier.
1023      Params.push_back(WidenMap.get(SrcInst));
1024    } else {
1025      // The parameter is a scalar from outside the loop. Maybe even a constant.
1026      VectorParts Scalars;
1027      Scalars.append(UF, SrcOp);
1028      Params.push_back(Scalars);
1029    }
1030  }
1031
1032  assert(Params.size() == Instr->getNumOperands() &&
1033         "Invalid number of operands");
1034
1035  // Does this instruction return a value ?
1036  bool IsVoidRetTy = Instr->getType()->isVoidTy();
1037
1038  Value *UndefVec = IsVoidRetTy ? 0 :
1039    UndefValue::get(VectorType::get(Instr->getType(), VF));
1040  // Create a new entry in the WidenMap and initialize it to Undef or Null.
1041  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1042
1043  // For each scalar that we create:
1044  for (unsigned Width = 0; Width < VF; ++Width) {
1045    // For each vector unroll 'part':
1046    for (unsigned Part = 0; Part < UF; ++Part) {
1047      Instruction *Cloned = Instr->clone();
1048      if (!IsVoidRetTy)
1049        Cloned->setName(Instr->getName() + ".cloned");
1050      // Replace the operands of the cloned instrucions with extracted scalars.
1051      for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1052        Value *Op = Params[op][Part];
1053        // Param is a vector. Need to extract the right lane.
1054        if (Op->getType()->isVectorTy())
1055          Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
1056        Cloned->setOperand(op, Op);
1057      }
1058
1059      // Place the cloned scalar in the new loop.
1060      Builder.Insert(Cloned);
1061
1062      // If the original scalar returns a value we need to place it in a vector
1063      // so that future users will be able to use it.
1064      if (!IsVoidRetTy)
1065        VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
1066                                                       Builder.getInt32(Width));
1067    }
1068  }
1069}
1070
1071Instruction *
1072InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
1073                                     Instruction *Loc) {
1074  LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
1075  Legal->getRuntimePointerCheck();
1076
1077  if (!PtrRtCheck->Need)
1078    return NULL;
1079
1080  Instruction *MemoryRuntimeCheck = 0;
1081  unsigned NumPointers = PtrRtCheck->Pointers.size();
1082  SmallVector<Value* , 2> Starts;
1083  SmallVector<Value* , 2> Ends;
1084
1085  SCEVExpander Exp(*SE, "induction");
1086
1087  // Use this type for pointer arithmetic.
1088  Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0);
1089
1090  for (unsigned i = 0; i < NumPointers; ++i) {
1091    Value *Ptr = PtrRtCheck->Pointers[i];
1092    const SCEV *Sc = SE->getSCEV(Ptr);
1093
1094    if (SE->isLoopInvariant(Sc, OrigLoop)) {
1095      DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
1096            *Ptr <<"\n");
1097      Starts.push_back(Ptr);
1098      Ends.push_back(Ptr);
1099    } else {
1100      DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
1101
1102      Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
1103      Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
1104      Starts.push_back(Start);
1105      Ends.push_back(End);
1106    }
1107  }
1108
1109  IRBuilder<> ChkBuilder(Loc);
1110
1111  for (unsigned i = 0; i < NumPointers; ++i) {
1112    for (unsigned j = i+1; j < NumPointers; ++j) {
1113      Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy, "bc");
1114      Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy, "bc");
1115      Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy, "bc");
1116      Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy, "bc");
1117
1118      Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1119      Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1120      Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1121      if (MemoryRuntimeCheck)
1122        IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1123                                         "conflict.rdx");
1124
1125      MemoryRuntimeCheck = cast<Instruction>(IsConflict);
1126    }
1127  }
1128
1129  return MemoryRuntimeCheck;
1130}
1131
1132void
1133InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
1134  /*
1135   In this function we generate a new loop. The new loop will contain
1136   the vectorized instructions while the old loop will continue to run the
1137   scalar remainder.
1138
1139       [ ] <-- vector loop bypass (may consist of multiple blocks).
1140     /  |
1141    /   v
1142   |   [ ]     <-- vector pre header.
1143   |    |
1144   |    v
1145   |   [  ] \
1146   |   [  ]_|   <-- vector loop.
1147   |    |
1148    \   v
1149      >[ ]   <--- middle-block.
1150     /  |
1151    /   v
1152   |   [ ]     <--- new preheader.
1153   |    |
1154   |    v
1155   |   [ ] \
1156   |   [ ]_|   <-- old scalar loop to handle remainder.
1157    \   |
1158     \  v
1159      >[ ]     <-- exit block.
1160   ...
1161   */
1162
1163  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
1164  BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
1165  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
1166  assert(ExitBlock && "Must have an exit block");
1167
1168  // Mark the old scalar loop with metadata that tells us not to vectorize this
1169  // loop again if we run into it.
1170  MDNode *MD = MDNode::get(OldBasicBlock->getContext(), ArrayRef<Value*>());
1171  OldBasicBlock->getTerminator()->setMetadata(AlreadyVectorizedMDName, MD);
1172
1173  // Some loops have a single integer induction variable, while other loops
1174  // don't. One example is c++ iterators that often have multiple pointer
1175  // induction variables. In the code below we also support a case where we
1176  // don't have a single induction variable.
1177  OldInduction = Legal->getInduction();
1178  Type *IdxTy = OldInduction ? OldInduction->getType() :
1179  DL->getIntPtrType(SE->getContext());
1180
1181  // Find the loop boundaries.
1182  const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getLoopLatch());
1183  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
1184
1185  // Get the total trip count from the count by adding 1.
1186  ExitCount = SE->getAddExpr(ExitCount,
1187                             SE->getConstant(ExitCount->getType(), 1));
1188
1189  // Expand the trip count and place the new instructions in the preheader.
1190  // Notice that the pre-header does not change, only the loop body.
1191  SCEVExpander Exp(*SE, "induction");
1192
1193  // Count holds the overall loop count (N).
1194  Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
1195                                   BypassBlock->getTerminator());
1196
1197  // The loop index does not have to start at Zero. Find the original start
1198  // value from the induction PHI node. If we don't have an induction variable
1199  // then we know that it starts at zero.
1200  Value *StartIdx = OldInduction ?
1201  OldInduction->getIncomingValueForBlock(BypassBlock):
1202  ConstantInt::get(IdxTy, 0);
1203
1204  assert(BypassBlock && "Invalid loop structure");
1205  LoopBypassBlocks.push_back(BypassBlock);
1206
1207  // Split the single block loop into the two loop structure described above.
1208  BasicBlock *VectorPH =
1209  BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
1210  BasicBlock *VecBody =
1211  VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
1212  BasicBlock *MiddleBlock =
1213  VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
1214  BasicBlock *ScalarPH =
1215  MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
1216
1217  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
1218  // inside the loop.
1219  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1220
1221  // Generate the induction variable.
1222  Induction = Builder.CreatePHI(IdxTy, 2, "index");
1223  // The loop step is equal to the vectorization factor (num of SIMD elements)
1224  // times the unroll factor (num of SIMD instructions).
1225  Constant *Step = ConstantInt::get(IdxTy, VF * UF);
1226
1227  // This is the IR builder that we use to add all of the logic for bypassing
1228  // the new vector loop.
1229  IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
1230
1231  // We may need to extend the index in case there is a type mismatch.
1232  // We know that the count starts at zero and does not overflow.
1233  if (Count->getType() != IdxTy) {
1234    // The exit count can be of pointer type. Convert it to the correct
1235    // integer type.
1236    if (ExitCount->getType()->isPointerTy())
1237      Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
1238    else
1239      Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
1240  }
1241
1242  // Add the start index to the loop count to get the new end index.
1243  Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
1244
1245  // Now we need to generate the expression for N - (N % VF), which is
1246  // the part that the vectorized body will execute.
1247  Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
1248  Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
1249  Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
1250                                                     "end.idx.rnd.down");
1251
1252  // Now, compare the new count to zero. If it is zero skip the vector loop and
1253  // jump to the scalar loop.
1254  Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
1255                                          "cmp.zero");
1256
1257  BasicBlock *LastBypassBlock = BypassBlock;
1258
1259  // Generate the code that checks in runtime if arrays overlap. We put the
1260  // checks into a separate block to make the more common case of few elements
1261  // faster.
1262  Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
1263                                                 BypassBlock->getTerminator());
1264  if (MemRuntimeCheck) {
1265    // Create a new block containing the memory check.
1266    BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
1267                                                          "vector.memcheck");
1268    LoopBypassBlocks.push_back(CheckBlock);
1269
1270    // Replace the branch into the memory check block with a conditional branch
1271    // for the "few elements case".
1272    Instruction *OldTerm = BypassBlock->getTerminator();
1273    BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
1274    OldTerm->eraseFromParent();
1275
1276    Cmp = MemRuntimeCheck;
1277    LastBypassBlock = CheckBlock;
1278  }
1279
1280  LastBypassBlock->getTerminator()->eraseFromParent();
1281  BranchInst::Create(MiddleBlock, VectorPH, Cmp,
1282                     LastBypassBlock);
1283
1284  // We are going to resume the execution of the scalar loop.
1285  // Go over all of the induction variables that we found and fix the
1286  // PHIs that are left in the scalar version of the loop.
1287  // The starting values of PHI nodes depend on the counter of the last
1288  // iteration in the vectorized loop.
1289  // If we come from a bypass edge then we need to start from the original
1290  // start value.
1291
1292  // This variable saves the new starting index for the scalar loop.
1293  PHINode *ResumeIndex = 0;
1294  LoopVectorizationLegality::InductionList::iterator I, E;
1295  LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
1296  for (I = List->begin(), E = List->end(); I != E; ++I) {
1297    PHINode *OrigPhi = I->first;
1298    LoopVectorizationLegality::InductionInfo II = I->second;
1299    PHINode *ResumeVal = PHINode::Create(OrigPhi->getType(), 2, "resume.val",
1300                                         MiddleBlock->getTerminator());
1301    Value *EndValue = 0;
1302    switch (II.IK) {
1303    case LoopVectorizationLegality::IK_NoInduction:
1304      llvm_unreachable("Unknown induction");
1305    case LoopVectorizationLegality::IK_IntInduction: {
1306      // Handle the integer induction counter:
1307      assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
1308      assert(OrigPhi == OldInduction && "Unknown integer PHI");
1309      // We know what the end value is.
1310      EndValue = IdxEndRoundDown;
1311      // We also know which PHI node holds it.
1312      ResumeIndex = ResumeVal;
1313      break;
1314    }
1315    case LoopVectorizationLegality::IK_ReverseIntInduction: {
1316      // Convert the CountRoundDown variable to the PHI size.
1317      unsigned CRDSize = CountRoundDown->getType()->getScalarSizeInBits();
1318      unsigned IISize = II.StartValue->getType()->getScalarSizeInBits();
1319      Value *CRD = CountRoundDown;
1320      if (CRDSize > IISize)
1321        CRD = CastInst::Create(Instruction::Trunc, CountRoundDown,
1322                               II.StartValue->getType(), "tr.crd",
1323                               LoopBypassBlocks.back()->getTerminator());
1324      else if (CRDSize < IISize)
1325        CRD = CastInst::Create(Instruction::SExt, CountRoundDown,
1326                               II.StartValue->getType(),
1327                               "sext.crd",
1328                               LoopBypassBlocks.back()->getTerminator());
1329      // Handle reverse integer induction counter:
1330      EndValue =
1331        BinaryOperator::CreateSub(II.StartValue, CRD, "rev.ind.end",
1332                                  LoopBypassBlocks.back()->getTerminator());
1333      break;
1334    }
1335    case LoopVectorizationLegality::IK_PtrInduction: {
1336      // For pointer induction variables, calculate the offset using
1337      // the end index.
1338      EndValue =
1339        GetElementPtrInst::Create(II.StartValue, CountRoundDown, "ptr.ind.end",
1340                                  LoopBypassBlocks.back()->getTerminator());
1341      break;
1342    }
1343    case LoopVectorizationLegality::IK_ReversePtrInduction: {
1344      // The value at the end of the loop for the reverse pointer is calculated
1345      // by creating a GEP with a negative index starting from the start value.
1346      Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
1347      Value *NegIdx = BinaryOperator::CreateSub(Zero, CountRoundDown,
1348                                  "rev.ind.end",
1349                                  LoopBypassBlocks.back()->getTerminator());
1350      EndValue = GetElementPtrInst::Create(II.StartValue, NegIdx,
1351                                  "rev.ptr.ind.end",
1352                                  LoopBypassBlocks.back()->getTerminator());
1353      break;
1354    }
1355    }// end of case
1356
1357    // The new PHI merges the original incoming value, in case of a bypass,
1358    // or the value at the end of the vectorized loop.
1359    for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1360      ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1361    ResumeVal->addIncoming(EndValue, VecBody);
1362
1363    // Fix the scalar body counter (PHI node).
1364    unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
1365    OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
1366  }
1367
1368  // If we are generating a new induction variable then we also need to
1369  // generate the code that calculates the exit value. This value is not
1370  // simply the end of the counter because we may skip the vectorized body
1371  // in case of a runtime check.
1372  if (!OldInduction){
1373    assert(!ResumeIndex && "Unexpected resume value found");
1374    ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
1375                                  MiddleBlock->getTerminator());
1376    for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1377      ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
1378    ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
1379  }
1380
1381  // Make sure that we found the index where scalar loop needs to continue.
1382  assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
1383         "Invalid resume Index");
1384
1385  // Add a check in the middle block to see if we have completed
1386  // all of the iterations in the first vector loop.
1387  // If (N - N%VF) == N, then we *don't* need to run the remainder.
1388  Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
1389                                ResumeIndex, "cmp.n",
1390                                MiddleBlock->getTerminator());
1391
1392  BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
1393  // Remove the old terminator.
1394  MiddleBlock->getTerminator()->eraseFromParent();
1395
1396  // Create i+1 and fill the PHINode.
1397  Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
1398  Induction->addIncoming(StartIdx, VectorPH);
1399  Induction->addIncoming(NextIdx, VecBody);
1400  // Create the compare.
1401  Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
1402  Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
1403
1404  // Now we have two terminators. Remove the old one from the block.
1405  VecBody->getTerminator()->eraseFromParent();
1406
1407  // Get ready to start creating new instructions into the vectorized body.
1408  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1409
1410  // Create and register the new vector loop.
1411  Loop* Lp = new Loop();
1412  Loop *ParentLoop = OrigLoop->getParentLoop();
1413
1414  // Insert the new loop into the loop nest and register the new basic blocks.
1415  if (ParentLoop) {
1416    ParentLoop->addChildLoop(Lp);
1417    for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
1418      ParentLoop->addBasicBlockToLoop(LoopBypassBlocks[I], LI->getBase());
1419    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
1420    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
1421    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
1422  } else {
1423    LI->addTopLevelLoop(Lp);
1424  }
1425
1426  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
1427
1428  // Save the state.
1429  LoopVectorPreHeader = VectorPH;
1430  LoopScalarPreHeader = ScalarPH;
1431  LoopMiddleBlock = MiddleBlock;
1432  LoopExitBlock = ExitBlock;
1433  LoopVectorBody = VecBody;
1434  LoopScalarBody = OldBasicBlock;
1435}
1436
1437/// This function returns the identity element (or neutral element) for
1438/// the operation K.
1439static Constant*
1440getReductionIdentity(LoopVectorizationLegality::ReductionKind K, Type *Tp) {
1441  switch (K) {
1442  case LoopVectorizationLegality:: RK_IntegerXor:
1443  case LoopVectorizationLegality:: RK_IntegerAdd:
1444  case LoopVectorizationLegality:: RK_IntegerOr:
1445    // Adding, Xoring, Oring zero to a number does not change it.
1446    return ConstantInt::get(Tp, 0);
1447  case LoopVectorizationLegality:: RK_IntegerMult:
1448    // Multiplying a number by 1 does not change it.
1449    return ConstantInt::get(Tp, 1);
1450  case LoopVectorizationLegality:: RK_IntegerAnd:
1451    // AND-ing a number with an all-1 value does not change it.
1452    return ConstantInt::get(Tp, -1, true);
1453  case LoopVectorizationLegality:: RK_FloatMult:
1454    // Multiplying a number by 1 does not change it.
1455    return ConstantFP::get(Tp, 1.0L);
1456  case LoopVectorizationLegality:: RK_FloatAdd:
1457    // Adding zero to a number does not change it.
1458    return ConstantFP::get(Tp, 0.0L);
1459  default:
1460    llvm_unreachable("Unknown reduction kind");
1461  }
1462}
1463
1464static Intrinsic::ID
1465getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
1466  // If we have an intrinsic call, check if it is trivially vectorizable.
1467  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1468    switch (II->getIntrinsicID()) {
1469    case Intrinsic::sqrt:
1470    case Intrinsic::sin:
1471    case Intrinsic::cos:
1472    case Intrinsic::exp:
1473    case Intrinsic::exp2:
1474    case Intrinsic::log:
1475    case Intrinsic::log10:
1476    case Intrinsic::log2:
1477    case Intrinsic::fabs:
1478    case Intrinsic::floor:
1479    case Intrinsic::ceil:
1480    case Intrinsic::trunc:
1481    case Intrinsic::rint:
1482    case Intrinsic::nearbyint:
1483    case Intrinsic::pow:
1484    case Intrinsic::fma:
1485    case Intrinsic::fmuladd:
1486      return II->getIntrinsicID();
1487    default:
1488      return Intrinsic::not_intrinsic;
1489    }
1490  }
1491
1492  if (!TLI)
1493    return Intrinsic::not_intrinsic;
1494
1495  LibFunc::Func Func;
1496  Function *F = CI->getCalledFunction();
1497  // We're going to make assumptions on the semantics of the functions, check
1498  // that the target knows that it's available in this environment.
1499  if (!F || !TLI->getLibFunc(F->getName(), Func))
1500    return Intrinsic::not_intrinsic;
1501
1502  // Otherwise check if we have a call to a function that can be turned into a
1503  // vector intrinsic.
1504  switch (Func) {
1505  default:
1506    break;
1507  case LibFunc::sin:
1508  case LibFunc::sinf:
1509  case LibFunc::sinl:
1510    return Intrinsic::sin;
1511  case LibFunc::cos:
1512  case LibFunc::cosf:
1513  case LibFunc::cosl:
1514    return Intrinsic::cos;
1515  case LibFunc::exp:
1516  case LibFunc::expf:
1517  case LibFunc::expl:
1518    return Intrinsic::exp;
1519  case LibFunc::exp2:
1520  case LibFunc::exp2f:
1521  case LibFunc::exp2l:
1522    return Intrinsic::exp2;
1523  case LibFunc::log:
1524  case LibFunc::logf:
1525  case LibFunc::logl:
1526    return Intrinsic::log;
1527  case LibFunc::log10:
1528  case LibFunc::log10f:
1529  case LibFunc::log10l:
1530    return Intrinsic::log10;
1531  case LibFunc::log2:
1532  case LibFunc::log2f:
1533  case LibFunc::log2l:
1534    return Intrinsic::log2;
1535  case LibFunc::fabs:
1536  case LibFunc::fabsf:
1537  case LibFunc::fabsl:
1538    return Intrinsic::fabs;
1539  case LibFunc::floor:
1540  case LibFunc::floorf:
1541  case LibFunc::floorl:
1542    return Intrinsic::floor;
1543  case LibFunc::ceil:
1544  case LibFunc::ceilf:
1545  case LibFunc::ceill:
1546    return Intrinsic::ceil;
1547  case LibFunc::trunc:
1548  case LibFunc::truncf:
1549  case LibFunc::truncl:
1550    return Intrinsic::trunc;
1551  case LibFunc::rint:
1552  case LibFunc::rintf:
1553  case LibFunc::rintl:
1554    return Intrinsic::rint;
1555  case LibFunc::nearbyint:
1556  case LibFunc::nearbyintf:
1557  case LibFunc::nearbyintl:
1558    return Intrinsic::nearbyint;
1559  case LibFunc::pow:
1560  case LibFunc::powf:
1561  case LibFunc::powl:
1562    return Intrinsic::pow;
1563  }
1564
1565  return Intrinsic::not_intrinsic;
1566}
1567
1568/// This function translates the reduction kind to an LLVM binary operator.
1569static Instruction::BinaryOps
1570getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
1571  switch (Kind) {
1572    case LoopVectorizationLegality::RK_IntegerAdd:
1573      return Instruction::Add;
1574    case LoopVectorizationLegality::RK_IntegerMult:
1575      return Instruction::Mul;
1576    case LoopVectorizationLegality::RK_IntegerOr:
1577      return Instruction::Or;
1578    case LoopVectorizationLegality::RK_IntegerAnd:
1579      return Instruction::And;
1580    case LoopVectorizationLegality::RK_IntegerXor:
1581      return Instruction::Xor;
1582    case LoopVectorizationLegality::RK_FloatMult:
1583      return Instruction::FMul;
1584    case LoopVectorizationLegality::RK_FloatAdd:
1585      return Instruction::FAdd;
1586    default:
1587      llvm_unreachable("Unknown reduction operation");
1588  }
1589}
1590
1591void
1592InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
1593  //===------------------------------------------------===//
1594  //
1595  // Notice: any optimization or new instruction that go
1596  // into the code below should be also be implemented in
1597  // the cost-model.
1598  //
1599  //===------------------------------------------------===//
1600  Constant *Zero = Builder.getInt32(0);
1601
1602  // In order to support reduction variables we need to be able to vectorize
1603  // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
1604  // stages. First, we create a new vector PHI node with no incoming edges.
1605  // We use this value when we vectorize all of the instructions that use the
1606  // PHI. Next, after all of the instructions in the block are complete we
1607  // add the new incoming edges to the PHI. At this point all of the
1608  // instructions in the basic block are vectorized, so we can use them to
1609  // construct the PHI.
1610  PhiVector RdxPHIsToFix;
1611
1612  // Scan the loop in a topological order to ensure that defs are vectorized
1613  // before users.
1614  LoopBlocksDFS DFS(OrigLoop);
1615  DFS.perform(LI);
1616
1617  // Vectorize all of the blocks in the original loop.
1618  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
1619       be = DFS.endRPO(); bb != be; ++bb)
1620    vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
1621
1622  // At this point every instruction in the original loop is widened to
1623  // a vector form. We are almost done. Now, we need to fix the PHI nodes
1624  // that we vectorized. The PHI nodes are currently empty because we did
1625  // not want to introduce cycles. Notice that the remaining PHI nodes
1626  // that we need to fix are reduction variables.
1627
1628  // Create the 'reduced' values for each of the induction vars.
1629  // The reduced values are the vector values that we scalarize and combine
1630  // after the loop is finished.
1631  for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
1632       it != e; ++it) {
1633    PHINode *RdxPhi = *it;
1634    assert(RdxPhi && "Unable to recover vectorized PHI");
1635
1636    // Find the reduction variable descriptor.
1637    assert(Legal->getReductionVars()->count(RdxPhi) &&
1638           "Unable to find the reduction variable");
1639    LoopVectorizationLegality::ReductionDescriptor RdxDesc =
1640    (*Legal->getReductionVars())[RdxPhi];
1641
1642    // We need to generate a reduction vector from the incoming scalar.
1643    // To do so, we need to generate the 'identity' vector and overide
1644    // one of the elements with the incoming scalar reduction. We need
1645    // to do it in the vector-loop preheader.
1646    Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
1647
1648    // This is the vector-clone of the value that leaves the loop.
1649    VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
1650    Type *VecTy = VectorExit[0]->getType();
1651
1652    // Find the reduction identity variable. Zero for addition, or, xor,
1653    // one for multiplication, -1 for And.
1654    Constant *Iden = getReductionIdentity(RdxDesc.Kind, VecTy->getScalarType());
1655    Constant *Identity = ConstantVector::getSplat(VF, Iden);
1656
1657    // This vector is the Identity vector where the first element is the
1658    // incoming scalar reduction.
1659    Value *VectorStart = Builder.CreateInsertElement(Identity,
1660                                                     RdxDesc.StartValue, Zero);
1661
1662    // Fix the vector-loop phi.
1663    // We created the induction variable so we know that the
1664    // preheader is the first entry.
1665    BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
1666
1667    // Reductions do not have to start at zero. They can start with
1668    // any loop invariant values.
1669    VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
1670    BasicBlock *Latch = OrigLoop->getLoopLatch();
1671    Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
1672    VectorParts &Val = getVectorValue(LoopVal);
1673    for (unsigned part = 0; part < UF; ++part) {
1674      // Make sure to add the reduction stat value only to the
1675      // first unroll part.
1676      Value *StartVal = (part == 0) ? VectorStart : Identity;
1677      cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
1678      cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
1679    }
1680
1681    // Before each round, move the insertion point right between
1682    // the PHIs and the values we are going to write.
1683    // This allows us to write both PHINodes and the extractelement
1684    // instructions.
1685    Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
1686
1687    VectorParts RdxParts;
1688    for (unsigned part = 0; part < UF; ++part) {
1689      // This PHINode contains the vectorized reduction variable, or
1690      // the initial value vector, if we bypass the vector loop.
1691      VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
1692      PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
1693      Value *StartVal = (part == 0) ? VectorStart : Identity;
1694      for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1695        NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
1696      NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
1697      RdxParts.push_back(NewPhi);
1698    }
1699
1700    // Reduce all of the unrolled parts into a single vector.
1701    Value *ReducedPartRdx = RdxParts[0];
1702    for (unsigned part = 1; part < UF; ++part) {
1703      Instruction::BinaryOps Op = getReductionBinOp(RdxDesc.Kind);
1704      ReducedPartRdx = Builder.CreateBinOp(Op, RdxParts[part], ReducedPartRdx,
1705                                           "bin.rdx");
1706    }
1707
1708    // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1709    // and vector ops, reducing the set of values being computed by half each
1710    // round.
1711    assert(isPowerOf2_32(VF) &&
1712           "Reduction emission only supported for pow2 vectors!");
1713    Value *TmpVec = ReducedPartRdx;
1714    SmallVector<Constant*, 32> ShuffleMask(VF, 0);
1715    for (unsigned i = VF; i != 1; i >>= 1) {
1716      // Move the upper half of the vector to the lower half.
1717      for (unsigned j = 0; j != i/2; ++j)
1718        ShuffleMask[j] = Builder.getInt32(i/2 + j);
1719
1720      // Fill the rest of the mask with undef.
1721      std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
1722                UndefValue::get(Builder.getInt32Ty()));
1723
1724      Value *Shuf =
1725        Builder.CreateShuffleVector(TmpVec,
1726                                    UndefValue::get(TmpVec->getType()),
1727                                    ConstantVector::get(ShuffleMask),
1728                                    "rdx.shuf");
1729
1730      Instruction::BinaryOps Op = getReductionBinOp(RdxDesc.Kind);
1731      TmpVec = Builder.CreateBinOp(Op, TmpVec, Shuf, "bin.rdx");
1732    }
1733
1734    // The result is in the first element of the vector.
1735    Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1736
1737    // Now, we need to fix the users of the reduction variable
1738    // inside and outside of the scalar remainder loop.
1739    // We know that the loop is in LCSSA form. We need to update the
1740    // PHI nodes in the exit blocks.
1741    for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
1742         LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
1743      PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
1744      if (!LCSSAPhi) continue;
1745
1746      // All PHINodes need to have a single entry edge, or two if
1747      // we already fixed them.
1748      assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
1749
1750      // We found our reduction value exit-PHI. Update it with the
1751      // incoming bypass edge.
1752      if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
1753        // Add an edge coming from the bypass.
1754        LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
1755        break;
1756      }
1757    }// end of the LCSSA phi scan.
1758
1759    // Fix the scalar loop reduction variable with the incoming reduction sum
1760    // from the vector body and from the backedge value.
1761    int IncomingEdgeBlockIdx =
1762    (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
1763    assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
1764    // Pick the other block.
1765    int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
1766    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
1767    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
1768  }// end of for each redux variable.
1769
1770  // The Loop exit block may have single value PHI nodes where the incoming
1771  // value is 'undef'. While vectorizing we only handled real values that
1772  // were defined inside the loop. Here we handle the 'undef case'.
1773  // See PR14725.
1774  for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
1775       LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
1776    PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
1777    if (!LCSSAPhi) continue;
1778    if (LCSSAPhi->getNumIncomingValues() == 1)
1779      LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
1780                            LoopMiddleBlock);
1781  }
1782}
1783
1784InnerLoopVectorizer::VectorParts
1785InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
1786  assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
1787         "Invalid edge");
1788
1789  VectorParts SrcMask = createBlockInMask(Src);
1790
1791  // The terminator has to be a branch inst!
1792  BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
1793  assert(BI && "Unexpected terminator found");
1794
1795  if (BI->isConditional()) {
1796    VectorParts EdgeMask = getVectorValue(BI->getCondition());
1797
1798    if (BI->getSuccessor(0) != Dst)
1799      for (unsigned part = 0; part < UF; ++part)
1800        EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
1801
1802    for (unsigned part = 0; part < UF; ++part)
1803      EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
1804    return EdgeMask;
1805  }
1806
1807  return SrcMask;
1808}
1809
1810InnerLoopVectorizer::VectorParts
1811InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
1812  assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
1813
1814  // Loop incoming mask is all-one.
1815  if (OrigLoop->getHeader() == BB) {
1816    Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
1817    return getVectorValue(C);
1818  }
1819
1820  // This is the block mask. We OR all incoming edges, and with zero.
1821  Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
1822  VectorParts BlockMask = getVectorValue(Zero);
1823
1824  // For each pred:
1825  for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
1826    VectorParts EM = createEdgeMask(*it, BB);
1827    for (unsigned part = 0; part < UF; ++part)
1828      BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
1829  }
1830
1831  return BlockMask;
1832}
1833
1834void
1835InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
1836                                          BasicBlock *BB, PhiVector *PV) {
1837  // For each instruction in the old loop.
1838  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
1839    VectorParts &Entry = WidenMap.get(it);
1840    switch (it->getOpcode()) {
1841    case Instruction::Br:
1842      // Nothing to do for PHIs and BR, since we already took care of the
1843      // loop control flow instructions.
1844      continue;
1845    case Instruction::PHI:{
1846      PHINode* P = cast<PHINode>(it);
1847      // Handle reduction variables:
1848      if (Legal->getReductionVars()->count(P)) {
1849        for (unsigned part = 0; part < UF; ++part) {
1850          // This is phase one of vectorizing PHIs.
1851          Type *VecTy = VectorType::get(it->getType(), VF);
1852          Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
1853                                        LoopVectorBody-> getFirstInsertionPt());
1854        }
1855        PV->push_back(P);
1856        continue;
1857      }
1858
1859      // Check for PHI nodes that are lowered to vector selects.
1860      if (P->getParent() != OrigLoop->getHeader()) {
1861        // We know that all PHIs in non header blocks are converted into
1862        // selects, so we don't have to worry about the insertion order and we
1863        // can just use the builder.
1864
1865        // At this point we generate the predication tree. There may be
1866        // duplications since this is a simple recursive scan, but future
1867        // optimizations will clean it up.
1868        VectorParts Cond = createEdgeMask(P->getIncomingBlock(0),
1869                                               P->getParent());
1870
1871        for (unsigned part = 0; part < UF; ++part) {
1872        VectorParts &In0 = getVectorValue(P->getIncomingValue(0));
1873        VectorParts &In1 = getVectorValue(P->getIncomingValue(1));
1874          Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In1[part],
1875                                             "predphi");
1876        }
1877        continue;
1878      }
1879
1880      // This PHINode must be an induction variable.
1881      // Make sure that we know about it.
1882      assert(Legal->getInductionVars()->count(P) &&
1883             "Not an induction variable");
1884
1885      LoopVectorizationLegality::InductionInfo II =
1886        Legal->getInductionVars()->lookup(P);
1887
1888      switch (II.IK) {
1889      case LoopVectorizationLegality::IK_NoInduction:
1890        llvm_unreachable("Unknown induction");
1891      case LoopVectorizationLegality::IK_IntInduction: {
1892        assert(P == OldInduction && "Unexpected PHI");
1893        Value *Broadcasted = getBroadcastInstrs(Induction);
1894        // After broadcasting the induction variable we need to make the
1895        // vector consecutive by adding 0, 1, 2 ...
1896        for (unsigned part = 0; part < UF; ++part)
1897          Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
1898        continue;
1899      }
1900      case LoopVectorizationLegality::IK_ReverseIntInduction:
1901      case LoopVectorizationLegality::IK_PtrInduction:
1902      case LoopVectorizationLegality::IK_ReversePtrInduction:
1903        // Handle reverse integer and pointer inductions.
1904        Value *StartIdx = 0;
1905        // If we have a single integer induction variable then use it.
1906        // Otherwise, start counting at zero.
1907        if (OldInduction) {
1908          LoopVectorizationLegality::InductionInfo OldII =
1909            Legal->getInductionVars()->lookup(OldInduction);
1910          StartIdx = OldII.StartValue;
1911        } else {
1912          StartIdx = ConstantInt::get(Induction->getType(), 0);
1913        }
1914        // This is the normalized GEP that starts counting at zero.
1915        Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
1916                                                 "normalized.idx");
1917
1918        // Handle the reverse integer induction variable case.
1919        if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
1920          IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
1921          Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
1922                                                 "resize.norm.idx");
1923          Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
1924                                                 "reverse.idx");
1925
1926          // This is a new value so do not hoist it out.
1927          Value *Broadcasted = getBroadcastInstrs(ReverseInd);
1928          // After broadcasting the induction variable we need to make the
1929          // vector consecutive by adding  ... -3, -2, -1, 0.
1930          for (unsigned part = 0; part < UF; ++part)
1931            Entry[part] = getConsecutiveVector(Broadcasted, -VF * part, true);
1932          continue;
1933        }
1934
1935        // Handle the pointer induction variable case.
1936        assert(P->getType()->isPointerTy() && "Unexpected type.");
1937
1938        // Is this a reverse induction ptr or a consecutive induction ptr.
1939        bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
1940                        II.IK);
1941
1942        // This is the vector of results. Notice that we don't generate
1943        // vector geps because scalar geps result in better code.
1944        for (unsigned part = 0; part < UF; ++part) {
1945          Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
1946          for (unsigned int i = 0; i < VF; ++i) {
1947            int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
1948            Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
1949            Value *GlobalIdx;
1950            if (!Reverse)
1951              GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
1952            else
1953              GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
1954
1955            Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
1956                                               "next.gep");
1957            VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
1958                                                 Builder.getInt32(i),
1959                                                 "insert.gep");
1960          }
1961          Entry[part] = VecVal;
1962        }
1963        continue;
1964      }
1965
1966    }// End of PHI.
1967
1968    case Instruction::Add:
1969    case Instruction::FAdd:
1970    case Instruction::Sub:
1971    case Instruction::FSub:
1972    case Instruction::Mul:
1973    case Instruction::FMul:
1974    case Instruction::UDiv:
1975    case Instruction::SDiv:
1976    case Instruction::FDiv:
1977    case Instruction::URem:
1978    case Instruction::SRem:
1979    case Instruction::FRem:
1980    case Instruction::Shl:
1981    case Instruction::LShr:
1982    case Instruction::AShr:
1983    case Instruction::And:
1984    case Instruction::Or:
1985    case Instruction::Xor: {
1986      // Just widen binops.
1987      BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
1988      VectorParts &A = getVectorValue(it->getOperand(0));
1989      VectorParts &B = getVectorValue(it->getOperand(1));
1990
1991      // Use this vector value for all users of the original instruction.
1992      for (unsigned Part = 0; Part < UF; ++Part) {
1993        Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
1994
1995        // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
1996        BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
1997        if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
1998          VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
1999          VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
2000        }
2001        if (VecOp && isa<PossiblyExactOperator>(VecOp))
2002          VecOp->setIsExact(BinOp->isExact());
2003
2004        Entry[Part] = V;
2005      }
2006      break;
2007    }
2008    case Instruction::Select: {
2009      // Widen selects.
2010      // If the selector is loop invariant we can create a select
2011      // instruction with a scalar condition. Otherwise, use vector-select.
2012      bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
2013                                               OrigLoop);
2014
2015      // The condition can be loop invariant  but still defined inside the
2016      // loop. This means that we can't just use the original 'cond' value.
2017      // We have to take the 'vectorized' value and pick the first lane.
2018      // Instcombine will make this a no-op.
2019      VectorParts &Cond = getVectorValue(it->getOperand(0));
2020      VectorParts &Op0  = getVectorValue(it->getOperand(1));
2021      VectorParts &Op1  = getVectorValue(it->getOperand(2));
2022      Value *ScalarCond = Builder.CreateExtractElement(Cond[0],
2023                                                       Builder.getInt32(0));
2024      for (unsigned Part = 0; Part < UF; ++Part) {
2025        Entry[Part] = Builder.CreateSelect(
2026          InvariantCond ? ScalarCond : Cond[Part],
2027          Op0[Part],
2028          Op1[Part]);
2029      }
2030      break;
2031    }
2032
2033    case Instruction::ICmp:
2034    case Instruction::FCmp: {
2035      // Widen compares. Generate vector compares.
2036      bool FCmp = (it->getOpcode() == Instruction::FCmp);
2037      CmpInst *Cmp = dyn_cast<CmpInst>(it);
2038      VectorParts &A = getVectorValue(it->getOperand(0));
2039      VectorParts &B = getVectorValue(it->getOperand(1));
2040      for (unsigned Part = 0; Part < UF; ++Part) {
2041        Value *C = 0;
2042        if (FCmp)
2043          C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
2044        else
2045          C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
2046        Entry[Part] = C;
2047      }
2048      break;
2049    }
2050
2051    case Instruction::Store:
2052    case Instruction::Load:
2053        vectorizeMemoryInstruction(it, Legal);
2054        break;
2055    case Instruction::ZExt:
2056    case Instruction::SExt:
2057    case Instruction::FPToUI:
2058    case Instruction::FPToSI:
2059    case Instruction::FPExt:
2060    case Instruction::PtrToInt:
2061    case Instruction::IntToPtr:
2062    case Instruction::SIToFP:
2063    case Instruction::UIToFP:
2064    case Instruction::Trunc:
2065    case Instruction::FPTrunc:
2066    case Instruction::BitCast: {
2067      CastInst *CI = dyn_cast<CastInst>(it);
2068      /// Optimize the special case where the source is the induction
2069      /// variable. Notice that we can only optimize the 'trunc' case
2070      /// because: a. FP conversions lose precision, b. sext/zext may wrap,
2071      /// c. other casts depend on pointer size.
2072      if (CI->getOperand(0) == OldInduction &&
2073          it->getOpcode() == Instruction::Trunc) {
2074        Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
2075                                               CI->getType());
2076        Value *Broadcasted = getBroadcastInstrs(ScalarCast);
2077        for (unsigned Part = 0; Part < UF; ++Part)
2078          Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
2079        break;
2080      }
2081      /// Vectorize casts.
2082      Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
2083
2084      VectorParts &A = getVectorValue(it->getOperand(0));
2085      for (unsigned Part = 0; Part < UF; ++Part)
2086        Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
2087      break;
2088    }
2089
2090    case Instruction::Call: {
2091      // Ignore dbg intrinsics.
2092      if (isa<DbgInfoIntrinsic>(it))
2093        break;
2094
2095      Module *M = BB->getParent()->getParent();
2096      CallInst *CI = cast<CallInst>(it);
2097      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
2098      assert(ID && "Not an intrinsic call!");
2099      for (unsigned Part = 0; Part < UF; ++Part) {
2100        SmallVector<Value*, 4> Args;
2101        for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
2102          VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
2103          Args.push_back(Arg[Part]);
2104        }
2105        Type *Tys[] = { VectorType::get(CI->getType()->getScalarType(), VF) };
2106        Function *F = Intrinsic::getDeclaration(M, ID, Tys);
2107        Entry[Part] = Builder.CreateCall(F, Args);
2108      }
2109      break;
2110    }
2111
2112    default:
2113      // All other instructions are unsupported. Scalarize them.
2114      scalarizeInstruction(it);
2115      break;
2116    }// end of switch.
2117  }// end of for_each instr.
2118}
2119
2120void InnerLoopVectorizer::updateAnalysis() {
2121  // Forget the original basic block.
2122  SE->forgetLoop(OrigLoop);
2123
2124  // Update the dominator tree information.
2125  assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
2126         "Entry does not dominate exit.");
2127
2128  for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2129    DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
2130  DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
2131  DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
2132  DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
2133  DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
2134  DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
2135  DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2136
2137  DEBUG(DT->verifyAnalysis());
2138}
2139
2140bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
2141  if (!EnableIfConversion)
2142    return false;
2143
2144  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
2145  std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
2146
2147  // Collect the blocks that need predication.
2148  for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
2149    BasicBlock *BB = LoopBlocks[i];
2150
2151    // We don't support switch statements inside loops.
2152    if (!isa<BranchInst>(BB->getTerminator()))
2153      return false;
2154
2155    // We must have at most two predecessors because we need to convert
2156    // all PHIs to selects.
2157    unsigned Preds = std::distance(pred_begin(BB), pred_end(BB));
2158    if (Preds > 2)
2159      return false;
2160
2161    // We must be able to predicate all blocks that need to be predicated.
2162    if (blockNeedsPredication(BB) && !blockCanBePredicated(BB))
2163      return false;
2164  }
2165
2166  // We can if-convert this loop.
2167  return true;
2168}
2169
2170bool LoopVectorizationLegality::canVectorize() {
2171  assert(TheLoop->getLoopPreheader() && "No preheader!!");
2172
2173  // We can only vectorize innermost loops.
2174  if (TheLoop->getSubLoopsVector().size())
2175    return false;
2176
2177  // We must have a single backedge.
2178  if (TheLoop->getNumBackEdges() != 1)
2179    return false;
2180
2181  // We must have a single exiting block.
2182  if (!TheLoop->getExitingBlock())
2183    return false;
2184
2185  unsigned NumBlocks = TheLoop->getNumBlocks();
2186
2187  // Check if we can if-convert non single-bb loops.
2188  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
2189    DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
2190    return false;
2191  }
2192
2193  // We need to have a loop header.
2194  BasicBlock *Latch = TheLoop->getLoopLatch();
2195  DEBUG(dbgs() << "LV: Found a loop: " <<
2196        TheLoop->getHeader()->getName() << "\n");
2197
2198  // ScalarEvolution needs to be able to find the exit count.
2199  const SCEV *ExitCount = SE->getExitCount(TheLoop, Latch);
2200  if (ExitCount == SE->getCouldNotCompute()) {
2201    DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
2202    return false;
2203  }
2204
2205  // Do not loop-vectorize loops with a tiny trip count.
2206  unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
2207  if (TC > 0u && TC < TinyTripCountVectorThreshold) {
2208    DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
2209          "This loop is not worth vectorizing.\n");
2210    return false;
2211  }
2212
2213  // Check if we can vectorize the instructions and CFG in this loop.
2214  if (!canVectorizeInstrs()) {
2215    DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
2216    return false;
2217  }
2218
2219  // Go over each instruction and look at memory deps.
2220  if (!canVectorizeMemory()) {
2221    DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
2222    return false;
2223  }
2224
2225  // Collect all of the variables that remain uniform after vectorization.
2226  collectLoopUniforms();
2227
2228  DEBUG(dbgs() << "LV: We can vectorize this loop" <<
2229        (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
2230        <<"!\n");
2231
2232  // Okay! We can vectorize. At this point we don't have any other mem analysis
2233  // which may limit our maximum vectorization factor, so just return true with
2234  // no restrictions.
2235  return true;
2236}
2237
2238bool LoopVectorizationLegality::canVectorizeInstrs() {
2239  BasicBlock *PreHeader = TheLoop->getLoopPreheader();
2240  BasicBlock *Header = TheLoop->getHeader();
2241
2242  // If we marked the scalar loop as "already vectorized" then no need
2243  // to vectorize it again.
2244  if (Header->getTerminator()->getMetadata(AlreadyVectorizedMDName)) {
2245    DEBUG(dbgs() << "LV: This loop was vectorized before\n");
2246    return false;
2247  }
2248
2249  // For each block in the loop.
2250  for (Loop::block_iterator bb = TheLoop->block_begin(),
2251       be = TheLoop->block_end(); bb != be; ++bb) {
2252
2253    // Scan the instructions in the block and look for hazards.
2254    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2255         ++it) {
2256
2257      if (PHINode *Phi = dyn_cast<PHINode>(it)) {
2258        // This should not happen because the loop should be normalized.
2259        if (Phi->getNumIncomingValues() != 2) {
2260          DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
2261          return false;
2262        }
2263
2264        // Check that this PHI type is allowed.
2265        if (!Phi->getType()->isIntegerTy() &&
2266            !Phi->getType()->isFloatingPointTy() &&
2267            !Phi->getType()->isPointerTy()) {
2268          DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
2269          return false;
2270        }
2271
2272        // If this PHINode is not in the header block, then we know that we
2273        // can convert it to select during if-conversion. No need to check if
2274        // the PHIs in this block are induction or reduction variables.
2275        if (*bb != Header)
2276          continue;
2277
2278        // This is the value coming from the preheader.
2279        Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
2280        // Check if this is an induction variable.
2281        InductionKind IK = isInductionVariable(Phi);
2282
2283        if (IK_NoInduction != IK) {
2284          // Int inductions are special because we only allow one IV.
2285          if (IK == IK_IntInduction) {
2286            if (Induction) {
2287              DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
2288              return false;
2289            }
2290            Induction = Phi;
2291          }
2292
2293          DEBUG(dbgs() << "LV: Found an induction variable.\n");
2294          Inductions[Phi] = InductionInfo(StartValue, IK);
2295          continue;
2296        }
2297
2298        if (AddReductionVar(Phi, RK_IntegerAdd)) {
2299          DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
2300          continue;
2301        }
2302        if (AddReductionVar(Phi, RK_IntegerMult)) {
2303          DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
2304          continue;
2305        }
2306        if (AddReductionVar(Phi, RK_IntegerOr)) {
2307          DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
2308          continue;
2309        }
2310        if (AddReductionVar(Phi, RK_IntegerAnd)) {
2311          DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
2312          continue;
2313        }
2314        if (AddReductionVar(Phi, RK_IntegerXor)) {
2315          DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
2316          continue;
2317        }
2318        if (AddReductionVar(Phi, RK_FloatMult)) {
2319          DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
2320          continue;
2321        }
2322        if (AddReductionVar(Phi, RK_FloatAdd)) {
2323          DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
2324          continue;
2325        }
2326
2327        DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
2328        return false;
2329      }// end of PHI handling
2330
2331      // We still don't handle functions. However, we can ignore dbg intrinsic
2332      // calls and we do handle certain intrinsic and libm functions.
2333      CallInst *CI = dyn_cast<CallInst>(it);
2334      if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
2335        DEBUG(dbgs() << "LV: Found a call site.\n");
2336        return false;
2337      }
2338
2339      // Check that the instruction return type is vectorizable.
2340      if (!VectorType::isValidElementType(it->getType()) &&
2341          !it->getType()->isVoidTy()) {
2342        DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
2343        return false;
2344      }
2345
2346      // Check that the stored type is vectorizable.
2347      if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
2348        Type *T = ST->getValueOperand()->getType();
2349        if (!VectorType::isValidElementType(T))
2350          return false;
2351      }
2352
2353      // Reduction instructions are allowed to have exit users.
2354      // All other instructions must not have external users.
2355      if (!AllowedExit.count(it))
2356        //Check that all of the users of the loop are inside the BB.
2357        for (Value::use_iterator I = it->use_begin(), E = it->use_end();
2358             I != E; ++I) {
2359          Instruction *U = cast<Instruction>(*I);
2360          // This user may be a reduction exit value.
2361          if (!TheLoop->contains(U)) {
2362            DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
2363            return false;
2364          }
2365        }
2366    } // next instr.
2367
2368  }
2369
2370  if (!Induction) {
2371    DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
2372    assert(getInductionVars()->size() && "No induction variables");
2373  }
2374
2375  return true;
2376}
2377
2378void LoopVectorizationLegality::collectLoopUniforms() {
2379  // We now know that the loop is vectorizable!
2380  // Collect variables that will remain uniform after vectorization.
2381  std::vector<Value*> Worklist;
2382  BasicBlock *Latch = TheLoop->getLoopLatch();
2383
2384  // Start with the conditional branch and walk up the block.
2385  Worklist.push_back(Latch->getTerminator()->getOperand(0));
2386
2387  while (Worklist.size()) {
2388    Instruction *I = dyn_cast<Instruction>(Worklist.back());
2389    Worklist.pop_back();
2390
2391    // Look at instructions inside this loop.
2392    // Stop when reaching PHI nodes.
2393    // TODO: we need to follow values all over the loop, not only in this block.
2394    if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
2395      continue;
2396
2397    // This is a known uniform.
2398    Uniforms.insert(I);
2399
2400    // Insert all operands.
2401    for (int i = 0, Op = I->getNumOperands(); i < Op; ++i) {
2402      Worklist.push_back(I->getOperand(i));
2403    }
2404  }
2405}
2406
2407AliasAnalysis::Location
2408LoopVectorizationLegality::getLoadStoreLocation(Instruction *Inst) {
2409  if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
2410    return AA->getLocation(Store);
2411  else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
2412    return AA->getLocation(Load);
2413
2414  llvm_unreachable("Should be either load or store instruction");
2415}
2416
2417bool
2418LoopVectorizationLegality::hasPossibleGlobalWriteReorder(
2419                                                Value *Object,
2420                                                Instruction *Inst,
2421                                                AliasMultiMap& WriteObjects,
2422                                                unsigned MaxByteWidth) {
2423
2424  AliasAnalysis::Location ThisLoc = getLoadStoreLocation(Inst);
2425
2426  std::vector<Instruction*>::iterator
2427              it = WriteObjects[Object].begin(),
2428              end = WriteObjects[Object].end();
2429
2430  for (; it != end; ++it) {
2431    Instruction* I = *it;
2432    if (I == Inst)
2433      continue;
2434
2435    AliasAnalysis::Location ThatLoc = getLoadStoreLocation(I);
2436    if (AA->alias(ThisLoc.getWithNewSize(MaxByteWidth),
2437                  ThatLoc.getWithNewSize(MaxByteWidth)))
2438      return true;
2439  }
2440  return false;
2441}
2442
2443bool LoopVectorizationLegality::canVectorizeMemory() {
2444
2445  if (TheLoop->isAnnotatedParallel()) {
2446    DEBUG(dbgs()
2447          << "LV: A loop annotated parallel, ignore memory dependency "
2448          << "checks.\n");
2449    return true;
2450  }
2451
2452  typedef SmallVector<Value*, 16> ValueVector;
2453  typedef SmallPtrSet<Value*, 16> ValueSet;
2454  // Holds the Load and Store *instructions*.
2455  ValueVector Loads;
2456  ValueVector Stores;
2457  PtrRtCheck.Pointers.clear();
2458  PtrRtCheck.Need = false;
2459
2460  // For each block.
2461  for (Loop::block_iterator bb = TheLoop->block_begin(),
2462       be = TheLoop->block_end(); bb != be; ++bb) {
2463
2464    // Scan the BB and collect legal loads and stores.
2465    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2466         ++it) {
2467
2468      // If this is a load, save it. If this instruction can read from memory
2469      // but is not a load, then we quit. Notice that we don't handle function
2470      // calls that read or write.
2471      if (it->mayReadFromMemory()) {
2472        LoadInst *Ld = dyn_cast<LoadInst>(it);
2473        if (!Ld) return false;
2474        if (!Ld->isSimple()) {
2475          DEBUG(dbgs() << "LV: Found a non-simple load.\n");
2476          return false;
2477        }
2478        Loads.push_back(Ld);
2479        continue;
2480      }
2481
2482      // Save 'store' instructions. Abort if other instructions write to memory.
2483      if (it->mayWriteToMemory()) {
2484        StoreInst *St = dyn_cast<StoreInst>(it);
2485        if (!St) return false;
2486        if (!St->isSimple()) {
2487          DEBUG(dbgs() << "LV: Found a non-simple store.\n");
2488          return false;
2489        }
2490        Stores.push_back(St);
2491      }
2492    } // next instr.
2493  } // next block.
2494
2495  // Now we have two lists that hold the loads and the stores.
2496  // Next, we find the pointers that they use.
2497
2498  // Check if we see any stores. If there are no stores, then we don't
2499  // care if the pointers are *restrict*.
2500  if (!Stores.size()) {
2501    DEBUG(dbgs() << "LV: Found a read-only loop!\n");
2502    return true;
2503  }
2504
2505  // Holds the read and read-write *pointers* that we find. These maps hold
2506  // unique values for pointers (so no need for multi-map).
2507  AliasMap Reads;
2508  AliasMap ReadWrites;
2509
2510  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
2511  // multiple times on the same object. If the ptr is accessed twice, once
2512  // for read and once for write, it will only appear once (on the write
2513  // list). This is okay, since we are going to check for conflicts between
2514  // writes and between reads and writes, but not between reads and reads.
2515  ValueSet Seen;
2516
2517  ValueVector::iterator I, IE;
2518  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
2519    StoreInst *ST = cast<StoreInst>(*I);
2520    Value* Ptr = ST->getPointerOperand();
2521
2522    if (isUniform(Ptr)) {
2523      DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
2524      return false;
2525    }
2526
2527    // If we did *not* see this pointer before, insert it to
2528    // the read-write list. At this phase it is only a 'write' list.
2529    if (Seen.insert(Ptr))
2530      ReadWrites.insert(std::make_pair(Ptr, ST));
2531  }
2532
2533  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
2534    LoadInst *LD = cast<LoadInst>(*I);
2535    Value* Ptr = LD->getPointerOperand();
2536    // If we did *not* see this pointer before, insert it to the
2537    // read list. If we *did* see it before, then it is already in
2538    // the read-write list. This allows us to vectorize expressions
2539    // such as A[i] += x;  Because the address of A[i] is a read-write
2540    // pointer. This only works if the index of A[i] is consecutive.
2541    // If the address of i is unknown (for example A[B[i]]) then we may
2542    // read a few words, modify, and write a few words, and some of the
2543    // words may be written to the same address.
2544    if (Seen.insert(Ptr) || 0 == isConsecutivePtr(Ptr))
2545      Reads.insert(std::make_pair(Ptr, LD));
2546  }
2547
2548  // If we write (or read-write) to a single destination and there are no
2549  // other reads in this loop then is it safe to vectorize.
2550  if (ReadWrites.size() == 1 && Reads.size() == 0) {
2551    DEBUG(dbgs() << "LV: Found a write-only loop!\n");
2552    return true;
2553  }
2554
2555  // Find pointers with computable bounds. We are going to use this information
2556  // to place a runtime bound check.
2557  bool CanDoRT = true;
2558  AliasMap::iterator MI, ME;
2559  for (MI = ReadWrites.begin(), ME = ReadWrites.end(); MI != ME; ++MI) {
2560    Value *V = (*MI).first;
2561    if (hasComputableBounds(V)) {
2562      PtrRtCheck.insert(SE, TheLoop, V);
2563      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *V <<"\n");
2564    } else {
2565      CanDoRT = false;
2566      break;
2567    }
2568  }
2569  for (MI = Reads.begin(), ME = Reads.end(); MI != ME; ++MI) {
2570    Value *V = (*MI).first;
2571    if (hasComputableBounds(V)) {
2572      PtrRtCheck.insert(SE, TheLoop, V);
2573      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *V <<"\n");
2574    } else {
2575      CanDoRT = false;
2576      break;
2577    }
2578  }
2579
2580  // Check that we did not collect too many pointers or found a
2581  // unsizeable pointer.
2582  if (!CanDoRT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
2583    PtrRtCheck.reset();
2584    CanDoRT = false;
2585  }
2586
2587  if (CanDoRT) {
2588    DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
2589  }
2590
2591  bool NeedRTCheck = false;
2592
2593  // Biggest vectorized access possible, vector width * unroll factor.
2594  // TODO: We're being very pessimistic here, find a way to know the
2595  // real access width before getting here.
2596  unsigned MaxByteWidth = (TTI->getRegisterBitWidth(true) / 8) *
2597                           TTI->getMaximumUnrollFactor();
2598  // Now that the pointers are in two lists (Reads and ReadWrites), we
2599  // can check that there are no conflicts between each of the writes and
2600  // between the writes to the reads.
2601  // Note that WriteObjects duplicates the stores (indexed now by underlying
2602  // objects) to avoid pointing to elements inside ReadWrites.
2603  // TODO: Maybe create a new type where they can interact without duplication.
2604  AliasMultiMap WriteObjects;
2605  ValueVector TempObjects;
2606
2607  // Check that the read-writes do not conflict with other read-write
2608  // pointers.
2609  bool AllWritesIdentified = true;
2610  for (MI = ReadWrites.begin(), ME = ReadWrites.end(); MI != ME; ++MI) {
2611    Value *Val = (*MI).first;
2612    Instruction *Inst = (*MI).second;
2613
2614    GetUnderlyingObjects(Val, TempObjects, DL);
2615    for (ValueVector::iterator UI=TempObjects.begin(), UE=TempObjects.end();
2616         UI != UE; ++UI) {
2617      if (!isIdentifiedObject(*UI)) {
2618        DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **UI <<"\n");
2619        NeedRTCheck = true;
2620        AllWritesIdentified = false;
2621      }
2622
2623      // Never seen it before, can't alias.
2624      if (WriteObjects[*UI].empty()) {
2625        DEBUG(dbgs() << "LV: Adding Underlying value:" << **UI <<"\n");
2626        WriteObjects[*UI].push_back(Inst);
2627        continue;
2628      }
2629      // Direct alias found.
2630      if (!AA || dyn_cast<GlobalValue>(*UI) == NULL) {
2631        DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
2632              << **UI <<"\n");
2633        return false;
2634      }
2635      DEBUG(dbgs() << "LV: Found a conflicting global value:"
2636            << **UI <<"\n");
2637      DEBUG(dbgs() << "LV: While examining store:" << *Inst <<"\n");
2638      DEBUG(dbgs() << "LV: On value:" << *Val <<"\n");
2639
2640      // If global alias, make sure they do alias.
2641      if (hasPossibleGlobalWriteReorder(*UI,
2642                                        Inst,
2643                                        WriteObjects,
2644                                        MaxByteWidth)) {
2645        DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
2646              << *UI <<"\n");
2647        return false;
2648      }
2649
2650      // Didn't alias, insert into map for further reference.
2651      WriteObjects[*UI].push_back(Inst);
2652    }
2653    TempObjects.clear();
2654  }
2655
2656  /// Check that the reads don't conflict with the read-writes.
2657  for (MI = Reads.begin(), ME = Reads.end(); MI != ME; ++MI) {
2658    Value *Val = (*MI).first;
2659    GetUnderlyingObjects(Val, TempObjects, DL);
2660    for (ValueVector::iterator UI=TempObjects.begin(), UE=TempObjects.end();
2661         UI != UE; ++UI) {
2662      // If all of the writes are identified then we don't care if the read
2663      // pointer is identified or not.
2664      if (!AllWritesIdentified && !isIdentifiedObject(*UI)) {
2665        DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **UI <<"\n");
2666        NeedRTCheck = true;
2667      }
2668
2669      // Never seen it before, can't alias.
2670      if (WriteObjects[*UI].empty())
2671        continue;
2672      // Direct alias found.
2673      if (!AA || dyn_cast<GlobalValue>(*UI) == NULL) {
2674        DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
2675              << **UI <<"\n");
2676        return false;
2677      }
2678      DEBUG(dbgs() << "LV: Found a global value:  "
2679            << **UI <<"\n");
2680      Instruction *Inst = (*MI).second;
2681      DEBUG(dbgs() << "LV: While examining load:" << *Inst <<"\n");
2682      DEBUG(dbgs() << "LV: On value:" << *Val <<"\n");
2683
2684      // If global alias, make sure they do alias.
2685      if (hasPossibleGlobalWriteReorder(*UI,
2686                                        Inst,
2687                                        WriteObjects,
2688                                        MaxByteWidth)) {
2689        DEBUG(dbgs() << "LV: Found a possible read-write reorder:"
2690              << *UI <<"\n");
2691        return false;
2692      }
2693    }
2694    TempObjects.clear();
2695  }
2696
2697  PtrRtCheck.Need = NeedRTCheck;
2698  if (NeedRTCheck && !CanDoRT) {
2699    DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
2700          "the array bounds.\n");
2701    PtrRtCheck.reset();
2702    return false;
2703  }
2704
2705  DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") <<
2706        " need a runtime memory check.\n");
2707  return true;
2708}
2709
2710bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
2711                                                ReductionKind Kind) {
2712  if (Phi->getNumIncomingValues() != 2)
2713    return false;
2714
2715  // Reduction variables are only found in the loop header block.
2716  if (Phi->getParent() != TheLoop->getHeader())
2717    return false;
2718
2719  // Obtain the reduction start value from the value that comes from the loop
2720  // preheader.
2721  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
2722
2723  // ExitInstruction is the single value which is used outside the loop.
2724  // We only allow for a single reduction value to be used outside the loop.
2725  // This includes users of the reduction, variables (which form a cycle
2726  // which ends in the phi node).
2727  Instruction *ExitInstruction = 0;
2728  // Indicates that we found a binary operation in our scan.
2729  bool FoundBinOp = false;
2730
2731  // Iter is our iterator. We start with the PHI node and scan for all of the
2732  // users of this instruction. All users must be instructions that can be
2733  // used as reduction variables (such as ADD). We may have a single
2734  // out-of-block user. The cycle must end with the original PHI.
2735  Instruction *Iter = Phi;
2736  while (true) {
2737    // If the instruction has no users then this is a broken
2738    // chain and can't be a reduction variable.
2739    if (Iter->use_empty())
2740      return false;
2741
2742    // Did we find a user inside this loop already ?
2743    bool FoundInBlockUser = false;
2744    // Did we reach the initial PHI node already ?
2745    bool FoundStartPHI = false;
2746
2747    // Is this a bin op ?
2748    FoundBinOp |= !isa<PHINode>(Iter);
2749
2750    // Remember the current instruction.
2751    Instruction *OldIter = Iter;
2752
2753    // For each of the *users* of iter.
2754    for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
2755         it != e; ++it) {
2756      Instruction *U = cast<Instruction>(*it);
2757      // We already know that the PHI is a user.
2758      if (U == Phi) {
2759        FoundStartPHI = true;
2760        continue;
2761      }
2762
2763      // Check if we found the exit user.
2764      BasicBlock *Parent = U->getParent();
2765      if (!TheLoop->contains(Parent)) {
2766        // Exit if you find multiple outside users.
2767        if (ExitInstruction != 0)
2768          return false;
2769        ExitInstruction = Iter;
2770      }
2771
2772      // We allow in-loop PHINodes which are not the original reduction PHI
2773      // node. If this PHI is the only user of Iter (happens in IF w/ no ELSE
2774      // structure) then don't skip this PHI.
2775      if (isa<PHINode>(Iter) && isa<PHINode>(U) &&
2776          U->getParent() != TheLoop->getHeader() &&
2777          TheLoop->contains(U) &&
2778          Iter->hasNUsesOrMore(2))
2779        continue;
2780
2781      // We can't have multiple inside users.
2782      if (FoundInBlockUser)
2783        return false;
2784      FoundInBlockUser = true;
2785
2786      // Any reduction instr must be of one of the allowed kinds.
2787      if (!isReductionInstr(U, Kind))
2788        return false;
2789
2790      // Reductions of instructions such as Div, and Sub is only
2791      // possible if the LHS is the reduction variable.
2792      if (!U->isCommutative() && !isa<PHINode>(U) && U->getOperand(0) != Iter)
2793        return false;
2794
2795      Iter = U;
2796    }
2797
2798    // If all uses were skipped this can't be a reduction variable.
2799    if (Iter == OldIter)
2800      return false;
2801
2802    // We found a reduction var if we have reached the original
2803    // phi node and we only have a single instruction with out-of-loop
2804    // users.
2805    if (FoundStartPHI) {
2806      // This instruction is allowed to have out-of-loop users.
2807      AllowedExit.insert(ExitInstruction);
2808
2809      // Save the description of this reduction variable.
2810      ReductionDescriptor RD(RdxStart, ExitInstruction, Kind);
2811      Reductions[Phi] = RD;
2812      // We've ended the cycle. This is a reduction variable if we have an
2813      // outside user and it has a binary op.
2814      return FoundBinOp && ExitInstruction;
2815    }
2816  }
2817}
2818
2819bool
2820LoopVectorizationLegality::isReductionInstr(Instruction *I,
2821                                            ReductionKind Kind) {
2822  bool FP = I->getType()->isFloatingPointTy();
2823  bool FastMath = (FP && I->isCommutative() && I->isAssociative());
2824
2825  switch (I->getOpcode()) {
2826  default:
2827    return false;
2828  case Instruction::PHI:
2829      if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd))
2830        return false;
2831    // possibly.
2832    return true;
2833  case Instruction::Sub:
2834  case Instruction::Add:
2835    return Kind == RK_IntegerAdd;
2836  case Instruction::SDiv:
2837  case Instruction::UDiv:
2838  case Instruction::Mul:
2839    return Kind == RK_IntegerMult;
2840  case Instruction::And:
2841    return Kind == RK_IntegerAnd;
2842  case Instruction::Or:
2843    return Kind == RK_IntegerOr;
2844  case Instruction::Xor:
2845    return Kind == RK_IntegerXor;
2846  case Instruction::FMul:
2847    return Kind == RK_FloatMult && FastMath;
2848  case Instruction::FAdd:
2849    return Kind == RK_FloatAdd && FastMath;
2850   }
2851}
2852
2853LoopVectorizationLegality::InductionKind
2854LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
2855  Type *PhiTy = Phi->getType();
2856  // We only handle integer and pointer inductions variables.
2857  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
2858    return IK_NoInduction;
2859
2860  // Check that the PHI is consecutive.
2861  const SCEV *PhiScev = SE->getSCEV(Phi);
2862  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
2863  if (!AR) {
2864    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
2865    return IK_NoInduction;
2866  }
2867  const SCEV *Step = AR->getStepRecurrence(*SE);
2868
2869  // Integer inductions need to have a stride of one.
2870  if (PhiTy->isIntegerTy()) {
2871    if (Step->isOne())
2872      return IK_IntInduction;
2873    if (Step->isAllOnesValue())
2874      return IK_ReverseIntInduction;
2875    return IK_NoInduction;
2876  }
2877
2878  // Calculate the pointer stride and check if it is consecutive.
2879  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
2880  if (!C)
2881    return IK_NoInduction;
2882
2883  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
2884  uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
2885  if (C->getValue()->equalsInt(Size))
2886    return IK_PtrInduction;
2887  else if (C->getValue()->equalsInt(0 - Size))
2888    return IK_ReversePtrInduction;
2889
2890  return IK_NoInduction;
2891}
2892
2893bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
2894  Value *In0 = const_cast<Value*>(V);
2895  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
2896  if (!PN)
2897    return false;
2898
2899  return Inductions.count(PN);
2900}
2901
2902bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
2903  assert(TheLoop->contains(BB) && "Unknown block used");
2904
2905  // Blocks that do not dominate the latch need predication.
2906  BasicBlock* Latch = TheLoop->getLoopLatch();
2907  return !DT->dominates(BB, Latch);
2908}
2909
2910bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) {
2911  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2912    // We don't predicate loads/stores at the moment.
2913    if (it->mayReadFromMemory() || it->mayWriteToMemory() || it->mayThrow())
2914      return false;
2915
2916    // The instructions below can trap.
2917    switch (it->getOpcode()) {
2918    default: continue;
2919    case Instruction::UDiv:
2920    case Instruction::SDiv:
2921    case Instruction::URem:
2922    case Instruction::SRem:
2923             return false;
2924    }
2925  }
2926
2927  return true;
2928}
2929
2930bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
2931  const SCEV *PhiScev = SE->getSCEV(Ptr);
2932  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
2933  if (!AR)
2934    return false;
2935
2936  return AR->isAffine();
2937}
2938
2939LoopVectorizationCostModel::VectorizationFactor
2940LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
2941                                                      unsigned UserVF) {
2942  // Width 1 means no vectorize
2943  VectorizationFactor Factor = { 1U, 0U };
2944  if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
2945    DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
2946    return Factor;
2947  }
2948
2949  // Find the trip count.
2950  unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
2951  DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
2952
2953  unsigned WidestType = getWidestType();
2954  unsigned WidestRegister = TTI.getRegisterBitWidth(true);
2955  unsigned MaxVectorSize = WidestRegister / WidestType;
2956  DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
2957  DEBUG(dbgs() << "LV: The Widest register is:" << WidestRegister << "bits.\n");
2958
2959  if (MaxVectorSize == 0) {
2960    DEBUG(dbgs() << "LV: The target has no vector registers.\n");
2961    MaxVectorSize = 1;
2962  }
2963
2964  assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
2965         " into one vector!");
2966
2967  unsigned VF = MaxVectorSize;
2968
2969  // If we optimize the program for size, avoid creating the tail loop.
2970  if (OptForSize) {
2971    // If we are unable to calculate the trip count then don't try to vectorize.
2972    if (TC < 2) {
2973      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
2974      return Factor;
2975    }
2976
2977    // Find the maximum SIMD width that can fit within the trip count.
2978    VF = TC % MaxVectorSize;
2979
2980    if (VF == 0)
2981      VF = MaxVectorSize;
2982
2983    // If the trip count that we found modulo the vectorization factor is not
2984    // zero then we require a tail.
2985    if (VF < 2) {
2986      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
2987      return Factor;
2988    }
2989  }
2990
2991  if (UserVF != 0) {
2992    assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
2993    DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
2994
2995    Factor.Width = UserVF;
2996    return Factor;
2997  }
2998
2999  float Cost = expectedCost(1);
3000  unsigned Width = 1;
3001  DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
3002  for (unsigned i=2; i <= VF; i*=2) {
3003    // Notice that the vector loop needs to be executed less times, so
3004    // we need to divide the cost of the vector loops by the width of
3005    // the vector elements.
3006    float VectorCost = expectedCost(i) / (float)i;
3007    DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
3008          (int)VectorCost << ".\n");
3009    if (VectorCost < Cost) {
3010      Cost = VectorCost;
3011      Width = i;
3012    }
3013  }
3014
3015  DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
3016  Factor.Width = Width;
3017  Factor.Cost = Width * Cost;
3018  return Factor;
3019}
3020
3021unsigned LoopVectorizationCostModel::getWidestType() {
3022  unsigned MaxWidth = 8;
3023
3024  // For each block.
3025  for (Loop::block_iterator bb = TheLoop->block_begin(),
3026       be = TheLoop->block_end(); bb != be; ++bb) {
3027    BasicBlock *BB = *bb;
3028
3029    // For each instruction in the loop.
3030    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3031      Type *T = it->getType();
3032
3033      // Only examine Loads, Stores and PHINodes.
3034      if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
3035        continue;
3036
3037      // Examine PHI nodes that are reduction variables.
3038      if (PHINode *PN = dyn_cast<PHINode>(it))
3039        if (!Legal->getReductionVars()->count(PN))
3040          continue;
3041
3042      // Examine the stored values.
3043      if (StoreInst *ST = dyn_cast<StoreInst>(it))
3044        T = ST->getValueOperand()->getType();
3045
3046      // Ignore loaded pointer types and stored pointer types that are not
3047      // consecutive. However, we do want to take consecutive stores/loads of
3048      // pointer vectors into account.
3049      if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
3050        continue;
3051
3052      MaxWidth = std::max(MaxWidth,
3053                          (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
3054    }
3055  }
3056
3057  return MaxWidth;
3058}
3059
3060unsigned
3061LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
3062                                               unsigned UserUF,
3063                                               unsigned VF,
3064                                               unsigned LoopCost) {
3065
3066  // -- The unroll heuristics --
3067  // We unroll the loop in order to expose ILP and reduce the loop overhead.
3068  // There are many micro-architectural considerations that we can't predict
3069  // at this level. For example frontend pressure (on decode or fetch) due to
3070  // code size, or the number and capabilities of the execution ports.
3071  //
3072  // We use the following heuristics to select the unroll factor:
3073  // 1. If the code has reductions the we unroll in order to break the cross
3074  // iteration dependency.
3075  // 2. If the loop is really small then we unroll in order to reduce the loop
3076  // overhead.
3077  // 3. We don't unroll if we think that we will spill registers to memory due
3078  // to the increased register pressure.
3079
3080  // Use the user preference, unless 'auto' is selected.
3081  if (UserUF != 0)
3082    return UserUF;
3083
3084  // When we optimize for size we don't unroll.
3085  if (OptForSize)
3086    return 1;
3087
3088  // Do not unroll loops with a relatively small trip count.
3089  unsigned TC = SE->getSmallConstantTripCount(TheLoop,
3090                                              TheLoop->getLoopLatch());
3091  if (TC > 1 && TC < TinyTripCountUnrollThreshold)
3092    return 1;
3093
3094  unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
3095  DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
3096        " vector registers\n");
3097
3098  LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
3099  // We divide by these constants so assume that we have at least one
3100  // instruction that uses at least one register.
3101  R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
3102  R.NumInstructions = std::max(R.NumInstructions, 1U);
3103
3104  // We calculate the unroll factor using the following formula.
3105  // Subtract the number of loop invariants from the number of available
3106  // registers. These registers are used by all of the unrolled instances.
3107  // Next, divide the remaining registers by the number of registers that is
3108  // required by the loop, in order to estimate how many parallel instances
3109  // fit without causing spills.
3110  unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
3111
3112  // Clamp the unroll factor ranges to reasonable factors.
3113  unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
3114
3115  // If we did not calculate the cost for VF (because the user selected the VF)
3116  // then we calculate the cost of VF here.
3117  if (LoopCost == 0)
3118    LoopCost = expectedCost(VF);
3119
3120  // Clamp the calculated UF to be between the 1 and the max unroll factor
3121  // that the target allows.
3122  if (UF > MaxUnrollSize)
3123    UF = MaxUnrollSize;
3124  else if (UF < 1)
3125    UF = 1;
3126
3127  if (Legal->getReductionVars()->size()) {
3128    DEBUG(dbgs() << "LV: Unrolling because of reductions. \n");
3129    return UF;
3130  }
3131
3132  // We want to unroll tiny loops in order to reduce the loop overhead.
3133  // We assume that the cost overhead is 1 and we use the cost model
3134  // to estimate the cost of the loop and unroll until the cost of the
3135  // loop overhead is about 5% of the cost of the loop.
3136  DEBUG(dbgs() << "LV: Loop cost is "<< LoopCost <<" \n");
3137  if (LoopCost < 20) {
3138    DEBUG(dbgs() << "LV: Unrolling to reduce branch cost. \n");
3139    unsigned NewUF = 20/LoopCost + 1;
3140    return std::min(NewUF, UF);
3141  }
3142
3143  DEBUG(dbgs() << "LV: Not Unrolling. \n");
3144  return 1;
3145}
3146
3147LoopVectorizationCostModel::RegisterUsage
3148LoopVectorizationCostModel::calculateRegisterUsage() {
3149  // This function calculates the register usage by measuring the highest number
3150  // of values that are alive at a single location. Obviously, this is a very
3151  // rough estimation. We scan the loop in a topological order in order and
3152  // assign a number to each instruction. We use RPO to ensure that defs are
3153  // met before their users. We assume that each instruction that has in-loop
3154  // users starts an interval. We record every time that an in-loop value is
3155  // used, so we have a list of the first and last occurrences of each
3156  // instruction. Next, we transpose this data structure into a multi map that
3157  // holds the list of intervals that *end* at a specific location. This multi
3158  // map allows us to perform a linear search. We scan the instructions linearly
3159  // and record each time that a new interval starts, by placing it in a set.
3160  // If we find this value in the multi-map then we remove it from the set.
3161  // The max register usage is the maximum size of the set.
3162  // We also search for instructions that are defined outside the loop, but are
3163  // used inside the loop. We need this number separately from the max-interval
3164  // usage number because when we unroll, loop-invariant values do not take
3165  // more register.
3166  LoopBlocksDFS DFS(TheLoop);
3167  DFS.perform(LI);
3168
3169  RegisterUsage R;
3170  R.NumInstructions = 0;
3171
3172  // Each 'key' in the map opens a new interval. The values
3173  // of the map are the index of the 'last seen' usage of the
3174  // instruction that is the key.
3175  typedef DenseMap<Instruction*, unsigned> IntervalMap;
3176  // Maps instruction to its index.
3177  DenseMap<unsigned, Instruction*> IdxToInstr;
3178  // Marks the end of each interval.
3179  IntervalMap EndPoint;
3180  // Saves the list of instruction indices that are used in the loop.
3181  SmallSet<Instruction*, 8> Ends;
3182  // Saves the list of values that are used in the loop but are
3183  // defined outside the loop, such as arguments and constants.
3184  SmallPtrSet<Value*, 8> LoopInvariants;
3185
3186  unsigned Index = 0;
3187  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
3188       be = DFS.endRPO(); bb != be; ++bb) {
3189    R.NumInstructions += (*bb)->size();
3190    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3191         ++it) {
3192      Instruction *I = it;
3193      IdxToInstr[Index++] = I;
3194
3195      // Save the end location of each USE.
3196      for (unsigned i = 0; i < I->getNumOperands(); ++i) {
3197        Value *U = I->getOperand(i);
3198        Instruction *Instr = dyn_cast<Instruction>(U);
3199
3200        // Ignore non-instruction values such as arguments, constants, etc.
3201        if (!Instr) continue;
3202
3203        // If this instruction is outside the loop then record it and continue.
3204        if (!TheLoop->contains(Instr)) {
3205          LoopInvariants.insert(Instr);
3206          continue;
3207        }
3208
3209        // Overwrite previous end points.
3210        EndPoint[Instr] = Index;
3211        Ends.insert(Instr);
3212      }
3213    }
3214  }
3215
3216  // Saves the list of intervals that end with the index in 'key'.
3217  typedef SmallVector<Instruction*, 2> InstrList;
3218  DenseMap<unsigned, InstrList> TransposeEnds;
3219
3220  // Transpose the EndPoints to a list of values that end at each index.
3221  for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
3222       it != e; ++it)
3223    TransposeEnds[it->second].push_back(it->first);
3224
3225  SmallSet<Instruction*, 8> OpenIntervals;
3226  unsigned MaxUsage = 0;
3227
3228
3229  DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
3230  for (unsigned int i = 0; i < Index; ++i) {
3231    Instruction *I = IdxToInstr[i];
3232    // Ignore instructions that are never used within the loop.
3233    if (!Ends.count(I)) continue;
3234
3235    // Remove all of the instructions that end at this location.
3236    InstrList &List = TransposeEnds[i];
3237    for (unsigned int j=0, e = List.size(); j < e; ++j)
3238      OpenIntervals.erase(List[j]);
3239
3240    // Count the number of live interals.
3241    MaxUsage = std::max(MaxUsage, OpenIntervals.size());
3242
3243    DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
3244          OpenIntervals.size() <<"\n");
3245
3246    // Add the current instruction to the list of open intervals.
3247    OpenIntervals.insert(I);
3248  }
3249
3250  unsigned Invariant = LoopInvariants.size();
3251  DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
3252  DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
3253  DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
3254
3255  R.LoopInvariantRegs = Invariant;
3256  R.MaxLocalUsers = MaxUsage;
3257  return R;
3258}
3259
3260unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
3261  unsigned Cost = 0;
3262
3263  // For each block.
3264  for (Loop::block_iterator bb = TheLoop->block_begin(),
3265       be = TheLoop->block_end(); bb != be; ++bb) {
3266    unsigned BlockCost = 0;
3267    BasicBlock *BB = *bb;
3268
3269    // For each instruction in the old loop.
3270    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3271      // Skip dbg intrinsics.
3272      if (isa<DbgInfoIntrinsic>(it))
3273        continue;
3274
3275      unsigned C = getInstructionCost(it, VF);
3276      Cost += C;
3277      DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " <<
3278            VF << " For instruction: "<< *it << "\n");
3279    }
3280
3281    // We assume that if-converted blocks have a 50% chance of being executed.
3282    // When the code is scalar then some of the blocks are avoided due to CF.
3283    // When the code is vectorized we execute all code paths.
3284    if (Legal->blockNeedsPredication(*bb) && VF == 1)
3285      BlockCost /= 2;
3286
3287    Cost += BlockCost;
3288  }
3289
3290  return Cost;
3291}
3292
3293unsigned
3294LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
3295  // If we know that this instruction will remain uniform, check the cost of
3296  // the scalar version.
3297  if (Legal->isUniformAfterVectorization(I))
3298    VF = 1;
3299
3300  Type *RetTy = I->getType();
3301  Type *VectorTy = ToVectorTy(RetTy, VF);
3302
3303  // TODO: We need to estimate the cost of intrinsic calls.
3304  switch (I->getOpcode()) {
3305  case Instruction::GetElementPtr:
3306    // We mark this instruction as zero-cost because the cost of GEPs in
3307    // vectorized code depends on whether the corresponding memory instruction
3308    // is scalarized or not. Therefore, we handle GEPs with the memory
3309    // instruction cost.
3310    return 0;
3311  case Instruction::Br: {
3312    return TTI.getCFInstrCost(I->getOpcode());
3313  }
3314  case Instruction::PHI:
3315    //TODO: IF-converted IFs become selects.
3316    return 0;
3317  case Instruction::Add:
3318  case Instruction::FAdd:
3319  case Instruction::Sub:
3320  case Instruction::FSub:
3321  case Instruction::Mul:
3322  case Instruction::FMul:
3323  case Instruction::UDiv:
3324  case Instruction::SDiv:
3325  case Instruction::FDiv:
3326  case Instruction::URem:
3327  case Instruction::SRem:
3328  case Instruction::FRem:
3329  case Instruction::Shl:
3330  case Instruction::LShr:
3331  case Instruction::AShr:
3332  case Instruction::And:
3333  case Instruction::Or:
3334  case Instruction::Xor:
3335    return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy);
3336  case Instruction::Select: {
3337    SelectInst *SI = cast<SelectInst>(I);
3338    const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
3339    bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
3340    Type *CondTy = SI->getCondition()->getType();
3341    if (ScalarCond)
3342      CondTy = VectorType::get(CondTy, VF);
3343
3344    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
3345  }
3346  case Instruction::ICmp:
3347  case Instruction::FCmp: {
3348    Type *ValTy = I->getOperand(0)->getType();
3349    VectorTy = ToVectorTy(ValTy, VF);
3350    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
3351  }
3352  case Instruction::Store:
3353  case Instruction::Load: {
3354    StoreInst *SI = dyn_cast<StoreInst>(I);
3355    LoadInst *LI = dyn_cast<LoadInst>(I);
3356    Type *ValTy = (SI ? SI->getValueOperand()->getType() :
3357                   LI->getType());
3358    VectorTy = ToVectorTy(ValTy, VF);
3359
3360    unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
3361    unsigned AS = SI ? SI->getPointerAddressSpace() :
3362      LI->getPointerAddressSpace();
3363    Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
3364    // We add the cost of address computation here instead of with the gep
3365    // instruction because only here we know whether the operation is
3366    // scalarized.
3367    if (VF == 1)
3368      return TTI.getAddressComputationCost(VectorTy) +
3369        TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
3370
3371    // Scalarized loads/stores.
3372    int Stride = Legal->isConsecutivePtr(Ptr);
3373    bool Reverse = Stride < 0;
3374    if (0 == Stride) {
3375      unsigned Cost = 0;
3376      // The cost of extracting from the value vector and pointer vector.
3377      Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
3378      for (unsigned i = 0; i < VF; ++i) {
3379        //  The cost of extracting the pointer operand.
3380        Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
3381        // In case of STORE, the cost of ExtractElement from the vector.
3382        // In case of LOAD, the cost of InsertElement into the returned
3383        // vector.
3384        Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
3385                                            Instruction::InsertElement,
3386                                            VectorTy, i);
3387      }
3388
3389      // The cost of the scalar loads/stores.
3390      Cost += VF * TTI.getAddressComputationCost(ValTy->getScalarType());
3391      Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
3392                                       Alignment, AS);
3393      return Cost;
3394    }
3395
3396    // Wide load/stores.
3397    unsigned Cost = TTI.getAddressComputationCost(VectorTy);
3398    Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
3399
3400    if (Reverse)
3401      Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
3402                                  VectorTy, 0);
3403    return Cost;
3404  }
3405  case Instruction::ZExt:
3406  case Instruction::SExt:
3407  case Instruction::FPToUI:
3408  case Instruction::FPToSI:
3409  case Instruction::FPExt:
3410  case Instruction::PtrToInt:
3411  case Instruction::IntToPtr:
3412  case Instruction::SIToFP:
3413  case Instruction::UIToFP:
3414  case Instruction::Trunc:
3415  case Instruction::FPTrunc:
3416  case Instruction::BitCast: {
3417    // We optimize the truncation of induction variable.
3418    // The cost of these is the same as the scalar operation.
3419    if (I->getOpcode() == Instruction::Trunc &&
3420        Legal->isInductionVariable(I->getOperand(0)))
3421      return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
3422                                  I->getOperand(0)->getType());
3423
3424    Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
3425    return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
3426  }
3427  case Instruction::Call: {
3428    CallInst *CI = cast<CallInst>(I);
3429    Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
3430    assert(ID && "Not an intrinsic call!");
3431    Type *RetTy = ToVectorTy(CI->getType(), VF);
3432    SmallVector<Type*, 4> Tys;
3433    for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
3434      Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
3435    return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
3436  }
3437  default: {
3438    // We are scalarizing the instruction. Return the cost of the scalar
3439    // instruction, plus the cost of insert and extract into vector
3440    // elements, times the vector width.
3441    unsigned Cost = 0;
3442
3443    if (!RetTy->isVoidTy() && VF != 1) {
3444      unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
3445                                                VectorTy);
3446      unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
3447                                                VectorTy);
3448
3449      // The cost of inserting the results plus extracting each one of the
3450      // operands.
3451      Cost += VF * (InsCost + ExtCost * I->getNumOperands());
3452    }
3453
3454    // The cost of executing VF copies of the scalar instruction. This opcode
3455    // is unknown. Assume that it is the same as 'mul'.
3456    Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
3457    return Cost;
3458  }
3459  }// end of switch.
3460}
3461
3462Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
3463  if (Scalar->isVoidTy() || VF == 1)
3464    return Scalar;
3465  return VectorType::get(Scalar, VF);
3466}
3467
3468char LoopVectorize::ID = 0;
3469static const char lv_name[] = "Loop Vectorization";
3470INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
3471INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
3472INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
3473INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
3474INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
3475INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
3476
3477namespace llvm {
3478  Pass *createLoopVectorizePass() {
3479    return new LoopVectorize();
3480  }
3481}
3482
3483bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
3484  // Check for a store.
3485  if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
3486    return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
3487
3488  // Check for a load.
3489  if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
3490    return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
3491
3492  return false;
3493}
3494