LoopVectorize.cpp revision 96a6555b5706af59e408bb190c3685f0f15bc2a9
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11// and generates target-independent LLVM-IR. Legalization of the IR is done
12// in the codegen. However, the vectorizes uses (will use) the codegen
13// interfaces to generate IR that is likely to result in an optimal binary.
14//
15// The loop vectorizer combines consecutive loop iteration into a single
16// 'wide' iteration. After this transformation the index is incremented
17// by the SIMD vector width, and not by one.
18//
19// This pass has three parts:
20// 1. The main loop pass that drives the different parts.
21// 2. LoopVectorizationLegality - A unit that checks for the legality
22//    of the vectorization.
23// 3. InnerLoopVectorizer - A unit that performs the actual
24//    widening of instructions.
25// 4. LoopVectorizationCostModel - A unit that checks for the profitability
26//    of vectorization. It decides on the optimal vector width, which
27//    can be one, if vectorization is not profitable.
28//
29//===----------------------------------------------------------------------===//
30//
31// The reduction-variable vectorization is based on the paper:
32//  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33//
34// Variable uniformity checks are inspired by:
35// Karrenberg, R. and Hack, S. Whole Function Vectorization.
36//
37// Other ideas/concepts are from:
38//  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39//
40//  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
41//  Vectorizing Compilers.
42//
43//===----------------------------------------------------------------------===//
44
45#define LV_NAME "loop-vectorize"
46#define DEBUG_TYPE LV_NAME
47
48#include "llvm/Transforms/Vectorize.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/MapVector.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallSet.h"
53#include "llvm/ADT/SmallVector.h"
54#include "llvm/ADT/StringExtras.h"
55#include "llvm/Analysis/AliasAnalysis.h"
56#include "llvm/Analysis/AliasSetTracker.h"
57#include "llvm/Analysis/Dominators.h"
58#include "llvm/Analysis/LoopInfo.h"
59#include "llvm/Analysis/LoopIterator.h"
60#include "llvm/Analysis/LoopPass.h"
61#include "llvm/Analysis/ScalarEvolution.h"
62#include "llvm/Analysis/ScalarEvolutionExpander.h"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Analysis/TargetTransformInfo.h"
65#include "llvm/Analysis/ValueTracking.h"
66#include "llvm/Analysis/Verifier.h"
67#include "llvm/IR/Constants.h"
68#include "llvm/IR/DataLayout.h"
69#include "llvm/IR/DerivedTypes.h"
70#include "llvm/IR/Function.h"
71#include "llvm/IR/IRBuilder.h"
72#include "llvm/IR/Instructions.h"
73#include "llvm/IR/IntrinsicInst.h"
74#include "llvm/IR/LLVMContext.h"
75#include "llvm/IR/Module.h"
76#include "llvm/IR/Type.h"
77#include "llvm/IR/Value.h"
78#include "llvm/Pass.h"
79#include "llvm/Support/CommandLine.h"
80#include "llvm/Support/Debug.h"
81#include "llvm/Support/raw_ostream.h"
82#include "llvm/Transforms/Scalar.h"
83#include "llvm/Transforms/Utils/BasicBlockUtils.h"
84#include "llvm/Transforms/Utils/Local.h"
85#include <algorithm>
86#include <map>
87
88using namespace llvm;
89
90static cl::opt<unsigned>
91VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
92                    cl::desc("Sets the SIMD width. Zero is autoselect."));
93
94static cl::opt<unsigned>
95VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
96                    cl::desc("Sets the vectorization unroll count. "
97                             "Zero is autoselect."));
98
99static cl::opt<bool>
100EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
101                   cl::desc("Enable if-conversion during vectorization."));
102
103/// We don't vectorize loops with a known constant trip count below this number.
104static cl::opt<unsigned>
105TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16), cl::Hidden,
106                             cl::desc("The minimum trip count in the loops to vectorize."));
107
108/// We don't unroll loops with a known constant trip count below this number.
109static const unsigned TinyTripCountUnrollThreshold = 128;
110
111/// When performing a runtime memory check, do not check more than this
112/// number of pointers. Notice that the check is quadratic!
113static const unsigned RuntimeMemoryCheckThreshold = 4;
114
115namespace {
116
117// Forward declarations.
118class LoopVectorizationLegality;
119class LoopVectorizationCostModel;
120
121/// InnerLoopVectorizer vectorizes loops which contain only one basic
122/// block to a specified vectorization factor (VF).
123/// This class performs the widening of scalars into vectors, or multiple
124/// scalars. This class also implements the following features:
125/// * It inserts an epilogue loop for handling loops that don't have iteration
126///   counts that are known to be a multiple of the vectorization factor.
127/// * It handles the code generation for reduction variables.
128/// * Scalarization (implementation using scalars) of un-vectorizable
129///   instructions.
130/// InnerLoopVectorizer does not perform any vectorization-legality
131/// checks, and relies on the caller to check for the different legality
132/// aspects. The InnerLoopVectorizer relies on the
133/// LoopVectorizationLegality class to provide information about the induction
134/// and reduction variables that were found to a given vectorization factor.
135class InnerLoopVectorizer {
136public:
137  InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
138                      DominatorTree *DT, DataLayout *DL, unsigned VecWidth,
139                      unsigned UnrollFactor)
140      : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), VF(VecWidth),
141        UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
142        OldInduction(0), WidenMap(UnrollFactor) {}
143
144  // Perform the actual loop widening (vectorization).
145  void vectorize(LoopVectorizationLegality *Legal) {
146    // Create a new empty loop. Unlink the old loop and connect the new one.
147    createEmptyLoop(Legal);
148    // Widen each instruction in the old loop to a new one in the new loop.
149    // Use the Legality module to find the induction and reduction variables.
150    vectorizeLoop(Legal);
151    // Register the new loop and update the analysis passes.
152    updateAnalysis();
153  }
154
155private:
156  /// A small list of PHINodes.
157  typedef SmallVector<PHINode*, 4> PhiVector;
158  /// When we unroll loops we have multiple vector values for each scalar.
159  /// This data structure holds the unrolled and vectorized values that
160  /// originated from one scalar instruction.
161  typedef SmallVector<Value*, 2> VectorParts;
162
163  /// Add code that checks at runtime if the accessed arrays overlap.
164  /// Returns the comparator value or NULL if no check is needed.
165  Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
166                               Instruction *Loc);
167  /// Create an empty loop, based on the loop ranges of the old loop.
168  void createEmptyLoop(LoopVectorizationLegality *Legal);
169  /// Copy and widen the instructions from the old loop.
170  void vectorizeLoop(LoopVectorizationLegality *Legal);
171
172  /// A helper function that computes the predicate of the block BB, assuming
173  /// that the header block of the loop is set to True. It returns the *entry*
174  /// mask for the block BB.
175  VectorParts createBlockInMask(BasicBlock *BB);
176  /// A helper function that computes the predicate of the edge between SRC
177  /// and DST.
178  VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
179
180  /// A helper function to vectorize a single BB within the innermost loop.
181  void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
182                            PhiVector *PV);
183
184  /// Insert the new loop to the loop hierarchy and pass manager
185  /// and update the analysis passes.
186  void updateAnalysis();
187
188  /// This instruction is un-vectorizable. Implement it as a sequence
189  /// of scalars.
190  void scalarizeInstruction(Instruction *Instr);
191
192  /// Vectorize Load and Store instructions,
193  void vectorizeMemoryInstruction(Instruction *Instr,
194                                  LoopVectorizationLegality *Legal);
195
196  /// Create a broadcast instruction. This method generates a broadcast
197  /// instruction (shuffle) for loop invariant values and for the induction
198  /// value. If this is the induction variable then we extend it to N, N+1, ...
199  /// this is needed because each iteration in the loop corresponds to a SIMD
200  /// element.
201  Value *getBroadcastInstrs(Value *V);
202
203  /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
204  /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
205  /// The sequence starts at StartIndex.
206  Value *getConsecutiveVector(Value* Val, unsigned StartIdx, bool Negate);
207
208  /// When we go over instructions in the basic block we rely on previous
209  /// values within the current basic block or on loop invariant values.
210  /// When we widen (vectorize) values we place them in the map. If the values
211  /// are not within the map, they have to be loop invariant, so we simply
212  /// broadcast them into a vector.
213  VectorParts &getVectorValue(Value *V);
214
215  /// Generate a shuffle sequence that will reverse the vector Vec.
216  Value *reverseVector(Value *Vec);
217
218  /// This is a helper class that holds the vectorizer state. It maps scalar
219  /// instructions to vector instructions. When the code is 'unrolled' then
220  /// then a single scalar value is mapped to multiple vector parts. The parts
221  /// are stored in the VectorPart type.
222  struct ValueMap {
223    /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
224    /// are mapped.
225    ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
226
227    /// \return True if 'Key' is saved in the Value Map.
228    bool has(Value *Key) const { return MapStorage.count(Key); }
229
230    /// Initializes a new entry in the map. Sets all of the vector parts to the
231    /// save value in 'Val'.
232    /// \return A reference to a vector with splat values.
233    VectorParts &splat(Value *Key, Value *Val) {
234      VectorParts &Entry = MapStorage[Key];
235      Entry.assign(UF, Val);
236      return Entry;
237    }
238
239    ///\return A reference to the value that is stored at 'Key'.
240    VectorParts &get(Value *Key) {
241      VectorParts &Entry = MapStorage[Key];
242      if (Entry.empty())
243        Entry.resize(UF);
244      assert(Entry.size() == UF);
245      return Entry;
246    }
247
248  private:
249    /// The unroll factor. Each entry in the map stores this number of vector
250    /// elements.
251    unsigned UF;
252
253    /// Map storage. We use std::map and not DenseMap because insertions to a
254    /// dense map invalidates its iterators.
255    std::map<Value *, VectorParts> MapStorage;
256  };
257
258  /// The original loop.
259  Loop *OrigLoop;
260  /// Scev analysis to use.
261  ScalarEvolution *SE;
262  /// Loop Info.
263  LoopInfo *LI;
264  /// Dominator Tree.
265  DominatorTree *DT;
266  /// Data Layout.
267  DataLayout *DL;
268  /// The vectorization SIMD factor to use. Each vector will have this many
269  /// vector elements.
270  unsigned VF;
271  /// The vectorization unroll factor to use. Each scalar is vectorized to this
272  /// many different vector instructions.
273  unsigned UF;
274
275  /// The builder that we use
276  IRBuilder<> Builder;
277
278  // --- Vectorization state ---
279
280  /// The vector-loop preheader.
281  BasicBlock *LoopVectorPreHeader;
282  /// The scalar-loop preheader.
283  BasicBlock *LoopScalarPreHeader;
284  /// Middle Block between the vector and the scalar.
285  BasicBlock *LoopMiddleBlock;
286  ///The ExitBlock of the scalar loop.
287  BasicBlock *LoopExitBlock;
288  ///The vector loop body.
289  BasicBlock *LoopVectorBody;
290  ///The scalar loop body.
291  BasicBlock *LoopScalarBody;
292  /// A list of all bypass blocks. The first block is the entry of the loop.
293  SmallVector<BasicBlock *, 4> LoopBypassBlocks;
294
295  /// The new Induction variable which was added to the new block.
296  PHINode *Induction;
297  /// The induction variable of the old basic block.
298  PHINode *OldInduction;
299  /// Maps scalars to widened vectors.
300  ValueMap WidenMap;
301};
302
303/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
304/// to what vectorization factor.
305/// This class does not look at the profitability of vectorization, only the
306/// legality. This class has two main kinds of checks:
307/// * Memory checks - The code in canVectorizeMemory checks if vectorization
308///   will change the order of memory accesses in a way that will change the
309///   correctness of the program.
310/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
311/// checks for a number of different conditions, such as the availability of a
312/// single induction variable, that all types are supported and vectorize-able,
313/// etc. This code reflects the capabilities of InnerLoopVectorizer.
314/// This class is also used by InnerLoopVectorizer for identifying
315/// induction variable and the different reduction variables.
316class LoopVectorizationLegality {
317public:
318  LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
319                            DominatorTree *DT)
320      : TheLoop(L), SE(SE), DL(DL), DT(DT), Induction(0) {}
321
322  /// This enum represents the kinds of reductions that we support.
323  enum ReductionKind {
324    RK_NoReduction, ///< Not a reduction.
325    RK_IntegerAdd,  ///< Sum of integers.
326    RK_IntegerMult, ///< Product of integers.
327    RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
328    RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
329    RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
330    RK_FloatAdd,    ///< Sum of floats.
331    RK_FloatMult    ///< Product of floats.
332  };
333
334  /// This enum represents the kinds of inductions that we support.
335  enum InductionKind {
336    IK_NoInduction,         ///< Not an induction variable.
337    IK_IntInduction,        ///< Integer induction variable. Step = 1.
338    IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
339    IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
340    IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
341  };
342
343  /// This POD struct holds information about reduction variables.
344  struct ReductionDescriptor {
345    ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
346      Kind(RK_NoReduction) {}
347
348    ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K)
349        : StartValue(Start), LoopExitInstr(Exit), Kind(K) {}
350
351    // The starting value of the reduction.
352    // It does not have to be zero!
353    Value *StartValue;
354    // The instruction who's value is used outside the loop.
355    Instruction *LoopExitInstr;
356    // The kind of the reduction.
357    ReductionKind Kind;
358  };
359
360  // This POD struct holds information about the memory runtime legality
361  // check that a group of pointers do not overlap.
362  struct RuntimePointerCheck {
363    RuntimePointerCheck() : Need(false) {}
364
365    /// Reset the state of the pointer runtime information.
366    void reset() {
367      Need = false;
368      Pointers.clear();
369      Starts.clear();
370      Ends.clear();
371    }
372
373    /// Insert a pointer and calculate the start and end SCEVs.
374    void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr);
375
376    /// This flag indicates if we need to add the runtime check.
377    bool Need;
378    /// Holds the pointers that we need to check.
379    SmallVector<Value*, 2> Pointers;
380    /// Holds the pointer value at the beginning of the loop.
381    SmallVector<const SCEV*, 2> Starts;
382    /// Holds the pointer value at the end of the loop.
383    SmallVector<const SCEV*, 2> Ends;
384  };
385
386  /// A POD for saving information about induction variables.
387  struct InductionInfo {
388    InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
389    InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
390    /// Start value.
391    Value *StartValue;
392    /// Induction kind.
393    InductionKind IK;
394  };
395
396  /// ReductionList contains the reduction descriptors for all
397  /// of the reductions that were found in the loop.
398  typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
399
400  /// InductionList saves induction variables and maps them to the
401  /// induction descriptor.
402  typedef MapVector<PHINode*, InductionInfo> InductionList;
403
404  /// Returns true if it is legal to vectorize this loop.
405  /// This does not mean that it is profitable to vectorize this
406  /// loop, only that it is legal to do so.
407  bool canVectorize();
408
409  /// Returns the Induction variable.
410  PHINode *getInduction() { return Induction; }
411
412  /// Returns the reduction variables found in the loop.
413  ReductionList *getReductionVars() { return &Reductions; }
414
415  /// Returns the induction variables found in the loop.
416  InductionList *getInductionVars() { return &Inductions; }
417
418  /// Returns True if V is an induction variable in this loop.
419  bool isInductionVariable(const Value *V);
420
421  /// Return true if the block BB needs to be predicated in order for the loop
422  /// to be vectorized.
423  bool blockNeedsPredication(BasicBlock *BB);
424
425  /// Check if this  pointer is consecutive when vectorizing. This happens
426  /// when the last index of the GEP is the induction variable, or that the
427  /// pointer itself is an induction variable.
428  /// This check allows us to vectorize A[idx] into a wide load/store.
429  /// Returns:
430  /// 0 - Stride is unknown or non consecutive.
431  /// 1 - Address is consecutive.
432  /// -1 - Address is consecutive, and decreasing.
433  int isConsecutivePtr(Value *Ptr);
434
435  /// Returns true if the value V is uniform within the loop.
436  bool isUniform(Value *V);
437
438  /// Returns true if this instruction will remain scalar after vectorization.
439  bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
440
441  /// Returns the information that we collected about runtime memory check.
442  RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
443private:
444  /// Check if a single basic block loop is vectorizable.
445  /// At this point we know that this is a loop with a constant trip count
446  /// and we only need to check individual instructions.
447  bool canVectorizeInstrs();
448
449  /// When we vectorize loops we may change the order in which
450  /// we read and write from memory. This method checks if it is
451  /// legal to vectorize the code, considering only memory constrains.
452  /// Returns true if the loop is vectorizable
453  bool canVectorizeMemory();
454
455  /// Return true if we can vectorize this loop using the IF-conversion
456  /// transformation.
457  bool canVectorizeWithIfConvert();
458
459  /// Collect the variables that need to stay uniform after vectorization.
460  void collectLoopUniforms();
461
462  /// Return true if all of the instructions in the block can be speculatively
463  /// executed.
464  bool blockCanBePredicated(BasicBlock *BB);
465
466  /// Returns True, if 'Phi' is the kind of reduction variable for type
467  /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
468  bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
469  /// Returns true if the instruction I can be a reduction variable of type
470  /// 'Kind'.
471  bool isReductionInstr(Instruction *I, ReductionKind Kind);
472  /// Returns the induction kind of Phi. This function may return NoInduction
473  /// if the PHI is not an induction variable.
474  InductionKind isInductionVariable(PHINode *Phi);
475  /// Return true if can compute the address bounds of Ptr within the loop.
476  bool hasComputableBounds(Value *Ptr);
477
478  /// The loop that we evaluate.
479  Loop *TheLoop;
480  /// Scev analysis.
481  ScalarEvolution *SE;
482  /// DataLayout analysis.
483  DataLayout *DL;
484  // Dominators.
485  DominatorTree *DT;
486
487  //  ---  vectorization state --- //
488
489  /// Holds the integer induction variable. This is the counter of the
490  /// loop.
491  PHINode *Induction;
492  /// Holds the reduction variables.
493  ReductionList Reductions;
494  /// Holds all of the induction variables that we found in the loop.
495  /// Notice that inductions don't need to start at zero and that induction
496  /// variables can be pointers.
497  InductionList Inductions;
498
499  /// Allowed outside users. This holds the reduction
500  /// vars which can be accessed from outside the loop.
501  SmallPtrSet<Value*, 4> AllowedExit;
502  /// This set holds the variables which are known to be uniform after
503  /// vectorization.
504  SmallPtrSet<Instruction*, 4> Uniforms;
505  /// We need to check that all of the pointers in this list are disjoint
506  /// at runtime.
507  RuntimePointerCheck PtrRtCheck;
508};
509
510/// LoopVectorizationCostModel - estimates the expected speedups due to
511/// vectorization.
512/// In many cases vectorization is not profitable. This can happen because of
513/// a number of reasons. In this class we mainly attempt to predict the
514/// expected speedup/slowdowns due to the supported instruction set. We use the
515/// TargetTransformInfo to query the different backends for the cost of
516/// different operations.
517class LoopVectorizationCostModel {
518public:
519  LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
520                             LoopVectorizationLegality *Legal,
521                             const TargetTransformInfo &TTI,
522                             DataLayout *DL)
523      : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL) {}
524
525  /// Information about vectorization costs
526  struct VectorizationFactor {
527    unsigned Width; // Vector width with best cost
528    unsigned Cost; // Cost of the loop with that width
529  };
530  /// \return The most profitable vectorization factor and the cost of that VF.
531  /// This method checks every power of two up to VF. If UserVF is not ZERO
532  /// then this vectorization factor will be selected if vectorization is
533  /// possible.
534  VectorizationFactor selectVectorizationFactor(bool OptForSize, unsigned UserVF);
535
536  /// \return The size (in bits) of the widest type in the code that
537  /// needs to be vectorized. We ignore values that remain scalar such as
538  /// 64 bit loop indices.
539  unsigned getWidestType();
540
541  /// \return The most profitable unroll factor.
542  /// If UserUF is non-zero then this method finds the best unroll-factor
543  /// based on register pressure and other parameters.
544  /// VF and LoopCost are the selected vectorization factor and the cost of the
545  /// selected VF.
546  unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
547                              unsigned LoopCost);
548
549  /// \brief A struct that represents some properties of the register usage
550  /// of a loop.
551  struct RegisterUsage {
552    /// Holds the number of loop invariant values that are used in the loop.
553    unsigned LoopInvariantRegs;
554    /// Holds the maximum number of concurrent live intervals in the loop.
555    unsigned MaxLocalUsers;
556    /// Holds the number of instructions in the loop.
557    unsigned NumInstructions;
558  };
559
560  /// \return  information about the register usage of the loop.
561  RegisterUsage calculateRegisterUsage();
562
563private:
564  /// Returns the expected execution cost. The unit of the cost does
565  /// not matter because we use the 'cost' units to compare different
566  /// vector widths. The cost that is returned is *not* normalized by
567  /// the factor width.
568  unsigned expectedCost(unsigned VF);
569
570  /// Returns the execution time cost of an instruction for a given vector
571  /// width. Vector width of one means scalar.
572  unsigned getInstructionCost(Instruction *I, unsigned VF);
573
574  /// A helper function for converting Scalar types to vector types.
575  /// If the incoming type is void, we return void. If the VF is 1, we return
576  /// the scalar type.
577  static Type* ToVectorTy(Type *Scalar, unsigned VF);
578
579  /// Returns whether the instruction is a load or store and will be a emitted
580  /// as a vector operation.
581  bool isConsecutiveLoadOrStore(Instruction *I);
582
583  /// The loop that we evaluate.
584  Loop *TheLoop;
585  /// Scev analysis.
586  ScalarEvolution *SE;
587  /// Loop Info analysis.
588  LoopInfo *LI;
589  /// Vectorization legality.
590  LoopVectorizationLegality *Legal;
591  /// Vector target information.
592  const TargetTransformInfo &TTI;
593  /// Target data layout information.
594  DataLayout *DL;
595};
596
597/// The LoopVectorize Pass.
598struct LoopVectorize : public LoopPass {
599  /// Pass identification, replacement for typeid
600  static char ID;
601
602  explicit LoopVectorize() : LoopPass(ID) {
603    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
604  }
605
606  ScalarEvolution *SE;
607  DataLayout *DL;
608  LoopInfo *LI;
609  TargetTransformInfo *TTI;
610  DominatorTree *DT;
611
612  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
613    // We only vectorize innermost loops.
614    if (!L->empty())
615      return false;
616
617    SE = &getAnalysis<ScalarEvolution>();
618    DL = getAnalysisIfAvailable<DataLayout>();
619    LI = &getAnalysis<LoopInfo>();
620    TTI = &getAnalysis<TargetTransformInfo>();
621    DT = &getAnalysis<DominatorTree>();
622
623    DEBUG(dbgs() << "LV: Checking a loop in \"" <<
624          L->getHeader()->getParent()->getName() << "\"\n");
625
626    // Check if it is legal to vectorize the loop.
627    LoopVectorizationLegality LVL(L, SE, DL, DT);
628    if (!LVL.canVectorize()) {
629      DEBUG(dbgs() << "LV: Not vectorizing.\n");
630      return false;
631    }
632
633    // Use the cost model.
634    LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL);
635
636    // Check the function attribues to find out if this function should be
637    // optimized for size.
638    Function *F = L->getHeader()->getParent();
639    Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
640    Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
641    unsigned FnIndex = AttributeSet::FunctionIndex;
642    bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
643    bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
644
645    if (NoFloat) {
646      DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
647            "attribute is used.\n");
648      return false;
649    }
650
651    // Select the optimal vectorization factor.
652    LoopVectorizationCostModel::VectorizationFactor VF;
653    VF = CM.selectVectorizationFactor(OptForSize, VectorizationFactor);
654    // Select the unroll factor.
655    unsigned UF = CM.selectUnrollFactor(OptForSize, VectorizationUnroll,
656                                        VF.Width, VF.Cost);
657
658    if (VF.Width == 1) {
659      DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
660      return false;
661    }
662
663    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
664          F->getParent()->getModuleIdentifier()<<"\n");
665    DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
666
667    // If we decided that it is *legal* to vectorizer the loop then do it.
668    InnerLoopVectorizer LB(L, SE, LI, DT, DL, VF.Width, UF);
669    LB.vectorize(&LVL);
670
671    DEBUG(verifyFunction(*L->getHeader()->getParent()));
672    return true;
673  }
674
675  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
676    LoopPass::getAnalysisUsage(AU);
677    AU.addRequiredID(LoopSimplifyID);
678    AU.addRequiredID(LCSSAID);
679    AU.addRequired<DominatorTree>();
680    AU.addRequired<LoopInfo>();
681    AU.addRequired<ScalarEvolution>();
682    AU.addRequired<TargetTransformInfo>();
683    AU.addPreserved<LoopInfo>();
684    AU.addPreserved<DominatorTree>();
685  }
686
687};
688
689} // end anonymous namespace
690
691//===----------------------------------------------------------------------===//
692// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
693// LoopVectorizationCostModel.
694//===----------------------------------------------------------------------===//
695
696void
697LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
698                                                       Loop *Lp, Value *Ptr) {
699  const SCEV *Sc = SE->getSCEV(Ptr);
700  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
701  assert(AR && "Invalid addrec expression");
702  const SCEV *Ex = SE->getExitCount(Lp, Lp->getLoopLatch());
703  const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
704  Pointers.push_back(Ptr);
705  Starts.push_back(AR->getStart());
706  Ends.push_back(ScEnd);
707}
708
709Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
710  // Save the current insertion location.
711  Instruction *Loc = Builder.GetInsertPoint();
712
713  // We need to place the broadcast of invariant variables outside the loop.
714  Instruction *Instr = dyn_cast<Instruction>(V);
715  bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
716  bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
717
718  // Place the code for broadcasting invariant variables in the new preheader.
719  if (Invariant)
720    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
721
722  // Broadcast the scalar into all locations in the vector.
723  Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
724
725  // Restore the builder insertion point.
726  if (Invariant)
727    Builder.SetInsertPoint(Loc);
728
729  return Shuf;
730}
731
732Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, unsigned StartIdx,
733                                                 bool Negate) {
734  assert(Val->getType()->isVectorTy() && "Must be a vector");
735  assert(Val->getType()->getScalarType()->isIntegerTy() &&
736         "Elem must be an integer");
737  // Create the types.
738  Type *ITy = Val->getType()->getScalarType();
739  VectorType *Ty = cast<VectorType>(Val->getType());
740  int VLen = Ty->getNumElements();
741  SmallVector<Constant*, 8> Indices;
742
743  // Create a vector of consecutive numbers from zero to VF.
744  for (int i = 0; i < VLen; ++i) {
745    int Idx = Negate ? (-i): i;
746    Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx));
747  }
748
749  // Add the consecutive indices to the vector value.
750  Constant *Cv = ConstantVector::get(Indices);
751  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
752  return Builder.CreateAdd(Val, Cv, "induction");
753}
754
755int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
756  assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
757  // Make sure that the pointer does not point to structs.
758  if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType())
759    return 0;
760
761  // If this value is a pointer induction variable we know it is consecutive.
762  PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
763  if (Phi && Inductions.count(Phi)) {
764    InductionInfo II = Inductions[Phi];
765    if (IK_PtrInduction == II.IK)
766      return 1;
767    else if (IK_ReversePtrInduction == II.IK)
768      return -1;
769  }
770
771  GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
772  if (!Gep)
773    return 0;
774
775  unsigned NumOperands = Gep->getNumOperands();
776  Value *LastIndex = Gep->getOperand(NumOperands - 1);
777
778  Value *GpPtr = Gep->getPointerOperand();
779  // If this GEP value is a consecutive pointer induction variable and all of
780  // the indices are constant then we know it is consecutive. We can
781  Phi = dyn_cast<PHINode>(GpPtr);
782  if (Phi && Inductions.count(Phi)) {
783
784    // Make sure that the pointer does not point to structs.
785    PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
786    if (GepPtrType->getElementType()->isAggregateType())
787      return 0;
788
789    // Make sure that all of the index operands are loop invariant.
790    for (unsigned i = 1; i < NumOperands; ++i)
791      if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
792        return 0;
793
794    InductionInfo II = Inductions[Phi];
795    if (IK_PtrInduction == II.IK)
796      return 1;
797    else if (IK_ReversePtrInduction == II.IK)
798      return -1;
799  }
800
801  // Check that all of the gep indices are uniform except for the last.
802  for (unsigned i = 0; i < NumOperands - 1; ++i)
803    if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
804      return 0;
805
806  // We can emit wide load/stores only if the last index is the induction
807  // variable.
808  const SCEV *Last = SE->getSCEV(LastIndex);
809  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
810    const SCEV *Step = AR->getStepRecurrence(*SE);
811
812    // The memory is consecutive because the last index is consecutive
813    // and all other indices are loop invariant.
814    if (Step->isOne())
815      return 1;
816    if (Step->isAllOnesValue())
817      return -1;
818  }
819
820  return 0;
821}
822
823bool LoopVectorizationLegality::isUniform(Value *V) {
824  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
825}
826
827InnerLoopVectorizer::VectorParts&
828InnerLoopVectorizer::getVectorValue(Value *V) {
829  assert(V != Induction && "The new induction variable should not be used.");
830  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
831
832  // If we have this scalar in the map, return it.
833  if (WidenMap.has(V))
834    return WidenMap.get(V);
835
836  // If this scalar is unknown, assume that it is a constant or that it is
837  // loop invariant. Broadcast V and save the value for future uses.
838  Value *B = getBroadcastInstrs(V);
839  return WidenMap.splat(V, B);
840}
841
842Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
843  assert(Vec->getType()->isVectorTy() && "Invalid type");
844  SmallVector<Constant*, 8> ShuffleMask;
845  for (unsigned i = 0; i < VF; ++i)
846    ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
847
848  return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
849                                     ConstantVector::get(ShuffleMask),
850                                     "reverse");
851}
852
853
854void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
855                                             LoopVectorizationLegality *Legal) {
856  // Attempt to issue a wide load.
857  LoadInst *LI = dyn_cast<LoadInst>(Instr);
858  StoreInst *SI = dyn_cast<StoreInst>(Instr);
859
860  assert((LI || SI) && "Invalid Load/Store instruction");
861
862  Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
863  Type *DataTy = VectorType::get(ScalarDataTy, VF);
864  Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
865  unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
866
867  // If the pointer is loop invariant or if it is non consecutive,
868  // scalarize the load.
869  int Stride = Legal->isConsecutivePtr(Ptr);
870  bool Reverse = Stride < 0;
871  bool UniformLoad = LI && Legal->isUniform(Ptr);
872  if (Stride == 0 || UniformLoad)
873    return scalarizeInstruction(Instr);
874
875  Constant *Zero = Builder.getInt32(0);
876  VectorParts &Entry = WidenMap.get(Instr);
877
878  // Handle consecutive loads/stores.
879  GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
880  if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
881    Value *PtrOperand = Gep->getPointerOperand();
882    Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
883    FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
884
885    // Create the new GEP with the new induction variable.
886    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
887    Gep2->setOperand(0, FirstBasePtr);
888    Gep2->setName("gep.indvar.base");
889    Ptr = Builder.Insert(Gep2);
890  } else if (Gep) {
891    assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
892                               OrigLoop) && "Base ptr must be invariant");
893
894    // The last index does not have to be the induction. It can be
895    // consecutive and be a function of the index. For example A[I+1];
896    unsigned NumOperands = Gep->getNumOperands();
897
898    Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
899    VectorParts &GEPParts = getVectorValue(LastGepOperand);
900    Value *LastIndex = GEPParts[0];
901    LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
902
903    // Create the new GEP with the new induction variable.
904    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
905    Gep2->setOperand(NumOperands - 1, LastIndex);
906    Gep2->setName("gep.indvar.idx");
907    Ptr = Builder.Insert(Gep2);
908  } else {
909    // Use the induction element ptr.
910    assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
911    VectorParts &PtrVal = getVectorValue(Ptr);
912    Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
913  }
914
915  // Handle Stores:
916  if (SI) {
917    assert(!Legal->isUniform(SI->getPointerOperand()) &&
918           "We do not allow storing to uniform addresses");
919
920    VectorParts &StoredVal = getVectorValue(SI->getValueOperand());
921    for (unsigned Part = 0; Part < UF; ++Part) {
922      // Calculate the pointer for the specific unroll-part.
923      Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
924
925      if (Reverse) {
926        // If we store to reverse consecutive memory locations then we need
927        // to reverse the order of elements in the stored value.
928        StoredVal[Part] = reverseVector(StoredVal[Part]);
929        // If the address is consecutive but reversed, then the
930        // wide store needs to start at the last vector element.
931        PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
932        PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
933      }
934
935      Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo());
936      Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
937    }
938  }
939
940  for (unsigned Part = 0; Part < UF; ++Part) {
941    // Calculate the pointer for the specific unroll-part.
942    Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
943
944    if (Reverse) {
945      // If the address is consecutive but reversed, then the
946      // wide store needs to start at the last vector element.
947      PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
948      PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
949    }
950
951    Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo());
952    Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
953    cast<LoadInst>(LI)->setAlignment(Alignment);
954    Entry[Part] = Reverse ? reverseVector(LI) :  LI;
955  }
956}
957
958void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
959  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
960  // Holds vector parameters or scalars, in case of uniform vals.
961  SmallVector<VectorParts, 4> Params;
962
963  // Find all of the vectorized parameters.
964  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
965    Value *SrcOp = Instr->getOperand(op);
966
967    // If we are accessing the old induction variable, use the new one.
968    if (SrcOp == OldInduction) {
969      Params.push_back(getVectorValue(SrcOp));
970      continue;
971    }
972
973    // Try using previously calculated values.
974    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
975
976    // If the src is an instruction that appeared earlier in the basic block
977    // then it should already be vectorized.
978    if (SrcInst && OrigLoop->contains(SrcInst)) {
979      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
980      // The parameter is a vector value from earlier.
981      Params.push_back(WidenMap.get(SrcInst));
982    } else {
983      // The parameter is a scalar from outside the loop. Maybe even a constant.
984      VectorParts Scalars;
985      Scalars.append(UF, SrcOp);
986      Params.push_back(Scalars);
987    }
988  }
989
990  assert(Params.size() == Instr->getNumOperands() &&
991         "Invalid number of operands");
992
993  // Does this instruction return a value ?
994  bool IsVoidRetTy = Instr->getType()->isVoidTy();
995
996  Value *UndefVec = IsVoidRetTy ? 0 :
997    UndefValue::get(VectorType::get(Instr->getType(), VF));
998  // Create a new entry in the WidenMap and initialize it to Undef or Null.
999  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1000
1001  // For each scalar that we create:
1002  for (unsigned Width = 0; Width < VF; ++Width) {
1003    // For each vector unroll 'part':
1004    for (unsigned Part = 0; Part < UF; ++Part) {
1005      Instruction *Cloned = Instr->clone();
1006      if (!IsVoidRetTy)
1007        Cloned->setName(Instr->getName() + ".cloned");
1008      // Replace the operands of the cloned instrucions with extracted scalars.
1009      for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1010        Value *Op = Params[op][Part];
1011        // Param is a vector. Need to extract the right lane.
1012        if (Op->getType()->isVectorTy())
1013          Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
1014        Cloned->setOperand(op, Op);
1015      }
1016
1017      // Place the cloned scalar in the new loop.
1018      Builder.Insert(Cloned);
1019
1020      // If the original scalar returns a value we need to place it in a vector
1021      // so that future users will be able to use it.
1022      if (!IsVoidRetTy)
1023        VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
1024                                                       Builder.getInt32(Width));
1025    }
1026  }
1027}
1028
1029Instruction *
1030InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
1031                                     Instruction *Loc) {
1032  LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
1033  Legal->getRuntimePointerCheck();
1034
1035  if (!PtrRtCheck->Need)
1036    return NULL;
1037
1038  Instruction *MemoryRuntimeCheck = 0;
1039  unsigned NumPointers = PtrRtCheck->Pointers.size();
1040  SmallVector<Value* , 2> Starts;
1041  SmallVector<Value* , 2> Ends;
1042
1043  SCEVExpander Exp(*SE, "induction");
1044
1045  // Use this type for pointer arithmetic.
1046  Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0);
1047
1048  for (unsigned i = 0; i < NumPointers; ++i) {
1049    Value *Ptr = PtrRtCheck->Pointers[i];
1050    const SCEV *Sc = SE->getSCEV(Ptr);
1051
1052    if (SE->isLoopInvariant(Sc, OrigLoop)) {
1053      DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
1054            *Ptr <<"\n");
1055      Starts.push_back(Ptr);
1056      Ends.push_back(Ptr);
1057    } else {
1058      DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
1059
1060      Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
1061      Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
1062      Starts.push_back(Start);
1063      Ends.push_back(End);
1064    }
1065  }
1066
1067  IRBuilder<> ChkBuilder(Loc);
1068
1069  for (unsigned i = 0; i < NumPointers; ++i) {
1070    for (unsigned j = i+1; j < NumPointers; ++j) {
1071      Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy, "bc");
1072      Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy, "bc");
1073      Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy, "bc");
1074      Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy, "bc");
1075
1076      Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1077      Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1078      Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1079      if (MemoryRuntimeCheck)
1080        IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1081                                         "conflict.rdx");
1082
1083      MemoryRuntimeCheck = cast<Instruction>(IsConflict);
1084    }
1085  }
1086
1087  return MemoryRuntimeCheck;
1088}
1089
1090void
1091InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
1092  /*
1093   In this function we generate a new loop. The new loop will contain
1094   the vectorized instructions while the old loop will continue to run the
1095   scalar remainder.
1096
1097       [ ] <-- vector loop bypass (may consist of multiple blocks).
1098     /  |
1099    /   v
1100   |   [ ]     <-- vector pre header.
1101   |    |
1102   |    v
1103   |   [  ] \
1104   |   [  ]_|   <-- vector loop.
1105   |    |
1106    \   v
1107      >[ ]   <--- middle-block.
1108     /  |
1109    /   v
1110   |   [ ]     <--- new preheader.
1111   |    |
1112   |    v
1113   |   [ ] \
1114   |   [ ]_|   <-- old scalar loop to handle remainder.
1115    \   |
1116     \  v
1117      >[ ]     <-- exit block.
1118   ...
1119   */
1120
1121  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
1122  BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
1123  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
1124  assert(ExitBlock && "Must have an exit block");
1125
1126  // Some loops have a single integer induction variable, while other loops
1127  // don't. One example is c++ iterators that often have multiple pointer
1128  // induction variables. In the code below we also support a case where we
1129  // don't have a single induction variable.
1130  OldInduction = Legal->getInduction();
1131  Type *IdxTy = OldInduction ? OldInduction->getType() :
1132  DL->getIntPtrType(SE->getContext());
1133
1134  // Find the loop boundaries.
1135  const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getLoopLatch());
1136  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
1137
1138  // Get the total trip count from the count by adding 1.
1139  ExitCount = SE->getAddExpr(ExitCount,
1140                             SE->getConstant(ExitCount->getType(), 1));
1141
1142  // Expand the trip count and place the new instructions in the preheader.
1143  // Notice that the pre-header does not change, only the loop body.
1144  SCEVExpander Exp(*SE, "induction");
1145
1146  // Count holds the overall loop count (N).
1147  Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
1148                                   BypassBlock->getTerminator());
1149
1150  // The loop index does not have to start at Zero. Find the original start
1151  // value from the induction PHI node. If we don't have an induction variable
1152  // then we know that it starts at zero.
1153  Value *StartIdx = OldInduction ?
1154  OldInduction->getIncomingValueForBlock(BypassBlock):
1155  ConstantInt::get(IdxTy, 0);
1156
1157  assert(BypassBlock && "Invalid loop structure");
1158  LoopBypassBlocks.push_back(BypassBlock);
1159
1160  // Split the single block loop into the two loop structure described above.
1161  BasicBlock *VectorPH =
1162  BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
1163  BasicBlock *VecBody =
1164  VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
1165  BasicBlock *MiddleBlock =
1166  VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
1167  BasicBlock *ScalarPH =
1168  MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
1169
1170  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
1171  // inside the loop.
1172  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1173
1174  // Generate the induction variable.
1175  Induction = Builder.CreatePHI(IdxTy, 2, "index");
1176  // The loop step is equal to the vectorization factor (num of SIMD elements)
1177  // times the unroll factor (num of SIMD instructions).
1178  Constant *Step = ConstantInt::get(IdxTy, VF * UF);
1179
1180  // This is the IR builder that we use to add all of the logic for bypassing
1181  // the new vector loop.
1182  IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
1183
1184  // We may need to extend the index in case there is a type mismatch.
1185  // We know that the count starts at zero and does not overflow.
1186  if (Count->getType() != IdxTy) {
1187    // The exit count can be of pointer type. Convert it to the correct
1188    // integer type.
1189    if (ExitCount->getType()->isPointerTy())
1190      Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
1191    else
1192      Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
1193  }
1194
1195  // Add the start index to the loop count to get the new end index.
1196  Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
1197
1198  // Now we need to generate the expression for N - (N % VF), which is
1199  // the part that the vectorized body will execute.
1200  Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
1201  Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
1202  Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
1203                                                     "end.idx.rnd.down");
1204
1205  // Now, compare the new count to zero. If it is zero skip the vector loop and
1206  // jump to the scalar loop.
1207  Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
1208                                          "cmp.zero");
1209
1210  BasicBlock *LastBypassBlock = BypassBlock;
1211
1212  // Generate the code that checks in runtime if arrays overlap. We put the
1213  // checks into a separate block to make the more common case of few elements
1214  // faster.
1215  Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
1216                                                 BypassBlock->getTerminator());
1217  if (MemRuntimeCheck) {
1218    // Create a new block containing the memory check.
1219    BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
1220                                                          "vector.memcheck");
1221    LoopBypassBlocks.push_back(CheckBlock);
1222
1223    // Replace the branch into the memory check block with a conditional branch
1224    // for the "few elements case".
1225    Instruction *OldTerm = BypassBlock->getTerminator();
1226    BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
1227    OldTerm->eraseFromParent();
1228
1229    Cmp = MemRuntimeCheck;
1230    LastBypassBlock = CheckBlock;
1231  }
1232
1233  LastBypassBlock->getTerminator()->eraseFromParent();
1234  BranchInst::Create(MiddleBlock, VectorPH, Cmp,
1235                     LastBypassBlock);
1236
1237  // We are going to resume the execution of the scalar loop.
1238  // Go over all of the induction variables that we found and fix the
1239  // PHIs that are left in the scalar version of the loop.
1240  // The starting values of PHI nodes depend on the counter of the last
1241  // iteration in the vectorized loop.
1242  // If we come from a bypass edge then we need to start from the original
1243  // start value.
1244
1245  // This variable saves the new starting index for the scalar loop.
1246  PHINode *ResumeIndex = 0;
1247  LoopVectorizationLegality::InductionList::iterator I, E;
1248  LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
1249  for (I = List->begin(), E = List->end(); I != E; ++I) {
1250    PHINode *OrigPhi = I->first;
1251    LoopVectorizationLegality::InductionInfo II = I->second;
1252    PHINode *ResumeVal = PHINode::Create(OrigPhi->getType(), 2, "resume.val",
1253                                         MiddleBlock->getTerminator());
1254    Value *EndValue = 0;
1255    switch (II.IK) {
1256    case LoopVectorizationLegality::IK_NoInduction:
1257      llvm_unreachable("Unknown induction");
1258    case LoopVectorizationLegality::IK_IntInduction: {
1259      // Handle the integer induction counter:
1260      assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
1261      assert(OrigPhi == OldInduction && "Unknown integer PHI");
1262      // We know what the end value is.
1263      EndValue = IdxEndRoundDown;
1264      // We also know which PHI node holds it.
1265      ResumeIndex = ResumeVal;
1266      break;
1267    }
1268    case LoopVectorizationLegality::IK_ReverseIntInduction: {
1269      // Convert the CountRoundDown variable to the PHI size.
1270      unsigned CRDSize = CountRoundDown->getType()->getScalarSizeInBits();
1271      unsigned IISize = II.StartValue->getType()->getScalarSizeInBits();
1272      Value *CRD = CountRoundDown;
1273      if (CRDSize > IISize)
1274        CRD = CastInst::Create(Instruction::Trunc, CountRoundDown,
1275                               II.StartValue->getType(), "tr.crd",
1276                               LoopBypassBlocks.back()->getTerminator());
1277      else if (CRDSize < IISize)
1278        CRD = CastInst::Create(Instruction::SExt, CountRoundDown,
1279                               II.StartValue->getType(),
1280                               "sext.crd",
1281                               LoopBypassBlocks.back()->getTerminator());
1282      // Handle reverse integer induction counter:
1283      EndValue =
1284        BinaryOperator::CreateSub(II.StartValue, CRD, "rev.ind.end",
1285                                  LoopBypassBlocks.back()->getTerminator());
1286      break;
1287    }
1288    case LoopVectorizationLegality::IK_PtrInduction: {
1289      // For pointer induction variables, calculate the offset using
1290      // the end index.
1291      EndValue =
1292        GetElementPtrInst::Create(II.StartValue, CountRoundDown, "ptr.ind.end",
1293                                  LoopBypassBlocks.back()->getTerminator());
1294      break;
1295    }
1296    case LoopVectorizationLegality::IK_ReversePtrInduction: {
1297      // The value at the end of the loop for the reverse pointer is calculated
1298      // by creating a GEP with a negative index starting from the start value.
1299      Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
1300      Value *NegIdx = BinaryOperator::CreateSub(Zero, CountRoundDown,
1301                                  "rev.ind.end",
1302                                  LoopBypassBlocks.back()->getTerminator());
1303      EndValue = GetElementPtrInst::Create(II.StartValue, NegIdx,
1304                                  "rev.ptr.ind.end",
1305                                  LoopBypassBlocks.back()->getTerminator());
1306      break;
1307    }
1308    }// end of case
1309
1310    // The new PHI merges the original incoming value, in case of a bypass,
1311    // or the value at the end of the vectorized loop.
1312    for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1313      ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1314    ResumeVal->addIncoming(EndValue, VecBody);
1315
1316    // Fix the scalar body counter (PHI node).
1317    unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
1318    OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
1319  }
1320
1321  // If we are generating a new induction variable then we also need to
1322  // generate the code that calculates the exit value. This value is not
1323  // simply the end of the counter because we may skip the vectorized body
1324  // in case of a runtime check.
1325  if (!OldInduction){
1326    assert(!ResumeIndex && "Unexpected resume value found");
1327    ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
1328                                  MiddleBlock->getTerminator());
1329    for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1330      ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
1331    ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
1332  }
1333
1334  // Make sure that we found the index where scalar loop needs to continue.
1335  assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
1336         "Invalid resume Index");
1337
1338  // Add a check in the middle block to see if we have completed
1339  // all of the iterations in the first vector loop.
1340  // If (N - N%VF) == N, then we *don't* need to run the remainder.
1341  Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
1342                                ResumeIndex, "cmp.n",
1343                                MiddleBlock->getTerminator());
1344
1345  BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
1346  // Remove the old terminator.
1347  MiddleBlock->getTerminator()->eraseFromParent();
1348
1349  // Create i+1 and fill the PHINode.
1350  Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
1351  Induction->addIncoming(StartIdx, VectorPH);
1352  Induction->addIncoming(NextIdx, VecBody);
1353  // Create the compare.
1354  Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
1355  Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
1356
1357  // Now we have two terminators. Remove the old one from the block.
1358  VecBody->getTerminator()->eraseFromParent();
1359
1360  // Get ready to start creating new instructions into the vectorized body.
1361  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1362
1363  // Create and register the new vector loop.
1364  Loop* Lp = new Loop();
1365  Loop *ParentLoop = OrigLoop->getParentLoop();
1366
1367  // Insert the new loop into the loop nest and register the new basic blocks.
1368  if (ParentLoop) {
1369    ParentLoop->addChildLoop(Lp);
1370    for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
1371      ParentLoop->addBasicBlockToLoop(LoopBypassBlocks[I], LI->getBase());
1372    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
1373    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
1374    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
1375  } else {
1376    LI->addTopLevelLoop(Lp);
1377  }
1378
1379  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
1380
1381  // Save the state.
1382  LoopVectorPreHeader = VectorPH;
1383  LoopScalarPreHeader = ScalarPH;
1384  LoopMiddleBlock = MiddleBlock;
1385  LoopExitBlock = ExitBlock;
1386  LoopVectorBody = VecBody;
1387  LoopScalarBody = OldBasicBlock;
1388}
1389
1390/// This function returns the identity element (or neutral element) for
1391/// the operation K.
1392static Constant*
1393getReductionIdentity(LoopVectorizationLegality::ReductionKind K, Type *Tp) {
1394  switch (K) {
1395  case LoopVectorizationLegality:: RK_IntegerXor:
1396  case LoopVectorizationLegality:: RK_IntegerAdd:
1397  case LoopVectorizationLegality:: RK_IntegerOr:
1398    // Adding, Xoring, Oring zero to a number does not change it.
1399    return ConstantInt::get(Tp, 0);
1400  case LoopVectorizationLegality:: RK_IntegerMult:
1401    // Multiplying a number by 1 does not change it.
1402    return ConstantInt::get(Tp, 1);
1403  case LoopVectorizationLegality:: RK_IntegerAnd:
1404    // AND-ing a number with an all-1 value does not change it.
1405    return ConstantInt::get(Tp, -1, true);
1406  case LoopVectorizationLegality:: RK_FloatMult:
1407    // Multiplying a number by 1 does not change it.
1408    return ConstantFP::get(Tp, 1.0L);
1409  case LoopVectorizationLegality:: RK_FloatAdd:
1410    // Adding zero to a number does not change it.
1411    return ConstantFP::get(Tp, 0.0L);
1412  default:
1413    llvm_unreachable("Unknown reduction kind");
1414  }
1415}
1416
1417static bool
1418isTriviallyVectorizableIntrinsic(Instruction *Inst) {
1419  IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
1420  if (!II)
1421    return false;
1422  switch (II->getIntrinsicID()) {
1423  case Intrinsic::sqrt:
1424  case Intrinsic::sin:
1425  case Intrinsic::cos:
1426  case Intrinsic::exp:
1427  case Intrinsic::exp2:
1428  case Intrinsic::log:
1429  case Intrinsic::log10:
1430  case Intrinsic::log2:
1431  case Intrinsic::fabs:
1432  case Intrinsic::floor:
1433  case Intrinsic::ceil:
1434  case Intrinsic::trunc:
1435  case Intrinsic::rint:
1436  case Intrinsic::nearbyint:
1437  case Intrinsic::pow:
1438  case Intrinsic::fma:
1439  case Intrinsic::fmuladd:
1440    return true;
1441  default:
1442    return false;
1443  }
1444  return false;
1445}
1446
1447/// This function translates the reduction kind to an LLVM binary operator.
1448static Instruction::BinaryOps
1449getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
1450  switch (Kind) {
1451    case LoopVectorizationLegality::RK_IntegerAdd:
1452      return Instruction::Add;
1453    case LoopVectorizationLegality::RK_IntegerMult:
1454      return Instruction::Mul;
1455    case LoopVectorizationLegality::RK_IntegerOr:
1456      return Instruction::Or;
1457    case LoopVectorizationLegality::RK_IntegerAnd:
1458      return Instruction::And;
1459    case LoopVectorizationLegality::RK_IntegerXor:
1460      return Instruction::Xor;
1461    case LoopVectorizationLegality::RK_FloatMult:
1462      return Instruction::FMul;
1463    case LoopVectorizationLegality::RK_FloatAdd:
1464      return Instruction::FAdd;
1465    default:
1466      llvm_unreachable("Unknown reduction operation");
1467  }
1468}
1469
1470void
1471InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
1472  //===------------------------------------------------===//
1473  //
1474  // Notice: any optimization or new instruction that go
1475  // into the code below should be also be implemented in
1476  // the cost-model.
1477  //
1478  //===------------------------------------------------===//
1479  Constant *Zero = Builder.getInt32(0);
1480
1481  // In order to support reduction variables we need to be able to vectorize
1482  // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
1483  // stages. First, we create a new vector PHI node with no incoming edges.
1484  // We use this value when we vectorize all of the instructions that use the
1485  // PHI. Next, after all of the instructions in the block are complete we
1486  // add the new incoming edges to the PHI. At this point all of the
1487  // instructions in the basic block are vectorized, so we can use them to
1488  // construct the PHI.
1489  PhiVector RdxPHIsToFix;
1490
1491  // Scan the loop in a topological order to ensure that defs are vectorized
1492  // before users.
1493  LoopBlocksDFS DFS(OrigLoop);
1494  DFS.perform(LI);
1495
1496  // Vectorize all of the blocks in the original loop.
1497  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
1498       be = DFS.endRPO(); bb != be; ++bb)
1499    vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
1500
1501  // At this point every instruction in the original loop is widened to
1502  // a vector form. We are almost done. Now, we need to fix the PHI nodes
1503  // that we vectorized. The PHI nodes are currently empty because we did
1504  // not want to introduce cycles. Notice that the remaining PHI nodes
1505  // that we need to fix are reduction variables.
1506
1507  // Create the 'reduced' values for each of the induction vars.
1508  // The reduced values are the vector values that we scalarize and combine
1509  // after the loop is finished.
1510  for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
1511       it != e; ++it) {
1512    PHINode *RdxPhi = *it;
1513    assert(RdxPhi && "Unable to recover vectorized PHI");
1514
1515    // Find the reduction variable descriptor.
1516    assert(Legal->getReductionVars()->count(RdxPhi) &&
1517           "Unable to find the reduction variable");
1518    LoopVectorizationLegality::ReductionDescriptor RdxDesc =
1519    (*Legal->getReductionVars())[RdxPhi];
1520
1521    // We need to generate a reduction vector from the incoming scalar.
1522    // To do so, we need to generate the 'identity' vector and overide
1523    // one of the elements with the incoming scalar reduction. We need
1524    // to do it in the vector-loop preheader.
1525    Builder.SetInsertPoint(LoopBypassBlocks.back()->getTerminator());
1526
1527    // This is the vector-clone of the value that leaves the loop.
1528    VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
1529    Type *VecTy = VectorExit[0]->getType();
1530
1531    // Find the reduction identity variable. Zero for addition, or, xor,
1532    // one for multiplication, -1 for And.
1533    Constant *Iden = getReductionIdentity(RdxDesc.Kind, VecTy->getScalarType());
1534    Constant *Identity = ConstantVector::getSplat(VF, Iden);
1535
1536    // This vector is the Identity vector where the first element is the
1537    // incoming scalar reduction.
1538    Value *VectorStart = Builder.CreateInsertElement(Identity,
1539                                                     RdxDesc.StartValue, Zero);
1540
1541    // Fix the vector-loop phi.
1542    // We created the induction variable so we know that the
1543    // preheader is the first entry.
1544    BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
1545
1546    // Reductions do not have to start at zero. They can start with
1547    // any loop invariant values.
1548    VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
1549    BasicBlock *Latch = OrigLoop->getLoopLatch();
1550    Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
1551    VectorParts &Val = getVectorValue(LoopVal);
1552    for (unsigned part = 0; part < UF; ++part) {
1553      // Make sure to add the reduction stat value only to the
1554      // first unroll part.
1555      Value *StartVal = (part == 0) ? VectorStart : Identity;
1556      cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
1557      cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
1558    }
1559
1560    // Before each round, move the insertion point right between
1561    // the PHIs and the values we are going to write.
1562    // This allows us to write both PHINodes and the extractelement
1563    // instructions.
1564    Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
1565
1566    VectorParts RdxParts;
1567    for (unsigned part = 0; part < UF; ++part) {
1568      // This PHINode contains the vectorized reduction variable, or
1569      // the initial value vector, if we bypass the vector loop.
1570      VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
1571      PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
1572      Value *StartVal = (part == 0) ? VectorStart : Identity;
1573      for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1574        NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
1575      NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
1576      RdxParts.push_back(NewPhi);
1577    }
1578
1579    // Reduce all of the unrolled parts into a single vector.
1580    Value *ReducedPartRdx = RdxParts[0];
1581    for (unsigned part = 1; part < UF; ++part) {
1582      Instruction::BinaryOps Op = getReductionBinOp(RdxDesc.Kind);
1583      ReducedPartRdx = Builder.CreateBinOp(Op, RdxParts[part], ReducedPartRdx,
1584                                           "bin.rdx");
1585    }
1586
1587    // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1588    // and vector ops, reducing the set of values being computed by half each
1589    // round.
1590    assert(isPowerOf2_32(VF) &&
1591           "Reduction emission only supported for pow2 vectors!");
1592    Value *TmpVec = ReducedPartRdx;
1593    SmallVector<Constant*, 32> ShuffleMask(VF, 0);
1594    for (unsigned i = VF; i != 1; i >>= 1) {
1595      // Move the upper half of the vector to the lower half.
1596      for (unsigned j = 0; j != i/2; ++j)
1597        ShuffleMask[j] = Builder.getInt32(i/2 + j);
1598
1599      // Fill the rest of the mask with undef.
1600      std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
1601                UndefValue::get(Builder.getInt32Ty()));
1602
1603      Value *Shuf =
1604        Builder.CreateShuffleVector(TmpVec,
1605                                    UndefValue::get(TmpVec->getType()),
1606                                    ConstantVector::get(ShuffleMask),
1607                                    "rdx.shuf");
1608
1609      Instruction::BinaryOps Op = getReductionBinOp(RdxDesc.Kind);
1610      TmpVec = Builder.CreateBinOp(Op, TmpVec, Shuf, "bin.rdx");
1611    }
1612
1613    // The result is in the first element of the vector.
1614    Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1615
1616    // Now, we need to fix the users of the reduction variable
1617    // inside and outside of the scalar remainder loop.
1618    // We know that the loop is in LCSSA form. We need to update the
1619    // PHI nodes in the exit blocks.
1620    for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
1621         LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
1622      PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
1623      if (!LCSSAPhi) continue;
1624
1625      // All PHINodes need to have a single entry edge, or two if
1626      // we already fixed them.
1627      assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
1628
1629      // We found our reduction value exit-PHI. Update it with the
1630      // incoming bypass edge.
1631      if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
1632        // Add an edge coming from the bypass.
1633        LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
1634        break;
1635      }
1636    }// end of the LCSSA phi scan.
1637
1638    // Fix the scalar loop reduction variable with the incoming reduction sum
1639    // from the vector body and from the backedge value.
1640    int IncomingEdgeBlockIdx =
1641    (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
1642    assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
1643    // Pick the other block.
1644    int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
1645    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
1646    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
1647  }// end of for each redux variable.
1648
1649  // The Loop exit block may have single value PHI nodes where the incoming
1650  // value is 'undef'. While vectorizing we only handled real values that
1651  // were defined inside the loop. Here we handle the 'undef case'.
1652  // See PR14725.
1653  for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
1654       LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
1655    PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
1656    if (!LCSSAPhi) continue;
1657    if (LCSSAPhi->getNumIncomingValues() == 1)
1658      LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
1659                            LoopMiddleBlock);
1660  }
1661}
1662
1663InnerLoopVectorizer::VectorParts
1664InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
1665  assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
1666         "Invalid edge");
1667
1668  VectorParts SrcMask = createBlockInMask(Src);
1669
1670  // The terminator has to be a branch inst!
1671  BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
1672  assert(BI && "Unexpected terminator found");
1673
1674  if (BI->isConditional()) {
1675    VectorParts EdgeMask = getVectorValue(BI->getCondition());
1676
1677    if (BI->getSuccessor(0) != Dst)
1678      for (unsigned part = 0; part < UF; ++part)
1679        EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
1680
1681    for (unsigned part = 0; part < UF; ++part)
1682      EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
1683    return EdgeMask;
1684  }
1685
1686  return SrcMask;
1687}
1688
1689InnerLoopVectorizer::VectorParts
1690InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
1691  assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
1692
1693  // Loop incoming mask is all-one.
1694  if (OrigLoop->getHeader() == BB) {
1695    Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
1696    return getVectorValue(C);
1697  }
1698
1699  // This is the block mask. We OR all incoming edges, and with zero.
1700  Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
1701  VectorParts BlockMask = getVectorValue(Zero);
1702
1703  // For each pred:
1704  for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
1705    VectorParts EM = createEdgeMask(*it, BB);
1706    for (unsigned part = 0; part < UF; ++part)
1707      BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
1708  }
1709
1710  return BlockMask;
1711}
1712
1713void
1714InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
1715                                          BasicBlock *BB, PhiVector *PV) {
1716  // For each instruction in the old loop.
1717  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
1718    VectorParts &Entry = WidenMap.get(it);
1719    switch (it->getOpcode()) {
1720    case Instruction::Br:
1721      // Nothing to do for PHIs and BR, since we already took care of the
1722      // loop control flow instructions.
1723      continue;
1724    case Instruction::PHI:{
1725      PHINode* P = cast<PHINode>(it);
1726      // Handle reduction variables:
1727      if (Legal->getReductionVars()->count(P)) {
1728        for (unsigned part = 0; part < UF; ++part) {
1729          // This is phase one of vectorizing PHIs.
1730          Type *VecTy = VectorType::get(it->getType(), VF);
1731          Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
1732                                        LoopVectorBody-> getFirstInsertionPt());
1733        }
1734        PV->push_back(P);
1735        continue;
1736      }
1737
1738      // Check for PHI nodes that are lowered to vector selects.
1739      if (P->getParent() != OrigLoop->getHeader()) {
1740        // We know that all PHIs in non header blocks are converted into
1741        // selects, so we don't have to worry about the insertion order and we
1742        // can just use the builder.
1743
1744        // At this point we generate the predication tree. There may be
1745        // duplications since this is a simple recursive scan, but future
1746        // optimizations will clean it up.
1747        VectorParts Cond = createEdgeMask(P->getIncomingBlock(0),
1748                                               P->getParent());
1749
1750        for (unsigned part = 0; part < UF; ++part) {
1751        VectorParts &In0 = getVectorValue(P->getIncomingValue(0));
1752        VectorParts &In1 = getVectorValue(P->getIncomingValue(1));
1753          Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In1[part],
1754                                             "predphi");
1755        }
1756        continue;
1757      }
1758
1759      // This PHINode must be an induction variable.
1760      // Make sure that we know about it.
1761      assert(Legal->getInductionVars()->count(P) &&
1762             "Not an induction variable");
1763
1764      LoopVectorizationLegality::InductionInfo II =
1765        Legal->getInductionVars()->lookup(P);
1766
1767      switch (II.IK) {
1768      case LoopVectorizationLegality::IK_NoInduction:
1769        llvm_unreachable("Unknown induction");
1770      case LoopVectorizationLegality::IK_IntInduction: {
1771        assert(P == OldInduction && "Unexpected PHI");
1772        Value *Broadcasted = getBroadcastInstrs(Induction);
1773        // After broadcasting the induction variable we need to make the
1774        // vector consecutive by adding 0, 1, 2 ...
1775        for (unsigned part = 0; part < UF; ++part)
1776          Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
1777        continue;
1778      }
1779      case LoopVectorizationLegality::IK_ReverseIntInduction:
1780      case LoopVectorizationLegality::IK_PtrInduction:
1781      case LoopVectorizationLegality::IK_ReversePtrInduction:
1782        // Handle reverse integer and pointer inductions.
1783        Value *StartIdx = 0;
1784        // If we have a single integer induction variable then use it.
1785        // Otherwise, start counting at zero.
1786        if (OldInduction) {
1787          LoopVectorizationLegality::InductionInfo OldII =
1788            Legal->getInductionVars()->lookup(OldInduction);
1789          StartIdx = OldII.StartValue;
1790        } else {
1791          StartIdx = ConstantInt::get(Induction->getType(), 0);
1792        }
1793        // This is the normalized GEP that starts counting at zero.
1794        Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
1795                                                 "normalized.idx");
1796
1797        // Handle the reverse integer induction variable case.
1798        if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
1799          IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
1800          Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
1801                                                 "resize.norm.idx");
1802          Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
1803                                                 "reverse.idx");
1804
1805          // This is a new value so do not hoist it out.
1806          Value *Broadcasted = getBroadcastInstrs(ReverseInd);
1807          // After broadcasting the induction variable we need to make the
1808          // vector consecutive by adding  ... -3, -2, -1, 0.
1809          for (unsigned part = 0; part < UF; ++part)
1810            Entry[part] = getConsecutiveVector(Broadcasted, -VF * part, true);
1811          continue;
1812        }
1813
1814        // Handle the pointer induction variable case.
1815        assert(P->getType()->isPointerTy() && "Unexpected type.");
1816
1817        // Is this a reverse induction ptr or a consecutive induction ptr.
1818        bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
1819                        II.IK);
1820
1821        // This is the vector of results. Notice that we don't generate
1822        // vector geps because scalar geps result in better code.
1823        for (unsigned part = 0; part < UF; ++part) {
1824          Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
1825          for (unsigned int i = 0; i < VF; ++i) {
1826            int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
1827            Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
1828            Value *GlobalIdx;
1829            if (!Reverse)
1830              GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
1831            else
1832              GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
1833
1834            Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
1835                                               "next.gep");
1836            VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
1837                                                 Builder.getInt32(i),
1838                                                 "insert.gep");
1839          }
1840          Entry[part] = VecVal;
1841        }
1842        continue;
1843      }
1844
1845    }// End of PHI.
1846
1847    case Instruction::Add:
1848    case Instruction::FAdd:
1849    case Instruction::Sub:
1850    case Instruction::FSub:
1851    case Instruction::Mul:
1852    case Instruction::FMul:
1853    case Instruction::UDiv:
1854    case Instruction::SDiv:
1855    case Instruction::FDiv:
1856    case Instruction::URem:
1857    case Instruction::SRem:
1858    case Instruction::FRem:
1859    case Instruction::Shl:
1860    case Instruction::LShr:
1861    case Instruction::AShr:
1862    case Instruction::And:
1863    case Instruction::Or:
1864    case Instruction::Xor: {
1865      // Just widen binops.
1866      BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
1867      VectorParts &A = getVectorValue(it->getOperand(0));
1868      VectorParts &B = getVectorValue(it->getOperand(1));
1869
1870      // Use this vector value for all users of the original instruction.
1871      for (unsigned Part = 0; Part < UF; ++Part) {
1872        Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
1873
1874        // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
1875        BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
1876        if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
1877          VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
1878          VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
1879        }
1880        if (VecOp && isa<PossiblyExactOperator>(VecOp))
1881          VecOp->setIsExact(BinOp->isExact());
1882
1883        Entry[Part] = V;
1884      }
1885      break;
1886    }
1887    case Instruction::Select: {
1888      // Widen selects.
1889      // If the selector is loop invariant we can create a select
1890      // instruction with a scalar condition. Otherwise, use vector-select.
1891      bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
1892                                               OrigLoop);
1893
1894      // The condition can be loop invariant  but still defined inside the
1895      // loop. This means that we can't just use the original 'cond' value.
1896      // We have to take the 'vectorized' value and pick the first lane.
1897      // Instcombine will make this a no-op.
1898      VectorParts &Cond = getVectorValue(it->getOperand(0));
1899      VectorParts &Op0  = getVectorValue(it->getOperand(1));
1900      VectorParts &Op1  = getVectorValue(it->getOperand(2));
1901      Value *ScalarCond = Builder.CreateExtractElement(Cond[0],
1902                                                       Builder.getInt32(0));
1903      for (unsigned Part = 0; Part < UF; ++Part) {
1904        Entry[Part] = Builder.CreateSelect(
1905          InvariantCond ? ScalarCond : Cond[Part],
1906          Op0[Part],
1907          Op1[Part]);
1908      }
1909      break;
1910    }
1911
1912    case Instruction::ICmp:
1913    case Instruction::FCmp: {
1914      // Widen compares. Generate vector compares.
1915      bool FCmp = (it->getOpcode() == Instruction::FCmp);
1916      CmpInst *Cmp = dyn_cast<CmpInst>(it);
1917      VectorParts &A = getVectorValue(it->getOperand(0));
1918      VectorParts &B = getVectorValue(it->getOperand(1));
1919      for (unsigned Part = 0; Part < UF; ++Part) {
1920        Value *C = 0;
1921        if (FCmp)
1922          C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
1923        else
1924          C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
1925        Entry[Part] = C;
1926      }
1927      break;
1928    }
1929
1930    case Instruction::Store:
1931    case Instruction::Load:
1932        vectorizeMemoryInstruction(it, Legal);
1933        break;
1934    case Instruction::ZExt:
1935    case Instruction::SExt:
1936    case Instruction::FPToUI:
1937    case Instruction::FPToSI:
1938    case Instruction::FPExt:
1939    case Instruction::PtrToInt:
1940    case Instruction::IntToPtr:
1941    case Instruction::SIToFP:
1942    case Instruction::UIToFP:
1943    case Instruction::Trunc:
1944    case Instruction::FPTrunc:
1945    case Instruction::BitCast: {
1946      CastInst *CI = dyn_cast<CastInst>(it);
1947      /// Optimize the special case where the source is the induction
1948      /// variable. Notice that we can only optimize the 'trunc' case
1949      /// because: a. FP conversions lose precision, b. sext/zext may wrap,
1950      /// c. other casts depend on pointer size.
1951      if (CI->getOperand(0) == OldInduction &&
1952          it->getOpcode() == Instruction::Trunc) {
1953        Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
1954                                               CI->getType());
1955        Value *Broadcasted = getBroadcastInstrs(ScalarCast);
1956        for (unsigned Part = 0; Part < UF; ++Part)
1957          Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
1958        break;
1959      }
1960      /// Vectorize casts.
1961      Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
1962
1963      VectorParts &A = getVectorValue(it->getOperand(0));
1964      for (unsigned Part = 0; Part < UF; ++Part)
1965        Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
1966      break;
1967    }
1968
1969    case Instruction::Call: {
1970      assert(isTriviallyVectorizableIntrinsic(it));
1971      Module *M = BB->getParent()->getParent();
1972      IntrinsicInst *II = cast<IntrinsicInst>(it);
1973      Intrinsic::ID ID = II->getIntrinsicID();
1974      for (unsigned Part = 0; Part < UF; ++Part) {
1975        SmallVector<Value*, 4> Args;
1976        for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i) {
1977          VectorParts &Arg = getVectorValue(II->getArgOperand(i));
1978          Args.push_back(Arg[Part]);
1979        }
1980        Type *Tys[] = { VectorType::get(II->getType()->getScalarType(), VF) };
1981        Function *F = Intrinsic::getDeclaration(M, ID, Tys);
1982        Entry[Part] = Builder.CreateCall(F, Args);
1983      }
1984      break;
1985    }
1986
1987    default:
1988      // All other instructions are unsupported. Scalarize them.
1989      scalarizeInstruction(it);
1990      break;
1991    }// end of switch.
1992  }// end of for_each instr.
1993}
1994
1995void InnerLoopVectorizer::updateAnalysis() {
1996  // Forget the original basic block.
1997  SE->forgetLoop(OrigLoop);
1998
1999  // Update the dominator tree information.
2000  assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
2001         "Entry does not dominate exit.");
2002
2003  for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2004    DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
2005  DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
2006  DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
2007  DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
2008  DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
2009  DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
2010  DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2011
2012  DEBUG(DT->verifyAnalysis());
2013}
2014
2015bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
2016  if (!EnableIfConversion)
2017    return false;
2018
2019  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
2020  std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
2021
2022  // Collect the blocks that need predication.
2023  for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
2024    BasicBlock *BB = LoopBlocks[i];
2025
2026    // We don't support switch statements inside loops.
2027    if (!isa<BranchInst>(BB->getTerminator()))
2028      return false;
2029
2030    // We must have at most two predecessors because we need to convert
2031    // all PHIs to selects.
2032    unsigned Preds = std::distance(pred_begin(BB), pred_end(BB));
2033    if (Preds > 2)
2034      return false;
2035
2036    // We must be able to predicate all blocks that need to be predicated.
2037    if (blockNeedsPredication(BB) && !blockCanBePredicated(BB))
2038      return false;
2039  }
2040
2041  // We can if-convert this loop.
2042  return true;
2043}
2044
2045bool LoopVectorizationLegality::canVectorize() {
2046  assert(TheLoop->getLoopPreheader() && "No preheader!!");
2047
2048  // We can only vectorize innermost loops.
2049  if (TheLoop->getSubLoopsVector().size())
2050    return false;
2051
2052  // We must have a single backedge.
2053  if (TheLoop->getNumBackEdges() != 1)
2054    return false;
2055
2056  // We must have a single exiting block.
2057  if (!TheLoop->getExitingBlock())
2058    return false;
2059
2060  unsigned NumBlocks = TheLoop->getNumBlocks();
2061
2062  // Check if we can if-convert non single-bb loops.
2063  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
2064    DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
2065    return false;
2066  }
2067
2068  // We need to have a loop header.
2069  BasicBlock *Latch = TheLoop->getLoopLatch();
2070  DEBUG(dbgs() << "LV: Found a loop: " <<
2071        TheLoop->getHeader()->getName() << "\n");
2072
2073  // ScalarEvolution needs to be able to find the exit count.
2074  const SCEV *ExitCount = SE->getExitCount(TheLoop, Latch);
2075  if (ExitCount == SE->getCouldNotCompute()) {
2076    DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
2077    return false;
2078  }
2079
2080  // Do not loop-vectorize loops with a tiny trip count.
2081  unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
2082  if (TC > 0u && TC < TinyTripCountVectorThreshold) {
2083    DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
2084          "This loop is not worth vectorizing.\n");
2085    return false;
2086  }
2087
2088  // Check if we can vectorize the instructions and CFG in this loop.
2089  if (!canVectorizeInstrs()) {
2090    DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
2091    return false;
2092  }
2093
2094  // Go over each instruction and look at memory deps.
2095  if (!canVectorizeMemory()) {
2096    DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
2097    return false;
2098  }
2099
2100  // Collect all of the variables that remain uniform after vectorization.
2101  collectLoopUniforms();
2102
2103  DEBUG(dbgs() << "LV: We can vectorize this loop" <<
2104        (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
2105        <<"!\n");
2106
2107  // Okay! We can vectorize. At this point we don't have any other mem analysis
2108  // which may limit our maximum vectorization factor, so just return true with
2109  // no restrictions.
2110  return true;
2111}
2112
2113bool LoopVectorizationLegality::canVectorizeInstrs() {
2114  BasicBlock *PreHeader = TheLoop->getLoopPreheader();
2115  BasicBlock *Header = TheLoop->getHeader();
2116
2117  // For each block in the loop.
2118  for (Loop::block_iterator bb = TheLoop->block_begin(),
2119       be = TheLoop->block_end(); bb != be; ++bb) {
2120
2121    // Scan the instructions in the block and look for hazards.
2122    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2123         ++it) {
2124
2125      if (PHINode *Phi = dyn_cast<PHINode>(it)) {
2126        // This should not happen because the loop should be normalized.
2127        if (Phi->getNumIncomingValues() != 2) {
2128          DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
2129          return false;
2130        }
2131
2132        // Check that this PHI type is allowed.
2133        if (!Phi->getType()->isIntegerTy() &&
2134            !Phi->getType()->isFloatingPointTy() &&
2135            !Phi->getType()->isPointerTy()) {
2136          DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
2137          return false;
2138        }
2139
2140        // If this PHINode is not in the header block, then we know that we
2141        // can convert it to select during if-conversion. No need to check if
2142        // the PHIs in this block are induction or reduction variables.
2143        if (*bb != Header)
2144          continue;
2145
2146        // This is the value coming from the preheader.
2147        Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
2148        // Check if this is an induction variable.
2149        InductionKind IK = isInductionVariable(Phi);
2150
2151        if (IK_NoInduction != IK) {
2152          // Int inductions are special because we only allow one IV.
2153          if (IK == IK_IntInduction) {
2154            if (Induction) {
2155              DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
2156              return false;
2157            }
2158            Induction = Phi;
2159          }
2160
2161          DEBUG(dbgs() << "LV: Found an induction variable.\n");
2162          Inductions[Phi] = InductionInfo(StartValue, IK);
2163          continue;
2164        }
2165
2166        if (AddReductionVar(Phi, RK_IntegerAdd)) {
2167          DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
2168          continue;
2169        }
2170        if (AddReductionVar(Phi, RK_IntegerMult)) {
2171          DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
2172          continue;
2173        }
2174        if (AddReductionVar(Phi, RK_IntegerOr)) {
2175          DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
2176          continue;
2177        }
2178        if (AddReductionVar(Phi, RK_IntegerAnd)) {
2179          DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
2180          continue;
2181        }
2182        if (AddReductionVar(Phi, RK_IntegerXor)) {
2183          DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
2184          continue;
2185        }
2186        if (AddReductionVar(Phi, RK_FloatMult)) {
2187          DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
2188          continue;
2189        }
2190        if (AddReductionVar(Phi, RK_FloatAdd)) {
2191          DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
2192          continue;
2193        }
2194
2195        DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
2196        return false;
2197      }// end of PHI handling
2198
2199      // We still don't handle functions.
2200      CallInst *CI = dyn_cast<CallInst>(it);
2201      if (CI && !isTriviallyVectorizableIntrinsic(it)) {
2202        DEBUG(dbgs() << "LV: Found a call site.\n");
2203        return false;
2204      }
2205
2206      // Check that the instruction return type is vectorizable.
2207      if (!VectorType::isValidElementType(it->getType()) &&
2208          !it->getType()->isVoidTy()) {
2209        DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
2210        return false;
2211      }
2212
2213      // Check that the stored type is vectorizable.
2214      if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
2215        Type *T = ST->getValueOperand()->getType();
2216        if (!VectorType::isValidElementType(T))
2217          return false;
2218      }
2219
2220      // Reduction instructions are allowed to have exit users.
2221      // All other instructions must not have external users.
2222      if (!AllowedExit.count(it))
2223        //Check that all of the users of the loop are inside the BB.
2224        for (Value::use_iterator I = it->use_begin(), E = it->use_end();
2225             I != E; ++I) {
2226          Instruction *U = cast<Instruction>(*I);
2227          // This user may be a reduction exit value.
2228          if (!TheLoop->contains(U)) {
2229            DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
2230            return false;
2231          }
2232        }
2233    } // next instr.
2234
2235  }
2236
2237  if (!Induction) {
2238    DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
2239    assert(getInductionVars()->size() && "No induction variables");
2240  }
2241
2242  return true;
2243}
2244
2245void LoopVectorizationLegality::collectLoopUniforms() {
2246  // We now know that the loop is vectorizable!
2247  // Collect variables that will remain uniform after vectorization.
2248  std::vector<Value*> Worklist;
2249  BasicBlock *Latch = TheLoop->getLoopLatch();
2250
2251  // Start with the conditional branch and walk up the block.
2252  Worklist.push_back(Latch->getTerminator()->getOperand(0));
2253
2254  while (Worklist.size()) {
2255    Instruction *I = dyn_cast<Instruction>(Worklist.back());
2256    Worklist.pop_back();
2257
2258    // Look at instructions inside this loop.
2259    // Stop when reaching PHI nodes.
2260    // TODO: we need to follow values all over the loop, not only in this block.
2261    if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
2262      continue;
2263
2264    // This is a known uniform.
2265    Uniforms.insert(I);
2266
2267    // Insert all operands.
2268    for (int i = 0, Op = I->getNumOperands(); i < Op; ++i) {
2269      Worklist.push_back(I->getOperand(i));
2270    }
2271  }
2272}
2273
2274bool LoopVectorizationLegality::canVectorizeMemory() {
2275  typedef SmallVector<Value*, 16> ValueVector;
2276  typedef SmallPtrSet<Value*, 16> ValueSet;
2277  // Holds the Load and Store *instructions*.
2278  ValueVector Loads;
2279  ValueVector Stores;
2280  PtrRtCheck.Pointers.clear();
2281  PtrRtCheck.Need = false;
2282
2283  // For each block.
2284  for (Loop::block_iterator bb = TheLoop->block_begin(),
2285       be = TheLoop->block_end(); bb != be; ++bb) {
2286
2287    // Scan the BB and collect legal loads and stores.
2288    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2289         ++it) {
2290
2291      // If this is a load, save it. If this instruction can read from memory
2292      // but is not a load, then we quit. Notice that we don't handle function
2293      // calls that read or write.
2294      if (it->mayReadFromMemory()) {
2295        LoadInst *Ld = dyn_cast<LoadInst>(it);
2296        if (!Ld) return false;
2297        if (!Ld->isSimple()) {
2298          DEBUG(dbgs() << "LV: Found a non-simple load.\n");
2299          return false;
2300        }
2301        Loads.push_back(Ld);
2302        continue;
2303      }
2304
2305      // Save 'store' instructions. Abort if other instructions write to memory.
2306      if (it->mayWriteToMemory()) {
2307        StoreInst *St = dyn_cast<StoreInst>(it);
2308        if (!St) return false;
2309        if (!St->isSimple()) {
2310          DEBUG(dbgs() << "LV: Found a non-simple store.\n");
2311          return false;
2312        }
2313        Stores.push_back(St);
2314      }
2315    } // next instr.
2316  } // next block.
2317
2318  // Now we have two lists that hold the loads and the stores.
2319  // Next, we find the pointers that they use.
2320
2321  // Check if we see any stores. If there are no stores, then we don't
2322  // care if the pointers are *restrict*.
2323  if (!Stores.size()) {
2324    DEBUG(dbgs() << "LV: Found a read-only loop!\n");
2325    return true;
2326  }
2327
2328  // Holds the read and read-write *pointers* that we find.
2329  ValueVector Reads;
2330  ValueVector ReadWrites;
2331
2332  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
2333  // multiple times on the same object. If the ptr is accessed twice, once
2334  // for read and once for write, it will only appear once (on the write
2335  // list). This is okay, since we are going to check for conflicts between
2336  // writes and between reads and writes, but not between reads and reads.
2337  ValueSet Seen;
2338
2339  ValueVector::iterator I, IE;
2340  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
2341    StoreInst *ST = cast<StoreInst>(*I);
2342    Value* Ptr = ST->getPointerOperand();
2343
2344    if (isUniform(Ptr)) {
2345      DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
2346      return false;
2347    }
2348
2349    // If we did *not* see this pointer before, insert it to
2350    // the read-write list. At this phase it is only a 'write' list.
2351    if (Seen.insert(Ptr))
2352      ReadWrites.push_back(Ptr);
2353  }
2354
2355  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
2356    LoadInst *LD = cast<LoadInst>(*I);
2357    Value* Ptr = LD->getPointerOperand();
2358    // If we did *not* see this pointer before, insert it to the
2359    // read list. If we *did* see it before, then it is already in
2360    // the read-write list. This allows us to vectorize expressions
2361    // such as A[i] += x;  Because the address of A[i] is a read-write
2362    // pointer. This only works if the index of A[i] is consecutive.
2363    // If the address of i is unknown (for example A[B[i]]) then we may
2364    // read a few words, modify, and write a few words, and some of the
2365    // words may be written to the same address.
2366    if (Seen.insert(Ptr) || 0 == isConsecutivePtr(Ptr))
2367      Reads.push_back(Ptr);
2368  }
2369
2370  // If we write (or read-write) to a single destination and there are no
2371  // other reads in this loop then is it safe to vectorize.
2372  if (ReadWrites.size() == 1 && Reads.size() == 0) {
2373    DEBUG(dbgs() << "LV: Found a write-only loop!\n");
2374    return true;
2375  }
2376
2377  // Find pointers with computable bounds. We are going to use this information
2378  // to place a runtime bound check.
2379  bool CanDoRT = true;
2380  for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I)
2381    if (hasComputableBounds(*I)) {
2382      PtrRtCheck.insert(SE, TheLoop, *I);
2383      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
2384    } else {
2385      CanDoRT = false;
2386      break;
2387    }
2388  for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I)
2389    if (hasComputableBounds(*I)) {
2390      PtrRtCheck.insert(SE, TheLoop, *I);
2391      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
2392    } else {
2393      CanDoRT = false;
2394      break;
2395    }
2396
2397  // Check that we did not collect too many pointers or found a
2398  // unsizeable pointer.
2399  if (!CanDoRT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
2400    PtrRtCheck.reset();
2401    CanDoRT = false;
2402  }
2403
2404  if (CanDoRT) {
2405    DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
2406  }
2407
2408  bool NeedRTCheck = false;
2409
2410  // Now that the pointers are in two lists (Reads and ReadWrites), we
2411  // can check that there are no conflicts between each of the writes and
2412  // between the writes to the reads.
2413  ValueSet WriteObjects;
2414  ValueVector TempObjects;
2415
2416  // Check that the read-writes do not conflict with other read-write
2417  // pointers.
2418  bool AllWritesIdentified = true;
2419  for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) {
2420    GetUnderlyingObjects(*I, TempObjects, DL);
2421    for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
2422         it != e; ++it) {
2423      if (!isIdentifiedObject(*it)) {
2424        DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n");
2425        NeedRTCheck = true;
2426        AllWritesIdentified = false;
2427      }
2428      if (!WriteObjects.insert(*it)) {
2429        DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
2430              << **it <<"\n");
2431        return false;
2432      }
2433    }
2434    TempObjects.clear();
2435  }
2436
2437  /// Check that the reads don't conflict with the read-writes.
2438  for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) {
2439    GetUnderlyingObjects(*I, TempObjects, DL);
2440    for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
2441         it != e; ++it) {
2442      // If all of the writes are identified then we don't care if the read
2443      // pointer is identified or not.
2444      if (!AllWritesIdentified && !isIdentifiedObject(*it)) {
2445        DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n");
2446        NeedRTCheck = true;
2447      }
2448      if (WriteObjects.count(*it)) {
2449        DEBUG(dbgs() << "LV: Found a possible read/write reorder:"
2450              << **it <<"\n");
2451        return false;
2452      }
2453    }
2454    TempObjects.clear();
2455  }
2456
2457  PtrRtCheck.Need = NeedRTCheck;
2458  if (NeedRTCheck && !CanDoRT) {
2459    DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
2460          "the array bounds.\n");
2461    PtrRtCheck.reset();
2462    return false;
2463  }
2464
2465  DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") <<
2466        " need a runtime memory check.\n");
2467  return true;
2468}
2469
2470bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
2471                                                ReductionKind Kind) {
2472  if (Phi->getNumIncomingValues() != 2)
2473    return false;
2474
2475  // Reduction variables are only found in the loop header block.
2476  if (Phi->getParent() != TheLoop->getHeader())
2477    return false;
2478
2479  // Obtain the reduction start value from the value that comes from the loop
2480  // preheader.
2481  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
2482
2483  // ExitInstruction is the single value which is used outside the loop.
2484  // We only allow for a single reduction value to be used outside the loop.
2485  // This includes users of the reduction, variables (which form a cycle
2486  // which ends in the phi node).
2487  Instruction *ExitInstruction = 0;
2488  // Indicates that we found a binary operation in our scan.
2489  bool FoundBinOp = false;
2490
2491  // Iter is our iterator. We start with the PHI node and scan for all of the
2492  // users of this instruction. All users must be instructions that can be
2493  // used as reduction variables (such as ADD). We may have a single
2494  // out-of-block user. The cycle must end with the original PHI.
2495  Instruction *Iter = Phi;
2496  while (true) {
2497    // If the instruction has no users then this is a broken
2498    // chain and can't be a reduction variable.
2499    if (Iter->use_empty())
2500      return false;
2501
2502    // Did we find a user inside this loop already ?
2503    bool FoundInBlockUser = false;
2504    // Did we reach the initial PHI node already ?
2505    bool FoundStartPHI = false;
2506
2507    // Is this a bin op ?
2508    FoundBinOp |= !isa<PHINode>(Iter);
2509
2510    // For each of the *users* of iter.
2511    for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
2512         it != e; ++it) {
2513      Instruction *U = cast<Instruction>(*it);
2514      // We already know that the PHI is a user.
2515      if (U == Phi) {
2516        FoundStartPHI = true;
2517        continue;
2518      }
2519
2520      // Check if we found the exit user.
2521      BasicBlock *Parent = U->getParent();
2522      if (!TheLoop->contains(Parent)) {
2523        // Exit if you find multiple outside users.
2524        if (ExitInstruction != 0)
2525          return false;
2526        ExitInstruction = Iter;
2527      }
2528
2529      // We allow in-loop PHINodes which are not the original reduction PHI
2530      // node. If this PHI is the only user of Iter (happens in IF w/ no ELSE
2531      // structure) then don't skip this PHI.
2532      if (isa<PHINode>(Iter) && isa<PHINode>(U) &&
2533          U->getParent() != TheLoop->getHeader() &&
2534          TheLoop->contains(U) &&
2535          Iter->getNumUses() > 1)
2536        continue;
2537
2538      // We can't have multiple inside users.
2539      if (FoundInBlockUser)
2540        return false;
2541      FoundInBlockUser = true;
2542
2543      // Any reduction instr must be of one of the allowed kinds.
2544      if (!isReductionInstr(U, Kind))
2545        return false;
2546
2547      // Reductions of instructions such as Div, and Sub is only
2548      // possible if the LHS is the reduction variable.
2549      if (!U->isCommutative() && !isa<PHINode>(U) && U->getOperand(0) != Iter)
2550        return false;
2551
2552      Iter = U;
2553    }
2554
2555    // We found a reduction var if we have reached the original
2556    // phi node and we only have a single instruction with out-of-loop
2557    // users.
2558    if (FoundStartPHI) {
2559      // This instruction is allowed to have out-of-loop users.
2560      AllowedExit.insert(ExitInstruction);
2561
2562      // Save the description of this reduction variable.
2563      ReductionDescriptor RD(RdxStart, ExitInstruction, Kind);
2564      Reductions[Phi] = RD;
2565      // We've ended the cycle. This is a reduction variable if we have an
2566      // outside user and it has a binary op.
2567      return FoundBinOp && ExitInstruction;
2568    }
2569  }
2570}
2571
2572bool
2573LoopVectorizationLegality::isReductionInstr(Instruction *I,
2574                                            ReductionKind Kind) {
2575  bool FP = I->getType()->isFloatingPointTy();
2576  bool FastMath = (FP && I->isCommutative() && I->isAssociative());
2577
2578  switch (I->getOpcode()) {
2579  default:
2580    return false;
2581  case Instruction::PHI:
2582      if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd))
2583        return false;
2584    // possibly.
2585    return true;
2586  case Instruction::Sub:
2587  case Instruction::Add:
2588    return Kind == RK_IntegerAdd;
2589  case Instruction::SDiv:
2590  case Instruction::UDiv:
2591  case Instruction::Mul:
2592    return Kind == RK_IntegerMult;
2593  case Instruction::And:
2594    return Kind == RK_IntegerAnd;
2595  case Instruction::Or:
2596    return Kind == RK_IntegerOr;
2597  case Instruction::Xor:
2598    return Kind == RK_IntegerXor;
2599  case Instruction::FMul:
2600    return Kind == RK_FloatMult && FastMath;
2601  case Instruction::FAdd:
2602    return Kind == RK_FloatAdd && FastMath;
2603   }
2604}
2605
2606LoopVectorizationLegality::InductionKind
2607LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
2608  Type *PhiTy = Phi->getType();
2609  // We only handle integer and pointer inductions variables.
2610  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
2611    return IK_NoInduction;
2612
2613  // Check that the PHI is consecutive.
2614  const SCEV *PhiScev = SE->getSCEV(Phi);
2615  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
2616  if (!AR) {
2617    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
2618    return IK_NoInduction;
2619  }
2620  const SCEV *Step = AR->getStepRecurrence(*SE);
2621
2622  // Integer inductions need to have a stride of one.
2623  if (PhiTy->isIntegerTy()) {
2624    if (Step->isOne())
2625      return IK_IntInduction;
2626    if (Step->isAllOnesValue())
2627      return IK_ReverseIntInduction;
2628    return IK_NoInduction;
2629  }
2630
2631  // Calculate the pointer stride and check if it is consecutive.
2632  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
2633  if (!C)
2634    return IK_NoInduction;
2635
2636  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
2637  uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
2638  if (C->getValue()->equalsInt(Size))
2639    return IK_PtrInduction;
2640  else if (C->getValue()->equalsInt(0 - Size))
2641    return IK_ReversePtrInduction;
2642
2643  return IK_NoInduction;
2644}
2645
2646bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
2647  Value *In0 = const_cast<Value*>(V);
2648  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
2649  if (!PN)
2650    return false;
2651
2652  return Inductions.count(PN);
2653}
2654
2655bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
2656  assert(TheLoop->contains(BB) && "Unknown block used");
2657
2658  // Blocks that do not dominate the latch need predication.
2659  BasicBlock* Latch = TheLoop->getLoopLatch();
2660  return !DT->dominates(BB, Latch);
2661}
2662
2663bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) {
2664  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2665    // We don't predicate loads/stores at the moment.
2666    if (it->mayReadFromMemory() || it->mayWriteToMemory() || it->mayThrow())
2667      return false;
2668
2669    // The instructions below can trap.
2670    switch (it->getOpcode()) {
2671    default: continue;
2672    case Instruction::UDiv:
2673    case Instruction::SDiv:
2674    case Instruction::URem:
2675    case Instruction::SRem:
2676             return false;
2677    }
2678  }
2679
2680  return true;
2681}
2682
2683bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
2684  const SCEV *PhiScev = SE->getSCEV(Ptr);
2685  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
2686  if (!AR)
2687    return false;
2688
2689  return AR->isAffine();
2690}
2691
2692LoopVectorizationCostModel::VectorizationFactor
2693LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
2694                                                      unsigned UserVF) {
2695  // Width 1 means no vectorize
2696  VectorizationFactor Factor = { 1U, 0U };
2697  if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
2698    DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
2699    return Factor;
2700  }
2701
2702  // Find the trip count.
2703  unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
2704  DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
2705
2706  unsigned WidestType = getWidestType();
2707  unsigned WidestRegister = TTI.getRegisterBitWidth(true);
2708  unsigned MaxVectorSize = WidestRegister / WidestType;
2709  DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
2710  DEBUG(dbgs() << "LV: The Widest register is:" << WidestRegister << "bits.\n");
2711
2712  if (MaxVectorSize == 0) {
2713    DEBUG(dbgs() << "LV: The target has no vector registers.\n");
2714    MaxVectorSize = 1;
2715  }
2716
2717  assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
2718         " into one vector!");
2719
2720  unsigned VF = MaxVectorSize;
2721
2722  // If we optimize the program for size, avoid creating the tail loop.
2723  if (OptForSize) {
2724    // If we are unable to calculate the trip count then don't try to vectorize.
2725    if (TC < 2) {
2726      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
2727      return Factor;
2728    }
2729
2730    // Find the maximum SIMD width that can fit within the trip count.
2731    VF = TC % MaxVectorSize;
2732
2733    if (VF == 0)
2734      VF = MaxVectorSize;
2735
2736    // If the trip count that we found modulo the vectorization factor is not
2737    // zero then we require a tail.
2738    if (VF < 2) {
2739      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
2740      return Factor;
2741    }
2742  }
2743
2744  if (UserVF != 0) {
2745    assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
2746    DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
2747
2748    Factor.Width = UserVF;
2749    return Factor;
2750  }
2751
2752  float Cost = expectedCost(1);
2753  unsigned Width = 1;
2754  DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
2755  for (unsigned i=2; i <= VF; i*=2) {
2756    // Notice that the vector loop needs to be executed less times, so
2757    // we need to divide the cost of the vector loops by the width of
2758    // the vector elements.
2759    float VectorCost = expectedCost(i) / (float)i;
2760    DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
2761          (int)VectorCost << ".\n");
2762    if (VectorCost < Cost) {
2763      Cost = VectorCost;
2764      Width = i;
2765    }
2766  }
2767
2768  DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
2769  Factor.Width = Width;
2770  Factor.Cost = Width * Cost;
2771  return Factor;
2772}
2773
2774unsigned LoopVectorizationCostModel::getWidestType() {
2775  unsigned MaxWidth = 8;
2776
2777  // For each block.
2778  for (Loop::block_iterator bb = TheLoop->block_begin(),
2779       be = TheLoop->block_end(); bb != be; ++bb) {
2780    BasicBlock *BB = *bb;
2781
2782    // For each instruction in the loop.
2783    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2784      Type *T = it->getType();
2785
2786      // Only examine Loads, Stores and PHINodes.
2787      if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
2788        continue;
2789
2790      // Examine PHI nodes that are reduction variables.
2791      if (PHINode *PN = dyn_cast<PHINode>(it))
2792        if (!Legal->getReductionVars()->count(PN))
2793          continue;
2794
2795      // Examine the stored values.
2796      StoreInst *ST = 0;
2797      if ((ST = dyn_cast<StoreInst>(it)))
2798        T = ST->getValueOperand()->getType();
2799
2800      // Ignore loaded pointer types and stored pointer types that are not
2801      // consecutive. However, we do want to take consecutive stores/loads of
2802      // pointer vectors into account.
2803      if (T->isPointerTy() && isConsecutiveLoadOrStore(it))
2804        MaxWidth = std::max(MaxWidth, DL->getPointerSizeInBits());
2805      else
2806        MaxWidth = std::max(MaxWidth, T->getScalarSizeInBits());
2807    }
2808  }
2809
2810  return MaxWidth;
2811}
2812
2813unsigned
2814LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
2815                                               unsigned UserUF,
2816                                               unsigned VF,
2817                                               unsigned LoopCost) {
2818
2819  // -- The unroll heuristics --
2820  // We unroll the loop in order to expose ILP and reduce the loop overhead.
2821  // There are many micro-architectural considerations that we can't predict
2822  // at this level. For example frontend pressure (on decode or fetch) due to
2823  // code size, or the number and capabilities of the execution ports.
2824  //
2825  // We use the following heuristics to select the unroll factor:
2826  // 1. If the code has reductions the we unroll in order to break the cross
2827  // iteration dependency.
2828  // 2. If the loop is really small then we unroll in order to reduce the loop
2829  // overhead.
2830  // 3. We don't unroll if we think that we will spill registers to memory due
2831  // to the increased register pressure.
2832
2833  // Use the user preference, unless 'auto' is selected.
2834  if (UserUF != 0)
2835    return UserUF;
2836
2837  // When we optimize for size we don't unroll.
2838  if (OptForSize)
2839    return 1;
2840
2841  // Do not unroll loops with a relatively small trip count.
2842  unsigned TC = SE->getSmallConstantTripCount(TheLoop,
2843                                              TheLoop->getLoopLatch());
2844  if (TC > 1 && TC < TinyTripCountUnrollThreshold)
2845    return 1;
2846
2847  unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
2848  DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
2849        " vector registers\n");
2850
2851  LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
2852  // We divide by these constants so assume that we have at least one
2853  // instruction that uses at least one register.
2854  R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
2855  R.NumInstructions = std::max(R.NumInstructions, 1U);
2856
2857  // We calculate the unroll factor using the following formula.
2858  // Subtract the number of loop invariants from the number of available
2859  // registers. These registers are used by all of the unrolled instances.
2860  // Next, divide the remaining registers by the number of registers that is
2861  // required by the loop, in order to estimate how many parallel instances
2862  // fit without causing spills.
2863  unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
2864
2865  // Clamp the unroll factor ranges to reasonable factors.
2866  unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
2867
2868  // If we did not calculate the cost for VF (because the user selected the VF)
2869  // then we calculate the cost of VF here.
2870  if (LoopCost == 0)
2871    LoopCost = expectedCost(VF);
2872
2873  // Clamp the calculated UF to be between the 1 and the max unroll factor
2874  // that the target allows.
2875  if (UF > MaxUnrollSize)
2876    UF = MaxUnrollSize;
2877  else if (UF < 1)
2878    UF = 1;
2879
2880  if (Legal->getReductionVars()->size()) {
2881    DEBUG(dbgs() << "LV: Unrolling because of reductions. \n");
2882    return UF;
2883  }
2884
2885  // We want to unroll tiny loops in order to reduce the loop overhead.
2886  // We assume that the cost overhead is 1 and we use the cost model
2887  // to estimate the cost of the loop and unroll until the cost of the
2888  // loop overhead is about 5% of the cost of the loop.
2889  DEBUG(dbgs() << "LV: Loop cost is "<< LoopCost <<" \n");
2890  if (LoopCost < 20) {
2891    DEBUG(dbgs() << "LV: Unrolling to reduce branch cost. \n");
2892    unsigned NewUF = 20/LoopCost + 1;
2893    return std::min(NewUF, UF);
2894  }
2895
2896  DEBUG(dbgs() << "LV: Not Unrolling. \n");
2897  return 1;
2898}
2899
2900LoopVectorizationCostModel::RegisterUsage
2901LoopVectorizationCostModel::calculateRegisterUsage() {
2902  // This function calculates the register usage by measuring the highest number
2903  // of values that are alive at a single location. Obviously, this is a very
2904  // rough estimation. We scan the loop in a topological order in order and
2905  // assign a number to each instruction. We use RPO to ensure that defs are
2906  // met before their users. We assume that each instruction that has in-loop
2907  // users starts an interval. We record every time that an in-loop value is
2908  // used, so we have a list of the first and last occurrences of each
2909  // instruction. Next, we transpose this data structure into a multi map that
2910  // holds the list of intervals that *end* at a specific location. This multi
2911  // map allows us to perform a linear search. We scan the instructions linearly
2912  // and record each time that a new interval starts, by placing it in a set.
2913  // If we find this value in the multi-map then we remove it from the set.
2914  // The max register usage is the maximum size of the set.
2915  // We also search for instructions that are defined outside the loop, but are
2916  // used inside the loop. We need this number separately from the max-interval
2917  // usage number because when we unroll, loop-invariant values do not take
2918  // more register.
2919  LoopBlocksDFS DFS(TheLoop);
2920  DFS.perform(LI);
2921
2922  RegisterUsage R;
2923  R.NumInstructions = 0;
2924
2925  // Each 'key' in the map opens a new interval. The values
2926  // of the map are the index of the 'last seen' usage of the
2927  // instruction that is the key.
2928  typedef DenseMap<Instruction*, unsigned> IntervalMap;
2929  // Maps instruction to its index.
2930  DenseMap<unsigned, Instruction*> IdxToInstr;
2931  // Marks the end of each interval.
2932  IntervalMap EndPoint;
2933  // Saves the list of instruction indices that are used in the loop.
2934  SmallSet<Instruction*, 8> Ends;
2935  // Saves the list of values that are used in the loop but are
2936  // defined outside the loop, such as arguments and constants.
2937  SmallPtrSet<Value*, 8> LoopInvariants;
2938
2939  unsigned Index = 0;
2940  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
2941       be = DFS.endRPO(); bb != be; ++bb) {
2942    R.NumInstructions += (*bb)->size();
2943    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2944         ++it) {
2945      Instruction *I = it;
2946      IdxToInstr[Index++] = I;
2947
2948      // Save the end location of each USE.
2949      for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2950        Value *U = I->getOperand(i);
2951        Instruction *Instr = dyn_cast<Instruction>(U);
2952
2953        // Ignore non-instruction values such as arguments, constants, etc.
2954        if (!Instr) continue;
2955
2956        // If this instruction is outside the loop then record it and continue.
2957        if (!TheLoop->contains(Instr)) {
2958          LoopInvariants.insert(Instr);
2959          continue;
2960        }
2961
2962        // Overwrite previous end points.
2963        EndPoint[Instr] = Index;
2964        Ends.insert(Instr);
2965      }
2966    }
2967  }
2968
2969  // Saves the list of intervals that end with the index in 'key'.
2970  typedef SmallVector<Instruction*, 2> InstrList;
2971  DenseMap<unsigned, InstrList> TransposeEnds;
2972
2973  // Transpose the EndPoints to a list of values that end at each index.
2974  for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
2975       it != e; ++it)
2976    TransposeEnds[it->second].push_back(it->first);
2977
2978  SmallSet<Instruction*, 8> OpenIntervals;
2979  unsigned MaxUsage = 0;
2980
2981
2982  DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
2983  for (unsigned int i = 0; i < Index; ++i) {
2984    Instruction *I = IdxToInstr[i];
2985    // Ignore instructions that are never used within the loop.
2986    if (!Ends.count(I)) continue;
2987
2988    // Remove all of the instructions that end at this location.
2989    InstrList &List = TransposeEnds[i];
2990    for (unsigned int j=0, e = List.size(); j < e; ++j)
2991      OpenIntervals.erase(List[j]);
2992
2993    // Count the number of live interals.
2994    MaxUsage = std::max(MaxUsage, OpenIntervals.size());
2995
2996    DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
2997          OpenIntervals.size() <<"\n");
2998
2999    // Add the current instruction to the list of open intervals.
3000    OpenIntervals.insert(I);
3001  }
3002
3003  unsigned Invariant = LoopInvariants.size();
3004  DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
3005  DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
3006  DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
3007
3008  R.LoopInvariantRegs = Invariant;
3009  R.MaxLocalUsers = MaxUsage;
3010  return R;
3011}
3012
3013unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
3014  unsigned Cost = 0;
3015
3016  // For each block.
3017  for (Loop::block_iterator bb = TheLoop->block_begin(),
3018       be = TheLoop->block_end(); bb != be; ++bb) {
3019    unsigned BlockCost = 0;
3020    BasicBlock *BB = *bb;
3021
3022    // For each instruction in the old loop.
3023    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3024      unsigned C = getInstructionCost(it, VF);
3025      Cost += C;
3026      DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " <<
3027            VF << " For instruction: "<< *it << "\n");
3028    }
3029
3030    // We assume that if-converted blocks have a 50% chance of being executed.
3031    // When the code is scalar then some of the blocks are avoided due to CF.
3032    // When the code is vectorized we execute all code paths.
3033    if (Legal->blockNeedsPredication(*bb) && VF == 1)
3034      BlockCost /= 2;
3035
3036    Cost += BlockCost;
3037  }
3038
3039  return Cost;
3040}
3041
3042unsigned
3043LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
3044  // If we know that this instruction will remain uniform, check the cost of
3045  // the scalar version.
3046  if (Legal->isUniformAfterVectorization(I))
3047    VF = 1;
3048
3049  Type *RetTy = I->getType();
3050  Type *VectorTy = ToVectorTy(RetTy, VF);
3051
3052  // TODO: We need to estimate the cost of intrinsic calls.
3053  switch (I->getOpcode()) {
3054  case Instruction::GetElementPtr:
3055    // We mark this instruction as zero-cost because scalar GEPs are usually
3056    // lowered to the intruction addressing mode. At the moment we don't
3057    // generate vector geps.
3058    return 0;
3059  case Instruction::Br: {
3060    return TTI.getCFInstrCost(I->getOpcode());
3061  }
3062  case Instruction::PHI:
3063    //TODO: IF-converted IFs become selects.
3064    return 0;
3065  case Instruction::Add:
3066  case Instruction::FAdd:
3067  case Instruction::Sub:
3068  case Instruction::FSub:
3069  case Instruction::Mul:
3070  case Instruction::FMul:
3071  case Instruction::UDiv:
3072  case Instruction::SDiv:
3073  case Instruction::FDiv:
3074  case Instruction::URem:
3075  case Instruction::SRem:
3076  case Instruction::FRem:
3077  case Instruction::Shl:
3078  case Instruction::LShr:
3079  case Instruction::AShr:
3080  case Instruction::And:
3081  case Instruction::Or:
3082  case Instruction::Xor:
3083    return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy);
3084  case Instruction::Select: {
3085    SelectInst *SI = cast<SelectInst>(I);
3086    const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
3087    bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
3088    Type *CondTy = SI->getCondition()->getType();
3089    if (ScalarCond)
3090      CondTy = VectorType::get(CondTy, VF);
3091
3092    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
3093  }
3094  case Instruction::ICmp:
3095  case Instruction::FCmp: {
3096    Type *ValTy = I->getOperand(0)->getType();
3097    VectorTy = ToVectorTy(ValTy, VF);
3098    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
3099  }
3100  case Instruction::Store:
3101  case Instruction::Load: {
3102    StoreInst *SI = dyn_cast<StoreInst>(I);
3103    LoadInst *LI = dyn_cast<LoadInst>(I);
3104    Type *ValTy = (SI ? SI->getValueOperand()->getType() :
3105                   LI->getType());
3106    VectorTy = ToVectorTy(ValTy, VF);
3107
3108    unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
3109    unsigned AS = SI ? SI->getPointerAddressSpace() :
3110      LI->getPointerAddressSpace();
3111    Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
3112
3113    if (VF == 1)
3114      return TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
3115
3116    // Scalarized loads/stores.
3117    int Stride = Legal->isConsecutivePtr(Ptr);
3118    bool Reverse = Stride < 0;
3119    if (0 == Stride) {
3120      unsigned Cost = 0;
3121      // The cost of extracting from the value vector and pointer vector.
3122      Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
3123      for (unsigned i = 0; i < VF; ++i) {
3124        //  The cost of extracting the pointer operand.
3125        Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
3126        // In case of STORE, the cost of ExtractElement from the vector.
3127        // In case of LOAD, the cost of InsertElement into the returned
3128        // vector.
3129        Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
3130                                            Instruction::InsertElement,
3131                                            VectorTy, i);
3132      }
3133
3134      // The cost of the scalar stores.
3135      Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
3136                                       Alignment, AS);
3137      return Cost;
3138    }
3139
3140    // Wide load/stores.
3141    unsigned Cost = TTI.getMemoryOpCost(I->getOpcode(), VectorTy,
3142                                        Alignment, AS);
3143    if (Reverse)
3144      Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
3145                                  VectorTy, 0);
3146    return Cost;
3147  }
3148  case Instruction::ZExt:
3149  case Instruction::SExt:
3150  case Instruction::FPToUI:
3151  case Instruction::FPToSI:
3152  case Instruction::FPExt:
3153  case Instruction::PtrToInt:
3154  case Instruction::IntToPtr:
3155  case Instruction::SIToFP:
3156  case Instruction::UIToFP:
3157  case Instruction::Trunc:
3158  case Instruction::FPTrunc:
3159  case Instruction::BitCast: {
3160    // We optimize the truncation of induction variable.
3161    // The cost of these is the same as the scalar operation.
3162    if (I->getOpcode() == Instruction::Trunc &&
3163        Legal->isInductionVariable(I->getOperand(0)))
3164      return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
3165                                  I->getOperand(0)->getType());
3166
3167    Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
3168    return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
3169  }
3170  case Instruction::Call: {
3171    assert(isTriviallyVectorizableIntrinsic(I));
3172    IntrinsicInst *II = cast<IntrinsicInst>(I);
3173    Type *RetTy = ToVectorTy(II->getType(), VF);
3174    SmallVector<Type*, 4> Tys;
3175    for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i)
3176      Tys.push_back(ToVectorTy(II->getArgOperand(i)->getType(), VF));
3177    return TTI.getIntrinsicInstrCost(II->getIntrinsicID(), RetTy, Tys);
3178  }
3179  default: {
3180    // We are scalarizing the instruction. Return the cost of the scalar
3181    // instruction, plus the cost of insert and extract into vector
3182    // elements, times the vector width.
3183    unsigned Cost = 0;
3184
3185    if (!RetTy->isVoidTy() && VF != 1) {
3186      unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
3187                                                VectorTy);
3188      unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
3189                                                VectorTy);
3190
3191      // The cost of inserting the results plus extracting each one of the
3192      // operands.
3193      Cost += VF * (InsCost + ExtCost * I->getNumOperands());
3194    }
3195
3196    // The cost of executing VF copies of the scalar instruction. This opcode
3197    // is unknown. Assume that it is the same as 'mul'.
3198    Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
3199    return Cost;
3200  }
3201  }// end of switch.
3202}
3203
3204Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
3205  if (Scalar->isVoidTy() || VF == 1)
3206    return Scalar;
3207  return VectorType::get(Scalar, VF);
3208}
3209
3210char LoopVectorize::ID = 0;
3211static const char lv_name[] = "Loop Vectorization";
3212INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
3213INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
3214INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
3215INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
3216INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
3217INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
3218
3219namespace llvm {
3220  Pass *createLoopVectorizePass() {
3221    return new LoopVectorize();
3222  }
3223}
3224
3225bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
3226  // Check for a store.
3227  StoreInst *ST = dyn_cast<StoreInst>(Inst);
3228  if (ST)
3229    return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
3230
3231  // Check for a load.
3232  LoadInst *LI = dyn_cast<LoadInst>(Inst);
3233  if (LI)
3234    return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
3235
3236  return false;
3237}
3238