LoopVectorize.cpp revision be73c7b903647221fbcaae302d31e90f53583040
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9#include "LoopVectorize.h"
10#include "llvm/ADT/SmallSet.h"
11#include "llvm/ADT/StringExtras.h"
12#include "llvm/Analysis/AliasAnalysis.h"
13#include "llvm/Analysis/AliasSetTracker.h"
14#include "llvm/Analysis/Dominators.h"
15#include "llvm/Analysis/LoopInfo.h"
16#include "llvm/Analysis/LoopIterator.h"
17#include "llvm/Analysis/LoopPass.h"
18#include "llvm/Analysis/ScalarEvolutionExpander.h"
19#include "llvm/Analysis/ScalarEvolutionExpressions.h"
20#include "llvm/Analysis/ValueTracking.h"
21#include "llvm/Analysis/Verifier.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/Function.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/Module.h"
30#include "llvm/IR/Type.h"
31#include "llvm/IR/Value.h"
32#include "llvm/Pass.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/TargetTransformInfo.h"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/Transforms/Utils/BasicBlockUtils.h"
39#include "llvm/Transforms/Utils/Local.h"
40#include "llvm/Transforms/Vectorize.h"
41
42static cl::opt<unsigned>
43VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
44                    cl::desc("Sets the SIMD width. Zero is autoselect."));
45
46static cl::opt<unsigned>
47VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
48                    cl::desc("Sets the vectorization unroll count. "
49                             "Zero is autoselect."));
50
51static cl::opt<bool>
52EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
53                   cl::desc("Enable if-conversion during vectorization."));
54
55namespace {
56
57/// The LoopVectorize Pass.
58struct LoopVectorize : public LoopPass {
59  /// Pass identification, replacement for typeid
60  static char ID;
61
62  explicit LoopVectorize() : LoopPass(ID) {
63    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
64  }
65
66  ScalarEvolution *SE;
67  DataLayout *DL;
68  LoopInfo *LI;
69  TargetTransformInfo *TTI;
70  DominatorTree *DT;
71
72  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
73    // We only vectorize innermost loops.
74    if (!L->empty())
75      return false;
76
77    SE = &getAnalysis<ScalarEvolution>();
78    DL = getAnalysisIfAvailable<DataLayout>();
79    LI = &getAnalysis<LoopInfo>();
80    TTI = getAnalysisIfAvailable<TargetTransformInfo>();
81    DT = &getAnalysis<DominatorTree>();
82
83    DEBUG(dbgs() << "LV: Checking a loop in \"" <<
84          L->getHeader()->getParent()->getName() << "\"\n");
85
86    // Check if it is legal to vectorize the loop.
87    LoopVectorizationLegality LVL(L, SE, DL, DT);
88    if (!LVL.canVectorize()) {
89      DEBUG(dbgs() << "LV: Not vectorizing.\n");
90      return false;
91    }
92
93    // Use the cost model.
94    LoopVectorizationCostModel CM(L, SE, LI, &LVL, TTI);
95
96    // Check the function attribues to find out if this function should be
97    // optimized for size.
98    Function *F = L->getHeader()->getParent();
99    Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
100    Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
101    unsigned FnIndex = AttributeSet::FunctionIndex;
102    bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
103    bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
104
105    if (NoFloat) {
106      DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
107            "attribute is used.\n");
108      return false;
109    }
110
111    unsigned VF = CM.selectVectorizationFactor(OptForSize, VectorizationFactor);
112    unsigned UF = CM.selectUnrollFactor(OptForSize, VectorizationUnroll);
113
114    if (VF == 1) {
115      DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
116      return false;
117    }
118
119    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF << ") in "<<
120          F->getParent()->getModuleIdentifier()<<"\n");
121    DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
122
123    // If we decided that it is *legal* to vectorizer the loop then do it.
124    InnerLoopVectorizer LB(L, SE, LI, DT, DL, VF, UF);
125    LB.vectorize(&LVL);
126
127    DEBUG(verifyFunction(*L->getHeader()->getParent()));
128    return true;
129  }
130
131  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
132    LoopPass::getAnalysisUsage(AU);
133    AU.addRequiredID(LoopSimplifyID);
134    AU.addRequiredID(LCSSAID);
135    AU.addRequired<LoopInfo>();
136    AU.addRequired<ScalarEvolution>();
137    AU.addRequired<DominatorTree>();
138    AU.addPreserved<LoopInfo>();
139    AU.addPreserved<DominatorTree>();
140  }
141
142};
143
144}// namespace
145
146//===----------------------------------------------------------------------===//
147// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
148// LoopVectorizationCostModel.
149//===----------------------------------------------------------------------===//
150
151void
152LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
153                                                       Loop *Lp, Value *Ptr) {
154  const SCEV *Sc = SE->getSCEV(Ptr);
155  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
156  assert(AR && "Invalid addrec expression");
157  const SCEV *Ex = SE->getExitCount(Lp, Lp->getLoopLatch());
158  const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
159  Pointers.push_back(Ptr);
160  Starts.push_back(AR->getStart());
161  Ends.push_back(ScEnd);
162}
163
164Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
165  // Save the current insertion location.
166  Instruction *Loc = Builder.GetInsertPoint();
167
168  // We need to place the broadcast of invariant variables outside the loop.
169  Instruction *Instr = dyn_cast<Instruction>(V);
170  bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
171  bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
172
173  // Place the code for broadcasting invariant variables in the new preheader.
174  if (Invariant)
175    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
176
177  // Broadcast the scalar into all locations in the vector.
178  Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
179
180  // Restore the builder insertion point.
181  if (Invariant)
182    Builder.SetInsertPoint(Loc);
183
184  return Shuf;
185}
186
187Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, unsigned StartIdx,
188                                                 bool Negate) {
189  assert(Val->getType()->isVectorTy() && "Must be a vector");
190  assert(Val->getType()->getScalarType()->isIntegerTy() &&
191         "Elem must be an integer");
192  // Create the types.
193  Type *ITy = Val->getType()->getScalarType();
194  VectorType *Ty = cast<VectorType>(Val->getType());
195  int VLen = Ty->getNumElements();
196  SmallVector<Constant*, 8> Indices;
197
198  // Create a vector of consecutive numbers from zero to VF.
199  for (int i = 0; i < VLen; ++i) {
200    int Idx = Negate ? (-i): i;
201    Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx));
202  }
203
204  // Add the consecutive indices to the vector value.
205  Constant *Cv = ConstantVector::get(Indices);
206  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
207  return Builder.CreateAdd(Val, Cv, "induction");
208}
209
210int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
211  assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
212
213  // If this value is a pointer induction variable we know it is consecutive.
214  PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
215  if (Phi && Inductions.count(Phi)) {
216    InductionInfo II = Inductions[Phi];
217    if (PtrInduction == II.IK)
218      return 1;
219  }
220
221  GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
222  if (!Gep)
223    return 0;
224
225  unsigned NumOperands = Gep->getNumOperands();
226  Value *LastIndex = Gep->getOperand(NumOperands - 1);
227
228  // Check that all of the gep indices are uniform except for the last.
229  for (unsigned i = 0; i < NumOperands - 1; ++i)
230    if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
231      return 0;
232
233  // We can emit wide load/stores only if the last index is the induction
234  // variable.
235  const SCEV *Last = SE->getSCEV(LastIndex);
236  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
237    const SCEV *Step = AR->getStepRecurrence(*SE);
238
239    // The memory is consecutive because the last index is consecutive
240    // and all other indices are loop invariant.
241    if (Step->isOne())
242      return 1;
243    if (Step->isAllOnesValue())
244      return -1;
245  }
246
247  return 0;
248}
249
250bool LoopVectorizationLegality::isUniform(Value *V) {
251  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
252}
253
254InnerLoopVectorizer::VectorParts&
255InnerLoopVectorizer::getVectorValue(Value *V) {
256  assert(V != Induction && "The new induction variable should not be used.");
257  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
258
259  // If we have this scalar in the map, return it.
260  if (WidenMap.has(V))
261    return WidenMap.get(V);
262
263  // If this scalar is unknown, assume that it is a constant or that it is
264  // loop invariant. Broadcast V and save the value for future uses.
265  Value *B = getBroadcastInstrs(V);
266  WidenMap.splat(V, B);
267  return WidenMap.get(V);
268}
269
270Constant*
271InnerLoopVectorizer::getUniformVector(unsigned Val, Type* ScalarTy) {
272  return ConstantVector::getSplat(VF, ConstantInt::get(ScalarTy, Val, true));
273}
274
275Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
276  assert(Vec->getType()->isVectorTy() && "Invalid type");
277  SmallVector<Constant*, 8> ShuffleMask;
278  for (unsigned i = 0; i < VF; ++i)
279    ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
280
281  return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
282                                     ConstantVector::get(ShuffleMask),
283                                     "reverse");
284}
285
286void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
287  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
288  // Holds vector parameters or scalars, in case of uniform vals.
289  SmallVector<VectorParts, 4> Params;
290
291  // Find all of the vectorized parameters.
292  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
293    Value *SrcOp = Instr->getOperand(op);
294
295    // If we are accessing the old induction variable, use the new one.
296    if (SrcOp == OldInduction) {
297      Params.push_back(getVectorValue(SrcOp));
298      continue;
299    }
300
301    // Try using previously calculated values.
302    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
303
304    // If the src is an instruction that appeared earlier in the basic block
305    // then it should already be vectorized.
306    if (SrcInst && OrigLoop->contains(SrcInst)) {
307      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
308      // The parameter is a vector value from earlier.
309      Params.push_back(WidenMap.get(SrcInst));
310    } else {
311      // The parameter is a scalar from outside the loop. Maybe even a constant.
312      VectorParts Scalars;
313      Scalars.append(UF, SrcOp);
314      Params.push_back(Scalars);
315    }
316  }
317
318  assert(Params.size() == Instr->getNumOperands() &&
319         "Invalid number of operands");
320
321  // Does this instruction return a value ?
322  bool IsVoidRetTy = Instr->getType()->isVoidTy();
323
324  Value *UndefVec = IsVoidRetTy ? 0 :
325    UndefValue::get(VectorType::get(Instr->getType(), VF));
326  // Create a new entry in the WidenMap and initialize it to Undef or Null.
327  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
328
329  // For each scalar that we create:
330  for (unsigned Width = 0; Width < VF; ++Width) {
331    // For each vector unroll 'part':
332    for (unsigned Part = 0; Part < UF; ++Part) {
333      Instruction *Cloned = Instr->clone();
334      if (!IsVoidRetTy)
335        Cloned->setName(Instr->getName() + ".cloned");
336      // Replace the operands of the cloned instrucions with extracted scalars.
337      for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
338        Value *Op = Params[op][Part];
339        // Param is a vector. Need to extract the right lane.
340        if (Op->getType()->isVectorTy())
341          Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
342        Cloned->setOperand(op, Op);
343      }
344
345      // Place the cloned scalar in the new loop.
346      Builder.Insert(Cloned);
347
348      // If the original scalar returns a value we need to place it in a vector
349      // so that future users will be able to use it.
350      if (!IsVoidRetTy)
351        VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
352                                                       Builder.getInt32(Width));
353    }
354  }
355}
356
357Value*
358InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
359                                     Instruction *Loc) {
360  LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
361  Legal->getRuntimePointerCheck();
362
363  if (!PtrRtCheck->Need)
364    return NULL;
365
366  Value *MemoryRuntimeCheck = 0;
367  unsigned NumPointers = PtrRtCheck->Pointers.size();
368  SmallVector<Value* , 2> Starts;
369  SmallVector<Value* , 2> Ends;
370
371  SCEVExpander Exp(*SE, "induction");
372
373  // Use this type for pointer arithmetic.
374  Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0);
375
376  for (unsigned i = 0; i < NumPointers; ++i) {
377    Value *Ptr = PtrRtCheck->Pointers[i];
378    const SCEV *Sc = SE->getSCEV(Ptr);
379
380    if (SE->isLoopInvariant(Sc, OrigLoop)) {
381      DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
382            *Ptr <<"\n");
383      Starts.push_back(Ptr);
384      Ends.push_back(Ptr);
385    } else {
386      DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
387
388      Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
389      Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
390      Starts.push_back(Start);
391      Ends.push_back(End);
392    }
393  }
394
395  for (unsigned i = 0; i < NumPointers; ++i) {
396    for (unsigned j = i+1; j < NumPointers; ++j) {
397      Instruction::CastOps Op = Instruction::BitCast;
398      Value *Start0 = CastInst::Create(Op, Starts[i], PtrArithTy, "bc", Loc);
399      Value *Start1 = CastInst::Create(Op, Starts[j], PtrArithTy, "bc", Loc);
400      Value *End0 =   CastInst::Create(Op, Ends[i],   PtrArithTy, "bc", Loc);
401      Value *End1 =   CastInst::Create(Op, Ends[j],   PtrArithTy, "bc", Loc);
402
403      Value *Cmp0 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
404                                    Start0, End1, "bound0", Loc);
405      Value *Cmp1 = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULE,
406                                    Start1, End0, "bound1", Loc);
407      Value *IsConflict = BinaryOperator::Create(Instruction::And, Cmp0, Cmp1,
408                                                 "found.conflict", Loc);
409      if (MemoryRuntimeCheck)
410        MemoryRuntimeCheck = BinaryOperator::Create(Instruction::Or,
411                                                    MemoryRuntimeCheck,
412                                                    IsConflict,
413                                                    "conflict.rdx", Loc);
414      else
415        MemoryRuntimeCheck = IsConflict;
416
417    }
418  }
419
420  return MemoryRuntimeCheck;
421}
422
423void
424InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
425  /*
426   In this function we generate a new loop. The new loop will contain
427   the vectorized instructions while the old loop will continue to run the
428   scalar remainder.
429
430       [ ] <-- vector loop bypass.
431     /  |
432    /   v
433   |   [ ]     <-- vector pre header.
434   |    |
435   |    v
436   |   [  ] \
437   |   [  ]_|   <-- vector loop.
438   |    |
439    \   v
440      >[ ]   <--- middle-block.
441     /  |
442    /   v
443   |   [ ]     <--- new preheader.
444   |    |
445   |    v
446   |   [ ] \
447   |   [ ]_|   <-- old scalar loop to handle remainder.
448    \   |
449     \  v
450      >[ ]     <-- exit block.
451   ...
452   */
453
454  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
455  BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
456  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
457  assert(ExitBlock && "Must have an exit block");
458
459  // Some loops have a single integer induction variable, while other loops
460  // don't. One example is c++ iterators that often have multiple pointer
461  // induction variables. In the code below we also support a case where we
462  // don't have a single induction variable.
463  OldInduction = Legal->getInduction();
464  Type *IdxTy = OldInduction ? OldInduction->getType() :
465  DL->getIntPtrType(SE->getContext());
466
467  // Find the loop boundaries.
468  const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getLoopLatch());
469  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
470
471  // Get the total trip count from the count by adding 1.
472  ExitCount = SE->getAddExpr(ExitCount,
473                             SE->getConstant(ExitCount->getType(), 1));
474
475  // Expand the trip count and place the new instructions in the preheader.
476  // Notice that the pre-header does not change, only the loop body.
477  SCEVExpander Exp(*SE, "induction");
478
479  // Count holds the overall loop count (N).
480  Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
481                                   BypassBlock->getTerminator());
482
483  // The loop index does not have to start at Zero. Find the original start
484  // value from the induction PHI node. If we don't have an induction variable
485  // then we know that it starts at zero.
486  Value *StartIdx = OldInduction ?
487  OldInduction->getIncomingValueForBlock(BypassBlock):
488  ConstantInt::get(IdxTy, 0);
489
490  assert(BypassBlock && "Invalid loop structure");
491
492  // Generate the code that checks in runtime if arrays overlap.
493  Value *MemoryRuntimeCheck = addRuntimeCheck(Legal,
494                                              BypassBlock->getTerminator());
495
496  // Split the single block loop into the two loop structure described above.
497  BasicBlock *VectorPH =
498  BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
499  BasicBlock *VecBody =
500  VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
501  BasicBlock *MiddleBlock =
502  VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
503  BasicBlock *ScalarPH =
504  MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
505
506  // This is the location in which we add all of the logic for bypassing
507  // the new vector loop.
508  Instruction *Loc = BypassBlock->getTerminator();
509
510  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
511  // inside the loop.
512  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
513
514  // Generate the induction variable.
515  Induction = Builder.CreatePHI(IdxTy, 2, "index");
516  // The loop step is equal to the vectorization factor (num of SIMD elements)
517  // times the unroll factor (num of SIMD instructions).
518  Constant *Step = ConstantInt::get(IdxTy, VF * UF);
519
520  // We may need to extend the index in case there is a type mismatch.
521  // We know that the count starts at zero and does not overflow.
522  if (Count->getType() != IdxTy) {
523    // The exit count can be of pointer type. Convert it to the correct
524    // integer type.
525    if (ExitCount->getType()->isPointerTy())
526      Count = CastInst::CreatePointerCast(Count, IdxTy, "ptrcnt.to.int", Loc);
527    else
528      Count = CastInst::CreateZExtOrBitCast(Count, IdxTy, "zext.cnt", Loc);
529  }
530
531  // Add the start index to the loop count to get the new end index.
532  Value *IdxEnd = BinaryOperator::CreateAdd(Count, StartIdx, "end.idx", Loc);
533
534  // Now we need to generate the expression for N - (N % VF), which is
535  // the part that the vectorized body will execute.
536  Value *R = BinaryOperator::CreateURem(Count, Step, "n.mod.vf", Loc);
537  Value *CountRoundDown = BinaryOperator::CreateSub(Count, R, "n.vec", Loc);
538  Value *IdxEndRoundDown = BinaryOperator::CreateAdd(CountRoundDown, StartIdx,
539                                                     "end.idx.rnd.down", Loc);
540
541  // Now, compare the new count to zero. If it is zero skip the vector loop and
542  // jump to the scalar loop.
543  Value *Cmp = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ,
544                               IdxEndRoundDown,
545                               StartIdx,
546                               "cmp.zero", Loc);
547
548  // If we are using memory runtime checks, include them in.
549  if (MemoryRuntimeCheck)
550    Cmp = BinaryOperator::Create(Instruction::Or, Cmp, MemoryRuntimeCheck,
551                                 "CntOrMem", Loc);
552
553  BranchInst::Create(MiddleBlock, VectorPH, Cmp, Loc);
554  // Remove the old terminator.
555  Loc->eraseFromParent();
556
557  // We are going to resume the execution of the scalar loop.
558  // Go over all of the induction variables that we found and fix the
559  // PHIs that are left in the scalar version of the loop.
560  // The starting values of PHI nodes depend on the counter of the last
561  // iteration in the vectorized loop.
562  // If we come from a bypass edge then we need to start from the original
563  // start value.
564
565  // This variable saves the new starting index for the scalar loop.
566  PHINode *ResumeIndex = 0;
567  LoopVectorizationLegality::InductionList::iterator I, E;
568  LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
569  for (I = List->begin(), E = List->end(); I != E; ++I) {
570    PHINode *OrigPhi = I->first;
571    LoopVectorizationLegality::InductionInfo II = I->second;
572    PHINode *ResumeVal = PHINode::Create(OrigPhi->getType(), 2, "resume.val",
573                                         MiddleBlock->getTerminator());
574    Value *EndValue = 0;
575    switch (II.IK) {
576    case LoopVectorizationLegality::NoInduction:
577      llvm_unreachable("Unknown induction");
578    case LoopVectorizationLegality::IntInduction: {
579      // Handle the integer induction counter:
580      assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
581      assert(OrigPhi == OldInduction && "Unknown integer PHI");
582      // We know what the end value is.
583      EndValue = IdxEndRoundDown;
584      // We also know which PHI node holds it.
585      ResumeIndex = ResumeVal;
586      break;
587    }
588    case LoopVectorizationLegality::ReverseIntInduction: {
589      // Convert the CountRoundDown variable to the PHI size.
590      unsigned CRDSize = CountRoundDown->getType()->getScalarSizeInBits();
591      unsigned IISize = II.StartValue->getType()->getScalarSizeInBits();
592      Value *CRD = CountRoundDown;
593      if (CRDSize > IISize)
594        CRD = CastInst::Create(Instruction::Trunc, CountRoundDown,
595                               II.StartValue->getType(),
596                               "tr.crd", BypassBlock->getTerminator());
597      else if (CRDSize < IISize)
598        CRD = CastInst::Create(Instruction::SExt, CountRoundDown,
599                               II.StartValue->getType(),
600                               "sext.crd", BypassBlock->getTerminator());
601      // Handle reverse integer induction counter:
602      EndValue = BinaryOperator::CreateSub(II.StartValue, CRD, "rev.ind.end",
603                                           BypassBlock->getTerminator());
604      break;
605    }
606    case LoopVectorizationLegality::PtrInduction: {
607      // For pointer induction variables, calculate the offset using
608      // the end index.
609      EndValue = GetElementPtrInst::Create(II.StartValue, CountRoundDown,
610                                           "ptr.ind.end",
611                                           BypassBlock->getTerminator());
612      break;
613    }
614    }// end of case
615
616    // The new PHI merges the original incoming value, in case of a bypass,
617    // or the value at the end of the vectorized loop.
618    ResumeVal->addIncoming(II.StartValue, BypassBlock);
619    ResumeVal->addIncoming(EndValue, VecBody);
620
621    // Fix the scalar body counter (PHI node).
622    unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
623    OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
624  }
625
626  // If we are generating a new induction variable then we also need to
627  // generate the code that calculates the exit value. This value is not
628  // simply the end of the counter because we may skip the vectorized body
629  // in case of a runtime check.
630  if (!OldInduction){
631    assert(!ResumeIndex && "Unexpected resume value found");
632    ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
633                                  MiddleBlock->getTerminator());
634    ResumeIndex->addIncoming(StartIdx, BypassBlock);
635    ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
636  }
637
638  // Make sure that we found the index where scalar loop needs to continue.
639  assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
640         "Invalid resume Index");
641
642  // Add a check in the middle block to see if we have completed
643  // all of the iterations in the first vector loop.
644  // If (N - N%VF) == N, then we *don't* need to run the remainder.
645  Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
646                                ResumeIndex, "cmp.n",
647                                MiddleBlock->getTerminator());
648
649  BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
650  // Remove the old terminator.
651  MiddleBlock->getTerminator()->eraseFromParent();
652
653  // Create i+1 and fill the PHINode.
654  Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
655  Induction->addIncoming(StartIdx, VectorPH);
656  Induction->addIncoming(NextIdx, VecBody);
657  // Create the compare.
658  Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
659  Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
660
661  // Now we have two terminators. Remove the old one from the block.
662  VecBody->getTerminator()->eraseFromParent();
663
664  // Get ready to start creating new instructions into the vectorized body.
665  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
666
667  // Create and register the new vector loop.
668  Loop* Lp = new Loop();
669  Loop *ParentLoop = OrigLoop->getParentLoop();
670
671  // Insert the new loop into the loop nest and register the new basic blocks.
672  if (ParentLoop) {
673    ParentLoop->addChildLoop(Lp);
674    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
675    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
676    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
677  } else {
678    LI->addTopLevelLoop(Lp);
679  }
680
681  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
682
683  // Save the state.
684  LoopVectorPreHeader = VectorPH;
685  LoopScalarPreHeader = ScalarPH;
686  LoopMiddleBlock = MiddleBlock;
687  LoopExitBlock = ExitBlock;
688  LoopVectorBody = VecBody;
689  LoopScalarBody = OldBasicBlock;
690  LoopBypassBlock = BypassBlock;
691}
692
693/// This function returns the identity element (or neutral element) for
694/// the operation K.
695static unsigned
696getReductionIdentity(LoopVectorizationLegality::ReductionKind K) {
697  switch (K) {
698  case LoopVectorizationLegality::IntegerXor:
699  case LoopVectorizationLegality::IntegerAdd:
700  case LoopVectorizationLegality::IntegerOr:
701    // Adding, Xoring, Oring zero to a number does not change it.
702    return 0;
703  case LoopVectorizationLegality::IntegerMult:
704    // Multiplying a number by 1 does not change it.
705    return 1;
706  case LoopVectorizationLegality::IntegerAnd:
707    // AND-ing a number with an all-1 value does not change it.
708    return -1;
709  default:
710    llvm_unreachable("Unknown reduction kind");
711  }
712}
713
714static bool
715isTriviallyVectorizableIntrinsic(Instruction *Inst) {
716  IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
717  if (!II)
718    return false;
719  switch (II->getIntrinsicID()) {
720  case Intrinsic::sqrt:
721  case Intrinsic::sin:
722  case Intrinsic::cos:
723  case Intrinsic::exp:
724  case Intrinsic::exp2:
725  case Intrinsic::log:
726  case Intrinsic::log10:
727  case Intrinsic::log2:
728  case Intrinsic::fabs:
729  case Intrinsic::floor:
730  case Intrinsic::ceil:
731  case Intrinsic::trunc:
732  case Intrinsic::rint:
733  case Intrinsic::nearbyint:
734  case Intrinsic::pow:
735  case Intrinsic::fma:
736  case Intrinsic::fmuladd:
737    return true;
738  default:
739    return false;
740  }
741  return false;
742}
743
744void
745InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
746  //===------------------------------------------------===//
747  //
748  // Notice: any optimization or new instruction that go
749  // into the code below should be also be implemented in
750  // the cost-model.
751  //
752  //===------------------------------------------------===//
753  BasicBlock &BB = *OrigLoop->getHeader();
754  Constant *Zero =
755  ConstantInt::get(IntegerType::getInt32Ty(BB.getContext()), 0);
756
757  // In order to support reduction variables we need to be able to vectorize
758  // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
759  // stages. First, we create a new vector PHI node with no incoming edges.
760  // We use this value when we vectorize all of the instructions that use the
761  // PHI. Next, after all of the instructions in the block are complete we
762  // add the new incoming edges to the PHI. At this point all of the
763  // instructions in the basic block are vectorized, so we can use them to
764  // construct the PHI.
765  PhiVector RdxPHIsToFix;
766
767  // Scan the loop in a topological order to ensure that defs are vectorized
768  // before users.
769  LoopBlocksDFS DFS(OrigLoop);
770  DFS.perform(LI);
771
772  // Vectorize all of the blocks in the original loop.
773  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
774       be = DFS.endRPO(); bb != be; ++bb)
775    vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
776
777  // At this point every instruction in the original loop is widened to
778  // a vector form. We are almost done. Now, we need to fix the PHI nodes
779  // that we vectorized. The PHI nodes are currently empty because we did
780  // not want to introduce cycles. Notice that the remaining PHI nodes
781  // that we need to fix are reduction variables.
782
783  // Create the 'reduced' values for each of the induction vars.
784  // The reduced values are the vector values that we scalarize and combine
785  // after the loop is finished.
786  for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
787       it != e; ++it) {
788    PHINode *RdxPhi = *it;
789    assert(RdxPhi && "Unable to recover vectorized PHI");
790
791    // Find the reduction variable descriptor.
792    assert(Legal->getReductionVars()->count(RdxPhi) &&
793           "Unable to find the reduction variable");
794    LoopVectorizationLegality::ReductionDescriptor RdxDesc =
795    (*Legal->getReductionVars())[RdxPhi];
796
797    // We need to generate a reduction vector from the incoming scalar.
798    // To do so, we need to generate the 'identity' vector and overide
799    // one of the elements with the incoming scalar reduction. We need
800    // to do it in the vector-loop preheader.
801    Builder.SetInsertPoint(LoopBypassBlock->getTerminator());
802
803    // This is the vector-clone of the value that leaves the loop.
804    VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
805    Type *VecTy = VectorExit[0]->getType();
806
807    // Find the reduction identity variable. Zero for addition, or, xor,
808    // one for multiplication, -1 for And.
809    Constant *Identity = getUniformVector(getReductionIdentity(RdxDesc.Kind),
810                                          VecTy->getScalarType());
811
812    // This vector is the Identity vector where the first element is the
813    // incoming scalar reduction.
814    Value *VectorStart = Builder.CreateInsertElement(Identity,
815                                                     RdxDesc.StartValue, Zero);
816
817    // Fix the vector-loop phi.
818    // We created the induction variable so we know that the
819    // preheader is the first entry.
820    BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
821
822    // Reductions do not have to start at zero. They can start with
823    // any loop invariant values.
824    VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
825    BasicBlock *Latch = OrigLoop->getLoopLatch();
826    Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
827    VectorParts &Val = getVectorValue(LoopVal);
828    for (unsigned part = 0; part < UF; ++part) {
829      // Make sure to add the reduction stat value only to the
830      // first unroll part.
831      Value *StartVal = (part == 0) ? VectorStart : Identity;
832      cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
833      cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
834    }
835
836    // Before each round, move the insertion point right between
837    // the PHIs and the values we are going to write.
838    // This allows us to write both PHINodes and the extractelement
839    // instructions.
840    Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
841
842    VectorParts RdxParts;
843    for (unsigned part = 0; part < UF; ++part) {
844      // This PHINode contains the vectorized reduction variable, or
845      // the initial value vector, if we bypass the vector loop.
846      VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
847      PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
848      Value *StartVal = (part == 0) ? VectorStart : Identity;
849      NewPhi->addIncoming(StartVal, LoopBypassBlock);
850      NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
851      RdxParts.push_back(NewPhi);
852    }
853
854    // Reduce all of the unrolled parts into a single vector.
855    Value *ReducedPartRdx = RdxParts[0];
856    for (unsigned part = 1; part < UF; ++part) {
857      switch (RdxDesc.Kind) {
858      case LoopVectorizationLegality::IntegerAdd:
859        ReducedPartRdx =
860          Builder.CreateAdd(RdxParts[part], ReducedPartRdx, "add.rdx");
861        break;
862      case LoopVectorizationLegality::IntegerMult:
863        ReducedPartRdx =
864          Builder.CreateMul(RdxParts[part], ReducedPartRdx, "mul.rdx");
865        break;
866      case LoopVectorizationLegality::IntegerOr:
867        ReducedPartRdx =
868          Builder.CreateOr(RdxParts[part], ReducedPartRdx, "or.rdx");
869        break;
870      case LoopVectorizationLegality::IntegerAnd:
871        ReducedPartRdx =
872          Builder.CreateAnd(RdxParts[part], ReducedPartRdx, "and.rdx");
873        break;
874      case LoopVectorizationLegality::IntegerXor:
875        ReducedPartRdx =
876          Builder.CreateXor(RdxParts[part], ReducedPartRdx, "xor.rdx");
877        break;
878      default:
879        llvm_unreachable("Unknown reduction operation");
880      }
881    }
882
883
884    // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
885    // and vector ops, reducing the set of values being computed by half each
886    // round.
887    assert(isPowerOf2_32(VF) &&
888           "Reduction emission only supported for pow2 vectors!");
889    Value *TmpVec = ReducedPartRdx;
890    SmallVector<Constant*, 32> ShuffleMask(VF, 0);
891    for (unsigned i = VF; i != 1; i >>= 1) {
892      // Move the upper half of the vector to the lower half.
893      for (unsigned j = 0; j != i/2; ++j)
894        ShuffleMask[j] = Builder.getInt32(i/2 + j);
895
896      // Fill the rest of the mask with undef.
897      std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
898                UndefValue::get(Builder.getInt32Ty()));
899
900      Value *Shuf =
901        Builder.CreateShuffleVector(TmpVec,
902                                    UndefValue::get(TmpVec->getType()),
903                                    ConstantVector::get(ShuffleMask),
904                                    "rdx.shuf");
905
906      // Emit the operation on the shuffled value.
907      switch (RdxDesc.Kind) {
908      case LoopVectorizationLegality::IntegerAdd:
909        TmpVec = Builder.CreateAdd(TmpVec, Shuf, "add.rdx");
910        break;
911      case LoopVectorizationLegality::IntegerMult:
912        TmpVec = Builder.CreateMul(TmpVec, Shuf, "mul.rdx");
913        break;
914      case LoopVectorizationLegality::IntegerOr:
915        TmpVec = Builder.CreateOr(TmpVec, Shuf, "or.rdx");
916        break;
917      case LoopVectorizationLegality::IntegerAnd:
918        TmpVec = Builder.CreateAnd(TmpVec, Shuf, "and.rdx");
919        break;
920      case LoopVectorizationLegality::IntegerXor:
921        TmpVec = Builder.CreateXor(TmpVec, Shuf, "xor.rdx");
922        break;
923      default:
924        llvm_unreachable("Unknown reduction operation");
925      }
926    }
927
928    // The result is in the first element of the vector.
929    Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
930
931    // Now, we need to fix the users of the reduction variable
932    // inside and outside of the scalar remainder loop.
933    // We know that the loop is in LCSSA form. We need to update the
934    // PHI nodes in the exit blocks.
935    for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
936         LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
937      PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
938      if (!LCSSAPhi) continue;
939
940      // All PHINodes need to have a single entry edge, or two if
941      // we already fixed them.
942      assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
943
944      // We found our reduction value exit-PHI. Update it with the
945      // incoming bypass edge.
946      if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
947        // Add an edge coming from the bypass.
948        LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
949        break;
950      }
951    }// end of the LCSSA phi scan.
952
953    // Fix the scalar loop reduction variable with the incoming reduction sum
954    // from the vector body and from the backedge value.
955    int IncomingEdgeBlockIdx =
956    (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
957    assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
958    // Pick the other block.
959    int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
960    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
961    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
962  }// end of for each redux variable.
963
964  // The Loop exit block may have single value PHI nodes where the incoming
965  // value is 'undef'. While vectorizing we only handled real values that
966  // were defined inside the loop. Here we handle the 'undef case'.
967  // See PR14725.
968  for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
969       LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
970    PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
971    if (!LCSSAPhi) continue;
972    if (LCSSAPhi->getNumIncomingValues() == 1)
973      LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
974                            LoopMiddleBlock);
975  }
976}
977
978InnerLoopVectorizer::VectorParts
979InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
980  assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
981         "Invalid edge");
982
983  VectorParts SrcMask = createBlockInMask(Src);
984
985  // The terminator has to be a branch inst!
986  BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
987  assert(BI && "Unexpected terminator found");
988
989  if (BI->isConditional()) {
990    VectorParts EdgeMask = getVectorValue(BI->getCondition());
991
992    if (BI->getSuccessor(0) != Dst)
993      for (unsigned part = 0; part < UF; ++part)
994        EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
995
996    for (unsigned part = 0; part < UF; ++part)
997      EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
998    return EdgeMask;
999  }
1000
1001  return SrcMask;
1002}
1003
1004InnerLoopVectorizer::VectorParts
1005InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
1006  assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
1007
1008  // Loop incoming mask is all-one.
1009  if (OrigLoop->getHeader() == BB) {
1010    Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
1011    return getVectorValue(C);
1012  }
1013
1014  // This is the block mask. We OR all incoming edges, and with zero.
1015  Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
1016  VectorParts BlockMask = getVectorValue(Zero);
1017
1018  // For each pred:
1019  for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
1020    VectorParts EM = createEdgeMask(*it, BB);
1021    for (unsigned part = 0; part < UF; ++part)
1022      BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
1023  }
1024
1025  return BlockMask;
1026}
1027
1028void
1029InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
1030                                          BasicBlock *BB, PhiVector *PV) {
1031  Constant *Zero = Builder.getInt32(0);
1032
1033  // For each instruction in the old loop.
1034  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
1035    VectorParts &Entry = WidenMap.get(it);
1036    switch (it->getOpcode()) {
1037    case Instruction::Br:
1038      // Nothing to do for PHIs and BR, since we already took care of the
1039      // loop control flow instructions.
1040      continue;
1041    case Instruction::PHI:{
1042      PHINode* P = cast<PHINode>(it);
1043      // Handle reduction variables:
1044      if (Legal->getReductionVars()->count(P)) {
1045        for (unsigned part = 0; part < UF; ++part) {
1046          // This is phase one of vectorizing PHIs.
1047          Type *VecTy = VectorType::get(it->getType(), VF);
1048          Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
1049                                        LoopVectorBody-> getFirstInsertionPt());
1050        }
1051        PV->push_back(P);
1052        continue;
1053      }
1054
1055      // Check for PHI nodes that are lowered to vector selects.
1056      if (P->getParent() != OrigLoop->getHeader()) {
1057        // We know that all PHIs in non header blocks are converted into
1058        // selects, so we don't have to worry about the insertion order and we
1059        // can just use the builder.
1060
1061        // At this point we generate the predication tree. There may be
1062        // duplications since this is a simple recursive scan, but future
1063        // optimizations will clean it up.
1064        VectorParts Cond = createEdgeMask(P->getIncomingBlock(0),
1065                                               P->getParent());
1066
1067        for (unsigned part = 0; part < UF; ++part) {
1068        VectorParts &In0 = getVectorValue(P->getIncomingValue(0));
1069        VectorParts &In1 = getVectorValue(P->getIncomingValue(1));
1070          Entry[part] = Builder.CreateSelect(Cond[part], In0[part], In1[part],
1071                                             "predphi");
1072        }
1073        continue;
1074      }
1075
1076      // This PHINode must be an induction variable.
1077      // Make sure that we know about it.
1078      assert(Legal->getInductionVars()->count(P) &&
1079             "Not an induction variable");
1080
1081      LoopVectorizationLegality::InductionInfo II =
1082        Legal->getInductionVars()->lookup(P);
1083
1084      switch (II.IK) {
1085      case LoopVectorizationLegality::NoInduction:
1086        llvm_unreachable("Unknown induction");
1087      case LoopVectorizationLegality::IntInduction: {
1088        assert(P == OldInduction && "Unexpected PHI");
1089        Value *Broadcasted = getBroadcastInstrs(Induction);
1090        // After broadcasting the induction variable we need to make the
1091        // vector consecutive by adding 0, 1, 2 ...
1092        for (unsigned part = 0; part < UF; ++part)
1093          Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
1094        continue;
1095      }
1096      case LoopVectorizationLegality::ReverseIntInduction:
1097      case LoopVectorizationLegality::PtrInduction:
1098        // Handle reverse integer and pointer inductions.
1099        Value *StartIdx = 0;
1100        // If we have a single integer induction variable then use it.
1101        // Otherwise, start counting at zero.
1102        if (OldInduction) {
1103          LoopVectorizationLegality::InductionInfo OldII =
1104            Legal->getInductionVars()->lookup(OldInduction);
1105          StartIdx = OldII.StartValue;
1106        } else {
1107          StartIdx = ConstantInt::get(Induction->getType(), 0);
1108        }
1109        // This is the normalized GEP that starts counting at zero.
1110        Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
1111                                                 "normalized.idx");
1112
1113        // Handle the reverse integer induction variable case.
1114        if (LoopVectorizationLegality::ReverseIntInduction == II.IK) {
1115          IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
1116          Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
1117                                                 "resize.norm.idx");
1118          Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
1119                                                 "reverse.idx");
1120
1121          // This is a new value so do not hoist it out.
1122          Value *Broadcasted = getBroadcastInstrs(ReverseInd);
1123          // After broadcasting the induction variable we need to make the
1124          // vector consecutive by adding  ... -3, -2, -1, 0.
1125          for (unsigned part = 0; part < UF; ++part)
1126            Entry[part] = getConsecutiveVector(Broadcasted, -VF * part, true);
1127          continue;
1128        }
1129
1130        // Handle the pointer induction variable case.
1131        assert(P->getType()->isPointerTy() && "Unexpected type.");
1132
1133        // This is the vector of results. Notice that we don't generate
1134        // vector geps because scalar geps result in better code.
1135        for (unsigned part = 0; part < UF; ++part) {
1136          Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
1137          for (unsigned int i = 0; i < VF; ++i) {
1138            Constant *Idx = ConstantInt::get(Induction->getType(),
1139                                             i + part * VF);
1140            Value *GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx,
1141                                                 "gep.idx");
1142            Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
1143                                               "next.gep");
1144            VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
1145                                                 Builder.getInt32(i),
1146                                                 "insert.gep");
1147          }
1148          Entry[part] = VecVal;
1149        }
1150        continue;
1151      }
1152
1153    }// End of PHI.
1154
1155    case Instruction::Add:
1156    case Instruction::FAdd:
1157    case Instruction::Sub:
1158    case Instruction::FSub:
1159    case Instruction::Mul:
1160    case Instruction::FMul:
1161    case Instruction::UDiv:
1162    case Instruction::SDiv:
1163    case Instruction::FDiv:
1164    case Instruction::URem:
1165    case Instruction::SRem:
1166    case Instruction::FRem:
1167    case Instruction::Shl:
1168    case Instruction::LShr:
1169    case Instruction::AShr:
1170    case Instruction::And:
1171    case Instruction::Or:
1172    case Instruction::Xor: {
1173      // Just widen binops.
1174      BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
1175      VectorParts &A = getVectorValue(it->getOperand(0));
1176      VectorParts &B = getVectorValue(it->getOperand(1));
1177
1178      // Use this vector value for all users of the original instruction.
1179      for (unsigned Part = 0; Part < UF; ++Part) {
1180        Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
1181
1182        // Update the NSW, NUW and Exact flags.
1183        BinaryOperator *VecOp = cast<BinaryOperator>(V);
1184        if (isa<OverflowingBinaryOperator>(BinOp)) {
1185          VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
1186          VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
1187        }
1188        if (isa<PossiblyExactOperator>(VecOp))
1189          VecOp->setIsExact(BinOp->isExact());
1190
1191        Entry[Part] = V;
1192      }
1193      break;
1194    }
1195    case Instruction::Select: {
1196      // Widen selects.
1197      // If the selector is loop invariant we can create a select
1198      // instruction with a scalar condition. Otherwise, use vector-select.
1199      bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
1200                                               OrigLoop);
1201
1202      // The condition can be loop invariant  but still defined inside the
1203      // loop. This means that we can't just use the original 'cond' value.
1204      // We have to take the 'vectorized' value and pick the first lane.
1205      // Instcombine will make this a no-op.
1206      VectorParts &Cond = getVectorValue(it->getOperand(0));
1207      VectorParts &Op0  = getVectorValue(it->getOperand(1));
1208      VectorParts &Op1  = getVectorValue(it->getOperand(2));
1209      Value *ScalarCond = Builder.CreateExtractElement(Cond[0],
1210                                                       Builder.getInt32(0));
1211      for (unsigned Part = 0; Part < UF; ++Part) {
1212        Entry[Part] = Builder.CreateSelect(
1213          InvariantCond ? ScalarCond : Cond[Part],
1214          Op0[Part],
1215          Op1[Part]);
1216      }
1217      break;
1218    }
1219
1220    case Instruction::ICmp:
1221    case Instruction::FCmp: {
1222      // Widen compares. Generate vector compares.
1223      bool FCmp = (it->getOpcode() == Instruction::FCmp);
1224      CmpInst *Cmp = dyn_cast<CmpInst>(it);
1225      VectorParts &A = getVectorValue(it->getOperand(0));
1226      VectorParts &B = getVectorValue(it->getOperand(1));
1227      for (unsigned Part = 0; Part < UF; ++Part) {
1228        Value *C = 0;
1229        if (FCmp)
1230          C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
1231        else
1232          C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
1233        Entry[Part] = C;
1234      }
1235      break;
1236    }
1237
1238    case Instruction::Store: {
1239      // Attempt to issue a wide store.
1240      StoreInst *SI = dyn_cast<StoreInst>(it);
1241      Type *StTy = VectorType::get(SI->getValueOperand()->getType(), VF);
1242      Value *Ptr = SI->getPointerOperand();
1243      unsigned Alignment = SI->getAlignment();
1244
1245      assert(!Legal->isUniform(Ptr) &&
1246             "We do not allow storing to uniform addresses");
1247
1248
1249      int Stride = Legal->isConsecutivePtr(Ptr);
1250      bool Reverse = Stride < 0;
1251      if (Stride == 0) {
1252        scalarizeInstruction(it);
1253        break;
1254      }
1255
1256      // Handle consecutive stores.
1257
1258      GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1259      if (Gep) {
1260        // The last index does not have to be the induction. It can be
1261        // consecutive and be a function of the index. For example A[I+1];
1262        unsigned NumOperands = Gep->getNumOperands();
1263
1264        Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
1265        VectorParts &GEPParts = getVectorValue(LastGepOperand);
1266        Value *LastIndex = GEPParts[0];
1267        LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
1268
1269        // Create the new GEP with the new induction variable.
1270        GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1271        Gep2->setOperand(NumOperands - 1, LastIndex);
1272        Ptr = Builder.Insert(Gep2);
1273      } else {
1274        // Use the induction element ptr.
1275        assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1276        VectorParts &PtrVal = getVectorValue(Ptr);
1277        Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1278      }
1279
1280      VectorParts &StoredVal = getVectorValue(SI->getValueOperand());
1281      for (unsigned Part = 0; Part < UF; ++Part) {
1282        // Calculate the pointer for the specific unroll-part.
1283        Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1284
1285        if (Reverse) {
1286          // If we store to reverse consecutive memory locations then we need
1287          // to reverse the order of elements in the stored value.
1288          StoredVal[Part] = reverseVector(StoredVal[Part]);
1289          // If the address is consecutive but reversed, then the
1290          // wide store needs to start at the last vector element.
1291          PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1292          PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1293        }
1294
1295        Value *VecPtr = Builder.CreateBitCast(PartPtr, StTy->getPointerTo());
1296        Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
1297      }
1298      break;
1299    }
1300    case Instruction::Load: {
1301      // Attempt to issue a wide load.
1302      LoadInst *LI = dyn_cast<LoadInst>(it);
1303      Type *RetTy = VectorType::get(LI->getType(), VF);
1304      Value *Ptr = LI->getPointerOperand();
1305      unsigned Alignment = LI->getAlignment();
1306
1307      // If the pointer is loop invariant or if it is non consecutive,
1308      // scalarize the load.
1309      int Stride = Legal->isConsecutivePtr(Ptr);
1310      bool Reverse = Stride < 0;
1311      if (Legal->isUniform(Ptr) || Stride == 0) {
1312        scalarizeInstruction(it);
1313        break;
1314      }
1315
1316      GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
1317      if (Gep) {
1318        // The last index does not have to be the induction. It can be
1319        // consecutive and be a function of the index. For example A[I+1];
1320        unsigned NumOperands = Gep->getNumOperands();
1321
1322        Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
1323        VectorParts &GEPParts = getVectorValue(LastGepOperand);
1324        Value *LastIndex = GEPParts[0];
1325        LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
1326
1327        // Create the new GEP with the new induction variable.
1328        GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1329        Gep2->setOperand(NumOperands - 1, LastIndex);
1330        Ptr = Builder.Insert(Gep2);
1331      } else {
1332        // Use the induction element ptr.
1333        assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1334        VectorParts &PtrVal = getVectorValue(Ptr);
1335        Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1336      }
1337
1338      for (unsigned Part = 0; Part < UF; ++Part) {
1339        // Calculate the pointer for the specific unroll-part.
1340        Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1341
1342        if (Reverse) {
1343          // If the address is consecutive but reversed, then the
1344          // wide store needs to start at the last vector element.
1345          PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1346          PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1347        }
1348
1349        Value *VecPtr = Builder.CreateBitCast(PartPtr, RetTy->getPointerTo());
1350        Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
1351        cast<LoadInst>(LI)->setAlignment(Alignment);
1352        Entry[Part] = Reverse ? reverseVector(LI) :  LI;
1353      }
1354      break;
1355    }
1356    case Instruction::ZExt:
1357    case Instruction::SExt:
1358    case Instruction::FPToUI:
1359    case Instruction::FPToSI:
1360    case Instruction::FPExt:
1361    case Instruction::PtrToInt:
1362    case Instruction::IntToPtr:
1363    case Instruction::SIToFP:
1364    case Instruction::UIToFP:
1365    case Instruction::Trunc:
1366    case Instruction::FPTrunc:
1367    case Instruction::BitCast: {
1368      CastInst *CI = dyn_cast<CastInst>(it);
1369      /// Optimize the special case where the source is the induction
1370      /// variable. Notice that we can only optimize the 'trunc' case
1371      /// because: a. FP conversions lose precision, b. sext/zext may wrap,
1372      /// c. other casts depend on pointer size.
1373      if (CI->getOperand(0) == OldInduction &&
1374          it->getOpcode() == Instruction::Trunc) {
1375        Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
1376                                               CI->getType());
1377        Value *Broadcasted = getBroadcastInstrs(ScalarCast);
1378        for (unsigned Part = 0; Part < UF; ++Part)
1379          Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
1380        break;
1381      }
1382      /// Vectorize casts.
1383      Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
1384
1385      VectorParts &A = getVectorValue(it->getOperand(0));
1386      for (unsigned Part = 0; Part < UF; ++Part)
1387        Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
1388      break;
1389    }
1390
1391    case Instruction::Call: {
1392      assert(isTriviallyVectorizableIntrinsic(it));
1393      Module *M = BB->getParent()->getParent();
1394      IntrinsicInst *II = cast<IntrinsicInst>(it);
1395      Intrinsic::ID ID = II->getIntrinsicID();
1396      for (unsigned Part = 0; Part < UF; ++Part) {
1397        SmallVector<Value*, 4> Args;
1398        for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i) {
1399          VectorParts &Arg = getVectorValue(II->getArgOperand(i));
1400          Args.push_back(Arg[Part]);
1401        }
1402        Type *Tys[] = { VectorType::get(II->getType()->getScalarType(), VF) };
1403        Function *F = Intrinsic::getDeclaration(M, ID, Tys);
1404        Entry[Part] = Builder.CreateCall(F, Args);
1405      }
1406      break;
1407    }
1408
1409    default:
1410      // All other instructions are unsupported. Scalarize them.
1411      scalarizeInstruction(it);
1412      break;
1413    }// end of switch.
1414  }// end of for_each instr.
1415}
1416
1417void InnerLoopVectorizer::updateAnalysis() {
1418  // Forget the original basic block.
1419  SE->forgetLoop(OrigLoop);
1420
1421  // Update the dominator tree information.
1422  assert(DT->properlyDominates(LoopBypassBlock, LoopExitBlock) &&
1423         "Entry does not dominate exit.");
1424
1425  DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlock);
1426  DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
1427  DT->addNewBlock(LoopMiddleBlock, LoopBypassBlock);
1428  DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
1429  DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
1430  DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
1431
1432  DEBUG(DT->verifyAnalysis());
1433}
1434
1435bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1436  if (!EnableIfConversion)
1437    return false;
1438
1439  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1440  std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
1441
1442  // Collect the blocks that need predication.
1443  for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
1444    BasicBlock *BB = LoopBlocks[i];
1445
1446    // We don't support switch statements inside loops.
1447    if (!isa<BranchInst>(BB->getTerminator()))
1448      return false;
1449
1450    // We must have at most two predecessors because we need to convert
1451    // all PHIs to selects.
1452    unsigned Preds = std::distance(pred_begin(BB), pred_end(BB));
1453    if (Preds > 2)
1454      return false;
1455
1456    // We must be able to predicate all blocks that need to be predicated.
1457    if (blockNeedsPredication(BB) && !blockCanBePredicated(BB))
1458      return false;
1459  }
1460
1461  // We can if-convert this loop.
1462  return true;
1463}
1464
1465bool LoopVectorizationLegality::canVectorize() {
1466  assert(TheLoop->getLoopPreheader() && "No preheader!!");
1467
1468  // We can only vectorize innermost loops.
1469  if (TheLoop->getSubLoopsVector().size())
1470    return false;
1471
1472  // We must have a single backedge.
1473  if (TheLoop->getNumBackEdges() != 1)
1474    return false;
1475
1476  // We must have a single exiting block.
1477  if (!TheLoop->getExitingBlock())
1478    return false;
1479
1480  unsigned NumBlocks = TheLoop->getNumBlocks();
1481
1482  // Check if we can if-convert non single-bb loops.
1483  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1484    DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1485    return false;
1486  }
1487
1488  // We need to have a loop header.
1489  BasicBlock *Latch = TheLoop->getLoopLatch();
1490  DEBUG(dbgs() << "LV: Found a loop: " <<
1491        TheLoop->getHeader()->getName() << "\n");
1492
1493  // ScalarEvolution needs to be able to find the exit count.
1494  const SCEV *ExitCount = SE->getExitCount(TheLoop, Latch);
1495  if (ExitCount == SE->getCouldNotCompute()) {
1496    DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
1497    return false;
1498  }
1499
1500  // Do not loop-vectorize loops with a tiny trip count.
1501  unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
1502  if (TC > 0u && TC < TinyTripCountThreshold) {
1503    DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
1504          "This loop is not worth vectorizing.\n");
1505    return false;
1506  }
1507
1508  // Check if we can vectorize the instructions and CFG in this loop.
1509  if (!canVectorizeInstrs()) {
1510    DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1511    return false;
1512  }
1513
1514  // Go over each instruction and look at memory deps.
1515  if (!canVectorizeMemory()) {
1516    DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1517    return false;
1518  }
1519
1520  // Collect all of the variables that remain uniform after vectorization.
1521  collectLoopUniforms();
1522
1523  DEBUG(dbgs() << "LV: We can vectorize this loop" <<
1524        (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
1525        <<"!\n");
1526
1527  // Okay! We can vectorize. At this point we don't have any other mem analysis
1528  // which may limit our maximum vectorization factor, so just return true with
1529  // no restrictions.
1530  return true;
1531}
1532
1533bool LoopVectorizationLegality::canVectorizeInstrs() {
1534  BasicBlock *PreHeader = TheLoop->getLoopPreheader();
1535  BasicBlock *Header = TheLoop->getHeader();
1536
1537  // For each block in the loop.
1538  for (Loop::block_iterator bb = TheLoop->block_begin(),
1539       be = TheLoop->block_end(); bb != be; ++bb) {
1540
1541    // Scan the instructions in the block and look for hazards.
1542    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1543         ++it) {
1544
1545      if (PHINode *Phi = dyn_cast<PHINode>(it)) {
1546        // This should not happen because the loop should be normalized.
1547        if (Phi->getNumIncomingValues() != 2) {
1548          DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
1549          return false;
1550        }
1551
1552        // Check that this PHI type is allowed.
1553        if (!Phi->getType()->isIntegerTy() &&
1554            !Phi->getType()->isPointerTy()) {
1555          DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
1556          return false;
1557        }
1558
1559        // If this PHINode is not in the header block, then we know that we
1560        // can convert it to select during if-conversion. No need to check if
1561        // the PHIs in this block are induction or reduction variables.
1562        if (*bb != Header)
1563          continue;
1564
1565        // This is the value coming from the preheader.
1566        Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
1567        // Check if this is an induction variable.
1568        InductionKind IK = isInductionVariable(Phi);
1569
1570        if (NoInduction != IK) {
1571          // Int inductions are special because we only allow one IV.
1572          if (IK == IntInduction) {
1573            if (Induction) {
1574              DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
1575              return false;
1576            }
1577            Induction = Phi;
1578          }
1579
1580          DEBUG(dbgs() << "LV: Found an induction variable.\n");
1581          Inductions[Phi] = InductionInfo(StartValue, IK);
1582          continue;
1583        }
1584
1585        if (AddReductionVar(Phi, IntegerAdd)) {
1586          DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
1587          continue;
1588        }
1589        if (AddReductionVar(Phi, IntegerMult)) {
1590          DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
1591          continue;
1592        }
1593        if (AddReductionVar(Phi, IntegerOr)) {
1594          DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
1595          continue;
1596        }
1597        if (AddReductionVar(Phi, IntegerAnd)) {
1598          DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
1599          continue;
1600        }
1601        if (AddReductionVar(Phi, IntegerXor)) {
1602          DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
1603          continue;
1604        }
1605
1606        DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
1607        return false;
1608      }// end of PHI handling
1609
1610      // We still don't handle functions.
1611      CallInst *CI = dyn_cast<CallInst>(it);
1612      if (CI && !isTriviallyVectorizableIntrinsic(it)) {
1613        DEBUG(dbgs() << "LV: Found a call site.\n");
1614        return false;
1615      }
1616
1617      // Check that the instruction return type is vectorizable.
1618      if (!VectorType::isValidElementType(it->getType()) &&
1619          !it->getType()->isVoidTy()) {
1620        DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
1621        return false;
1622      }
1623
1624      // Check that the stored type is vectorizable.
1625      if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
1626        Type *T = ST->getValueOperand()->getType();
1627        if (!VectorType::isValidElementType(T))
1628          return false;
1629      }
1630
1631      // Reduction instructions are allowed to have exit users.
1632      // All other instructions must not have external users.
1633      if (!AllowedExit.count(it))
1634        //Check that all of the users of the loop are inside the BB.
1635        for (Value::use_iterator I = it->use_begin(), E = it->use_end();
1636             I != E; ++I) {
1637          Instruction *U = cast<Instruction>(*I);
1638          // This user may be a reduction exit value.
1639          if (!TheLoop->contains(U)) {
1640            DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
1641            return false;
1642          }
1643        }
1644    } // next instr.
1645
1646  }
1647
1648  if (!Induction) {
1649    DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
1650    assert(getInductionVars()->size() && "No induction variables");
1651  }
1652
1653  return true;
1654}
1655
1656void LoopVectorizationLegality::collectLoopUniforms() {
1657  // We now know that the loop is vectorizable!
1658  // Collect variables that will remain uniform after vectorization.
1659  std::vector<Value*> Worklist;
1660  BasicBlock *Latch = TheLoop->getLoopLatch();
1661
1662  // Start with the conditional branch and walk up the block.
1663  Worklist.push_back(Latch->getTerminator()->getOperand(0));
1664
1665  while (Worklist.size()) {
1666    Instruction *I = dyn_cast<Instruction>(Worklist.back());
1667    Worklist.pop_back();
1668
1669    // Look at instructions inside this loop.
1670    // Stop when reaching PHI nodes.
1671    // TODO: we need to follow values all over the loop, not only in this block.
1672    if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
1673      continue;
1674
1675    // This is a known uniform.
1676    Uniforms.insert(I);
1677
1678    // Insert all operands.
1679    for (int i = 0, Op = I->getNumOperands(); i < Op; ++i) {
1680      Worklist.push_back(I->getOperand(i));
1681    }
1682  }
1683}
1684
1685bool LoopVectorizationLegality::canVectorizeMemory() {
1686  typedef SmallVector<Value*, 16> ValueVector;
1687  typedef SmallPtrSet<Value*, 16> ValueSet;
1688  // Holds the Load and Store *instructions*.
1689  ValueVector Loads;
1690  ValueVector Stores;
1691  PtrRtCheck.Pointers.clear();
1692  PtrRtCheck.Need = false;
1693
1694  // For each block.
1695  for (Loop::block_iterator bb = TheLoop->block_begin(),
1696       be = TheLoop->block_end(); bb != be; ++bb) {
1697
1698    // Scan the BB and collect legal loads and stores.
1699    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
1700         ++it) {
1701
1702      // If this is a load, save it. If this instruction can read from memory
1703      // but is not a load, then we quit. Notice that we don't handle function
1704      // calls that read or write.
1705      if (it->mayReadFromMemory()) {
1706        LoadInst *Ld = dyn_cast<LoadInst>(it);
1707        if (!Ld) return false;
1708        if (!Ld->isSimple()) {
1709          DEBUG(dbgs() << "LV: Found a non-simple load.\n");
1710          return false;
1711        }
1712        Loads.push_back(Ld);
1713        continue;
1714      }
1715
1716      // Save 'store' instructions. Abort if other instructions write to memory.
1717      if (it->mayWriteToMemory()) {
1718        StoreInst *St = dyn_cast<StoreInst>(it);
1719        if (!St) return false;
1720        if (!St->isSimple()) {
1721          DEBUG(dbgs() << "LV: Found a non-simple store.\n");
1722          return false;
1723        }
1724        Stores.push_back(St);
1725      }
1726    } // next instr.
1727  } // next block.
1728
1729  // Now we have two lists that hold the loads and the stores.
1730  // Next, we find the pointers that they use.
1731
1732  // Check if we see any stores. If there are no stores, then we don't
1733  // care if the pointers are *restrict*.
1734  if (!Stores.size()) {
1735    DEBUG(dbgs() << "LV: Found a read-only loop!\n");
1736    return true;
1737  }
1738
1739  // Holds the read and read-write *pointers* that we find.
1740  ValueVector Reads;
1741  ValueVector ReadWrites;
1742
1743  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
1744  // multiple times on the same object. If the ptr is accessed twice, once
1745  // for read and once for write, it will only appear once (on the write
1746  // list). This is okay, since we are going to check for conflicts between
1747  // writes and between reads and writes, but not between reads and reads.
1748  ValueSet Seen;
1749
1750  ValueVector::iterator I, IE;
1751  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
1752    StoreInst *ST = cast<StoreInst>(*I);
1753    Value* Ptr = ST->getPointerOperand();
1754
1755    if (isUniform(Ptr)) {
1756      DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
1757      return false;
1758    }
1759
1760    // If we did *not* see this pointer before, insert it to
1761    // the read-write list. At this phase it is only a 'write' list.
1762    if (Seen.insert(Ptr))
1763      ReadWrites.push_back(Ptr);
1764  }
1765
1766  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
1767    LoadInst *LD = cast<LoadInst>(*I);
1768    Value* Ptr = LD->getPointerOperand();
1769    // If we did *not* see this pointer before, insert it to the
1770    // read list. If we *did* see it before, then it is already in
1771    // the read-write list. This allows us to vectorize expressions
1772    // such as A[i] += x;  Because the address of A[i] is a read-write
1773    // pointer. This only works if the index of A[i] is consecutive.
1774    // If the address of i is unknown (for example A[B[i]]) then we may
1775    // read a few words, modify, and write a few words, and some of the
1776    // words may be written to the same address.
1777    if (Seen.insert(Ptr) || 0 == isConsecutivePtr(Ptr))
1778      Reads.push_back(Ptr);
1779  }
1780
1781  // If we write (or read-write) to a single destination and there are no
1782  // other reads in this loop then is it safe to vectorize.
1783  if (ReadWrites.size() == 1 && Reads.size() == 0) {
1784    DEBUG(dbgs() << "LV: Found a write-only loop!\n");
1785    return true;
1786  }
1787
1788  // Find pointers with computable bounds. We are going to use this information
1789  // to place a runtime bound check.
1790  bool CanDoRT = true;
1791  for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I)
1792    if (hasComputableBounds(*I)) {
1793      PtrRtCheck.insert(SE, TheLoop, *I);
1794      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
1795    } else {
1796      CanDoRT = false;
1797      break;
1798    }
1799  for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I)
1800    if (hasComputableBounds(*I)) {
1801      PtrRtCheck.insert(SE, TheLoop, *I);
1802      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << **I <<"\n");
1803    } else {
1804      CanDoRT = false;
1805      break;
1806    }
1807
1808  // Check that we did not collect too many pointers or found a
1809  // unsizeable pointer.
1810  if (!CanDoRT || PtrRtCheck.Pointers.size() > RuntimeMemoryCheckThreshold) {
1811    PtrRtCheck.reset();
1812    CanDoRT = false;
1813  }
1814
1815  if (CanDoRT) {
1816    DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
1817  }
1818
1819  bool NeedRTCheck = false;
1820
1821  // Now that the pointers are in two lists (Reads and ReadWrites), we
1822  // can check that there are no conflicts between each of the writes and
1823  // between the writes to the reads.
1824  ValueSet WriteObjects;
1825  ValueVector TempObjects;
1826
1827  // Check that the read-writes do not conflict with other read-write
1828  // pointers.
1829  bool AllWritesIdentified = true;
1830  for (I = ReadWrites.begin(), IE = ReadWrites.end(); I != IE; ++I) {
1831    GetUnderlyingObjects(*I, TempObjects, DL);
1832    for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
1833         it != e; ++it) {
1834      if (!isIdentifiedObject(*it)) {
1835        DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **it <<"\n");
1836        NeedRTCheck = true;
1837        AllWritesIdentified = false;
1838      }
1839      if (!WriteObjects.insert(*it)) {
1840        DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
1841              << **it <<"\n");
1842        return false;
1843      }
1844    }
1845    TempObjects.clear();
1846  }
1847
1848  /// Check that the reads don't conflict with the read-writes.
1849  for (I = Reads.begin(), IE = Reads.end(); I != IE; ++I) {
1850    GetUnderlyingObjects(*I, TempObjects, DL);
1851    for (ValueVector::iterator it=TempObjects.begin(), e=TempObjects.end();
1852         it != e; ++it) {
1853      // If all of the writes are identified then we don't care if the read
1854      // pointer is identified or not.
1855      if (!AllWritesIdentified && !isIdentifiedObject(*it)) {
1856        DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **it <<"\n");
1857        NeedRTCheck = true;
1858      }
1859      if (WriteObjects.count(*it)) {
1860        DEBUG(dbgs() << "LV: Found a possible read/write reorder:"
1861              << **it <<"\n");
1862        return false;
1863      }
1864    }
1865    TempObjects.clear();
1866  }
1867
1868  PtrRtCheck.Need = NeedRTCheck;
1869  if (NeedRTCheck && !CanDoRT) {
1870    DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
1871          "the array bounds.\n");
1872    PtrRtCheck.reset();
1873    return false;
1874  }
1875
1876  DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") <<
1877        " need a runtime memory check.\n");
1878  return true;
1879}
1880
1881bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
1882                                                ReductionKind Kind) {
1883  if (Phi->getNumIncomingValues() != 2)
1884    return false;
1885
1886  // Reduction variables are only found in the loop header block.
1887  if (Phi->getParent() != TheLoop->getHeader())
1888    return false;
1889
1890  // Obtain the reduction start value from the value that comes from the loop
1891  // preheader.
1892  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
1893
1894  // ExitInstruction is the single value which is used outside the loop.
1895  // We only allow for a single reduction value to be used outside the loop.
1896  // This includes users of the reduction, variables (which form a cycle
1897  // which ends in the phi node).
1898  Instruction *ExitInstruction = 0;
1899
1900  // Iter is our iterator. We start with the PHI node and scan for all of the
1901  // users of this instruction. All users must be instructions that can be
1902  // used as reduction variables (such as ADD). We may have a single
1903  // out-of-block user. The cycle must end with the original PHI.
1904  Instruction *Iter = Phi;
1905  while (true) {
1906    // If the instruction has no users then this is a broken
1907    // chain and can't be a reduction variable.
1908    if (Iter->use_empty())
1909      return false;
1910
1911    // Did we find a user inside this loop already ?
1912    bool FoundInBlockUser = false;
1913    // Did we reach the initial PHI node already ?
1914    bool FoundStartPHI = false;
1915
1916    // For each of the *users* of iter.
1917    for (Value::use_iterator it = Iter->use_begin(), e = Iter->use_end();
1918         it != e; ++it) {
1919      Instruction *U = cast<Instruction>(*it);
1920      // We already know that the PHI is a user.
1921      if (U == Phi) {
1922        FoundStartPHI = true;
1923        continue;
1924      }
1925
1926      // Check if we found the exit user.
1927      BasicBlock *Parent = U->getParent();
1928      if (!TheLoop->contains(Parent)) {
1929        // Exit if you find multiple outside users.
1930        if (ExitInstruction != 0)
1931          return false;
1932        ExitInstruction = Iter;
1933      }
1934
1935      // We allow in-loop PHINodes which are not the original reduction PHI
1936      // node. If this PHI is the only user of Iter (happens in IF w/ no ELSE
1937      // structure) then don't skip this PHI.
1938      if (isa<PHINode>(Iter) && isa<PHINode>(U) &&
1939          U->getParent() != TheLoop->getHeader() &&
1940          TheLoop->contains(U) &&
1941          Iter->getNumUses() > 1)
1942        continue;
1943
1944      // We can't have multiple inside users.
1945      if (FoundInBlockUser)
1946        return false;
1947      FoundInBlockUser = true;
1948
1949      // Any reduction instr must be of one of the allowed kinds.
1950      if (!isReductionInstr(U, Kind))
1951        return false;
1952
1953      // Reductions of instructions such as Div, and Sub is only
1954      // possible if the LHS is the reduction variable.
1955      if (!U->isCommutative() && U->getOperand(0) != Iter)
1956        return false;
1957
1958      Iter = U;
1959    }
1960
1961    // We found a reduction var if we have reached the original
1962    // phi node and we only have a single instruction with out-of-loop
1963    // users.
1964    if (FoundStartPHI && ExitInstruction) {
1965      // This instruction is allowed to have out-of-loop users.
1966      AllowedExit.insert(ExitInstruction);
1967
1968      // Save the description of this reduction variable.
1969      ReductionDescriptor RD(RdxStart, ExitInstruction, Kind);
1970      Reductions[Phi] = RD;
1971      return true;
1972    }
1973
1974    // If we've reached the start PHI but did not find an outside user then
1975    // this is dead code. Abort.
1976    if (FoundStartPHI)
1977      return false;
1978  }
1979}
1980
1981bool
1982LoopVectorizationLegality::isReductionInstr(Instruction *I,
1983                                            ReductionKind Kind) {
1984  switch (I->getOpcode()) {
1985  default:
1986    return false;
1987  case Instruction::PHI:
1988    // possibly.
1989    return true;
1990  case Instruction::Sub:
1991  case Instruction::Add:
1992    return Kind == IntegerAdd;
1993  case Instruction::SDiv:
1994  case Instruction::UDiv:
1995  case Instruction::Mul:
1996    return Kind == IntegerMult;
1997  case Instruction::And:
1998    return Kind == IntegerAnd;
1999  case Instruction::Or:
2000    return Kind == IntegerOr;
2001  case Instruction::Xor:
2002    return Kind == IntegerXor;
2003  }
2004}
2005
2006LoopVectorizationLegality::InductionKind
2007LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
2008  Type *PhiTy = Phi->getType();
2009  // We only handle integer and pointer inductions variables.
2010  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
2011    return NoInduction;
2012
2013  // Check that the PHI is consecutive and starts at zero.
2014  const SCEV *PhiScev = SE->getSCEV(Phi);
2015  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
2016  if (!AR) {
2017    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
2018    return NoInduction;
2019  }
2020  const SCEV *Step = AR->getStepRecurrence(*SE);
2021
2022  // Integer inductions need to have a stride of one.
2023  if (PhiTy->isIntegerTy()) {
2024    if (Step->isOne())
2025      return IntInduction;
2026    if (Step->isAllOnesValue())
2027      return ReverseIntInduction;
2028    return NoInduction;
2029  }
2030
2031  // Calculate the pointer stride and check if it is consecutive.
2032  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
2033  if (!C)
2034    return NoInduction;
2035
2036  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
2037  uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
2038  if (C->getValue()->equalsInt(Size))
2039    return PtrInduction;
2040
2041  return NoInduction;
2042}
2043
2044bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
2045  Value *In0 = const_cast<Value*>(V);
2046  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
2047  if (!PN)
2048    return false;
2049
2050  return Inductions.count(PN);
2051}
2052
2053bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
2054  assert(TheLoop->contains(BB) && "Unknown block used");
2055
2056  // Blocks that do not dominate the latch need predication.
2057  BasicBlock* Latch = TheLoop->getLoopLatch();
2058  return !DT->dominates(BB, Latch);
2059}
2060
2061bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) {
2062  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2063    // We don't predicate loads/stores at the moment.
2064    if (it->mayReadFromMemory() || it->mayWriteToMemory() || it->mayThrow())
2065      return false;
2066
2067    // The instructions below can trap.
2068    switch (it->getOpcode()) {
2069    default: continue;
2070    case Instruction::UDiv:
2071    case Instruction::SDiv:
2072    case Instruction::URem:
2073    case Instruction::SRem:
2074             return false;
2075    }
2076  }
2077
2078  return true;
2079}
2080
2081bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
2082  const SCEV *PhiScev = SE->getSCEV(Ptr);
2083  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
2084  if (!AR)
2085    return false;
2086
2087  return AR->isAffine();
2088}
2089
2090unsigned
2091LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
2092                                                      unsigned UserVF) {
2093  if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
2094    DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
2095    return 1;
2096  }
2097
2098  // Find the trip count.
2099  unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
2100  DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
2101
2102  unsigned VF = MaxVectorSize;
2103
2104  // If we optimize the program for size, avoid creating the tail loop.
2105  if (OptForSize) {
2106    // If we are unable to calculate the trip count then don't try to vectorize.
2107    if (TC < 2) {
2108      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
2109      return 1;
2110    }
2111
2112    // Find the maximum SIMD width that can fit within the trip count.
2113    VF = TC % MaxVectorSize;
2114
2115    if (VF == 0)
2116      VF = MaxVectorSize;
2117
2118    // If the trip count that we found modulo the vectorization factor is not
2119    // zero then we require a tail.
2120    if (VF < 2) {
2121      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
2122      return 1;
2123    }
2124  }
2125
2126  if (UserVF != 0) {
2127    assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
2128    DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
2129
2130    return UserVF;
2131  }
2132
2133  if (!TTI) {
2134    DEBUG(dbgs() << "LV: No vector target information. Not vectorizing. \n");
2135    return 1;
2136  }
2137
2138  float Cost = expectedCost(1);
2139  unsigned Width = 1;
2140  DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
2141  for (unsigned i=2; i <= VF; i*=2) {
2142    // Notice that the vector loop needs to be executed less times, so
2143    // we need to divide the cost of the vector loops by the width of
2144    // the vector elements.
2145    float VectorCost = expectedCost(i) / (float)i;
2146    DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
2147          (int)VectorCost << ".\n");
2148    if (VectorCost < Cost) {
2149      Cost = VectorCost;
2150      Width = i;
2151    }
2152  }
2153
2154  DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
2155  return Width;
2156}
2157
2158unsigned
2159LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
2160                                               unsigned UserUF) {
2161  // Use the user preference, unless 'auto' is selected.
2162  if (UserUF != 0)
2163    return UserUF;
2164
2165  // When we optimize for size we don't unroll.
2166  if (OptForSize)
2167    return 1;
2168
2169  unsigned TargetVectorRegisters = TTI->getNumberOfRegisters(true);
2170  DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
2171        " vector registers\n");
2172
2173  LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
2174  // We divide by these constants so assume that we have at least one
2175  // instruction that uses at least one register.
2176  R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
2177  R.NumInstructions = std::max(R.NumInstructions, 1U);
2178
2179  // We calculate the unroll factor using the following formula.
2180  // Subtract the number of loop invariants from the number of available
2181  // registers. These registers are used by all of the unrolled instances.
2182  // Next, divide the remaining registers by the number of registers that is
2183  // required by the loop, in order to estimate how many parallel instances
2184  // fit without causing spills.
2185  unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
2186
2187  // We don't want to unroll the loops to the point where they do not fit into
2188  // the decoded cache. Assume that we only allow 32 IR instructions.
2189  UF = std::min(UF, (32 / R.NumInstructions));
2190
2191  // Clamp the unroll factor ranges to reasonable factors.
2192  if (UF > MaxUnrollSize)
2193    UF = MaxUnrollSize;
2194  else if (UF < 1)
2195    UF = 1;
2196
2197  return UF;
2198}
2199
2200LoopVectorizationCostModel::RegisterUsage
2201LoopVectorizationCostModel::calculateRegisterUsage() {
2202  // This function calculates the register usage by measuring the highest number
2203  // of values that are alive at a single location. Obviously, this is a very
2204  // rough estimation. We scan the loop in a topological order in order and
2205  // assign a number to each instruction. We use RPO to ensure that defs are
2206  // met before their users. We assume that each instruction that has in-loop
2207  // users starts an interval. We record every time that an in-loop value is
2208  // used, so we have a list of the first and last occurrences of each
2209  // instruction. Next, we transpose this data structure into a multi map that
2210  // holds the list of intervals that *end* at a specific location. This multi
2211  // map allows us to perform a linear search. We scan the instructions linearly
2212  // and record each time that a new interval starts, by placing it in a set.
2213  // If we find this value in the multi-map then we remove it from the set.
2214  // The max register usage is the maximum size of the set.
2215  // We also search for instructions that are defined outside the loop, but are
2216  // used inside the loop. We need this number separately from the max-interval
2217  // usage number because when we unroll, loop-invariant values do not take
2218  // more register.
2219  LoopBlocksDFS DFS(TheLoop);
2220  DFS.perform(LI);
2221
2222  RegisterUsage R;
2223  R.NumInstructions = 0;
2224
2225  // Each 'key' in the map opens a new interval. The values
2226  // of the map are the index of the 'last seen' usage of the
2227  // instruction that is the key.
2228  typedef DenseMap<Instruction*, unsigned> IntervalMap;
2229  // Maps instruction to its index.
2230  DenseMap<unsigned, Instruction*> IdxToInstr;
2231  // Marks the end of each interval.
2232  IntervalMap EndPoint;
2233  // Saves the list of instruction indices that are used in the loop.
2234  SmallSet<Instruction*, 8> Ends;
2235  // Saves the list of values that are used in the loop but are
2236  // defined outside the loop, such as arguments and constants.
2237  SmallPtrSet<Value*, 8> LoopInvariants;
2238
2239  unsigned Index = 0;
2240  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
2241       be = DFS.endRPO(); bb != be; ++bb) {
2242    R.NumInstructions += (*bb)->size();
2243    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2244         ++it) {
2245      Instruction *I = it;
2246      IdxToInstr[Index++] = I;
2247
2248      // Save the end location of each USE.
2249      for (unsigned i = 0; i < I->getNumOperands(); ++i) {
2250        Value *U = I->getOperand(i);
2251        Instruction *Instr = dyn_cast<Instruction>(U);
2252
2253        // Ignore non-instruction values such as arguments, constants, etc.
2254        if (!Instr) continue;
2255
2256        // If this instruction is outside the loop then record it and continue.
2257        if (!TheLoop->contains(Instr)) {
2258          LoopInvariants.insert(Instr);
2259          continue;
2260        }
2261
2262        // Overwrite previous end points.
2263        EndPoint[Instr] = Index;
2264        Ends.insert(Instr);
2265      }
2266    }
2267  }
2268
2269  // Saves the list of intervals that end with the index in 'key'.
2270  typedef SmallVector<Instruction*, 2> InstrList;
2271  DenseMap<unsigned, InstrList> TransposeEnds;
2272
2273  // Transpose the EndPoints to a list of values that end at each index.
2274  for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
2275       it != e; ++it)
2276    TransposeEnds[it->second].push_back(it->first);
2277
2278  SmallSet<Instruction*, 8> OpenIntervals;
2279  unsigned MaxUsage = 0;
2280
2281
2282  DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
2283  for (unsigned int i = 0; i < Index; ++i) {
2284    Instruction *I = IdxToInstr[i];
2285    // Ignore instructions that are never used within the loop.
2286    if (!Ends.count(I)) continue;
2287
2288    // Remove all of the instructions that end at this location.
2289    InstrList &List = TransposeEnds[i];
2290    for (unsigned int j=0, e = List.size(); j < e; ++j)
2291      OpenIntervals.erase(List[j]);
2292
2293    // Count the number of live interals.
2294    MaxUsage = std::max(MaxUsage, OpenIntervals.size());
2295
2296    DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
2297          OpenIntervals.size() <<"\n");
2298
2299    // Add the current instruction to the list of open intervals.
2300    OpenIntervals.insert(I);
2301  }
2302
2303  unsigned Invariant = LoopInvariants.size();
2304  DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
2305  DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
2306  DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
2307
2308  R.LoopInvariantRegs = Invariant;
2309  R.MaxLocalUsers = MaxUsage;
2310  return R;
2311}
2312
2313unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
2314  unsigned Cost = 0;
2315
2316  // For each block.
2317  for (Loop::block_iterator bb = TheLoop->block_begin(),
2318       be = TheLoop->block_end(); bb != be; ++bb) {
2319    unsigned BlockCost = 0;
2320    BasicBlock *BB = *bb;
2321
2322    // For each instruction in the old loop.
2323    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
2324      unsigned C = getInstructionCost(it, VF);
2325      Cost += C;
2326      DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " <<
2327            VF << " For instruction: "<< *it << "\n");
2328    }
2329
2330    // We assume that if-converted blocks have a 50% chance of being executed.
2331    // When the code is scalar then some of the blocks are avoided due to CF.
2332    // When the code is vectorized we execute all code paths.
2333    if (Legal->blockNeedsPredication(*bb) && VF == 1)
2334      BlockCost /= 2;
2335
2336    Cost += BlockCost;
2337  }
2338
2339  return Cost;
2340}
2341
2342unsigned
2343LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
2344  assert(TTI && "Invalid vector target transformation info");
2345
2346  // If we know that this instruction will remain uniform, check the cost of
2347  // the scalar version.
2348  if (Legal->isUniformAfterVectorization(I))
2349    VF = 1;
2350
2351  Type *RetTy = I->getType();
2352  Type *VectorTy = ToVectorTy(RetTy, VF);
2353
2354  // TODO: We need to estimate the cost of intrinsic calls.
2355  switch (I->getOpcode()) {
2356  case Instruction::GetElementPtr:
2357    // We mark this instruction as zero-cost because scalar GEPs are usually
2358    // lowered to the intruction addressing mode. At the moment we don't
2359    // generate vector geps.
2360    return 0;
2361  case Instruction::Br: {
2362    return TTI->getCFInstrCost(I->getOpcode());
2363  }
2364  case Instruction::PHI:
2365    //TODO: IF-converted IFs become selects.
2366    return 0;
2367  case Instruction::Add:
2368  case Instruction::FAdd:
2369  case Instruction::Sub:
2370  case Instruction::FSub:
2371  case Instruction::Mul:
2372  case Instruction::FMul:
2373  case Instruction::UDiv:
2374  case Instruction::SDiv:
2375  case Instruction::FDiv:
2376  case Instruction::URem:
2377  case Instruction::SRem:
2378  case Instruction::FRem:
2379  case Instruction::Shl:
2380  case Instruction::LShr:
2381  case Instruction::AShr:
2382  case Instruction::And:
2383  case Instruction::Or:
2384  case Instruction::Xor:
2385    return TTI->getArithmeticInstrCost(I->getOpcode(), VectorTy);
2386  case Instruction::Select: {
2387    SelectInst *SI = cast<SelectInst>(I);
2388    const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
2389    bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
2390    Type *CondTy = SI->getCondition()->getType();
2391    if (ScalarCond)
2392      CondTy = VectorType::get(CondTy, VF);
2393
2394    return TTI->getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
2395  }
2396  case Instruction::ICmp:
2397  case Instruction::FCmp: {
2398    Type *ValTy = I->getOperand(0)->getType();
2399    VectorTy = ToVectorTy(ValTy, VF);
2400    return TTI->getCmpSelInstrCost(I->getOpcode(), VectorTy);
2401  }
2402  case Instruction::Store: {
2403    StoreInst *SI = cast<StoreInst>(I);
2404    Type *ValTy = SI->getValueOperand()->getType();
2405    VectorTy = ToVectorTy(ValTy, VF);
2406
2407    if (VF == 1)
2408      return TTI->getMemoryOpCost(I->getOpcode(), VectorTy,
2409                                   SI->getAlignment(),
2410                                   SI->getPointerAddressSpace());
2411
2412    // Scalarized stores.
2413    int Stride = Legal->isConsecutivePtr(SI->getPointerOperand());
2414    bool Reverse = Stride < 0;
2415    if (0 == Stride) {
2416      unsigned Cost = 0;
2417
2418      // The cost of extracting from the value vector and pointer vector.
2419      Type *PtrTy = ToVectorTy(I->getOperand(0)->getType(), VF);
2420      for (unsigned i = 0; i < VF; ++i) {
2421        Cost += TTI->getVectorInstrCost(Instruction::ExtractElement,
2422                                        VectorTy, i);
2423        Cost += TTI->getVectorInstrCost(Instruction::ExtractElement,
2424                                        PtrTy, i);
2425      }
2426
2427      // The cost of the scalar stores.
2428      Cost += VF * TTI->getMemoryOpCost(I->getOpcode(),
2429                                        ValTy->getScalarType(),
2430                                         SI->getAlignment(),
2431                                         SI->getPointerAddressSpace());
2432      return Cost;
2433    }
2434
2435    // Wide stores.
2436    unsigned Cost = TTI->getMemoryOpCost(I->getOpcode(), VectorTy,
2437                                         SI->getAlignment(),
2438                                         SI->getPointerAddressSpace());
2439    if (Reverse)
2440      Cost += TTI->getShuffleCost(TargetTransformInfo::Reverse,
2441                                  VectorTy, 0);
2442    return Cost;
2443  }
2444  case Instruction::Load: {
2445    LoadInst *LI = cast<LoadInst>(I);
2446
2447    if (VF == 1)
2448      return TTI->getMemoryOpCost(I->getOpcode(), VectorTy,
2449                                  LI->getAlignment(),
2450                                  LI->getPointerAddressSpace());
2451
2452    // Scalarized loads.
2453    int Stride = Legal->isConsecutivePtr(LI->getPointerOperand());
2454    bool Reverse = Stride < 0;
2455    if (0 == Stride) {
2456      unsigned Cost = 0;
2457      Type *PtrTy = ToVectorTy(I->getOperand(0)->getType(), VF);
2458
2459      // The cost of extracting from the pointer vector.
2460      for (unsigned i = 0; i < VF; ++i)
2461        Cost += TTI->getVectorInstrCost(Instruction::ExtractElement,
2462                                        PtrTy, i);
2463
2464      // The cost of inserting data to the result vector.
2465      for (unsigned i = 0; i < VF; ++i)
2466        Cost += TTI->getVectorInstrCost(Instruction::InsertElement,
2467                                        VectorTy, i);
2468
2469      // The cost of the scalar stores.
2470      Cost += VF * TTI->getMemoryOpCost(I->getOpcode(),
2471                                        RetTy->getScalarType(),
2472                                        LI->getAlignment(),
2473                                        LI->getPointerAddressSpace());
2474      return Cost;
2475    }
2476
2477    // Wide loads.
2478    unsigned Cost = TTI->getMemoryOpCost(I->getOpcode(), VectorTy,
2479                                         LI->getAlignment(),
2480                                         LI->getPointerAddressSpace());
2481    if (Reverse)
2482      Cost += TTI->getShuffleCost(TargetTransformInfo::Reverse,
2483                                  VectorTy, 0);
2484    return Cost;
2485  }
2486  case Instruction::ZExt:
2487  case Instruction::SExt:
2488  case Instruction::FPToUI:
2489  case Instruction::FPToSI:
2490  case Instruction::FPExt:
2491  case Instruction::PtrToInt:
2492  case Instruction::IntToPtr:
2493  case Instruction::SIToFP:
2494  case Instruction::UIToFP:
2495  case Instruction::Trunc:
2496  case Instruction::FPTrunc:
2497  case Instruction::BitCast: {
2498    // We optimize the truncation of induction variable.
2499    // The cost of these is the same as the scalar operation.
2500    if (I->getOpcode() == Instruction::Trunc &&
2501        Legal->isInductionVariable(I->getOperand(0)))
2502         return TTI->getCastInstrCost(I->getOpcode(), I->getType(),
2503                                      I->getOperand(0)->getType());
2504
2505    Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
2506    return TTI->getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
2507  }
2508  case Instruction::Call: {
2509    assert(isTriviallyVectorizableIntrinsic(I));
2510    IntrinsicInst *II = cast<IntrinsicInst>(I);
2511    Type *RetTy = ToVectorTy(II->getType(), VF);
2512    SmallVector<Type*, 4> Tys;
2513    for (unsigned i = 0, ie = II->getNumArgOperands(); i != ie; ++i)
2514      Tys.push_back(ToVectorTy(II->getArgOperand(i)->getType(), VF));
2515    return TTI->getIntrinsicInstrCost(II->getIntrinsicID(), RetTy, Tys);
2516  }
2517  default: {
2518    // We are scalarizing the instruction. Return the cost of the scalar
2519    // instruction, plus the cost of insert and extract into vector
2520    // elements, times the vector width.
2521    unsigned Cost = 0;
2522
2523    if (!RetTy->isVoidTy() && VF != 1) {
2524      unsigned InsCost = TTI->getVectorInstrCost(Instruction::InsertElement,
2525                                                 VectorTy);
2526      unsigned ExtCost = TTI->getVectorInstrCost(Instruction::ExtractElement,
2527                                                 VectorTy);
2528
2529      // The cost of inserting the results plus extracting each one of the
2530      // operands.
2531      Cost += VF * (InsCost + ExtCost * I->getNumOperands());
2532    }
2533
2534    // The cost of executing VF copies of the scalar instruction. This opcode
2535    // is unknown. Assume that it is the same as 'mul'.
2536    Cost += VF * TTI->getArithmeticInstrCost(Instruction::Mul, VectorTy);
2537    return Cost;
2538  }
2539  }// end of switch.
2540}
2541
2542Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
2543  if (Scalar->isVoidTy() || VF == 1)
2544    return Scalar;
2545  return VectorType::get(Scalar, VF);
2546}
2547
2548char LoopVectorize::ID = 0;
2549static const char lv_name[] = "Loop Vectorization";
2550INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
2551INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
2552INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
2553INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
2554INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
2555
2556namespace llvm {
2557  Pass *createLoopVectorizePass() {
2558    return new LoopVectorize();
2559  }
2560}
2561
2562
2563