LoopVectorize.cpp revision c121f5dc267e5d7048b8f27ddcfdc41f8c8e7073
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11// and generates target-independent LLVM-IR.
12// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13// of instructions in order to estimate the profitability of vectorization.
14//
15// The loop vectorizer combines consecutive loop iterations into a single
16// 'wide' iteration. After this transformation the index is incremented
17// by the SIMD vector width, and not by one.
18//
19// This pass has three parts:
20// 1. The main loop pass that drives the different parts.
21// 2. LoopVectorizationLegality - A unit that checks for the legality
22//    of the vectorization.
23// 3. InnerLoopVectorizer - A unit that performs the actual
24//    widening of instructions.
25// 4. LoopVectorizationCostModel - A unit that checks for the profitability
26//    of vectorization. It decides on the optimal vector width, which
27//    can be one, if vectorization is not profitable.
28//
29//===----------------------------------------------------------------------===//
30//
31// The reduction-variable vectorization is based on the paper:
32//  D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33//
34// Variable uniformity checks are inspired by:
35//  Karrenberg, R. and Hack, S. Whole Function Vectorization.
36//
37// Other ideas/concepts are from:
38//  A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
39//
40//  S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua.  An Evaluation of
41//  Vectorizing Compilers.
42//
43//===----------------------------------------------------------------------===//
44
45#define LV_NAME "loop-vectorize"
46#define DEBUG_TYPE LV_NAME
47
48#include "llvm/Transforms/Vectorize.h"
49#include "llvm/ADT/DenseMap.h"
50#include "llvm/ADT/MapVector.h"
51#include "llvm/ADT/SmallPtrSet.h"
52#include "llvm/ADT/SmallSet.h"
53#include "llvm/ADT/SmallVector.h"
54#include "llvm/ADT/StringExtras.h"
55#include "llvm/Analysis/AliasAnalysis.h"
56#include "llvm/Analysis/AliasSetTracker.h"
57#include "llvm/Analysis/Dominators.h"
58#include "llvm/Analysis/LoopInfo.h"
59#include "llvm/Analysis/LoopIterator.h"
60#include "llvm/Analysis/LoopPass.h"
61#include "llvm/Analysis/ScalarEvolution.h"
62#include "llvm/Analysis/ScalarEvolutionExpander.h"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Analysis/TargetTransformInfo.h"
65#include "llvm/Analysis/ValueTracking.h"
66#include "llvm/Analysis/Verifier.h"
67#include "llvm/IR/Constants.h"
68#include "llvm/IR/DataLayout.h"
69#include "llvm/IR/DerivedTypes.h"
70#include "llvm/IR/Function.h"
71#include "llvm/IR/IRBuilder.h"
72#include "llvm/IR/Instructions.h"
73#include "llvm/IR/IntrinsicInst.h"
74#include "llvm/IR/LLVMContext.h"
75#include "llvm/IR/Module.h"
76#include "llvm/IR/Type.h"
77#include "llvm/IR/Value.h"
78#include "llvm/Pass.h"
79#include "llvm/Support/CommandLine.h"
80#include "llvm/Support/Debug.h"
81#include "llvm/Support/PatternMatch.h"
82#include "llvm/Support/raw_ostream.h"
83#include "llvm/Target/TargetLibraryInfo.h"
84#include "llvm/Transforms/Scalar.h"
85#include "llvm/Transforms/Utils/BasicBlockUtils.h"
86#include "llvm/Transforms/Utils/Local.h"
87#include <algorithm>
88#include <map>
89
90using namespace llvm;
91using namespace llvm::PatternMatch;
92
93static cl::opt<unsigned>
94VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
95                    cl::desc("Sets the SIMD width. Zero is autoselect."));
96
97static cl::opt<unsigned>
98VectorizationUnroll("force-vector-unroll", cl::init(0), cl::Hidden,
99                    cl::desc("Sets the vectorization unroll count. "
100                             "Zero is autoselect."));
101
102static cl::opt<bool>
103EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
104                   cl::desc("Enable if-conversion during vectorization."));
105
106/// We don't vectorize loops with a known constant trip count below this number.
107static cl::opt<unsigned>
108TinyTripCountVectorThreshold("vectorizer-min-trip-count", cl::init(16),
109                             cl::Hidden,
110                             cl::desc("Don't vectorize loops with a constant "
111                                      "trip count that is smaller than this "
112                                      "value."));
113
114/// We don't unroll loops with a known constant trip count below this number.
115static const unsigned TinyTripCountUnrollThreshold = 128;
116
117/// When performing memory disambiguation checks at runtime do not make more
118/// than this number of comparisons.
119static const unsigned RuntimeMemoryCheckThreshold = 8;
120
121/// We use a metadata with this name  to indicate that a scalar loop was
122/// vectorized and that we don't need to re-vectorize it if we run into it
123/// again.
124static const char*
125AlreadyVectorizedMDName = "llvm.vectorizer.already_vectorized";
126
127namespace {
128
129// Forward declarations.
130class LoopVectorizationLegality;
131class LoopVectorizationCostModel;
132
133/// InnerLoopVectorizer vectorizes loops which contain only one basic
134/// block to a specified vectorization factor (VF).
135/// This class performs the widening of scalars into vectors, or multiple
136/// scalars. This class also implements the following features:
137/// * It inserts an epilogue loop for handling loops that don't have iteration
138///   counts that are known to be a multiple of the vectorization factor.
139/// * It handles the code generation for reduction variables.
140/// * Scalarization (implementation using scalars) of un-vectorizable
141///   instructions.
142/// InnerLoopVectorizer does not perform any vectorization-legality
143/// checks, and relies on the caller to check for the different legality
144/// aspects. The InnerLoopVectorizer relies on the
145/// LoopVectorizationLegality class to provide information about the induction
146/// and reduction variables that were found to a given vectorization factor.
147class InnerLoopVectorizer {
148public:
149  InnerLoopVectorizer(Loop *OrigLoop, ScalarEvolution *SE, LoopInfo *LI,
150                      DominatorTree *DT, DataLayout *DL,
151                      const TargetLibraryInfo *TLI, unsigned VecWidth,
152                      unsigned UnrollFactor)
153      : OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
154        VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
155        OldInduction(0), WidenMap(UnrollFactor) {}
156
157  // Perform the actual loop widening (vectorization).
158  void vectorize(LoopVectorizationLegality *Legal) {
159    // Create a new empty loop. Unlink the old loop and connect the new one.
160    createEmptyLoop(Legal);
161    // Widen each instruction in the old loop to a new one in the new loop.
162    // Use the Legality module to find the induction and reduction variables.
163    vectorizeLoop(Legal);
164    // Register the new loop and update the analysis passes.
165    updateAnalysis();
166  }
167
168private:
169  /// A small list of PHINodes.
170  typedef SmallVector<PHINode*, 4> PhiVector;
171  /// When we unroll loops we have multiple vector values for each scalar.
172  /// This data structure holds the unrolled and vectorized values that
173  /// originated from one scalar instruction.
174  typedef SmallVector<Value*, 2> VectorParts;
175
176  /// Add code that checks at runtime if the accessed arrays overlap.
177  /// Returns the comparator value or NULL if no check is needed.
178  Instruction *addRuntimeCheck(LoopVectorizationLegality *Legal,
179                               Instruction *Loc);
180  /// Create an empty loop, based on the loop ranges of the old loop.
181  void createEmptyLoop(LoopVectorizationLegality *Legal);
182  /// Copy and widen the instructions from the old loop.
183  void vectorizeLoop(LoopVectorizationLegality *Legal);
184
185  /// A helper function that computes the predicate of the block BB, assuming
186  /// that the header block of the loop is set to True. It returns the *entry*
187  /// mask for the block BB.
188  VectorParts createBlockInMask(BasicBlock *BB);
189  /// A helper function that computes the predicate of the edge between SRC
190  /// and DST.
191  VectorParts createEdgeMask(BasicBlock *Src, BasicBlock *Dst);
192
193  /// A helper function to vectorize a single BB within the innermost loop.
194  void vectorizeBlockInLoop(LoopVectorizationLegality *Legal, BasicBlock *BB,
195                            PhiVector *PV);
196
197  /// Insert the new loop to the loop hierarchy and pass manager
198  /// and update the analysis passes.
199  void updateAnalysis();
200
201  /// This instruction is un-vectorizable. Implement it as a sequence
202  /// of scalars.
203  void scalarizeInstruction(Instruction *Instr);
204
205  /// Vectorize Load and Store instructions,
206  void vectorizeMemoryInstruction(Instruction *Instr,
207                                  LoopVectorizationLegality *Legal);
208
209  /// Create a broadcast instruction. This method generates a broadcast
210  /// instruction (shuffle) for loop invariant values and for the induction
211  /// value. If this is the induction variable then we extend it to N, N+1, ...
212  /// this is needed because each iteration in the loop corresponds to a SIMD
213  /// element.
214  Value *getBroadcastInstrs(Value *V);
215
216  /// This function adds 0, 1, 2 ... to each vector element, starting at zero.
217  /// If Negate is set then negative numbers are added e.g. (0, -1, -2, ...).
218  /// The sequence starts at StartIndex.
219  Value *getConsecutiveVector(Value* Val, int StartIdx, bool Negate);
220
221  /// When we go over instructions in the basic block we rely on previous
222  /// values within the current basic block or on loop invariant values.
223  /// When we widen (vectorize) values we place them in the map. If the values
224  /// are not within the map, they have to be loop invariant, so we simply
225  /// broadcast them into a vector.
226  VectorParts &getVectorValue(Value *V);
227
228  /// Generate a shuffle sequence that will reverse the vector Vec.
229  Value *reverseVector(Value *Vec);
230
231  /// This is a helper class that holds the vectorizer state. It maps scalar
232  /// instructions to vector instructions. When the code is 'unrolled' then
233  /// then a single scalar value is mapped to multiple vector parts. The parts
234  /// are stored in the VectorPart type.
235  struct ValueMap {
236    /// C'tor.  UnrollFactor controls the number of vectors ('parts') that
237    /// are mapped.
238    ValueMap(unsigned UnrollFactor) : UF(UnrollFactor) {}
239
240    /// \return True if 'Key' is saved in the Value Map.
241    bool has(Value *Key) const { return MapStorage.count(Key); }
242
243    /// Initializes a new entry in the map. Sets all of the vector parts to the
244    /// save value in 'Val'.
245    /// \return A reference to a vector with splat values.
246    VectorParts &splat(Value *Key, Value *Val) {
247      VectorParts &Entry = MapStorage[Key];
248      Entry.assign(UF, Val);
249      return Entry;
250    }
251
252    ///\return A reference to the value that is stored at 'Key'.
253    VectorParts &get(Value *Key) {
254      VectorParts &Entry = MapStorage[Key];
255      if (Entry.empty())
256        Entry.resize(UF);
257      assert(Entry.size() == UF);
258      return Entry;
259    }
260
261  private:
262    /// The unroll factor. Each entry in the map stores this number of vector
263    /// elements.
264    unsigned UF;
265
266    /// Map storage. We use std::map and not DenseMap because insertions to a
267    /// dense map invalidates its iterators.
268    std::map<Value *, VectorParts> MapStorage;
269  };
270
271  /// The original loop.
272  Loop *OrigLoop;
273  /// Scev analysis to use.
274  ScalarEvolution *SE;
275  /// Loop Info.
276  LoopInfo *LI;
277  /// Dominator Tree.
278  DominatorTree *DT;
279  /// Data Layout.
280  DataLayout *DL;
281  /// Target Library Info.
282  const TargetLibraryInfo *TLI;
283
284  /// The vectorization SIMD factor to use. Each vector will have this many
285  /// vector elements.
286  unsigned VF;
287  /// The vectorization unroll factor to use. Each scalar is vectorized to this
288  /// many different vector instructions.
289  unsigned UF;
290
291  /// The builder that we use
292  IRBuilder<> Builder;
293
294  // --- Vectorization state ---
295
296  /// The vector-loop preheader.
297  BasicBlock *LoopVectorPreHeader;
298  /// The scalar-loop preheader.
299  BasicBlock *LoopScalarPreHeader;
300  /// Middle Block between the vector and the scalar.
301  BasicBlock *LoopMiddleBlock;
302  ///The ExitBlock of the scalar loop.
303  BasicBlock *LoopExitBlock;
304  ///The vector loop body.
305  BasicBlock *LoopVectorBody;
306  ///The scalar loop body.
307  BasicBlock *LoopScalarBody;
308  /// A list of all bypass blocks. The first block is the entry of the loop.
309  SmallVector<BasicBlock *, 4> LoopBypassBlocks;
310
311  /// The new Induction variable which was added to the new block.
312  PHINode *Induction;
313  /// The induction variable of the old basic block.
314  PHINode *OldInduction;
315  /// Maps scalars to widened vectors.
316  ValueMap WidenMap;
317};
318
319/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
320/// to what vectorization factor.
321/// This class does not look at the profitability of vectorization, only the
322/// legality. This class has two main kinds of checks:
323/// * Memory checks - The code in canVectorizeMemory checks if vectorization
324///   will change the order of memory accesses in a way that will change the
325///   correctness of the program.
326/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
327/// checks for a number of different conditions, such as the availability of a
328/// single induction variable, that all types are supported and vectorize-able,
329/// etc. This code reflects the capabilities of InnerLoopVectorizer.
330/// This class is also used by InnerLoopVectorizer for identifying
331/// induction variable and the different reduction variables.
332class LoopVectorizationLegality {
333public:
334  LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DataLayout *DL,
335                            DominatorTree *DT, TargetTransformInfo* TTI,
336                            AliasAnalysis *AA, TargetLibraryInfo *TLI)
337      : TheLoop(L), SE(SE), DL(DL), DT(DT), TTI(TTI), AA(AA), TLI(TLI),
338        Induction(0), HasFunNoNaNAttr(false) {}
339
340  /// This enum represents the kinds of reductions that we support.
341  enum ReductionKind {
342    RK_NoReduction, ///< Not a reduction.
343    RK_IntegerAdd,  ///< Sum of integers.
344    RK_IntegerMult, ///< Product of integers.
345    RK_IntegerOr,   ///< Bitwise or logical OR of numbers.
346    RK_IntegerAnd,  ///< Bitwise or logical AND of numbers.
347    RK_IntegerXor,  ///< Bitwise or logical XOR of numbers.
348    RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
349    RK_FloatAdd,    ///< Sum of floats.
350    RK_FloatMult,   ///< Product of floats.
351    RK_FloatMinMax  ///< Min/max implemented in terms of select(cmp()).
352  };
353
354  /// This enum represents the kinds of inductions that we support.
355  enum InductionKind {
356    IK_NoInduction,         ///< Not an induction variable.
357    IK_IntInduction,        ///< Integer induction variable. Step = 1.
358    IK_ReverseIntInduction, ///< Reverse int induction variable. Step = -1.
359    IK_PtrInduction,        ///< Pointer induction var. Step = sizeof(elem).
360    IK_ReversePtrInduction  ///< Reverse ptr indvar. Step = - sizeof(elem).
361  };
362
363  // This enum represents the kind of minmax reduction.
364  enum MinMaxReductionKind {
365    MRK_Invalid,
366    MRK_UIntMin,
367    MRK_UIntMax,
368    MRK_SIntMin,
369    MRK_SIntMax,
370    MRK_FloatMin,
371    MRK_FloatMax
372  };
373
374  /// This POD struct holds information about reduction variables.
375  struct ReductionDescriptor {
376    ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
377      Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
378
379    ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
380                        MinMaxReductionKind MK)
381        : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
382
383    // The starting value of the reduction.
384    // It does not have to be zero!
385    Value *StartValue;
386    // The instruction who's value is used outside the loop.
387    Instruction *LoopExitInstr;
388    // The kind of the reduction.
389    ReductionKind Kind;
390    // If this a min/max reduction the kind of reduction.
391    MinMaxReductionKind MinMaxKind;
392  };
393
394  /// This POD struct holds information about a potential reduction operation.
395  struct ReductionInstDesc {
396    ReductionInstDesc(bool IsRedux, Instruction *I) :
397      IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
398
399    ReductionInstDesc(Instruction *I, MinMaxReductionKind K) :
400      IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
401
402    // Is this instruction a reduction candidate.
403    bool IsReduction;
404    // The last instruction in a min/max pattern (select of the select(icmp())
405    // pattern), or the current reduction instruction otherwise.
406    Instruction *PatternLastInst;
407    // If this is a min/max pattern the comparison predicate.
408    MinMaxReductionKind MinMaxKind;
409  };
410
411  // This POD struct holds information about the memory runtime legality
412  // check that a group of pointers do not overlap.
413  struct RuntimePointerCheck {
414    RuntimePointerCheck() : Need(false) {}
415
416    /// Reset the state of the pointer runtime information.
417    void reset() {
418      Need = false;
419      Pointers.clear();
420      Starts.clear();
421      Ends.clear();
422    }
423
424    /// Insert a pointer and calculate the start and end SCEVs.
425    void insert(ScalarEvolution *SE, Loop *Lp, Value *Ptr, bool WritePtr);
426
427    /// This flag indicates if we need to add the runtime check.
428    bool Need;
429    /// Holds the pointers that we need to check.
430    SmallVector<Value*, 2> Pointers;
431    /// Holds the pointer value at the beginning of the loop.
432    SmallVector<const SCEV*, 2> Starts;
433    /// Holds the pointer value at the end of the loop.
434    SmallVector<const SCEV*, 2> Ends;
435    /// Holds the information if this pointer is used for writing to memory.
436    SmallVector<bool, 2> IsWritePtr;
437  };
438
439  /// A POD for saving information about induction variables.
440  struct InductionInfo {
441    InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
442    InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
443    /// Start value.
444    Value *StartValue;
445    /// Induction kind.
446    InductionKind IK;
447  };
448
449  /// ReductionList contains the reduction descriptors for all
450  /// of the reductions that were found in the loop.
451  typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
452
453  /// InductionList saves induction variables and maps them to the
454  /// induction descriptor.
455  typedef MapVector<PHINode*, InductionInfo> InductionList;
456
457  /// Alias(Multi)Map stores the values (GEPs or underlying objects and their
458  /// respective Store/Load instruction(s) to calculate aliasing.
459  typedef MapVector<Value*, Instruction* > AliasMap;
460  typedef DenseMap<Value*, std::vector<Instruction*> > AliasMultiMap;
461
462  /// Returns true if it is legal to vectorize this loop.
463  /// This does not mean that it is profitable to vectorize this
464  /// loop, only that it is legal to do so.
465  bool canVectorize();
466
467  /// Returns the Induction variable.
468  PHINode *getInduction() { return Induction; }
469
470  /// Returns the reduction variables found in the loop.
471  ReductionList *getReductionVars() { return &Reductions; }
472
473  /// Returns the induction variables found in the loop.
474  InductionList *getInductionVars() { return &Inductions; }
475
476  /// Returns True if V is an induction variable in this loop.
477  bool isInductionVariable(const Value *V);
478
479  /// Return true if the block BB needs to be predicated in order for the loop
480  /// to be vectorized.
481  bool blockNeedsPredication(BasicBlock *BB);
482
483  /// Check if this  pointer is consecutive when vectorizing. This happens
484  /// when the last index of the GEP is the induction variable, or that the
485  /// pointer itself is an induction variable.
486  /// This check allows us to vectorize A[idx] into a wide load/store.
487  /// Returns:
488  /// 0 - Stride is unknown or non consecutive.
489  /// 1 - Address is consecutive.
490  /// -1 - Address is consecutive, and decreasing.
491  int isConsecutivePtr(Value *Ptr);
492
493  /// Returns true if the value V is uniform within the loop.
494  bool isUniform(Value *V);
495
496  /// Returns true if this instruction will remain scalar after vectorization.
497  bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
498
499  /// Returns the information that we collected about runtime memory check.
500  RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
501
502  /// This function returns the identity element (or neutral element) for
503  /// the operation K.
504  static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
505private:
506  /// Check if a single basic block loop is vectorizable.
507  /// At this point we know that this is a loop with a constant trip count
508  /// and we only need to check individual instructions.
509  bool canVectorizeInstrs();
510
511  /// When we vectorize loops we may change the order in which
512  /// we read and write from memory. This method checks if it is
513  /// legal to vectorize the code, considering only memory constrains.
514  /// Returns true if the loop is vectorizable
515  bool canVectorizeMemory();
516
517  /// Return true if we can vectorize this loop using the IF-conversion
518  /// transformation.
519  bool canVectorizeWithIfConvert();
520
521  /// Collect the variables that need to stay uniform after vectorization.
522  void collectLoopUniforms();
523
524  /// Return true if all of the instructions in the block can be speculatively
525  /// executed.
526  bool blockCanBePredicated(BasicBlock *BB);
527
528  /// Returns True, if 'Phi' is the kind of reduction variable for type
529  /// 'Kind'. If this is a reduction variable, it adds it to ReductionList.
530  bool AddReductionVar(PHINode *Phi, ReductionKind Kind);
531  /// Returns a struct describing if the instruction 'I' can be a reduction
532  /// variable of type 'Kind'. If the reduction is a min/max pattern of
533  /// select(icmp()) this function advances the instruction pointer 'I' from the
534  /// compare instruction to the select instruction and stores this pointer in
535  /// 'PatternLastInst' member of the returned struct.
536  ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
537                                     ReductionInstDesc &Desc);
538  /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
539  /// pattern corresponding to a min(X, Y) or max(X, Y).
540  static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
541                                                    ReductionInstDesc &Prev);
542  /// Returns the induction kind of Phi. This function may return NoInduction
543  /// if the PHI is not an induction variable.
544  InductionKind isInductionVariable(PHINode *Phi);
545  /// Return true if can compute the address bounds of Ptr within the loop.
546  bool hasComputableBounds(Value *Ptr);
547  /// Return true if there is the chance of write reorder.
548  bool hasPossibleGlobalWriteReorder(Value *Object,
549                                     Instruction *Inst,
550                                     AliasMultiMap &WriteObjects,
551                                     unsigned MaxByteWidth);
552  /// Return the AA location for a load or a store.
553  AliasAnalysis::Location getLoadStoreLocation(Instruction *Inst);
554
555
556  /// The loop that we evaluate.
557  Loop *TheLoop;
558  /// Scev analysis.
559  ScalarEvolution *SE;
560  /// DataLayout analysis.
561  DataLayout *DL;
562  /// Dominators.
563  DominatorTree *DT;
564  /// Target Info.
565  TargetTransformInfo *TTI;
566  /// Alias Analysis.
567  AliasAnalysis *AA;
568  /// Target Library Info.
569  TargetLibraryInfo *TLI;
570
571  //  ---  vectorization state --- //
572
573  /// Holds the integer induction variable. This is the counter of the
574  /// loop.
575  PHINode *Induction;
576  /// Holds the reduction variables.
577  ReductionList Reductions;
578  /// Holds all of the induction variables that we found in the loop.
579  /// Notice that inductions don't need to start at zero and that induction
580  /// variables can be pointers.
581  InductionList Inductions;
582
583  /// Allowed outside users. This holds the reduction
584  /// vars which can be accessed from outside the loop.
585  SmallPtrSet<Value*, 4> AllowedExit;
586  /// This set holds the variables which are known to be uniform after
587  /// vectorization.
588  SmallPtrSet<Instruction*, 4> Uniforms;
589  /// We need to check that all of the pointers in this list are disjoint
590  /// at runtime.
591  RuntimePointerCheck PtrRtCheck;
592  /// Can we assume the absence of NaNs.
593  bool HasFunNoNaNAttr;
594};
595
596/// LoopVectorizationCostModel - estimates the expected speedups due to
597/// vectorization.
598/// In many cases vectorization is not profitable. This can happen because of
599/// a number of reasons. In this class we mainly attempt to predict the
600/// expected speedup/slowdowns due to the supported instruction set. We use the
601/// TargetTransformInfo to query the different backends for the cost of
602/// different operations.
603class LoopVectorizationCostModel {
604public:
605  LoopVectorizationCostModel(Loop *L, ScalarEvolution *SE, LoopInfo *LI,
606                             LoopVectorizationLegality *Legal,
607                             const TargetTransformInfo &TTI,
608                             DataLayout *DL, const TargetLibraryInfo *TLI)
609      : TheLoop(L), SE(SE), LI(LI), Legal(Legal), TTI(TTI), DL(DL), TLI(TLI) {}
610
611  /// Information about vectorization costs
612  struct VectorizationFactor {
613    unsigned Width; // Vector width with best cost
614    unsigned Cost; // Cost of the loop with that width
615  };
616  /// \return The most profitable vectorization factor and the cost of that VF.
617  /// This method checks every power of two up to VF. If UserVF is not ZERO
618  /// then this vectorization factor will be selected if vectorization is
619  /// possible.
620  VectorizationFactor selectVectorizationFactor(bool OptForSize,
621                                                unsigned UserVF);
622
623  /// \return The size (in bits) of the widest type in the code that
624  /// needs to be vectorized. We ignore values that remain scalar such as
625  /// 64 bit loop indices.
626  unsigned getWidestType();
627
628  /// \return The most profitable unroll factor.
629  /// If UserUF is non-zero then this method finds the best unroll-factor
630  /// based on register pressure and other parameters.
631  /// VF and LoopCost are the selected vectorization factor and the cost of the
632  /// selected VF.
633  unsigned selectUnrollFactor(bool OptForSize, unsigned UserUF, unsigned VF,
634                              unsigned LoopCost);
635
636  /// \brief A struct that represents some properties of the register usage
637  /// of a loop.
638  struct RegisterUsage {
639    /// Holds the number of loop invariant values that are used in the loop.
640    unsigned LoopInvariantRegs;
641    /// Holds the maximum number of concurrent live intervals in the loop.
642    unsigned MaxLocalUsers;
643    /// Holds the number of instructions in the loop.
644    unsigned NumInstructions;
645  };
646
647  /// \return  information about the register usage of the loop.
648  RegisterUsage calculateRegisterUsage();
649
650private:
651  /// Returns the expected execution cost. The unit of the cost does
652  /// not matter because we use the 'cost' units to compare different
653  /// vector widths. The cost that is returned is *not* normalized by
654  /// the factor width.
655  unsigned expectedCost(unsigned VF);
656
657  /// Returns the execution time cost of an instruction for a given vector
658  /// width. Vector width of one means scalar.
659  unsigned getInstructionCost(Instruction *I, unsigned VF);
660
661  /// A helper function for converting Scalar types to vector types.
662  /// If the incoming type is void, we return void. If the VF is 1, we return
663  /// the scalar type.
664  static Type* ToVectorTy(Type *Scalar, unsigned VF);
665
666  /// Returns whether the instruction is a load or store and will be a emitted
667  /// as a vector operation.
668  bool isConsecutiveLoadOrStore(Instruction *I);
669
670  /// The loop that we evaluate.
671  Loop *TheLoop;
672  /// Scev analysis.
673  ScalarEvolution *SE;
674  /// Loop Info analysis.
675  LoopInfo *LI;
676  /// Vectorization legality.
677  LoopVectorizationLegality *Legal;
678  /// Vector target information.
679  const TargetTransformInfo &TTI;
680  /// Target data layout information.
681  DataLayout *DL;
682  /// Target Library Info.
683  const TargetLibraryInfo *TLI;
684};
685
686/// The LoopVectorize Pass.
687struct LoopVectorize : public LoopPass {
688  /// Pass identification, replacement for typeid
689  static char ID;
690
691  explicit LoopVectorize() : LoopPass(ID) {
692    initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
693  }
694
695  ScalarEvolution *SE;
696  DataLayout *DL;
697  LoopInfo *LI;
698  TargetTransformInfo *TTI;
699  DominatorTree *DT;
700  AliasAnalysis *AA;
701  TargetLibraryInfo *TLI;
702
703  virtual bool runOnLoop(Loop *L, LPPassManager &LPM) {
704    // We only vectorize innermost loops.
705    if (!L->empty())
706      return false;
707
708    SE = &getAnalysis<ScalarEvolution>();
709    DL = getAnalysisIfAvailable<DataLayout>();
710    LI = &getAnalysis<LoopInfo>();
711    TTI = &getAnalysis<TargetTransformInfo>();
712    DT = &getAnalysis<DominatorTree>();
713    AA = getAnalysisIfAvailable<AliasAnalysis>();
714    TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
715
716    if (DL == NULL) {
717      DEBUG(dbgs() << "LV: Not vectorizing because of missing data layout");
718      return false;
719    }
720
721    DEBUG(dbgs() << "LV: Checking a loop in \"" <<
722          L->getHeader()->getParent()->getName() << "\"\n");
723
724    // Check if it is legal to vectorize the loop.
725    LoopVectorizationLegality LVL(L, SE, DL, DT, TTI, AA, TLI);
726    if (!LVL.canVectorize()) {
727      DEBUG(dbgs() << "LV: Not vectorizing.\n");
728      return false;
729    }
730
731    // Use the cost model.
732    LoopVectorizationCostModel CM(L, SE, LI, &LVL, *TTI, DL, TLI);
733
734    // Check the function attributes to find out if this function should be
735    // optimized for size.
736    Function *F = L->getHeader()->getParent();
737    Attribute::AttrKind SzAttr = Attribute::OptimizeForSize;
738    Attribute::AttrKind FlAttr = Attribute::NoImplicitFloat;
739    unsigned FnIndex = AttributeSet::FunctionIndex;
740    bool OptForSize = F->getAttributes().hasAttribute(FnIndex, SzAttr);
741    bool NoFloat = F->getAttributes().hasAttribute(FnIndex, FlAttr);
742
743    if (NoFloat) {
744      DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
745            "attribute is used.\n");
746      return false;
747    }
748
749    // Select the optimal vectorization factor.
750    LoopVectorizationCostModel::VectorizationFactor VF;
751    VF = CM.selectVectorizationFactor(OptForSize, VectorizationFactor);
752    // Select the unroll factor.
753    unsigned UF = CM.selectUnrollFactor(OptForSize, VectorizationUnroll,
754                                        VF.Width, VF.Cost);
755
756    if (VF.Width == 1) {
757      DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
758      return false;
759    }
760
761    DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
762          F->getParent()->getModuleIdentifier()<<"\n");
763    DEBUG(dbgs() << "LV: Unroll Factor is " << UF << "\n");
764
765    // If we decided that it is *legal* to vectorize the loop then do it.
766    InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
767    LB.vectorize(&LVL);
768
769    DEBUG(verifyFunction(*L->getHeader()->getParent()));
770    return true;
771  }
772
773  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
774    LoopPass::getAnalysisUsage(AU);
775    AU.addRequiredID(LoopSimplifyID);
776    AU.addRequiredID(LCSSAID);
777    AU.addRequired<DominatorTree>();
778    AU.addRequired<LoopInfo>();
779    AU.addRequired<ScalarEvolution>();
780    AU.addRequired<TargetTransformInfo>();
781    AU.addPreserved<LoopInfo>();
782    AU.addPreserved<DominatorTree>();
783  }
784
785};
786
787} // end anonymous namespace
788
789//===----------------------------------------------------------------------===//
790// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
791// LoopVectorizationCostModel.
792//===----------------------------------------------------------------------===//
793
794void
795LoopVectorizationLegality::RuntimePointerCheck::insert(ScalarEvolution *SE,
796                                                       Loop *Lp, Value *Ptr,
797                                                       bool WritePtr) {
798  const SCEV *Sc = SE->getSCEV(Ptr);
799  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
800  assert(AR && "Invalid addrec expression");
801  const SCEV *Ex = SE->getExitCount(Lp, Lp->getLoopLatch());
802  const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
803  Pointers.push_back(Ptr);
804  Starts.push_back(AR->getStart());
805  Ends.push_back(ScEnd);
806  IsWritePtr.push_back(WritePtr);
807}
808
809Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
810  // Save the current insertion location.
811  Instruction *Loc = Builder.GetInsertPoint();
812
813  // We need to place the broadcast of invariant variables outside the loop.
814  Instruction *Instr = dyn_cast<Instruction>(V);
815  bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
816  bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
817
818  // Place the code for broadcasting invariant variables in the new preheader.
819  if (Invariant)
820    Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
821
822  // Broadcast the scalar into all locations in the vector.
823  Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
824
825  // Restore the builder insertion point.
826  if (Invariant)
827    Builder.SetInsertPoint(Loc);
828
829  return Shuf;
830}
831
832Value *InnerLoopVectorizer::getConsecutiveVector(Value* Val, int StartIdx,
833                                                 bool Negate) {
834  assert(Val->getType()->isVectorTy() && "Must be a vector");
835  assert(Val->getType()->getScalarType()->isIntegerTy() &&
836         "Elem must be an integer");
837  // Create the types.
838  Type *ITy = Val->getType()->getScalarType();
839  VectorType *Ty = cast<VectorType>(Val->getType());
840  int VLen = Ty->getNumElements();
841  SmallVector<Constant*, 8> Indices;
842
843  // Create a vector of consecutive numbers from zero to VF.
844  for (int i = 0; i < VLen; ++i) {
845    int64_t Idx = Negate ? (-i) : i;
846    Indices.push_back(ConstantInt::get(ITy, StartIdx + Idx, Negate));
847  }
848
849  // Add the consecutive indices to the vector value.
850  Constant *Cv = ConstantVector::get(Indices);
851  assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
852  return Builder.CreateAdd(Val, Cv, "induction");
853}
854
855int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
856  assert(Ptr->getType()->isPointerTy() && "Unexpected non ptr");
857  // Make sure that the pointer does not point to structs.
858  if (cast<PointerType>(Ptr->getType())->getElementType()->isAggregateType())
859    return 0;
860
861  // If this value is a pointer induction variable we know it is consecutive.
862  PHINode *Phi = dyn_cast_or_null<PHINode>(Ptr);
863  if (Phi && Inductions.count(Phi)) {
864    InductionInfo II = Inductions[Phi];
865    if (IK_PtrInduction == II.IK)
866      return 1;
867    else if (IK_ReversePtrInduction == II.IK)
868      return -1;
869  }
870
871  GetElementPtrInst *Gep = dyn_cast_or_null<GetElementPtrInst>(Ptr);
872  if (!Gep)
873    return 0;
874
875  unsigned NumOperands = Gep->getNumOperands();
876  Value *LastIndex = Gep->getOperand(NumOperands - 1);
877
878  Value *GpPtr = Gep->getPointerOperand();
879  // If this GEP value is a consecutive pointer induction variable and all of
880  // the indices are constant then we know it is consecutive. We can
881  Phi = dyn_cast<PHINode>(GpPtr);
882  if (Phi && Inductions.count(Phi)) {
883
884    // Make sure that the pointer does not point to structs.
885    PointerType *GepPtrType = cast<PointerType>(GpPtr->getType());
886    if (GepPtrType->getElementType()->isAggregateType())
887      return 0;
888
889    // Make sure that all of the index operands are loop invariant.
890    for (unsigned i = 1; i < NumOperands; ++i)
891      if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
892        return 0;
893
894    InductionInfo II = Inductions[Phi];
895    if (IK_PtrInduction == II.IK)
896      return 1;
897    else if (IK_ReversePtrInduction == II.IK)
898      return -1;
899  }
900
901  // Check that all of the gep indices are uniform except for the last.
902  for (unsigned i = 0; i < NumOperands - 1; ++i)
903    if (!SE->isLoopInvariant(SE->getSCEV(Gep->getOperand(i)), TheLoop))
904      return 0;
905
906  // We can emit wide load/stores only if the last index is the induction
907  // variable.
908  const SCEV *Last = SE->getSCEV(LastIndex);
909  if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Last)) {
910    const SCEV *Step = AR->getStepRecurrence(*SE);
911
912    // The memory is consecutive because the last index is consecutive
913    // and all other indices are loop invariant.
914    if (Step->isOne())
915      return 1;
916    if (Step->isAllOnesValue())
917      return -1;
918  }
919
920  return 0;
921}
922
923bool LoopVectorizationLegality::isUniform(Value *V) {
924  return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
925}
926
927InnerLoopVectorizer::VectorParts&
928InnerLoopVectorizer::getVectorValue(Value *V) {
929  assert(V != Induction && "The new induction variable should not be used.");
930  assert(!V->getType()->isVectorTy() && "Can't widen a vector");
931
932  // If we have this scalar in the map, return it.
933  if (WidenMap.has(V))
934    return WidenMap.get(V);
935
936  // If this scalar is unknown, assume that it is a constant or that it is
937  // loop invariant. Broadcast V and save the value for future uses.
938  Value *B = getBroadcastInstrs(V);
939  return WidenMap.splat(V, B);
940}
941
942Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
943  assert(Vec->getType()->isVectorTy() && "Invalid type");
944  SmallVector<Constant*, 8> ShuffleMask;
945  for (unsigned i = 0; i < VF; ++i)
946    ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
947
948  return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
949                                     ConstantVector::get(ShuffleMask),
950                                     "reverse");
951}
952
953
954void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
955                                             LoopVectorizationLegality *Legal) {
956  // Attempt to issue a wide load.
957  LoadInst *LI = dyn_cast<LoadInst>(Instr);
958  StoreInst *SI = dyn_cast<StoreInst>(Instr);
959
960  assert((LI || SI) && "Invalid Load/Store instruction");
961
962  Type *ScalarDataTy = LI ? LI->getType() : SI->getValueOperand()->getType();
963  Type *DataTy = VectorType::get(ScalarDataTy, VF);
964  Value *Ptr = LI ? LI->getPointerOperand() : SI->getPointerOperand();
965  unsigned Alignment = LI ? LI->getAlignment() : SI->getAlignment();
966
967  unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ScalarDataTy);
968  unsigned VectorElementSize = DL->getTypeStoreSize(DataTy)/VF;
969
970  if (ScalarAllocatedSize != VectorElementSize)
971    return scalarizeInstruction(Instr);
972
973  // If the pointer is loop invariant or if it is non consecutive,
974  // scalarize the load.
975  int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
976  bool Reverse = ConsecutiveStride < 0;
977  bool UniformLoad = LI && Legal->isUniform(Ptr);
978  if (!ConsecutiveStride || UniformLoad)
979    return scalarizeInstruction(Instr);
980
981  Constant *Zero = Builder.getInt32(0);
982  VectorParts &Entry = WidenMap.get(Instr);
983
984  // Handle consecutive loads/stores.
985  GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr);
986  if (Gep && Legal->isInductionVariable(Gep->getPointerOperand())) {
987    Value *PtrOperand = Gep->getPointerOperand();
988    Value *FirstBasePtr = getVectorValue(PtrOperand)[0];
989    FirstBasePtr = Builder.CreateExtractElement(FirstBasePtr, Zero);
990
991    // Create the new GEP with the new induction variable.
992    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
993    Gep2->setOperand(0, FirstBasePtr);
994    Gep2->setName("gep.indvar.base");
995    Ptr = Builder.Insert(Gep2);
996  } else if (Gep) {
997    assert(SE->isLoopInvariant(SE->getSCEV(Gep->getPointerOperand()),
998                               OrigLoop) && "Base ptr must be invariant");
999
1000    // The last index does not have to be the induction. It can be
1001    // consecutive and be a function of the index. For example A[I+1];
1002    unsigned NumOperands = Gep->getNumOperands();
1003
1004    Value *LastGepOperand = Gep->getOperand(NumOperands - 1);
1005    VectorParts &GEPParts = getVectorValue(LastGepOperand);
1006    Value *LastIndex = GEPParts[0];
1007    LastIndex = Builder.CreateExtractElement(LastIndex, Zero);
1008
1009    // Create the new GEP with the new induction variable.
1010    GetElementPtrInst *Gep2 = cast<GetElementPtrInst>(Gep->clone());
1011    Gep2->setOperand(NumOperands - 1, LastIndex);
1012    Gep2->setName("gep.indvar.idx");
1013    Ptr = Builder.Insert(Gep2);
1014  } else {
1015    // Use the induction element ptr.
1016    assert(isa<PHINode>(Ptr) && "Invalid induction ptr");
1017    VectorParts &PtrVal = getVectorValue(Ptr);
1018    Ptr = Builder.CreateExtractElement(PtrVal[0], Zero);
1019  }
1020
1021  // Handle Stores:
1022  if (SI) {
1023    assert(!Legal->isUniform(SI->getPointerOperand()) &&
1024           "We do not allow storing to uniform addresses");
1025
1026    VectorParts &StoredVal = getVectorValue(SI->getValueOperand());
1027    for (unsigned Part = 0; Part < UF; ++Part) {
1028      // Calculate the pointer for the specific unroll-part.
1029      Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1030
1031      if (Reverse) {
1032        // If we store to reverse consecutive memory locations then we need
1033        // to reverse the order of elements in the stored value.
1034        StoredVal[Part] = reverseVector(StoredVal[Part]);
1035        // If the address is consecutive but reversed, then the
1036        // wide store needs to start at the last vector element.
1037        PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1038        PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1039      }
1040
1041      Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo());
1042      Builder.CreateStore(StoredVal[Part], VecPtr)->setAlignment(Alignment);
1043    }
1044  }
1045
1046  for (unsigned Part = 0; Part < UF; ++Part) {
1047    // Calculate the pointer for the specific unroll-part.
1048    Value *PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF));
1049
1050    if (Reverse) {
1051      // If the address is consecutive but reversed, then the
1052      // wide store needs to start at the last vector element.
1053      PartPtr = Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF));
1054      PartPtr = Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF));
1055    }
1056
1057    Value *VecPtr = Builder.CreateBitCast(PartPtr, DataTy->getPointerTo());
1058    Value *LI = Builder.CreateLoad(VecPtr, "wide.load");
1059    cast<LoadInst>(LI)->setAlignment(Alignment);
1060    Entry[Part] = Reverse ? reverseVector(LI) :  LI;
1061  }
1062}
1063
1064void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr) {
1065  assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
1066  // Holds vector parameters or scalars, in case of uniform vals.
1067  SmallVector<VectorParts, 4> Params;
1068
1069  // Find all of the vectorized parameters.
1070  for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1071    Value *SrcOp = Instr->getOperand(op);
1072
1073    // If we are accessing the old induction variable, use the new one.
1074    if (SrcOp == OldInduction) {
1075      Params.push_back(getVectorValue(SrcOp));
1076      continue;
1077    }
1078
1079    // Try using previously calculated values.
1080    Instruction *SrcInst = dyn_cast<Instruction>(SrcOp);
1081
1082    // If the src is an instruction that appeared earlier in the basic block
1083    // then it should already be vectorized.
1084    if (SrcInst && OrigLoop->contains(SrcInst)) {
1085      assert(WidenMap.has(SrcInst) && "Source operand is unavailable");
1086      // The parameter is a vector value from earlier.
1087      Params.push_back(WidenMap.get(SrcInst));
1088    } else {
1089      // The parameter is a scalar from outside the loop. Maybe even a constant.
1090      VectorParts Scalars;
1091      Scalars.append(UF, SrcOp);
1092      Params.push_back(Scalars);
1093    }
1094  }
1095
1096  assert(Params.size() == Instr->getNumOperands() &&
1097         "Invalid number of operands");
1098
1099  // Does this instruction return a value ?
1100  bool IsVoidRetTy = Instr->getType()->isVoidTy();
1101
1102  Value *UndefVec = IsVoidRetTy ? 0 :
1103    UndefValue::get(VectorType::get(Instr->getType(), VF));
1104  // Create a new entry in the WidenMap and initialize it to Undef or Null.
1105  VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
1106
1107  // For each vector unroll 'part':
1108  for (unsigned Part = 0; Part < UF; ++Part) {
1109    // For each scalar that we create:
1110    for (unsigned Width = 0; Width < VF; ++Width) {
1111      Instruction *Cloned = Instr->clone();
1112      if (!IsVoidRetTy)
1113        Cloned->setName(Instr->getName() + ".cloned");
1114      // Replace the operands of the cloned instrucions with extracted scalars.
1115      for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
1116        Value *Op = Params[op][Part];
1117        // Param is a vector. Need to extract the right lane.
1118        if (Op->getType()->isVectorTy())
1119          Op = Builder.CreateExtractElement(Op, Builder.getInt32(Width));
1120        Cloned->setOperand(op, Op);
1121      }
1122
1123      // Place the cloned scalar in the new loop.
1124      Builder.Insert(Cloned);
1125
1126      // If the original scalar returns a value we need to place it in a vector
1127      // so that future users will be able to use it.
1128      if (!IsVoidRetTy)
1129        VecResults[Part] = Builder.CreateInsertElement(VecResults[Part], Cloned,
1130                                                       Builder.getInt32(Width));
1131    }
1132  }
1133}
1134
1135Instruction *
1136InnerLoopVectorizer::addRuntimeCheck(LoopVectorizationLegality *Legal,
1137                                     Instruction *Loc) {
1138  LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
1139  Legal->getRuntimePointerCheck();
1140
1141  if (!PtrRtCheck->Need)
1142    return NULL;
1143
1144  Instruction *MemoryRuntimeCheck = 0;
1145  unsigned NumPointers = PtrRtCheck->Pointers.size();
1146  SmallVector<Value* , 2> Starts;
1147  SmallVector<Value* , 2> Ends;
1148
1149  SCEVExpander Exp(*SE, "induction");
1150
1151  // Use this type for pointer arithmetic.
1152  Type* PtrArithTy = Type::getInt8PtrTy(Loc->getContext(), 0);
1153
1154  for (unsigned i = 0; i < NumPointers; ++i) {
1155    Value *Ptr = PtrRtCheck->Pointers[i];
1156    const SCEV *Sc = SE->getSCEV(Ptr);
1157
1158    if (SE->isLoopInvariant(Sc, OrigLoop)) {
1159      DEBUG(dbgs() << "LV: Adding RT check for a loop invariant ptr:" <<
1160            *Ptr <<"\n");
1161      Starts.push_back(Ptr);
1162      Ends.push_back(Ptr);
1163    } else {
1164      DEBUG(dbgs() << "LV: Adding RT check for range:" << *Ptr <<"\n");
1165
1166      Value *Start = Exp.expandCodeFor(PtrRtCheck->Starts[i], PtrArithTy, Loc);
1167      Value *End = Exp.expandCodeFor(PtrRtCheck->Ends[i], PtrArithTy, Loc);
1168      Starts.push_back(Start);
1169      Ends.push_back(End);
1170    }
1171  }
1172
1173  IRBuilder<> ChkBuilder(Loc);
1174
1175  for (unsigned i = 0; i < NumPointers; ++i) {
1176    for (unsigned j = i+1; j < NumPointers; ++j) {
1177      // No need to check if two readonly pointers intersect.
1178      if (!PtrRtCheck->IsWritePtr[i] && !PtrRtCheck->IsWritePtr[j])
1179        continue;
1180
1181      Value *Start0 = ChkBuilder.CreateBitCast(Starts[i], PtrArithTy, "bc");
1182      Value *Start1 = ChkBuilder.CreateBitCast(Starts[j], PtrArithTy, "bc");
1183      Value *End0 =   ChkBuilder.CreateBitCast(Ends[i],   PtrArithTy, "bc");
1184      Value *End1 =   ChkBuilder.CreateBitCast(Ends[j],   PtrArithTy, "bc");
1185
1186      Value *Cmp0 = ChkBuilder.CreateICmpULE(Start0, End1, "bound0");
1187      Value *Cmp1 = ChkBuilder.CreateICmpULE(Start1, End0, "bound1");
1188      Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
1189      if (MemoryRuntimeCheck)
1190        IsConflict = ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict,
1191                                         "conflict.rdx");
1192
1193      MemoryRuntimeCheck = cast<Instruction>(IsConflict);
1194    }
1195  }
1196
1197  return MemoryRuntimeCheck;
1198}
1199
1200void
1201InnerLoopVectorizer::createEmptyLoop(LoopVectorizationLegality *Legal) {
1202  /*
1203   In this function we generate a new loop. The new loop will contain
1204   the vectorized instructions while the old loop will continue to run the
1205   scalar remainder.
1206
1207       [ ] <-- vector loop bypass (may consist of multiple blocks).
1208     /  |
1209    /   v
1210   |   [ ]     <-- vector pre header.
1211   |    |
1212   |    v
1213   |   [  ] \
1214   |   [  ]_|   <-- vector loop.
1215   |    |
1216    \   v
1217      >[ ]   <--- middle-block.
1218     /  |
1219    /   v
1220   |   [ ]     <--- new preheader.
1221   |    |
1222   |    v
1223   |   [ ] \
1224   |   [ ]_|   <-- old scalar loop to handle remainder.
1225    \   |
1226     \  v
1227      >[ ]     <-- exit block.
1228   ...
1229   */
1230
1231  BasicBlock *OldBasicBlock = OrigLoop->getHeader();
1232  BasicBlock *BypassBlock = OrigLoop->getLoopPreheader();
1233  BasicBlock *ExitBlock = OrigLoop->getExitBlock();
1234  assert(ExitBlock && "Must have an exit block");
1235
1236  // Mark the old scalar loop with metadata that tells us not to vectorize this
1237  // loop again if we run into it.
1238  MDNode *MD = MDNode::get(OldBasicBlock->getContext(), None);
1239  OldBasicBlock->getTerminator()->setMetadata(AlreadyVectorizedMDName, MD);
1240
1241  // Some loops have a single integer induction variable, while other loops
1242  // don't. One example is c++ iterators that often have multiple pointer
1243  // induction variables. In the code below we also support a case where we
1244  // don't have a single induction variable.
1245  OldInduction = Legal->getInduction();
1246  Type *IdxTy = OldInduction ? OldInduction->getType() :
1247  DL->getIntPtrType(SE->getContext());
1248
1249  // Find the loop boundaries.
1250  const SCEV *ExitCount = SE->getExitCount(OrigLoop, OrigLoop->getLoopLatch());
1251  assert(ExitCount != SE->getCouldNotCompute() && "Invalid loop count");
1252
1253  // Get the total trip count from the count by adding 1.
1254  ExitCount = SE->getAddExpr(ExitCount,
1255                             SE->getConstant(ExitCount->getType(), 1));
1256
1257  // Expand the trip count and place the new instructions in the preheader.
1258  // Notice that the pre-header does not change, only the loop body.
1259  SCEVExpander Exp(*SE, "induction");
1260
1261  // Count holds the overall loop count (N).
1262  Value *Count = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
1263                                   BypassBlock->getTerminator());
1264
1265  // The loop index does not have to start at Zero. Find the original start
1266  // value from the induction PHI node. If we don't have an induction variable
1267  // then we know that it starts at zero.
1268  Value *StartIdx = OldInduction ?
1269  OldInduction->getIncomingValueForBlock(BypassBlock):
1270  ConstantInt::get(IdxTy, 0);
1271
1272  assert(BypassBlock && "Invalid loop structure");
1273  LoopBypassBlocks.push_back(BypassBlock);
1274
1275  // Split the single block loop into the two loop structure described above.
1276  BasicBlock *VectorPH =
1277  BypassBlock->splitBasicBlock(BypassBlock->getTerminator(), "vector.ph");
1278  BasicBlock *VecBody =
1279  VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
1280  BasicBlock *MiddleBlock =
1281  VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
1282  BasicBlock *ScalarPH =
1283  MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
1284
1285  // Use this IR builder to create the loop instructions (Phi, Br, Cmp)
1286  // inside the loop.
1287  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1288
1289  // Generate the induction variable.
1290  Induction = Builder.CreatePHI(IdxTy, 2, "index");
1291  // The loop step is equal to the vectorization factor (num of SIMD elements)
1292  // times the unroll factor (num of SIMD instructions).
1293  Constant *Step = ConstantInt::get(IdxTy, VF * UF);
1294
1295  // This is the IR builder that we use to add all of the logic for bypassing
1296  // the new vector loop.
1297  IRBuilder<> BypassBuilder(BypassBlock->getTerminator());
1298
1299  // We may need to extend the index in case there is a type mismatch.
1300  // We know that the count starts at zero and does not overflow.
1301  if (Count->getType() != IdxTy) {
1302    // The exit count can be of pointer type. Convert it to the correct
1303    // integer type.
1304    if (ExitCount->getType()->isPointerTy())
1305      Count = BypassBuilder.CreatePointerCast(Count, IdxTy, "ptrcnt.to.int");
1306    else
1307      Count = BypassBuilder.CreateZExtOrTrunc(Count, IdxTy, "cnt.cast");
1308  }
1309
1310  // Add the start index to the loop count to get the new end index.
1311  Value *IdxEnd = BypassBuilder.CreateAdd(Count, StartIdx, "end.idx");
1312
1313  // Now we need to generate the expression for N - (N % VF), which is
1314  // the part that the vectorized body will execute.
1315  Value *R = BypassBuilder.CreateURem(Count, Step, "n.mod.vf");
1316  Value *CountRoundDown = BypassBuilder.CreateSub(Count, R, "n.vec");
1317  Value *IdxEndRoundDown = BypassBuilder.CreateAdd(CountRoundDown, StartIdx,
1318                                                     "end.idx.rnd.down");
1319
1320  // Now, compare the new count to zero. If it is zero skip the vector loop and
1321  // jump to the scalar loop.
1322  Value *Cmp = BypassBuilder.CreateICmpEQ(IdxEndRoundDown, StartIdx,
1323                                          "cmp.zero");
1324
1325  BasicBlock *LastBypassBlock = BypassBlock;
1326
1327  // Generate the code that checks in runtime if arrays overlap. We put the
1328  // checks into a separate block to make the more common case of few elements
1329  // faster.
1330  Instruction *MemRuntimeCheck = addRuntimeCheck(Legal,
1331                                                 BypassBlock->getTerminator());
1332  if (MemRuntimeCheck) {
1333    // Create a new block containing the memory check.
1334    BasicBlock *CheckBlock = BypassBlock->splitBasicBlock(MemRuntimeCheck,
1335                                                          "vector.memcheck");
1336    LoopBypassBlocks.push_back(CheckBlock);
1337
1338    // Replace the branch into the memory check block with a conditional branch
1339    // for the "few elements case".
1340    Instruction *OldTerm = BypassBlock->getTerminator();
1341    BranchInst::Create(MiddleBlock, CheckBlock, Cmp, OldTerm);
1342    OldTerm->eraseFromParent();
1343
1344    Cmp = MemRuntimeCheck;
1345    LastBypassBlock = CheckBlock;
1346  }
1347
1348  LastBypassBlock->getTerminator()->eraseFromParent();
1349  BranchInst::Create(MiddleBlock, VectorPH, Cmp,
1350                     LastBypassBlock);
1351
1352  // We are going to resume the execution of the scalar loop.
1353  // Go over all of the induction variables that we found and fix the
1354  // PHIs that are left in the scalar version of the loop.
1355  // The starting values of PHI nodes depend on the counter of the last
1356  // iteration in the vectorized loop.
1357  // If we come from a bypass edge then we need to start from the original
1358  // start value.
1359
1360  // This variable saves the new starting index for the scalar loop.
1361  PHINode *ResumeIndex = 0;
1362  LoopVectorizationLegality::InductionList::iterator I, E;
1363  LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
1364  for (I = List->begin(), E = List->end(); I != E; ++I) {
1365    PHINode *OrigPhi = I->first;
1366    LoopVectorizationLegality::InductionInfo II = I->second;
1367    PHINode *ResumeVal = PHINode::Create(OrigPhi->getType(), 2, "resume.val",
1368                                         MiddleBlock->getTerminator());
1369    Value *EndValue = 0;
1370    switch (II.IK) {
1371    case LoopVectorizationLegality::IK_NoInduction:
1372      llvm_unreachable("Unknown induction");
1373    case LoopVectorizationLegality::IK_IntInduction: {
1374      // Handle the integer induction counter:
1375      assert(OrigPhi->getType()->isIntegerTy() && "Invalid type");
1376      assert(OrigPhi == OldInduction && "Unknown integer PHI");
1377      // We know what the end value is.
1378      EndValue = IdxEndRoundDown;
1379      // We also know which PHI node holds it.
1380      ResumeIndex = ResumeVal;
1381      break;
1382    }
1383    case LoopVectorizationLegality::IK_ReverseIntInduction: {
1384      // Convert the CountRoundDown variable to the PHI size.
1385      unsigned CRDSize = CountRoundDown->getType()->getScalarSizeInBits();
1386      unsigned IISize = II.StartValue->getType()->getScalarSizeInBits();
1387      Value *CRD = CountRoundDown;
1388      if (CRDSize > IISize)
1389        CRD = CastInst::Create(Instruction::Trunc, CountRoundDown,
1390                               II.StartValue->getType(), "tr.crd",
1391                               LoopBypassBlocks.back()->getTerminator());
1392      else if (CRDSize < IISize)
1393        CRD = CastInst::Create(Instruction::SExt, CountRoundDown,
1394                               II.StartValue->getType(),
1395                               "sext.crd",
1396                               LoopBypassBlocks.back()->getTerminator());
1397      // Handle reverse integer induction counter:
1398      EndValue =
1399        BinaryOperator::CreateSub(II.StartValue, CRD, "rev.ind.end",
1400                                  LoopBypassBlocks.back()->getTerminator());
1401      break;
1402    }
1403    case LoopVectorizationLegality::IK_PtrInduction: {
1404      // For pointer induction variables, calculate the offset using
1405      // the end index.
1406      EndValue =
1407        GetElementPtrInst::Create(II.StartValue, CountRoundDown, "ptr.ind.end",
1408                                  LoopBypassBlocks.back()->getTerminator());
1409      break;
1410    }
1411    case LoopVectorizationLegality::IK_ReversePtrInduction: {
1412      // The value at the end of the loop for the reverse pointer is calculated
1413      // by creating a GEP with a negative index starting from the start value.
1414      Value *Zero = ConstantInt::get(CountRoundDown->getType(), 0);
1415      Value *NegIdx = BinaryOperator::CreateSub(Zero, CountRoundDown,
1416                                  "rev.ind.end",
1417                                  LoopBypassBlocks.back()->getTerminator());
1418      EndValue = GetElementPtrInst::Create(II.StartValue, NegIdx,
1419                                  "rev.ptr.ind.end",
1420                                  LoopBypassBlocks.back()->getTerminator());
1421      break;
1422    }
1423    }// end of case
1424
1425    // The new PHI merges the original incoming value, in case of a bypass,
1426    // or the value at the end of the vectorized loop.
1427    for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1428      ResumeVal->addIncoming(II.StartValue, LoopBypassBlocks[I]);
1429    ResumeVal->addIncoming(EndValue, VecBody);
1430
1431    // Fix the scalar body counter (PHI node).
1432    unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
1433    OrigPhi->setIncomingValue(BlockIdx, ResumeVal);
1434  }
1435
1436  // If we are generating a new induction variable then we also need to
1437  // generate the code that calculates the exit value. This value is not
1438  // simply the end of the counter because we may skip the vectorized body
1439  // in case of a runtime check.
1440  if (!OldInduction){
1441    assert(!ResumeIndex && "Unexpected resume value found");
1442    ResumeIndex = PHINode::Create(IdxTy, 2, "new.indc.resume.val",
1443                                  MiddleBlock->getTerminator());
1444    for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1445      ResumeIndex->addIncoming(StartIdx, LoopBypassBlocks[I]);
1446    ResumeIndex->addIncoming(IdxEndRoundDown, VecBody);
1447  }
1448
1449  // Make sure that we found the index where scalar loop needs to continue.
1450  assert(ResumeIndex && ResumeIndex->getType()->isIntegerTy() &&
1451         "Invalid resume Index");
1452
1453  // Add a check in the middle block to see if we have completed
1454  // all of the iterations in the first vector loop.
1455  // If (N - N%VF) == N, then we *don't* need to run the remainder.
1456  Value *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, IdxEnd,
1457                                ResumeIndex, "cmp.n",
1458                                MiddleBlock->getTerminator());
1459
1460  BranchInst::Create(ExitBlock, ScalarPH, CmpN, MiddleBlock->getTerminator());
1461  // Remove the old terminator.
1462  MiddleBlock->getTerminator()->eraseFromParent();
1463
1464  // Create i+1 and fill the PHINode.
1465  Value *NextIdx = Builder.CreateAdd(Induction, Step, "index.next");
1466  Induction->addIncoming(StartIdx, VectorPH);
1467  Induction->addIncoming(NextIdx, VecBody);
1468  // Create the compare.
1469  Value *ICmp = Builder.CreateICmpEQ(NextIdx, IdxEndRoundDown);
1470  Builder.CreateCondBr(ICmp, MiddleBlock, VecBody);
1471
1472  // Now we have two terminators. Remove the old one from the block.
1473  VecBody->getTerminator()->eraseFromParent();
1474
1475  // Get ready to start creating new instructions into the vectorized body.
1476  Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
1477
1478  // Create and register the new vector loop.
1479  Loop* Lp = new Loop();
1480  Loop *ParentLoop = OrigLoop->getParentLoop();
1481
1482  // Insert the new loop into the loop nest and register the new basic blocks.
1483  if (ParentLoop) {
1484    ParentLoop->addChildLoop(Lp);
1485    for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
1486      ParentLoop->addBasicBlockToLoop(LoopBypassBlocks[I], LI->getBase());
1487    ParentLoop->addBasicBlockToLoop(ScalarPH, LI->getBase());
1488    ParentLoop->addBasicBlockToLoop(VectorPH, LI->getBase());
1489    ParentLoop->addBasicBlockToLoop(MiddleBlock, LI->getBase());
1490  } else {
1491    LI->addTopLevelLoop(Lp);
1492  }
1493
1494  Lp->addBasicBlockToLoop(VecBody, LI->getBase());
1495
1496  // Save the state.
1497  LoopVectorPreHeader = VectorPH;
1498  LoopScalarPreHeader = ScalarPH;
1499  LoopMiddleBlock = MiddleBlock;
1500  LoopExitBlock = ExitBlock;
1501  LoopVectorBody = VecBody;
1502  LoopScalarBody = OldBasicBlock;
1503}
1504
1505/// This function returns the identity element (or neutral element) for
1506/// the operation K.
1507Constant*
1508LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
1509  switch (K) {
1510  case RK_IntegerXor:
1511  case RK_IntegerAdd:
1512  case RK_IntegerOr:
1513    // Adding, Xoring, Oring zero to a number does not change it.
1514    return ConstantInt::get(Tp, 0);
1515  case RK_IntegerMult:
1516    // Multiplying a number by 1 does not change it.
1517    return ConstantInt::get(Tp, 1);
1518  case RK_IntegerAnd:
1519    // AND-ing a number with an all-1 value does not change it.
1520    return ConstantInt::get(Tp, -1, true);
1521  case  RK_FloatMult:
1522    // Multiplying a number by 1 does not change it.
1523    return ConstantFP::get(Tp, 1.0L);
1524  case  RK_FloatAdd:
1525    // Adding zero to a number does not change it.
1526    return ConstantFP::get(Tp, 0.0L);
1527  default:
1528    llvm_unreachable("Unknown reduction kind");
1529  }
1530}
1531
1532static Intrinsic::ID
1533getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
1534  // If we have an intrinsic call, check if it is trivially vectorizable.
1535  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
1536    switch (II->getIntrinsicID()) {
1537    case Intrinsic::sqrt:
1538    case Intrinsic::sin:
1539    case Intrinsic::cos:
1540    case Intrinsic::exp:
1541    case Intrinsic::exp2:
1542    case Intrinsic::log:
1543    case Intrinsic::log10:
1544    case Intrinsic::log2:
1545    case Intrinsic::fabs:
1546    case Intrinsic::floor:
1547    case Intrinsic::ceil:
1548    case Intrinsic::trunc:
1549    case Intrinsic::rint:
1550    case Intrinsic::nearbyint:
1551    case Intrinsic::pow:
1552    case Intrinsic::fma:
1553    case Intrinsic::fmuladd:
1554      return II->getIntrinsicID();
1555    default:
1556      return Intrinsic::not_intrinsic;
1557    }
1558  }
1559
1560  if (!TLI)
1561    return Intrinsic::not_intrinsic;
1562
1563  LibFunc::Func Func;
1564  Function *F = CI->getCalledFunction();
1565  // We're going to make assumptions on the semantics of the functions, check
1566  // that the target knows that it's available in this environment.
1567  if (!F || !TLI->getLibFunc(F->getName(), Func))
1568    return Intrinsic::not_intrinsic;
1569
1570  // Otherwise check if we have a call to a function that can be turned into a
1571  // vector intrinsic.
1572  switch (Func) {
1573  default:
1574    break;
1575  case LibFunc::sin:
1576  case LibFunc::sinf:
1577  case LibFunc::sinl:
1578    return Intrinsic::sin;
1579  case LibFunc::cos:
1580  case LibFunc::cosf:
1581  case LibFunc::cosl:
1582    return Intrinsic::cos;
1583  case LibFunc::exp:
1584  case LibFunc::expf:
1585  case LibFunc::expl:
1586    return Intrinsic::exp;
1587  case LibFunc::exp2:
1588  case LibFunc::exp2f:
1589  case LibFunc::exp2l:
1590    return Intrinsic::exp2;
1591  case LibFunc::log:
1592  case LibFunc::logf:
1593  case LibFunc::logl:
1594    return Intrinsic::log;
1595  case LibFunc::log10:
1596  case LibFunc::log10f:
1597  case LibFunc::log10l:
1598    return Intrinsic::log10;
1599  case LibFunc::log2:
1600  case LibFunc::log2f:
1601  case LibFunc::log2l:
1602    return Intrinsic::log2;
1603  case LibFunc::fabs:
1604  case LibFunc::fabsf:
1605  case LibFunc::fabsl:
1606    return Intrinsic::fabs;
1607  case LibFunc::floor:
1608  case LibFunc::floorf:
1609  case LibFunc::floorl:
1610    return Intrinsic::floor;
1611  case LibFunc::ceil:
1612  case LibFunc::ceilf:
1613  case LibFunc::ceill:
1614    return Intrinsic::ceil;
1615  case LibFunc::trunc:
1616  case LibFunc::truncf:
1617  case LibFunc::truncl:
1618    return Intrinsic::trunc;
1619  case LibFunc::rint:
1620  case LibFunc::rintf:
1621  case LibFunc::rintl:
1622    return Intrinsic::rint;
1623  case LibFunc::nearbyint:
1624  case LibFunc::nearbyintf:
1625  case LibFunc::nearbyintl:
1626    return Intrinsic::nearbyint;
1627  case LibFunc::pow:
1628  case LibFunc::powf:
1629  case LibFunc::powl:
1630    return Intrinsic::pow;
1631  }
1632
1633  return Intrinsic::not_intrinsic;
1634}
1635
1636/// This function translates the reduction kind to an LLVM binary operator.
1637static unsigned
1638getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
1639  switch (Kind) {
1640    case LoopVectorizationLegality::RK_IntegerAdd:
1641      return Instruction::Add;
1642    case LoopVectorizationLegality::RK_IntegerMult:
1643      return Instruction::Mul;
1644    case LoopVectorizationLegality::RK_IntegerOr:
1645      return Instruction::Or;
1646    case LoopVectorizationLegality::RK_IntegerAnd:
1647      return Instruction::And;
1648    case LoopVectorizationLegality::RK_IntegerXor:
1649      return Instruction::Xor;
1650    case LoopVectorizationLegality::RK_FloatMult:
1651      return Instruction::FMul;
1652    case LoopVectorizationLegality::RK_FloatAdd:
1653      return Instruction::FAdd;
1654    case LoopVectorizationLegality::RK_IntegerMinMax:
1655      return Instruction::ICmp;
1656    case LoopVectorizationLegality::RK_FloatMinMax:
1657      return Instruction::FCmp;
1658    default:
1659      llvm_unreachable("Unknown reduction operation");
1660  }
1661}
1662
1663Value *createMinMaxOp(IRBuilder<> &Builder,
1664                      LoopVectorizationLegality::MinMaxReductionKind RK,
1665                      Value *Left,
1666                      Value *Right) {
1667  CmpInst::Predicate P = CmpInst::ICMP_NE;
1668  switch (RK) {
1669  default:
1670    llvm_unreachable("Unknown min/max reduction kind");
1671  case LoopVectorizationLegality::MRK_UIntMin:
1672    P = CmpInst::ICMP_ULT;
1673    break;
1674  case LoopVectorizationLegality::MRK_UIntMax:
1675    P = CmpInst::ICMP_UGT;
1676    break;
1677  case LoopVectorizationLegality::MRK_SIntMin:
1678    P = CmpInst::ICMP_SLT;
1679    break;
1680  case LoopVectorizationLegality::MRK_SIntMax:
1681    P = CmpInst::ICMP_SGT;
1682    break;
1683  case LoopVectorizationLegality::MRK_FloatMin:
1684    P = CmpInst::FCMP_OLT;
1685    break;
1686  case LoopVectorizationLegality::MRK_FloatMax:
1687    P = CmpInst::FCMP_OGT;
1688    break;
1689  }
1690
1691  Value *Cmp;
1692  if (RK == LoopVectorizationLegality::MRK_FloatMin || RK == LoopVectorizationLegality::MRK_FloatMax)
1693    Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
1694  else
1695    Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
1696
1697  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
1698  return Select;
1699}
1700
1701void
1702InnerLoopVectorizer::vectorizeLoop(LoopVectorizationLegality *Legal) {
1703  //===------------------------------------------------===//
1704  //
1705  // Notice: any optimization or new instruction that go
1706  // into the code below should be also be implemented in
1707  // the cost-model.
1708  //
1709  //===------------------------------------------------===//
1710  Constant *Zero = Builder.getInt32(0);
1711
1712  // In order to support reduction variables we need to be able to vectorize
1713  // Phi nodes. Phi nodes have cycles, so we need to vectorize them in two
1714  // stages. First, we create a new vector PHI node with no incoming edges.
1715  // We use this value when we vectorize all of the instructions that use the
1716  // PHI. Next, after all of the instructions in the block are complete we
1717  // add the new incoming edges to the PHI. At this point all of the
1718  // instructions in the basic block are vectorized, so we can use them to
1719  // construct the PHI.
1720  PhiVector RdxPHIsToFix;
1721
1722  // Scan the loop in a topological order to ensure that defs are vectorized
1723  // before users.
1724  LoopBlocksDFS DFS(OrigLoop);
1725  DFS.perform(LI);
1726
1727  // Vectorize all of the blocks in the original loop.
1728  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
1729       be = DFS.endRPO(); bb != be; ++bb)
1730    vectorizeBlockInLoop(Legal, *bb, &RdxPHIsToFix);
1731
1732  // At this point every instruction in the original loop is widened to
1733  // a vector form. We are almost done. Now, we need to fix the PHI nodes
1734  // that we vectorized. The PHI nodes are currently empty because we did
1735  // not want to introduce cycles. Notice that the remaining PHI nodes
1736  // that we need to fix are reduction variables.
1737
1738  // Create the 'reduced' values for each of the induction vars.
1739  // The reduced values are the vector values that we scalarize and combine
1740  // after the loop is finished.
1741  for (PhiVector::iterator it = RdxPHIsToFix.begin(), e = RdxPHIsToFix.end();
1742       it != e; ++it) {
1743    PHINode *RdxPhi = *it;
1744    assert(RdxPhi && "Unable to recover vectorized PHI");
1745
1746    // Find the reduction variable descriptor.
1747    assert(Legal->getReductionVars()->count(RdxPhi) &&
1748           "Unable to find the reduction variable");
1749    LoopVectorizationLegality::ReductionDescriptor RdxDesc =
1750    (*Legal->getReductionVars())[RdxPhi];
1751
1752    // We need to generate a reduction vector from the incoming scalar.
1753    // To do so, we need to generate the 'identity' vector and overide
1754    // one of the elements with the incoming scalar reduction. We need
1755    // to do it in the vector-loop preheader.
1756    Builder.SetInsertPoint(LoopBypassBlocks.front()->getTerminator());
1757
1758    // This is the vector-clone of the value that leaves the loop.
1759    VectorParts &VectorExit = getVectorValue(RdxDesc.LoopExitInstr);
1760    Type *VecTy = VectorExit[0]->getType();
1761
1762    // Find the reduction identity variable. Zero for addition, or, xor,
1763    // one for multiplication, -1 for And.
1764    Value *Identity;
1765    Value *VectorStart;
1766    if (RdxDesc.Kind == LoopVectorizationLegality::RK_IntegerMinMax ||
1767        RdxDesc.Kind == LoopVectorizationLegality::RK_FloatMinMax) {
1768      // MinMax reduction have the start value as their identify.
1769      VectorStart = Identity = Builder.CreateVectorSplat(VF, RdxDesc.StartValue,
1770                                                         "minmax.ident");
1771    } else {
1772      Constant *Iden =
1773        LoopVectorizationLegality::getReductionIdentity(RdxDesc.Kind,
1774                                                        VecTy->getScalarType());
1775      Identity = ConstantVector::getSplat(VF, Iden);
1776
1777      // This vector is the Identity vector where the first element is the
1778      // incoming scalar reduction.
1779      VectorStart = Builder.CreateInsertElement(Identity,
1780                                                RdxDesc.StartValue, Zero);
1781    }
1782
1783    // Fix the vector-loop phi.
1784    // We created the induction variable so we know that the
1785    // preheader is the first entry.
1786    BasicBlock *VecPreheader = Induction->getIncomingBlock(0);
1787
1788    // Reductions do not have to start at zero. They can start with
1789    // any loop invariant values.
1790    VectorParts &VecRdxPhi = WidenMap.get(RdxPhi);
1791    BasicBlock *Latch = OrigLoop->getLoopLatch();
1792    Value *LoopVal = RdxPhi->getIncomingValueForBlock(Latch);
1793    VectorParts &Val = getVectorValue(LoopVal);
1794    for (unsigned part = 0; part < UF; ++part) {
1795      // Make sure to add the reduction stat value only to the
1796      // first unroll part.
1797      Value *StartVal = (part == 0) ? VectorStart : Identity;
1798      cast<PHINode>(VecRdxPhi[part])->addIncoming(StartVal, VecPreheader);
1799      cast<PHINode>(VecRdxPhi[part])->addIncoming(Val[part], LoopVectorBody);
1800    }
1801
1802    // Before each round, move the insertion point right between
1803    // the PHIs and the values we are going to write.
1804    // This allows us to write both PHINodes and the extractelement
1805    // instructions.
1806    Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
1807
1808    VectorParts RdxParts;
1809    for (unsigned part = 0; part < UF; ++part) {
1810      // This PHINode contains the vectorized reduction variable, or
1811      // the initial value vector, if we bypass the vector loop.
1812      VectorParts &RdxExitVal = getVectorValue(RdxDesc.LoopExitInstr);
1813      PHINode *NewPhi = Builder.CreatePHI(VecTy, 2, "rdx.vec.exit.phi");
1814      Value *StartVal = (part == 0) ? VectorStart : Identity;
1815      for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
1816        NewPhi->addIncoming(StartVal, LoopBypassBlocks[I]);
1817      NewPhi->addIncoming(RdxExitVal[part], LoopVectorBody);
1818      RdxParts.push_back(NewPhi);
1819    }
1820
1821    // Reduce all of the unrolled parts into a single vector.
1822    Value *ReducedPartRdx = RdxParts[0];
1823    unsigned Op = getReductionBinOp(RdxDesc.Kind);
1824    for (unsigned part = 1; part < UF; ++part) {
1825      if (Op != Instruction::ICmp && Op != Instruction::FCmp)
1826        ReducedPartRdx = Builder.CreateBinOp((Instruction::BinaryOps)Op,
1827                                             RdxParts[part], ReducedPartRdx,
1828                                             "bin.rdx");
1829      else
1830        ReducedPartRdx = createMinMaxOp(Builder, RdxDesc.MinMaxKind,
1831                                        ReducedPartRdx, RdxParts[part]);
1832    }
1833
1834    // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1835    // and vector ops, reducing the set of values being computed by half each
1836    // round.
1837    assert(isPowerOf2_32(VF) &&
1838           "Reduction emission only supported for pow2 vectors!");
1839    Value *TmpVec = ReducedPartRdx;
1840    SmallVector<Constant*, 32> ShuffleMask(VF, 0);
1841    for (unsigned i = VF; i != 1; i >>= 1) {
1842      // Move the upper half of the vector to the lower half.
1843      for (unsigned j = 0; j != i/2; ++j)
1844        ShuffleMask[j] = Builder.getInt32(i/2 + j);
1845
1846      // Fill the rest of the mask with undef.
1847      std::fill(&ShuffleMask[i/2], ShuffleMask.end(),
1848                UndefValue::get(Builder.getInt32Ty()));
1849
1850      Value *Shuf =
1851        Builder.CreateShuffleVector(TmpVec,
1852                                    UndefValue::get(TmpVec->getType()),
1853                                    ConstantVector::get(ShuffleMask),
1854                                    "rdx.shuf");
1855
1856      if (Op != Instruction::ICmp && Op != Instruction::FCmp)
1857        TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
1858                                     "bin.rdx");
1859      else
1860        TmpVec = createMinMaxOp(Builder, RdxDesc.MinMaxKind, TmpVec, Shuf);
1861    }
1862
1863    // The result is in the first element of the vector.
1864    Value *Scalar0 = Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1865
1866    // Now, we need to fix the users of the reduction variable
1867    // inside and outside of the scalar remainder loop.
1868    // We know that the loop is in LCSSA form. We need to update the
1869    // PHI nodes in the exit blocks.
1870    for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
1871         LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
1872      PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
1873      if (!LCSSAPhi) continue;
1874
1875      // All PHINodes need to have a single entry edge, or two if
1876      // we already fixed them.
1877      assert(LCSSAPhi->getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
1878
1879      // We found our reduction value exit-PHI. Update it with the
1880      // incoming bypass edge.
1881      if (LCSSAPhi->getIncomingValue(0) == RdxDesc.LoopExitInstr) {
1882        // Add an edge coming from the bypass.
1883        LCSSAPhi->addIncoming(Scalar0, LoopMiddleBlock);
1884        break;
1885      }
1886    }// end of the LCSSA phi scan.
1887
1888    // Fix the scalar loop reduction variable with the incoming reduction sum
1889    // from the vector body and from the backedge value.
1890    int IncomingEdgeBlockIdx =
1891    (RdxPhi)->getBasicBlockIndex(OrigLoop->getLoopLatch());
1892    assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
1893    // Pick the other block.
1894    int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
1895    (RdxPhi)->setIncomingValue(SelfEdgeBlockIdx, Scalar0);
1896    (RdxPhi)->setIncomingValue(IncomingEdgeBlockIdx, RdxDesc.LoopExitInstr);
1897  }// end of for each redux variable.
1898
1899  // The Loop exit block may have single value PHI nodes where the incoming
1900  // value is 'undef'. While vectorizing we only handled real values that
1901  // were defined inside the loop. Here we handle the 'undef case'.
1902  // See PR14725.
1903  for (BasicBlock::iterator LEI = LoopExitBlock->begin(),
1904       LEE = LoopExitBlock->end(); LEI != LEE; ++LEI) {
1905    PHINode *LCSSAPhi = dyn_cast<PHINode>(LEI);
1906    if (!LCSSAPhi) continue;
1907    if (LCSSAPhi->getNumIncomingValues() == 1)
1908      LCSSAPhi->addIncoming(UndefValue::get(LCSSAPhi->getType()),
1909                            LoopMiddleBlock);
1910  }
1911}
1912
1913InnerLoopVectorizer::VectorParts
1914InnerLoopVectorizer::createEdgeMask(BasicBlock *Src, BasicBlock *Dst) {
1915  assert(std::find(pred_begin(Dst), pred_end(Dst), Src) != pred_end(Dst) &&
1916         "Invalid edge");
1917
1918  VectorParts SrcMask = createBlockInMask(Src);
1919
1920  // The terminator has to be a branch inst!
1921  BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
1922  assert(BI && "Unexpected terminator found");
1923
1924  if (BI->isConditional()) {
1925    VectorParts EdgeMask = getVectorValue(BI->getCondition());
1926
1927    if (BI->getSuccessor(0) != Dst)
1928      for (unsigned part = 0; part < UF; ++part)
1929        EdgeMask[part] = Builder.CreateNot(EdgeMask[part]);
1930
1931    for (unsigned part = 0; part < UF; ++part)
1932      EdgeMask[part] = Builder.CreateAnd(EdgeMask[part], SrcMask[part]);
1933    return EdgeMask;
1934  }
1935
1936  return SrcMask;
1937}
1938
1939InnerLoopVectorizer::VectorParts
1940InnerLoopVectorizer::createBlockInMask(BasicBlock *BB) {
1941  assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
1942
1943  // Loop incoming mask is all-one.
1944  if (OrigLoop->getHeader() == BB) {
1945    Value *C = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 1);
1946    return getVectorValue(C);
1947  }
1948
1949  // This is the block mask. We OR all incoming edges, and with zero.
1950  Value *Zero = ConstantInt::get(IntegerType::getInt1Ty(BB->getContext()), 0);
1951  VectorParts BlockMask = getVectorValue(Zero);
1952
1953  // For each pred:
1954  for (pred_iterator it = pred_begin(BB), e = pred_end(BB); it != e; ++it) {
1955    VectorParts EM = createEdgeMask(*it, BB);
1956    for (unsigned part = 0; part < UF; ++part)
1957      BlockMask[part] = Builder.CreateOr(BlockMask[part], EM[part]);
1958  }
1959
1960  return BlockMask;
1961}
1962
1963void
1964InnerLoopVectorizer::vectorizeBlockInLoop(LoopVectorizationLegality *Legal,
1965                                          BasicBlock *BB, PhiVector *PV) {
1966  // For each instruction in the old loop.
1967  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
1968    VectorParts &Entry = WidenMap.get(it);
1969    switch (it->getOpcode()) {
1970    case Instruction::Br:
1971      // Nothing to do for PHIs and BR, since we already took care of the
1972      // loop control flow instructions.
1973      continue;
1974    case Instruction::PHI:{
1975      PHINode* P = cast<PHINode>(it);
1976      // Handle reduction variables:
1977      if (Legal->getReductionVars()->count(P)) {
1978        for (unsigned part = 0; part < UF; ++part) {
1979          // This is phase one of vectorizing PHIs.
1980          Type *VecTy = VectorType::get(it->getType(), VF);
1981          Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
1982                                        LoopVectorBody-> getFirstInsertionPt());
1983        }
1984        PV->push_back(P);
1985        continue;
1986      }
1987
1988      // Check for PHI nodes that are lowered to vector selects.
1989      if (P->getParent() != OrigLoop->getHeader()) {
1990        // We know that all PHIs in non header blocks are converted into
1991        // selects, so we don't have to worry about the insertion order and we
1992        // can just use the builder.
1993        // At this point we generate the predication tree. There may be
1994        // duplications since this is a simple recursive scan, but future
1995        // optimizations will clean it up.
1996
1997        unsigned NumIncoming = P->getNumIncomingValues();
1998        assert(NumIncoming > 1 && "Invalid PHI");
1999
2000        // Generate a sequence of selects of the form:
2001        // SELECT(Mask3, In3,
2002        //      SELECT(Mask2, In2,
2003        //                   ( ...)))
2004        for (unsigned In = 0; In < NumIncoming; In++) {
2005          VectorParts Cond = createEdgeMask(P->getIncomingBlock(In),
2006                                            P->getParent());
2007          VectorParts &In0 = getVectorValue(P->getIncomingValue(In));
2008
2009          for (unsigned part = 0; part < UF; ++part) {
2010            // We don't need to 'select' the first PHI operand because it is
2011            // the default value if all of the other masks don't match.
2012            if (In == 0)
2013              Entry[part] = In0[part];
2014            else
2015              // Select between the current value and the previous incoming edge
2016              // based on the incoming mask.
2017              Entry[part] = Builder.CreateSelect(Cond[part], In0[part],
2018                                                 Entry[part], "predphi");
2019          }
2020        }
2021        continue;
2022      }
2023
2024      // This PHINode must be an induction variable.
2025      // Make sure that we know about it.
2026      assert(Legal->getInductionVars()->count(P) &&
2027             "Not an induction variable");
2028
2029      LoopVectorizationLegality::InductionInfo II =
2030        Legal->getInductionVars()->lookup(P);
2031
2032      switch (II.IK) {
2033      case LoopVectorizationLegality::IK_NoInduction:
2034        llvm_unreachable("Unknown induction");
2035      case LoopVectorizationLegality::IK_IntInduction: {
2036        assert(P == OldInduction && "Unexpected PHI");
2037        Value *Broadcasted = getBroadcastInstrs(Induction);
2038        // After broadcasting the induction variable we need to make the
2039        // vector consecutive by adding 0, 1, 2 ...
2040        for (unsigned part = 0; part < UF; ++part)
2041          Entry[part] = getConsecutiveVector(Broadcasted, VF * part, false);
2042        continue;
2043      }
2044      case LoopVectorizationLegality::IK_ReverseIntInduction:
2045      case LoopVectorizationLegality::IK_PtrInduction:
2046      case LoopVectorizationLegality::IK_ReversePtrInduction:
2047        // Handle reverse integer and pointer inductions.
2048        Value *StartIdx = 0;
2049        // If we have a single integer induction variable then use it.
2050        // Otherwise, start counting at zero.
2051        if (OldInduction) {
2052          LoopVectorizationLegality::InductionInfo OldII =
2053            Legal->getInductionVars()->lookup(OldInduction);
2054          StartIdx = OldII.StartValue;
2055        } else {
2056          StartIdx = ConstantInt::get(Induction->getType(), 0);
2057        }
2058        // This is the normalized GEP that starts counting at zero.
2059        Value *NormalizedIdx = Builder.CreateSub(Induction, StartIdx,
2060                                                 "normalized.idx");
2061
2062        // Handle the reverse integer induction variable case.
2063        if (LoopVectorizationLegality::IK_ReverseIntInduction == II.IK) {
2064          IntegerType *DstTy = cast<IntegerType>(II.StartValue->getType());
2065          Value *CNI = Builder.CreateSExtOrTrunc(NormalizedIdx, DstTy,
2066                                                 "resize.norm.idx");
2067          Value *ReverseInd  = Builder.CreateSub(II.StartValue, CNI,
2068                                                 "reverse.idx");
2069
2070          // This is a new value so do not hoist it out.
2071          Value *Broadcasted = getBroadcastInstrs(ReverseInd);
2072          // After broadcasting the induction variable we need to make the
2073          // vector consecutive by adding  ... -3, -2, -1, 0.
2074          for (unsigned part = 0; part < UF; ++part)
2075            Entry[part] = getConsecutiveVector(Broadcasted, -(int)VF * part,
2076                                               true);
2077          continue;
2078        }
2079
2080        // Handle the pointer induction variable case.
2081        assert(P->getType()->isPointerTy() && "Unexpected type.");
2082
2083        // Is this a reverse induction ptr or a consecutive induction ptr.
2084        bool Reverse = (LoopVectorizationLegality::IK_ReversePtrInduction ==
2085                        II.IK);
2086
2087        // This is the vector of results. Notice that we don't generate
2088        // vector geps because scalar geps result in better code.
2089        for (unsigned part = 0; part < UF; ++part) {
2090          Value *VecVal = UndefValue::get(VectorType::get(P->getType(), VF));
2091          for (unsigned int i = 0; i < VF; ++i) {
2092            int EltIndex = (i + part * VF) * (Reverse ? -1 : 1);
2093            Constant *Idx = ConstantInt::get(Induction->getType(), EltIndex);
2094            Value *GlobalIdx;
2095            if (!Reverse)
2096              GlobalIdx = Builder.CreateAdd(NormalizedIdx, Idx, "gep.idx");
2097            else
2098              GlobalIdx = Builder.CreateSub(Idx, NormalizedIdx, "gep.ridx");
2099
2100            Value *SclrGep = Builder.CreateGEP(II.StartValue, GlobalIdx,
2101                                               "next.gep");
2102            VecVal = Builder.CreateInsertElement(VecVal, SclrGep,
2103                                                 Builder.getInt32(i),
2104                                                 "insert.gep");
2105          }
2106          Entry[part] = VecVal;
2107        }
2108        continue;
2109      }
2110
2111    }// End of PHI.
2112
2113    case Instruction::Add:
2114    case Instruction::FAdd:
2115    case Instruction::Sub:
2116    case Instruction::FSub:
2117    case Instruction::Mul:
2118    case Instruction::FMul:
2119    case Instruction::UDiv:
2120    case Instruction::SDiv:
2121    case Instruction::FDiv:
2122    case Instruction::URem:
2123    case Instruction::SRem:
2124    case Instruction::FRem:
2125    case Instruction::Shl:
2126    case Instruction::LShr:
2127    case Instruction::AShr:
2128    case Instruction::And:
2129    case Instruction::Or:
2130    case Instruction::Xor: {
2131      // Just widen binops.
2132      BinaryOperator *BinOp = dyn_cast<BinaryOperator>(it);
2133      VectorParts &A = getVectorValue(it->getOperand(0));
2134      VectorParts &B = getVectorValue(it->getOperand(1));
2135
2136      // Use this vector value for all users of the original instruction.
2137      for (unsigned Part = 0; Part < UF; ++Part) {
2138        Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A[Part], B[Part]);
2139
2140        // Update the NSW, NUW and Exact flags. Notice: V can be an Undef.
2141        BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V);
2142        if (VecOp && isa<OverflowingBinaryOperator>(BinOp)) {
2143          VecOp->setHasNoSignedWrap(BinOp->hasNoSignedWrap());
2144          VecOp->setHasNoUnsignedWrap(BinOp->hasNoUnsignedWrap());
2145        }
2146        if (VecOp && isa<PossiblyExactOperator>(VecOp))
2147          VecOp->setIsExact(BinOp->isExact());
2148
2149        Entry[Part] = V;
2150      }
2151      break;
2152    }
2153    case Instruction::Select: {
2154      // Widen selects.
2155      // If the selector is loop invariant we can create a select
2156      // instruction with a scalar condition. Otherwise, use vector-select.
2157      bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
2158                                               OrigLoop);
2159
2160      // The condition can be loop invariant  but still defined inside the
2161      // loop. This means that we can't just use the original 'cond' value.
2162      // We have to take the 'vectorized' value and pick the first lane.
2163      // Instcombine will make this a no-op.
2164      VectorParts &Cond = getVectorValue(it->getOperand(0));
2165      VectorParts &Op0  = getVectorValue(it->getOperand(1));
2166      VectorParts &Op1  = getVectorValue(it->getOperand(2));
2167      Value *ScalarCond = Builder.CreateExtractElement(Cond[0],
2168                                                       Builder.getInt32(0));
2169      for (unsigned Part = 0; Part < UF; ++Part) {
2170        Entry[Part] = Builder.CreateSelect(
2171          InvariantCond ? ScalarCond : Cond[Part],
2172          Op0[Part],
2173          Op1[Part]);
2174      }
2175      break;
2176    }
2177
2178    case Instruction::ICmp:
2179    case Instruction::FCmp: {
2180      // Widen compares. Generate vector compares.
2181      bool FCmp = (it->getOpcode() == Instruction::FCmp);
2182      CmpInst *Cmp = dyn_cast<CmpInst>(it);
2183      VectorParts &A = getVectorValue(it->getOperand(0));
2184      VectorParts &B = getVectorValue(it->getOperand(1));
2185      for (unsigned Part = 0; Part < UF; ++Part) {
2186        Value *C = 0;
2187        if (FCmp)
2188          C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
2189        else
2190          C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
2191        Entry[Part] = C;
2192      }
2193      break;
2194    }
2195
2196    case Instruction::Store:
2197    case Instruction::Load:
2198        vectorizeMemoryInstruction(it, Legal);
2199        break;
2200    case Instruction::ZExt:
2201    case Instruction::SExt:
2202    case Instruction::FPToUI:
2203    case Instruction::FPToSI:
2204    case Instruction::FPExt:
2205    case Instruction::PtrToInt:
2206    case Instruction::IntToPtr:
2207    case Instruction::SIToFP:
2208    case Instruction::UIToFP:
2209    case Instruction::Trunc:
2210    case Instruction::FPTrunc:
2211    case Instruction::BitCast: {
2212      CastInst *CI = dyn_cast<CastInst>(it);
2213      /// Optimize the special case where the source is the induction
2214      /// variable. Notice that we can only optimize the 'trunc' case
2215      /// because: a. FP conversions lose precision, b. sext/zext may wrap,
2216      /// c. other casts depend on pointer size.
2217      if (CI->getOperand(0) == OldInduction &&
2218          it->getOpcode() == Instruction::Trunc) {
2219        Value *ScalarCast = Builder.CreateCast(CI->getOpcode(), Induction,
2220                                               CI->getType());
2221        Value *Broadcasted = getBroadcastInstrs(ScalarCast);
2222        for (unsigned Part = 0; Part < UF; ++Part)
2223          Entry[Part] = getConsecutiveVector(Broadcasted, VF * Part, false);
2224        break;
2225      }
2226      /// Vectorize casts.
2227      Type *DestTy = VectorType::get(CI->getType()->getScalarType(), VF);
2228
2229      VectorParts &A = getVectorValue(it->getOperand(0));
2230      for (unsigned Part = 0; Part < UF; ++Part)
2231        Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
2232      break;
2233    }
2234
2235    case Instruction::Call: {
2236      // Ignore dbg intrinsics.
2237      if (isa<DbgInfoIntrinsic>(it))
2238        break;
2239
2240      Module *M = BB->getParent()->getParent();
2241      CallInst *CI = cast<CallInst>(it);
2242      Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
2243      assert(ID && "Not an intrinsic call!");
2244      for (unsigned Part = 0; Part < UF; ++Part) {
2245        SmallVector<Value*, 4> Args;
2246        for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
2247          VectorParts &Arg = getVectorValue(CI->getArgOperand(i));
2248          Args.push_back(Arg[Part]);
2249        }
2250        Type *Tys[] = { VectorType::get(CI->getType()->getScalarType(), VF) };
2251        Function *F = Intrinsic::getDeclaration(M, ID, Tys);
2252        Entry[Part] = Builder.CreateCall(F, Args);
2253      }
2254      break;
2255    }
2256
2257    default:
2258      // All other instructions are unsupported. Scalarize them.
2259      scalarizeInstruction(it);
2260      break;
2261    }// end of switch.
2262  }// end of for_each instr.
2263}
2264
2265void InnerLoopVectorizer::updateAnalysis() {
2266  // Forget the original basic block.
2267  SE->forgetLoop(OrigLoop);
2268
2269  // Update the dominator tree information.
2270  assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
2271         "Entry does not dominate exit.");
2272
2273  for (unsigned I = 1, E = LoopBypassBlocks.size(); I != E; ++I)
2274    DT->addNewBlock(LoopBypassBlocks[I], LoopBypassBlocks[I-1]);
2275  DT->addNewBlock(LoopVectorPreHeader, LoopBypassBlocks.back());
2276  DT->addNewBlock(LoopVectorBody, LoopVectorPreHeader);
2277  DT->addNewBlock(LoopMiddleBlock, LoopBypassBlocks.front());
2278  DT->addNewBlock(LoopScalarPreHeader, LoopMiddleBlock);
2279  DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
2280  DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock);
2281
2282  DEBUG(DT->verifyAnalysis());
2283}
2284
2285bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
2286  if (!EnableIfConversion)
2287    return false;
2288
2289  assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
2290  std::vector<BasicBlock*> &LoopBlocks = TheLoop->getBlocksVector();
2291
2292  // Collect the blocks that need predication.
2293  for (unsigned i = 0, e = LoopBlocks.size(); i < e; ++i) {
2294    BasicBlock *BB = LoopBlocks[i];
2295
2296    // We don't support switch statements inside loops.
2297    if (!isa<BranchInst>(BB->getTerminator()))
2298      return false;
2299
2300    // We must be able to predicate all blocks that need to be predicated.
2301    if (blockNeedsPredication(BB) && !blockCanBePredicated(BB))
2302      return false;
2303  }
2304
2305  // We can if-convert this loop.
2306  return true;
2307}
2308
2309bool LoopVectorizationLegality::canVectorize() {
2310  assert(TheLoop->getLoopPreheader() && "No preheader!!");
2311
2312  // We can only vectorize innermost loops.
2313  if (TheLoop->getSubLoopsVector().size())
2314    return false;
2315
2316  // We must have a single backedge.
2317  if (TheLoop->getNumBackEdges() != 1)
2318    return false;
2319
2320  // We must have a single exiting block.
2321  if (!TheLoop->getExitingBlock())
2322    return false;
2323
2324  unsigned NumBlocks = TheLoop->getNumBlocks();
2325
2326  // Check if we can if-convert non single-bb loops.
2327  if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
2328    DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
2329    return false;
2330  }
2331
2332  // We need to have a loop header.
2333  BasicBlock *Latch = TheLoop->getLoopLatch();
2334  DEBUG(dbgs() << "LV: Found a loop: " <<
2335        TheLoop->getHeader()->getName() << "\n");
2336
2337  // ScalarEvolution needs to be able to find the exit count.
2338  const SCEV *ExitCount = SE->getExitCount(TheLoop, Latch);
2339  if (ExitCount == SE->getCouldNotCompute()) {
2340    DEBUG(dbgs() << "LV: SCEV could not compute the loop exit count.\n");
2341    return false;
2342  }
2343
2344  // Do not loop-vectorize loops with a tiny trip count.
2345  unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
2346  if (TC > 0u && TC < TinyTripCountVectorThreshold) {
2347    DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
2348          "This loop is not worth vectorizing.\n");
2349    return false;
2350  }
2351
2352  // Check if we can vectorize the instructions and CFG in this loop.
2353  if (!canVectorizeInstrs()) {
2354    DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
2355    return false;
2356  }
2357
2358  // Go over each instruction and look at memory deps.
2359  if (!canVectorizeMemory()) {
2360    DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
2361    return false;
2362  }
2363
2364  // Collect all of the variables that remain uniform after vectorization.
2365  collectLoopUniforms();
2366
2367  DEBUG(dbgs() << "LV: We can vectorize this loop" <<
2368        (PtrRtCheck.Need ? " (with a runtime bound check)" : "")
2369        <<"!\n");
2370
2371  // Okay! We can vectorize. At this point we don't have any other mem analysis
2372  // which may limit our maximum vectorization factor, so just return true with
2373  // no restrictions.
2374  return true;
2375}
2376
2377bool LoopVectorizationLegality::canVectorizeInstrs() {
2378  BasicBlock *PreHeader = TheLoop->getLoopPreheader();
2379  BasicBlock *Header = TheLoop->getHeader();
2380
2381  // If we marked the scalar loop as "already vectorized" then no need
2382  // to vectorize it again.
2383  if (Header->getTerminator()->getMetadata(AlreadyVectorizedMDName)) {
2384    DEBUG(dbgs() << "LV: This loop was vectorized before\n");
2385    return false;
2386  }
2387
2388  // Look for the attribute signaling the absence of NaNs.
2389  Function &F = *Header->getParent();
2390  if (F.hasFnAttribute("no-nans-fp-math"))
2391    HasFunNoNaNAttr = F.getAttributes().getAttribute(
2392      AttributeSet::FunctionIndex,
2393      "no-nans-fp-math").getValueAsString() == "true";
2394
2395  // For each block in the loop.
2396  for (Loop::block_iterator bb = TheLoop->block_begin(),
2397       be = TheLoop->block_end(); bb != be; ++bb) {
2398
2399    // Scan the instructions in the block and look for hazards.
2400    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2401         ++it) {
2402
2403      if (PHINode *Phi = dyn_cast<PHINode>(it)) {
2404        // Check that this PHI type is allowed.
2405        if (!Phi->getType()->isIntegerTy() &&
2406            !Phi->getType()->isFloatingPointTy() &&
2407            !Phi->getType()->isPointerTy()) {
2408          DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
2409          return false;
2410        }
2411
2412        // If this PHINode is not in the header block, then we know that we
2413        // can convert it to select during if-conversion. No need to check if
2414        // the PHIs in this block are induction or reduction variables.
2415        if (*bb != Header)
2416          continue;
2417
2418        // We only allow if-converted PHIs with more than two incoming values.
2419        if (Phi->getNumIncomingValues() != 2) {
2420          DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
2421          return false;
2422        }
2423
2424        // This is the value coming from the preheader.
2425        Value *StartValue = Phi->getIncomingValueForBlock(PreHeader);
2426        // Check if this is an induction variable.
2427        InductionKind IK = isInductionVariable(Phi);
2428
2429        if (IK_NoInduction != IK) {
2430          // Int inductions are special because we only allow one IV.
2431          if (IK == IK_IntInduction) {
2432            if (Induction) {
2433              DEBUG(dbgs() << "LV: Found too many inductions."<< *Phi <<"\n");
2434              return false;
2435            }
2436            Induction = Phi;
2437          }
2438
2439          DEBUG(dbgs() << "LV: Found an induction variable.\n");
2440          Inductions[Phi] = InductionInfo(StartValue, IK);
2441          continue;
2442        }
2443
2444        if (AddReductionVar(Phi, RK_IntegerAdd)) {
2445          DEBUG(dbgs() << "LV: Found an ADD reduction PHI."<< *Phi <<"\n");
2446          continue;
2447        }
2448        if (AddReductionVar(Phi, RK_IntegerMult)) {
2449          DEBUG(dbgs() << "LV: Found a MUL reduction PHI."<< *Phi <<"\n");
2450          continue;
2451        }
2452        if (AddReductionVar(Phi, RK_IntegerOr)) {
2453          DEBUG(dbgs() << "LV: Found an OR reduction PHI."<< *Phi <<"\n");
2454          continue;
2455        }
2456        if (AddReductionVar(Phi, RK_IntegerAnd)) {
2457          DEBUG(dbgs() << "LV: Found an AND reduction PHI."<< *Phi <<"\n");
2458          continue;
2459        }
2460        if (AddReductionVar(Phi, RK_IntegerXor)) {
2461          DEBUG(dbgs() << "LV: Found a XOR reduction PHI."<< *Phi <<"\n");
2462          continue;
2463        }
2464        if (AddReductionVar(Phi, RK_IntegerMinMax)) {
2465          DEBUG(dbgs() << "LV: Found a MINMAX reduction PHI."<< *Phi <<"\n");
2466          continue;
2467        }
2468        if (AddReductionVar(Phi, RK_FloatMult)) {
2469          DEBUG(dbgs() << "LV: Found an FMult reduction PHI."<< *Phi <<"\n");
2470          continue;
2471        }
2472        if (AddReductionVar(Phi, RK_FloatAdd)) {
2473          DEBUG(dbgs() << "LV: Found an FAdd reduction PHI."<< *Phi <<"\n");
2474          continue;
2475        }
2476        if (AddReductionVar(Phi, RK_FloatMinMax)) {
2477          DEBUG(dbgs() << "LV: Found an float MINMAX reduction PHI."<< *Phi <<"\n");
2478          continue;
2479        }
2480
2481        DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
2482        return false;
2483      }// end of PHI handling
2484
2485      // We still don't handle functions. However, we can ignore dbg intrinsic
2486      // calls and we do handle certain intrinsic and libm functions.
2487      CallInst *CI = dyn_cast<CallInst>(it);
2488      if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI)) {
2489        DEBUG(dbgs() << "LV: Found a call site.\n");
2490        return false;
2491      }
2492
2493      // Check that the instruction return type is vectorizable.
2494      if (!VectorType::isValidElementType(it->getType()) &&
2495          !it->getType()->isVoidTy()) {
2496        DEBUG(dbgs() << "LV: Found unvectorizable type." << "\n");
2497        return false;
2498      }
2499
2500      // Check that the stored type is vectorizable.
2501      if (StoreInst *ST = dyn_cast<StoreInst>(it)) {
2502        Type *T = ST->getValueOperand()->getType();
2503        if (!VectorType::isValidElementType(T))
2504          return false;
2505      }
2506
2507      // Reduction instructions are allowed to have exit users.
2508      // All other instructions must not have external users.
2509      if (!AllowedExit.count(it))
2510        //Check that all of the users of the loop are inside the BB.
2511        for (Value::use_iterator I = it->use_begin(), E = it->use_end();
2512             I != E; ++I) {
2513          Instruction *U = cast<Instruction>(*I);
2514          // This user may be a reduction exit value.
2515          if (!TheLoop->contains(U)) {
2516            DEBUG(dbgs() << "LV: Found an outside user for : "<< *U << "\n");
2517            return false;
2518          }
2519        }
2520    } // next instr.
2521
2522  }
2523
2524  if (!Induction) {
2525    DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
2526    if (Inductions.empty())
2527      return false;
2528  }
2529
2530  return true;
2531}
2532
2533void LoopVectorizationLegality::collectLoopUniforms() {
2534  // We now know that the loop is vectorizable!
2535  // Collect variables that will remain uniform after vectorization.
2536  std::vector<Value*> Worklist;
2537  BasicBlock *Latch = TheLoop->getLoopLatch();
2538
2539  // Start with the conditional branch and walk up the block.
2540  Worklist.push_back(Latch->getTerminator()->getOperand(0));
2541
2542  while (Worklist.size()) {
2543    Instruction *I = dyn_cast<Instruction>(Worklist.back());
2544    Worklist.pop_back();
2545
2546    // Look at instructions inside this loop.
2547    // Stop when reaching PHI nodes.
2548    // TODO: we need to follow values all over the loop, not only in this block.
2549    if (!I || !TheLoop->contains(I) || isa<PHINode>(I))
2550      continue;
2551
2552    // This is a known uniform.
2553    Uniforms.insert(I);
2554
2555    // Insert all operands.
2556    for (int i = 0, Op = I->getNumOperands(); i < Op; ++i) {
2557      Worklist.push_back(I->getOperand(i));
2558    }
2559  }
2560}
2561
2562AliasAnalysis::Location
2563LoopVectorizationLegality::getLoadStoreLocation(Instruction *Inst) {
2564  if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
2565    return AA->getLocation(Store);
2566  else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
2567    return AA->getLocation(Load);
2568
2569  llvm_unreachable("Should be either load or store instruction");
2570}
2571
2572bool
2573LoopVectorizationLegality::hasPossibleGlobalWriteReorder(
2574                                                Value *Object,
2575                                                Instruction *Inst,
2576                                                AliasMultiMap& WriteObjects,
2577                                                unsigned MaxByteWidth) {
2578
2579  AliasAnalysis::Location ThisLoc = getLoadStoreLocation(Inst);
2580
2581  std::vector<Instruction*>::iterator
2582              it = WriteObjects[Object].begin(),
2583              end = WriteObjects[Object].end();
2584
2585  for (; it != end; ++it) {
2586    Instruction* I = *it;
2587    if (I == Inst)
2588      continue;
2589
2590    AliasAnalysis::Location ThatLoc = getLoadStoreLocation(I);
2591    if (AA->alias(ThisLoc.getWithNewSize(MaxByteWidth),
2592                  ThatLoc.getWithNewSize(MaxByteWidth)))
2593      return true;
2594  }
2595  return false;
2596}
2597
2598bool LoopVectorizationLegality::canVectorizeMemory() {
2599
2600  typedef SmallVector<Value*, 16> ValueVector;
2601  typedef SmallPtrSet<Value*, 16> ValueSet;
2602  // Holds the Load and Store *instructions*.
2603  ValueVector Loads;
2604  ValueVector Stores;
2605  PtrRtCheck.Pointers.clear();
2606  PtrRtCheck.Need = false;
2607
2608  const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
2609
2610  // For each block.
2611  for (Loop::block_iterator bb = TheLoop->block_begin(),
2612       be = TheLoop->block_end(); bb != be; ++bb) {
2613
2614    // Scan the BB and collect legal loads and stores.
2615    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
2616         ++it) {
2617
2618      // If this is a load, save it. If this instruction can read from memory
2619      // but is not a load, then we quit. Notice that we don't handle function
2620      // calls that read or write.
2621      if (it->mayReadFromMemory()) {
2622        LoadInst *Ld = dyn_cast<LoadInst>(it);
2623        if (!Ld) return false;
2624        if (!Ld->isSimple() && !IsAnnotatedParallel) {
2625          DEBUG(dbgs() << "LV: Found a non-simple load.\n");
2626          return false;
2627        }
2628        Loads.push_back(Ld);
2629        continue;
2630      }
2631
2632      // Save 'store' instructions. Abort if other instructions write to memory.
2633      if (it->mayWriteToMemory()) {
2634        StoreInst *St = dyn_cast<StoreInst>(it);
2635        if (!St) return false;
2636        if (!St->isSimple() && !IsAnnotatedParallel) {
2637          DEBUG(dbgs() << "LV: Found a non-simple store.\n");
2638          return false;
2639        }
2640        Stores.push_back(St);
2641      }
2642    } // next instr.
2643  } // next block.
2644
2645  // Now we have two lists that hold the loads and the stores.
2646  // Next, we find the pointers that they use.
2647
2648  // Check if we see any stores. If there are no stores, then we don't
2649  // care if the pointers are *restrict*.
2650  if (!Stores.size()) {
2651    DEBUG(dbgs() << "LV: Found a read-only loop!\n");
2652    return true;
2653  }
2654
2655  // Holds the read and read-write *pointers* that we find. These maps hold
2656  // unique values for pointers (so no need for multi-map).
2657  AliasMap Reads;
2658  AliasMap ReadWrites;
2659
2660  // Holds the analyzed pointers. We don't want to call GetUnderlyingObjects
2661  // multiple times on the same object. If the ptr is accessed twice, once
2662  // for read and once for write, it will only appear once (on the write
2663  // list). This is okay, since we are going to check for conflicts between
2664  // writes and between reads and writes, but not between reads and reads.
2665  ValueSet Seen;
2666
2667  ValueVector::iterator I, IE;
2668  for (I = Stores.begin(), IE = Stores.end(); I != IE; ++I) {
2669    StoreInst *ST = cast<StoreInst>(*I);
2670    Value* Ptr = ST->getPointerOperand();
2671
2672    if (isUniform(Ptr)) {
2673      DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
2674      return false;
2675    }
2676
2677    // If we did *not* see this pointer before, insert it to
2678    // the read-write list. At this phase it is only a 'write' list.
2679    if (Seen.insert(Ptr))
2680      ReadWrites.insert(std::make_pair(Ptr, ST));
2681  }
2682
2683  if (IsAnnotatedParallel) {
2684    DEBUG(dbgs()
2685          << "LV: A loop annotated parallel, ignore memory dependency "
2686          << "checks.\n");
2687    return true;
2688  }
2689
2690  for (I = Loads.begin(), IE = Loads.end(); I != IE; ++I) {
2691    LoadInst *LD = cast<LoadInst>(*I);
2692    Value* Ptr = LD->getPointerOperand();
2693    // If we did *not* see this pointer before, insert it to the
2694    // read list. If we *did* see it before, then it is already in
2695    // the read-write list. This allows us to vectorize expressions
2696    // such as A[i] += x;  Because the address of A[i] is a read-write
2697    // pointer. This only works if the index of A[i] is consecutive.
2698    // If the address of i is unknown (for example A[B[i]]) then we may
2699    // read a few words, modify, and write a few words, and some of the
2700    // words may be written to the same address.
2701    if (Seen.insert(Ptr) || 0 == isConsecutivePtr(Ptr))
2702      Reads.insert(std::make_pair(Ptr, LD));
2703  }
2704
2705  // If we write (or read-write) to a single destination and there are no
2706  // other reads in this loop then is it safe to vectorize.
2707  if (ReadWrites.size() == 1 && Reads.size() == 0) {
2708    DEBUG(dbgs() << "LV: Found a write-only loop!\n");
2709    return true;
2710  }
2711
2712  unsigned NumReadPtrs = 0;
2713  unsigned NumWritePtrs = 0;
2714
2715  // Find pointers with computable bounds. We are going to use this information
2716  // to place a runtime bound check.
2717  bool CanDoRT = true;
2718  AliasMap::iterator MI, ME;
2719  for (MI = ReadWrites.begin(), ME = ReadWrites.end(); MI != ME; ++MI) {
2720    Value *V = (*MI).first;
2721    if (hasComputableBounds(V)) {
2722      PtrRtCheck.insert(SE, TheLoop, V, true);
2723      NumWritePtrs++;
2724      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *V <<"\n");
2725    } else {
2726      CanDoRT = false;
2727      break;
2728    }
2729  }
2730  for (MI = Reads.begin(), ME = Reads.end(); MI != ME; ++MI) {
2731    Value *V = (*MI).first;
2732    if (hasComputableBounds(V)) {
2733      PtrRtCheck.insert(SE, TheLoop, V, false);
2734      NumReadPtrs++;
2735      DEBUG(dbgs() << "LV: Found a runtime check ptr:" << *V <<"\n");
2736    } else {
2737      CanDoRT = false;
2738      break;
2739    }
2740  }
2741
2742  // Check that we did not collect too many pointers or found a
2743  // unsizeable pointer.
2744  unsigned NumComparisons = (NumWritePtrs * (NumReadPtrs + NumWritePtrs - 1));
2745  DEBUG(dbgs() << "LV: We need to compare " << NumComparisons << " ptrs.\n");
2746  if (!CanDoRT || NumComparisons > RuntimeMemoryCheckThreshold) {
2747    PtrRtCheck.reset();
2748    CanDoRT = false;
2749  }
2750
2751  if (CanDoRT) {
2752    DEBUG(dbgs() << "LV: We can perform a memory runtime check if needed.\n");
2753  }
2754
2755  bool NeedRTCheck = false;
2756
2757  // Biggest vectorized access possible, vector width * unroll factor.
2758  // TODO: We're being very pessimistic here, find a way to know the
2759  // real access width before getting here.
2760  unsigned MaxByteWidth = (TTI->getRegisterBitWidth(true) / 8) *
2761                           TTI->getMaximumUnrollFactor();
2762  // Now that the pointers are in two lists (Reads and ReadWrites), we
2763  // can check that there are no conflicts between each of the writes and
2764  // between the writes to the reads.
2765  // Note that WriteObjects duplicates the stores (indexed now by underlying
2766  // objects) to avoid pointing to elements inside ReadWrites.
2767  // TODO: Maybe create a new type where they can interact without duplication.
2768  AliasMultiMap WriteObjects;
2769  ValueVector TempObjects;
2770
2771  // Check that the read-writes do not conflict with other read-write
2772  // pointers.
2773  bool AllWritesIdentified = true;
2774  for (MI = ReadWrites.begin(), ME = ReadWrites.end(); MI != ME; ++MI) {
2775    Value *Val = (*MI).first;
2776    Instruction *Inst = (*MI).second;
2777
2778    GetUnderlyingObjects(Val, TempObjects, DL);
2779    for (ValueVector::iterator UI=TempObjects.begin(), UE=TempObjects.end();
2780         UI != UE; ++UI) {
2781      if (!isIdentifiedObject(*UI)) {
2782        DEBUG(dbgs() << "LV: Found an unidentified write ptr:"<< **UI <<"\n");
2783        NeedRTCheck = true;
2784        AllWritesIdentified = false;
2785      }
2786
2787      // Never seen it before, can't alias.
2788      if (WriteObjects[*UI].empty()) {
2789        DEBUG(dbgs() << "LV: Adding Underlying value:" << **UI <<"\n");
2790        WriteObjects[*UI].push_back(Inst);
2791        continue;
2792      }
2793      // Direct alias found.
2794      if (!AA || dyn_cast<GlobalValue>(*UI) == NULL) {
2795        DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
2796              << **UI <<"\n");
2797        return false;
2798      }
2799      DEBUG(dbgs() << "LV: Found a conflicting global value:"
2800            << **UI <<"\n");
2801      DEBUG(dbgs() << "LV: While examining store:" << *Inst <<"\n");
2802      DEBUG(dbgs() << "LV: On value:" << *Val <<"\n");
2803
2804      // If global alias, make sure they do alias.
2805      if (hasPossibleGlobalWriteReorder(*UI,
2806                                        Inst,
2807                                        WriteObjects,
2808                                        MaxByteWidth)) {
2809        DEBUG(dbgs() << "LV: Found a possible write-write reorder:" << **UI
2810                     << "\n");
2811        return false;
2812      }
2813
2814      // Didn't alias, insert into map for further reference.
2815      WriteObjects[*UI].push_back(Inst);
2816    }
2817    TempObjects.clear();
2818  }
2819
2820  /// Check that the reads don't conflict with the read-writes.
2821  for (MI = Reads.begin(), ME = Reads.end(); MI != ME; ++MI) {
2822    Value *Val = (*MI).first;
2823    GetUnderlyingObjects(Val, TempObjects, DL);
2824    for (ValueVector::iterator UI=TempObjects.begin(), UE=TempObjects.end();
2825         UI != UE; ++UI) {
2826      // If all of the writes are identified then we don't care if the read
2827      // pointer is identified or not.
2828      if (!AllWritesIdentified && !isIdentifiedObject(*UI)) {
2829        DEBUG(dbgs() << "LV: Found an unidentified read ptr:"<< **UI <<"\n");
2830        NeedRTCheck = true;
2831      }
2832
2833      // Never seen it before, can't alias.
2834      if (WriteObjects[*UI].empty())
2835        continue;
2836      // Direct alias found.
2837      if (!AA || dyn_cast<GlobalValue>(*UI) == NULL) {
2838        DEBUG(dbgs() << "LV: Found a possible write-write reorder:"
2839              << **UI <<"\n");
2840        return false;
2841      }
2842      DEBUG(dbgs() << "LV: Found a global value:  "
2843            << **UI <<"\n");
2844      Instruction *Inst = (*MI).second;
2845      DEBUG(dbgs() << "LV: While examining load:" << *Inst <<"\n");
2846      DEBUG(dbgs() << "LV: On value:" << *Val <<"\n");
2847
2848      // If global alias, make sure they do alias.
2849      if (hasPossibleGlobalWriteReorder(*UI,
2850                                        Inst,
2851                                        WriteObjects,
2852                                        MaxByteWidth)) {
2853        DEBUG(dbgs() << "LV: Found a possible read-write reorder:" << **UI
2854                     << "\n");
2855        return false;
2856      }
2857    }
2858    TempObjects.clear();
2859  }
2860
2861  PtrRtCheck.Need = NeedRTCheck;
2862  if (NeedRTCheck && !CanDoRT) {
2863    DEBUG(dbgs() << "LV: We can't vectorize because we can't find " <<
2864          "the array bounds.\n");
2865    PtrRtCheck.reset();
2866    return false;
2867  }
2868
2869  DEBUG(dbgs() << "LV: We "<< (NeedRTCheck ? "" : "don't") <<
2870        " need a runtime memory check.\n");
2871  return true;
2872}
2873
2874static bool hasMultipleUsesOf(Instruction *I,
2875                              SmallPtrSet<Instruction *, 8> &Insts) {
2876  unsigned NumUses = 0;
2877  for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) {
2878    if (Insts.count(dyn_cast<Instruction>(*Use)))
2879      ++NumUses;
2880    if (NumUses > 1)
2881      return true;
2882  }
2883
2884  return false;
2885}
2886
2887static bool areAllUsesIn(Instruction *I, SmallPtrSet<Instruction *, 8> &Set) {
2888  for(User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
2889    if (!Set.count(dyn_cast<Instruction>(*Use)))
2890      return false;
2891  return true;
2892}
2893
2894bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
2895                                                ReductionKind Kind) {
2896  if (Phi->getNumIncomingValues() != 2)
2897    return false;
2898
2899  // Reduction variables are only found in the loop header block.
2900  if (Phi->getParent() != TheLoop->getHeader())
2901    return false;
2902
2903  // Obtain the reduction start value from the value that comes from the loop
2904  // preheader.
2905  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
2906
2907  // ExitInstruction is the single value which is used outside the loop.
2908  // We only allow for a single reduction value to be used outside the loop.
2909  // This includes users of the reduction, variables (which form a cycle
2910  // which ends in the phi node).
2911  Instruction *ExitInstruction = 0;
2912  // Indicates that we found a reduction operation in our scan.
2913  bool FoundReduxOp = false;
2914
2915  // We start with the PHI node and scan for all of the users of this
2916  // instruction. All users must be instructions that can be used as reduction
2917  // variables (such as ADD). We must have a single out-of-block user. The cycle
2918  // must include the original PHI.
2919  bool FoundStartPHI = false;
2920
2921  // To recognize min/max patterns formed by a icmp select sequence, we store
2922  // the number of instruction we saw from the recognized min/max pattern,
2923  //  to make sure we only see exactly the two instructions.
2924  unsigned NumCmpSelectPatternInst = 0;
2925  ReductionInstDesc ReduxDesc(false, 0);
2926
2927  SmallPtrSet<Instruction *, 8> VisitedInsts;
2928  SmallVector<Instruction *, 8> Worklist;
2929  Worklist.push_back(Phi);
2930  VisitedInsts.insert(Phi);
2931
2932  // A value in the reduction can be used:
2933  //  - By the reduction:
2934  //      - Reduction operation:
2935  //        - One use of reduction value (safe).
2936  //        - Multiple use of reduction value (not safe).
2937  //      - PHI:
2938  //        - All uses of the PHI must be the reduction (safe).
2939  //        - Otherwise, not safe.
2940  //  - By one instruction outside of the loop (safe).
2941  //  - By further instructions outside of the loop (not safe).
2942  //  - By an instruction that is not part of the reduction (not safe).
2943  //    This is either:
2944  //      * An instruction type other than PHI or the reduction operation.
2945  //      * A PHI in the header other than the initial PHI.
2946  while (!Worklist.empty()) {
2947    Instruction *Cur = Worklist.back();
2948    Worklist.pop_back();
2949
2950    // No Users.
2951    // If the instruction has no users then this is a broken chain and can't be
2952    // a reduction variable.
2953    if (Cur->use_empty())
2954      return false;
2955
2956    bool IsAPhi = isa<PHINode>(Cur);
2957
2958    // A header PHI use other than the original PHI.
2959    if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
2960      return false;
2961
2962    // Reductions of instructions such as Div, and Sub is only possible if the
2963    // LHS is the reduction variable.
2964    if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
2965        !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
2966        !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
2967      return false;
2968
2969    // Any reduction instruction must be of one of the allowed kinds.
2970    ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc);
2971    if (!ReduxDesc.IsReduction)
2972      return false;
2973
2974    // A reduction operation must only have one use of the reduction value.
2975    if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
2976        hasMultipleUsesOf(Cur, VisitedInsts))
2977      return false;
2978
2979    // All inputs to a PHI node must be a reduction value.
2980    if(IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
2981      return false;
2982
2983    if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) ||
2984                                     isa<SelectInst>(Cur)))
2985      ++NumCmpSelectPatternInst;
2986    if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) ||
2987                                   isa<SelectInst>(Cur)))
2988      ++NumCmpSelectPatternInst;
2989
2990    // Check  whether we found a reduction operator.
2991    FoundReduxOp |= !IsAPhi;
2992
2993    // Process users of current instruction. Push non PHI nodes after PHI nodes
2994    // onto the stack. This way we are going to have seen all inputs to PHI
2995    // nodes once we get to them.
2996    SmallVector<Instruction *, 8> NonPHIs;
2997    SmallVector<Instruction *, 8> PHIs;
2998    for (Value::use_iterator UI = Cur->use_begin(), E = Cur->use_end(); UI != E;
2999         ++UI) {
3000      Instruction *Usr = cast<Instruction>(*UI);
3001
3002      // Check if we found the exit user.
3003      BasicBlock *Parent = Usr->getParent();
3004      if (!TheLoop->contains(Parent)) {
3005        // Exit if you find multiple outside users.
3006        if (ExitInstruction != 0)
3007          return false;
3008        ExitInstruction = Cur;
3009        continue;
3010      }
3011
3012      // Process instructions only once (termination).
3013      if (VisitedInsts.insert(Usr)) {
3014        if (isa<PHINode>(Usr))
3015          PHIs.push_back(Usr);
3016        else
3017          NonPHIs.push_back(Usr);
3018      }
3019      // Remember that we completed the cycle.
3020      if (Usr == Phi)
3021        FoundStartPHI = true;
3022    }
3023    Worklist.append(PHIs.begin(), PHIs.end());
3024    Worklist.append(NonPHIs.begin(), NonPHIs.end());
3025  }
3026
3027  // This means we have seen one but not the other instruction of the
3028  // pattern or more than just a select and cmp.
3029  if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
3030      NumCmpSelectPatternInst != 2)
3031    return false;
3032
3033  if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
3034    return false;
3035
3036  // We found a reduction var if we have reached the original phi node and we
3037  // only have a single instruction with out-of-loop users.
3038
3039  // This instruction is allowed to have out-of-loop users.
3040  AllowedExit.insert(ExitInstruction);
3041
3042  // Save the description of this reduction variable.
3043  ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
3044                         ReduxDesc.MinMaxKind);
3045  Reductions[Phi] = RD;
3046  // We've ended the cycle. This is a reduction variable if we have an
3047  // outside user and it has a binary op.
3048
3049  return true;
3050}
3051
3052/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
3053/// pattern corresponding to a min(X, Y) or max(X, Y).
3054LoopVectorizationLegality::ReductionInstDesc
3055LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
3056                                                    ReductionInstDesc &Prev) {
3057
3058  assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
3059         "Expect a select instruction");
3060  Instruction *Cmp = 0;
3061  SelectInst *Select = 0;
3062
3063  // We must handle the select(cmp()) as a single instruction. Advance to the
3064  // select.
3065  if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
3066    if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->use_begin())))
3067      return ReductionInstDesc(false, I);
3068    return ReductionInstDesc(Select, Prev.MinMaxKind);
3069  }
3070
3071  // Only handle single use cases for now.
3072  if (!(Select = dyn_cast<SelectInst>(I)))
3073    return ReductionInstDesc(false, I);
3074  if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
3075      !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
3076    return ReductionInstDesc(false, I);
3077  if (!Cmp->hasOneUse())
3078    return ReductionInstDesc(false, I);
3079
3080  Value *CmpLeft;
3081  Value *CmpRight;
3082
3083  // Look for a min/max pattern.
3084  if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3085    return ReductionInstDesc(Select, MRK_UIntMin);
3086  else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3087    return ReductionInstDesc(Select, MRK_UIntMax);
3088  else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3089    return ReductionInstDesc(Select, MRK_SIntMax);
3090  else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3091    return ReductionInstDesc(Select, MRK_SIntMin);
3092  else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3093    return ReductionInstDesc(Select, MRK_FloatMin);
3094  else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3095    return ReductionInstDesc(Select, MRK_FloatMax);
3096  else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3097    return ReductionInstDesc(Select, MRK_FloatMin);
3098  else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
3099    return ReductionInstDesc(Select, MRK_FloatMax);
3100
3101  return ReductionInstDesc(false, I);
3102}
3103
3104LoopVectorizationLegality::ReductionInstDesc
3105LoopVectorizationLegality::isReductionInstr(Instruction *I,
3106                                            ReductionKind Kind,
3107                                            ReductionInstDesc &Prev) {
3108  bool FP = I->getType()->isFloatingPointTy();
3109  bool FastMath = (FP && I->isCommutative() && I->isAssociative());
3110  switch (I->getOpcode()) {
3111  default:
3112    return ReductionInstDesc(false, I);
3113  case Instruction::PHI:
3114      if (FP && (Kind != RK_FloatMult && Kind != RK_FloatAdd &&
3115                 Kind != RK_FloatMinMax))
3116        return ReductionInstDesc(false, I);
3117    return ReductionInstDesc(I, Prev.MinMaxKind);
3118  case Instruction::Sub:
3119  case Instruction::Add:
3120    return ReductionInstDesc(Kind == RK_IntegerAdd, I);
3121  case Instruction::Mul:
3122    return ReductionInstDesc(Kind == RK_IntegerMult, I);
3123  case Instruction::And:
3124    return ReductionInstDesc(Kind == RK_IntegerAnd, I);
3125  case Instruction::Or:
3126    return ReductionInstDesc(Kind == RK_IntegerOr, I);
3127  case Instruction::Xor:
3128    return ReductionInstDesc(Kind == RK_IntegerXor, I);
3129  case Instruction::FMul:
3130    return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
3131  case Instruction::FAdd:
3132    return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
3133  case Instruction::FCmp:
3134  case Instruction::ICmp:
3135  case Instruction::Select:
3136    if (Kind != RK_IntegerMinMax &&
3137        (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
3138      return ReductionInstDesc(false, I);
3139    return isMinMaxSelectCmpPattern(I, Prev);
3140  }
3141}
3142
3143LoopVectorizationLegality::InductionKind
3144LoopVectorizationLegality::isInductionVariable(PHINode *Phi) {
3145  Type *PhiTy = Phi->getType();
3146  // We only handle integer and pointer inductions variables.
3147  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
3148    return IK_NoInduction;
3149
3150  // Check that the PHI is consecutive.
3151  const SCEV *PhiScev = SE->getSCEV(Phi);
3152  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
3153  if (!AR) {
3154    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
3155    return IK_NoInduction;
3156  }
3157  const SCEV *Step = AR->getStepRecurrence(*SE);
3158
3159  // Integer inductions need to have a stride of one.
3160  if (PhiTy->isIntegerTy()) {
3161    if (Step->isOne())
3162      return IK_IntInduction;
3163    if (Step->isAllOnesValue())
3164      return IK_ReverseIntInduction;
3165    return IK_NoInduction;
3166  }
3167
3168  // Calculate the pointer stride and check if it is consecutive.
3169  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
3170  if (!C)
3171    return IK_NoInduction;
3172
3173  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
3174  uint64_t Size = DL->getTypeAllocSize(PhiTy->getPointerElementType());
3175  if (C->getValue()->equalsInt(Size))
3176    return IK_PtrInduction;
3177  else if (C->getValue()->equalsInt(0 - Size))
3178    return IK_ReversePtrInduction;
3179
3180  return IK_NoInduction;
3181}
3182
3183bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
3184  Value *In0 = const_cast<Value*>(V);
3185  PHINode *PN = dyn_cast_or_null<PHINode>(In0);
3186  if (!PN)
3187    return false;
3188
3189  return Inductions.count(PN);
3190}
3191
3192bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB)  {
3193  assert(TheLoop->contains(BB) && "Unknown block used");
3194
3195  // Blocks that do not dominate the latch need predication.
3196  BasicBlock* Latch = TheLoop->getLoopLatch();
3197  return !DT->dominates(BB, Latch);
3198}
3199
3200bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB) {
3201  for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3202    // We don't predicate loads/stores at the moment.
3203    if (it->mayReadFromMemory() || it->mayWriteToMemory() || it->mayThrow())
3204      return false;
3205
3206    // The instructions below can trap.
3207    switch (it->getOpcode()) {
3208    default: continue;
3209    case Instruction::UDiv:
3210    case Instruction::SDiv:
3211    case Instruction::URem:
3212    case Instruction::SRem:
3213             return false;
3214    }
3215  }
3216
3217  return true;
3218}
3219
3220bool LoopVectorizationLegality::hasComputableBounds(Value *Ptr) {
3221  const SCEV *PhiScev = SE->getSCEV(Ptr);
3222  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
3223  if (!AR)
3224    return false;
3225
3226  return AR->isAffine();
3227}
3228
3229LoopVectorizationCostModel::VectorizationFactor
3230LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
3231                                                      unsigned UserVF) {
3232  // Width 1 means no vectorize
3233  VectorizationFactor Factor = { 1U, 0U };
3234  if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
3235    DEBUG(dbgs() << "LV: Aborting. Runtime ptr check is required in Os.\n");
3236    return Factor;
3237  }
3238
3239  // Find the trip count.
3240  unsigned TC = SE->getSmallConstantTripCount(TheLoop, TheLoop->getLoopLatch());
3241  DEBUG(dbgs() << "LV: Found trip count:"<<TC<<"\n");
3242
3243  unsigned WidestType = getWidestType();
3244  unsigned WidestRegister = TTI.getRegisterBitWidth(true);
3245  unsigned MaxVectorSize = WidestRegister / WidestType;
3246  DEBUG(dbgs() << "LV: The Widest type: " << WidestType << " bits.\n");
3247  DEBUG(dbgs() << "LV: The Widest register is:" << WidestRegister << "bits.\n");
3248
3249  if (MaxVectorSize == 0) {
3250    DEBUG(dbgs() << "LV: The target has no vector registers.\n");
3251    MaxVectorSize = 1;
3252  }
3253
3254  assert(MaxVectorSize <= 32 && "Did not expect to pack so many elements"
3255         " into one vector!");
3256
3257  unsigned VF = MaxVectorSize;
3258
3259  // If we optimize the program for size, avoid creating the tail loop.
3260  if (OptForSize) {
3261    // If we are unable to calculate the trip count then don't try to vectorize.
3262    if (TC < 2) {
3263      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
3264      return Factor;
3265    }
3266
3267    // Find the maximum SIMD width that can fit within the trip count.
3268    VF = TC % MaxVectorSize;
3269
3270    if (VF == 0)
3271      VF = MaxVectorSize;
3272
3273    // If the trip count that we found modulo the vectorization factor is not
3274    // zero then we require a tail.
3275    if (VF < 2) {
3276      DEBUG(dbgs() << "LV: Aborting. A tail loop is required in Os.\n");
3277      return Factor;
3278    }
3279  }
3280
3281  if (UserVF != 0) {
3282    assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
3283    DEBUG(dbgs() << "LV: Using user VF "<<UserVF<<".\n");
3284
3285    Factor.Width = UserVF;
3286    return Factor;
3287  }
3288
3289  float Cost = expectedCost(1);
3290  unsigned Width = 1;
3291  DEBUG(dbgs() << "LV: Scalar loop costs: "<< (int)Cost << ".\n");
3292  for (unsigned i=2; i <= VF; i*=2) {
3293    // Notice that the vector loop needs to be executed less times, so
3294    // we need to divide the cost of the vector loops by the width of
3295    // the vector elements.
3296    float VectorCost = expectedCost(i) / (float)i;
3297    DEBUG(dbgs() << "LV: Vector loop of width "<< i << " costs: " <<
3298          (int)VectorCost << ".\n");
3299    if (VectorCost < Cost) {
3300      Cost = VectorCost;
3301      Width = i;
3302    }
3303  }
3304
3305  DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
3306  Factor.Width = Width;
3307  Factor.Cost = Width * Cost;
3308  return Factor;
3309}
3310
3311unsigned LoopVectorizationCostModel::getWidestType() {
3312  unsigned MaxWidth = 8;
3313
3314  // For each block.
3315  for (Loop::block_iterator bb = TheLoop->block_begin(),
3316       be = TheLoop->block_end(); bb != be; ++bb) {
3317    BasicBlock *BB = *bb;
3318
3319    // For each instruction in the loop.
3320    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3321      Type *T = it->getType();
3322
3323      // Only examine Loads, Stores and PHINodes.
3324      if (!isa<LoadInst>(it) && !isa<StoreInst>(it) && !isa<PHINode>(it))
3325        continue;
3326
3327      // Examine PHI nodes that are reduction variables.
3328      if (PHINode *PN = dyn_cast<PHINode>(it))
3329        if (!Legal->getReductionVars()->count(PN))
3330          continue;
3331
3332      // Examine the stored values.
3333      if (StoreInst *ST = dyn_cast<StoreInst>(it))
3334        T = ST->getValueOperand()->getType();
3335
3336      // Ignore loaded pointer types and stored pointer types that are not
3337      // consecutive. However, we do want to take consecutive stores/loads of
3338      // pointer vectors into account.
3339      if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
3340        continue;
3341
3342      MaxWidth = std::max(MaxWidth,
3343                          (unsigned)DL->getTypeSizeInBits(T->getScalarType()));
3344    }
3345  }
3346
3347  return MaxWidth;
3348}
3349
3350unsigned
3351LoopVectorizationCostModel::selectUnrollFactor(bool OptForSize,
3352                                               unsigned UserUF,
3353                                               unsigned VF,
3354                                               unsigned LoopCost) {
3355
3356  // -- The unroll heuristics --
3357  // We unroll the loop in order to expose ILP and reduce the loop overhead.
3358  // There are many micro-architectural considerations that we can't predict
3359  // at this level. For example frontend pressure (on decode or fetch) due to
3360  // code size, or the number and capabilities of the execution ports.
3361  //
3362  // We use the following heuristics to select the unroll factor:
3363  // 1. If the code has reductions the we unroll in order to break the cross
3364  // iteration dependency.
3365  // 2. If the loop is really small then we unroll in order to reduce the loop
3366  // overhead.
3367  // 3. We don't unroll if we think that we will spill registers to memory due
3368  // to the increased register pressure.
3369
3370  // Use the user preference, unless 'auto' is selected.
3371  if (UserUF != 0)
3372    return UserUF;
3373
3374  // When we optimize for size we don't unroll.
3375  if (OptForSize)
3376    return 1;
3377
3378  // Do not unroll loops with a relatively small trip count.
3379  unsigned TC = SE->getSmallConstantTripCount(TheLoop,
3380                                              TheLoop->getLoopLatch());
3381  if (TC > 1 && TC < TinyTripCountUnrollThreshold)
3382    return 1;
3383
3384  unsigned TargetVectorRegisters = TTI.getNumberOfRegisters(true);
3385  DEBUG(dbgs() << "LV: The target has " << TargetVectorRegisters <<
3386        " vector registers\n");
3387
3388  LoopVectorizationCostModel::RegisterUsage R = calculateRegisterUsage();
3389  // We divide by these constants so assume that we have at least one
3390  // instruction that uses at least one register.
3391  R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
3392  R.NumInstructions = std::max(R.NumInstructions, 1U);
3393
3394  // We calculate the unroll factor using the following formula.
3395  // Subtract the number of loop invariants from the number of available
3396  // registers. These registers are used by all of the unrolled instances.
3397  // Next, divide the remaining registers by the number of registers that is
3398  // required by the loop, in order to estimate how many parallel instances
3399  // fit without causing spills.
3400  unsigned UF = (TargetVectorRegisters - R.LoopInvariantRegs) / R.MaxLocalUsers;
3401
3402  // Clamp the unroll factor ranges to reasonable factors.
3403  unsigned MaxUnrollSize = TTI.getMaximumUnrollFactor();
3404
3405  // If we did not calculate the cost for VF (because the user selected the VF)
3406  // then we calculate the cost of VF here.
3407  if (LoopCost == 0)
3408    LoopCost = expectedCost(VF);
3409
3410  // Clamp the calculated UF to be between the 1 and the max unroll factor
3411  // that the target allows.
3412  if (UF > MaxUnrollSize)
3413    UF = MaxUnrollSize;
3414  else if (UF < 1)
3415    UF = 1;
3416
3417  if (Legal->getReductionVars()->size()) {
3418    DEBUG(dbgs() << "LV: Unrolling because of reductions. \n");
3419    return UF;
3420  }
3421
3422  // We want to unroll tiny loops in order to reduce the loop overhead.
3423  // We assume that the cost overhead is 1 and we use the cost model
3424  // to estimate the cost of the loop and unroll until the cost of the
3425  // loop overhead is about 5% of the cost of the loop.
3426  DEBUG(dbgs() << "LV: Loop cost is "<< LoopCost <<" \n");
3427  if (LoopCost < 20) {
3428    DEBUG(dbgs() << "LV: Unrolling to reduce branch cost. \n");
3429    unsigned NewUF = 20/LoopCost + 1;
3430    return std::min(NewUF, UF);
3431  }
3432
3433  DEBUG(dbgs() << "LV: Not Unrolling. \n");
3434  return 1;
3435}
3436
3437LoopVectorizationCostModel::RegisterUsage
3438LoopVectorizationCostModel::calculateRegisterUsage() {
3439  // This function calculates the register usage by measuring the highest number
3440  // of values that are alive at a single location. Obviously, this is a very
3441  // rough estimation. We scan the loop in a topological order in order and
3442  // assign a number to each instruction. We use RPO to ensure that defs are
3443  // met before their users. We assume that each instruction that has in-loop
3444  // users starts an interval. We record every time that an in-loop value is
3445  // used, so we have a list of the first and last occurrences of each
3446  // instruction. Next, we transpose this data structure into a multi map that
3447  // holds the list of intervals that *end* at a specific location. This multi
3448  // map allows us to perform a linear search. We scan the instructions linearly
3449  // and record each time that a new interval starts, by placing it in a set.
3450  // If we find this value in the multi-map then we remove it from the set.
3451  // The max register usage is the maximum size of the set.
3452  // We also search for instructions that are defined outside the loop, but are
3453  // used inside the loop. We need this number separately from the max-interval
3454  // usage number because when we unroll, loop-invariant values do not take
3455  // more register.
3456  LoopBlocksDFS DFS(TheLoop);
3457  DFS.perform(LI);
3458
3459  RegisterUsage R;
3460  R.NumInstructions = 0;
3461
3462  // Each 'key' in the map opens a new interval. The values
3463  // of the map are the index of the 'last seen' usage of the
3464  // instruction that is the key.
3465  typedef DenseMap<Instruction*, unsigned> IntervalMap;
3466  // Maps instruction to its index.
3467  DenseMap<unsigned, Instruction*> IdxToInstr;
3468  // Marks the end of each interval.
3469  IntervalMap EndPoint;
3470  // Saves the list of instruction indices that are used in the loop.
3471  SmallSet<Instruction*, 8> Ends;
3472  // Saves the list of values that are used in the loop but are
3473  // defined outside the loop, such as arguments and constants.
3474  SmallPtrSet<Value*, 8> LoopInvariants;
3475
3476  unsigned Index = 0;
3477  for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
3478       be = DFS.endRPO(); bb != be; ++bb) {
3479    R.NumInstructions += (*bb)->size();
3480    for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
3481         ++it) {
3482      Instruction *I = it;
3483      IdxToInstr[Index++] = I;
3484
3485      // Save the end location of each USE.
3486      for (unsigned i = 0; i < I->getNumOperands(); ++i) {
3487        Value *U = I->getOperand(i);
3488        Instruction *Instr = dyn_cast<Instruction>(U);
3489
3490        // Ignore non-instruction values such as arguments, constants, etc.
3491        if (!Instr) continue;
3492
3493        // If this instruction is outside the loop then record it and continue.
3494        if (!TheLoop->contains(Instr)) {
3495          LoopInvariants.insert(Instr);
3496          continue;
3497        }
3498
3499        // Overwrite previous end points.
3500        EndPoint[Instr] = Index;
3501        Ends.insert(Instr);
3502      }
3503    }
3504  }
3505
3506  // Saves the list of intervals that end with the index in 'key'.
3507  typedef SmallVector<Instruction*, 2> InstrList;
3508  DenseMap<unsigned, InstrList> TransposeEnds;
3509
3510  // Transpose the EndPoints to a list of values that end at each index.
3511  for (IntervalMap::iterator it = EndPoint.begin(), e = EndPoint.end();
3512       it != e; ++it)
3513    TransposeEnds[it->second].push_back(it->first);
3514
3515  SmallSet<Instruction*, 8> OpenIntervals;
3516  unsigned MaxUsage = 0;
3517
3518
3519  DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
3520  for (unsigned int i = 0; i < Index; ++i) {
3521    Instruction *I = IdxToInstr[i];
3522    // Ignore instructions that are never used within the loop.
3523    if (!Ends.count(I)) continue;
3524
3525    // Remove all of the instructions that end at this location.
3526    InstrList &List = TransposeEnds[i];
3527    for (unsigned int j=0, e = List.size(); j < e; ++j)
3528      OpenIntervals.erase(List[j]);
3529
3530    // Count the number of live interals.
3531    MaxUsage = std::max(MaxUsage, OpenIntervals.size());
3532
3533    DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " <<
3534          OpenIntervals.size() <<"\n");
3535
3536    // Add the current instruction to the list of open intervals.
3537    OpenIntervals.insert(I);
3538  }
3539
3540  unsigned Invariant = LoopInvariants.size();
3541  DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsage << " \n");
3542  DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << " \n");
3543  DEBUG(dbgs() << "LV(REG): LoopSize: " << R.NumInstructions << " \n");
3544
3545  R.LoopInvariantRegs = Invariant;
3546  R.MaxLocalUsers = MaxUsage;
3547  return R;
3548}
3549
3550unsigned LoopVectorizationCostModel::expectedCost(unsigned VF) {
3551  unsigned Cost = 0;
3552
3553  // For each block.
3554  for (Loop::block_iterator bb = TheLoop->block_begin(),
3555       be = TheLoop->block_end(); bb != be; ++bb) {
3556    unsigned BlockCost = 0;
3557    BasicBlock *BB = *bb;
3558
3559    // For each instruction in the old loop.
3560    for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
3561      // Skip dbg intrinsics.
3562      if (isa<DbgInfoIntrinsic>(it))
3563        continue;
3564
3565      unsigned C = getInstructionCost(it, VF);
3566      Cost += C;
3567      DEBUG(dbgs() << "LV: Found an estimated cost of "<< C <<" for VF " <<
3568            VF << " For instruction: "<< *it << "\n");
3569    }
3570
3571    // We assume that if-converted blocks have a 50% chance of being executed.
3572    // When the code is scalar then some of the blocks are avoided due to CF.
3573    // When the code is vectorized we execute all code paths.
3574    if (Legal->blockNeedsPredication(*bb) && VF == 1)
3575      BlockCost /= 2;
3576
3577    Cost += BlockCost;
3578  }
3579
3580  return Cost;
3581}
3582
3583unsigned
3584LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
3585  // If we know that this instruction will remain uniform, check the cost of
3586  // the scalar version.
3587  if (Legal->isUniformAfterVectorization(I))
3588    VF = 1;
3589
3590  Type *RetTy = I->getType();
3591  Type *VectorTy = ToVectorTy(RetTy, VF);
3592
3593  // TODO: We need to estimate the cost of intrinsic calls.
3594  switch (I->getOpcode()) {
3595  case Instruction::GetElementPtr:
3596    // We mark this instruction as zero-cost because the cost of GEPs in
3597    // vectorized code depends on whether the corresponding memory instruction
3598    // is scalarized or not. Therefore, we handle GEPs with the memory
3599    // instruction cost.
3600    return 0;
3601  case Instruction::Br: {
3602    return TTI.getCFInstrCost(I->getOpcode());
3603  }
3604  case Instruction::PHI:
3605    //TODO: IF-converted IFs become selects.
3606    return 0;
3607  case Instruction::Add:
3608  case Instruction::FAdd:
3609  case Instruction::Sub:
3610  case Instruction::FSub:
3611  case Instruction::Mul:
3612  case Instruction::FMul:
3613  case Instruction::UDiv:
3614  case Instruction::SDiv:
3615  case Instruction::FDiv:
3616  case Instruction::URem:
3617  case Instruction::SRem:
3618  case Instruction::FRem:
3619  case Instruction::Shl:
3620  case Instruction::LShr:
3621  case Instruction::AShr:
3622  case Instruction::And:
3623  case Instruction::Or:
3624  case Instruction::Xor: {
3625    // Certain instructions can be cheaper to vectorize if they have a constant
3626    // second vector operand. One example of this are shifts on x86.
3627    TargetTransformInfo::OperandValueKind Op1VK =
3628      TargetTransformInfo::OK_AnyValue;
3629    TargetTransformInfo::OperandValueKind Op2VK =
3630      TargetTransformInfo::OK_AnyValue;
3631
3632    if (isa<ConstantInt>(I->getOperand(1)))
3633      Op2VK = TargetTransformInfo::OK_UniformConstantValue;
3634
3635    return TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK, Op2VK);
3636  }
3637  case Instruction::Select: {
3638    SelectInst *SI = cast<SelectInst>(I);
3639    const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
3640    bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
3641    Type *CondTy = SI->getCondition()->getType();
3642    if (!ScalarCond)
3643      CondTy = VectorType::get(CondTy, VF);
3644
3645    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy);
3646  }
3647  case Instruction::ICmp:
3648  case Instruction::FCmp: {
3649    Type *ValTy = I->getOperand(0)->getType();
3650    VectorTy = ToVectorTy(ValTy, VF);
3651    return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy);
3652  }
3653  case Instruction::Store:
3654  case Instruction::Load: {
3655    StoreInst *SI = dyn_cast<StoreInst>(I);
3656    LoadInst *LI = dyn_cast<LoadInst>(I);
3657    Type *ValTy = (SI ? SI->getValueOperand()->getType() :
3658                   LI->getType());
3659    VectorTy = ToVectorTy(ValTy, VF);
3660
3661    unsigned Alignment = SI ? SI->getAlignment() : LI->getAlignment();
3662    unsigned AS = SI ? SI->getPointerAddressSpace() :
3663      LI->getPointerAddressSpace();
3664    Value *Ptr = SI ? SI->getPointerOperand() : LI->getPointerOperand();
3665    // We add the cost of address computation here instead of with the gep
3666    // instruction because only here we know whether the operation is
3667    // scalarized.
3668    if (VF == 1)
3669      return TTI.getAddressComputationCost(VectorTy) +
3670        TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
3671
3672    // Scalarized loads/stores.
3673    int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
3674    bool Reverse = ConsecutiveStride < 0;
3675    unsigned ScalarAllocatedSize = DL->getTypeAllocSize(ValTy);
3676    unsigned VectorElementSize = DL->getTypeStoreSize(VectorTy)/VF;
3677    if (!ConsecutiveStride || ScalarAllocatedSize != VectorElementSize) {
3678      unsigned Cost = 0;
3679      // The cost of extracting from the value vector and pointer vector.
3680      Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
3681      for (unsigned i = 0; i < VF; ++i) {
3682        //  The cost of extracting the pointer operand.
3683        Cost += TTI.getVectorInstrCost(Instruction::ExtractElement, PtrTy, i);
3684        // In case of STORE, the cost of ExtractElement from the vector.
3685        // In case of LOAD, the cost of InsertElement into the returned
3686        // vector.
3687        Cost += TTI.getVectorInstrCost(SI ? Instruction::ExtractElement :
3688                                            Instruction::InsertElement,
3689                                            VectorTy, i);
3690      }
3691
3692      // The cost of the scalar loads/stores.
3693      Cost += VF * TTI.getAddressComputationCost(ValTy->getScalarType());
3694      Cost += VF * TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(),
3695                                       Alignment, AS);
3696      return Cost;
3697    }
3698
3699    // Wide load/stores.
3700    unsigned Cost = TTI.getAddressComputationCost(VectorTy);
3701    Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
3702
3703    if (Reverse)
3704      Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse,
3705                                  VectorTy, 0);
3706    return Cost;
3707  }
3708  case Instruction::ZExt:
3709  case Instruction::SExt:
3710  case Instruction::FPToUI:
3711  case Instruction::FPToSI:
3712  case Instruction::FPExt:
3713  case Instruction::PtrToInt:
3714  case Instruction::IntToPtr:
3715  case Instruction::SIToFP:
3716  case Instruction::UIToFP:
3717  case Instruction::Trunc:
3718  case Instruction::FPTrunc:
3719  case Instruction::BitCast: {
3720    // We optimize the truncation of induction variable.
3721    // The cost of these is the same as the scalar operation.
3722    if (I->getOpcode() == Instruction::Trunc &&
3723        Legal->isInductionVariable(I->getOperand(0)))
3724      return TTI.getCastInstrCost(I->getOpcode(), I->getType(),
3725                                  I->getOperand(0)->getType());
3726
3727    Type *SrcVecTy = ToVectorTy(I->getOperand(0)->getType(), VF);
3728    return TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy);
3729  }
3730  case Instruction::Call: {
3731    CallInst *CI = cast<CallInst>(I);
3732    Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
3733    assert(ID && "Not an intrinsic call!");
3734    Type *RetTy = ToVectorTy(CI->getType(), VF);
3735    SmallVector<Type*, 4> Tys;
3736    for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i)
3737      Tys.push_back(ToVectorTy(CI->getArgOperand(i)->getType(), VF));
3738    return TTI.getIntrinsicInstrCost(ID, RetTy, Tys);
3739  }
3740  default: {
3741    // We are scalarizing the instruction. Return the cost of the scalar
3742    // instruction, plus the cost of insert and extract into vector
3743    // elements, times the vector width.
3744    unsigned Cost = 0;
3745
3746    if (!RetTy->isVoidTy() && VF != 1) {
3747      unsigned InsCost = TTI.getVectorInstrCost(Instruction::InsertElement,
3748                                                VectorTy);
3749      unsigned ExtCost = TTI.getVectorInstrCost(Instruction::ExtractElement,
3750                                                VectorTy);
3751
3752      // The cost of inserting the results plus extracting each one of the
3753      // operands.
3754      Cost += VF * (InsCost + ExtCost * I->getNumOperands());
3755    }
3756
3757    // The cost of executing VF copies of the scalar instruction. This opcode
3758    // is unknown. Assume that it is the same as 'mul'.
3759    Cost += VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
3760    return Cost;
3761  }
3762  }// end of switch.
3763}
3764
3765Type* LoopVectorizationCostModel::ToVectorTy(Type *Scalar, unsigned VF) {
3766  if (Scalar->isVoidTy() || VF == 1)
3767    return Scalar;
3768  return VectorType::get(Scalar, VF);
3769}
3770
3771char LoopVectorize::ID = 0;
3772static const char lv_name[] = "Loop Vectorization";
3773INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
3774INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
3775INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
3776INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
3777INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
3778INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
3779
3780namespace llvm {
3781  Pass *createLoopVectorizePass() {
3782    return new LoopVectorize();
3783  }
3784}
3785
3786bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
3787  // Check for a store.
3788  if (StoreInst *ST = dyn_cast<StoreInst>(Inst))
3789    return Legal->isConsecutivePtr(ST->getPointerOperand()) != 0;
3790
3791  // Check for a load.
3792  if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
3793    return Legal->isConsecutivePtr(LI->getPointerOperand()) != 0;
3794
3795  return false;
3796}
3797